You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

653 lines
20KB

  1. /*
  2. * Wing Commander/Xan Video Decoder
  3. * Copyright (C) 2003 The FFmpeg project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Xan video decoder for Wing Commander III computer game
  24. * by Mario Brito (mbrito@student.dei.uc.pt)
  25. * and Mike Melanson (melanson@pcisys.net)
  26. *
  27. * The xan_wc3 decoder outputs PAL8 data.
  28. */
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include "libavutil/intreadwrite.h"
  33. #include "libavutil/mem.h"
  34. #define BITSTREAM_READER_LE
  35. #include "avcodec.h"
  36. #include "bytestream.h"
  37. #include "get_bits.h"
  38. #include "internal.h"
  39. #define RUNTIME_GAMMA 0
  40. #define VGA__TAG MKTAG('V', 'G', 'A', ' ')
  41. #define PALT_TAG MKTAG('P', 'A', 'L', 'T')
  42. #define SHOT_TAG MKTAG('S', 'H', 'O', 'T')
  43. #define PALETTE_COUNT 256
  44. #define PALETTE_SIZE (PALETTE_COUNT * 3)
  45. #define PALETTES_MAX 256
  46. typedef struct XanContext {
  47. AVCodecContext *avctx;
  48. AVFrame *last_frame;
  49. const uint8_t *buf;
  50. int size;
  51. /* scratch space */
  52. uint8_t *buffer1;
  53. int buffer1_size;
  54. uint8_t *buffer2;
  55. int buffer2_size;
  56. unsigned *palettes;
  57. int palettes_count;
  58. int cur_palette;
  59. int frame_size;
  60. } XanContext;
  61. static av_cold int xan_decode_end(AVCodecContext *avctx)
  62. {
  63. XanContext *s = avctx->priv_data;
  64. av_frame_free(&s->last_frame);
  65. av_freep(&s->buffer1);
  66. av_freep(&s->buffer2);
  67. av_freep(&s->palettes);
  68. return 0;
  69. }
  70. static av_cold int xan_decode_init(AVCodecContext *avctx)
  71. {
  72. XanContext *s = avctx->priv_data;
  73. s->avctx = avctx;
  74. s->frame_size = 0;
  75. avctx->pix_fmt = AV_PIX_FMT_PAL8;
  76. s->buffer1_size = avctx->width * avctx->height;
  77. s->buffer1 = av_malloc(s->buffer1_size);
  78. if (!s->buffer1)
  79. return AVERROR(ENOMEM);
  80. s->buffer2_size = avctx->width * avctx->height;
  81. s->buffer2 = av_malloc(s->buffer2_size + 130);
  82. if (!s->buffer2) {
  83. av_freep(&s->buffer1);
  84. return AVERROR(ENOMEM);
  85. }
  86. s->last_frame = av_frame_alloc();
  87. if (!s->last_frame) {
  88. xan_decode_end(avctx);
  89. return AVERROR(ENOMEM);
  90. }
  91. return 0;
  92. }
  93. static int xan_huffman_decode(uint8_t *dest, int dest_len,
  94. const uint8_t *src, int src_len)
  95. {
  96. uint8_t byte = *src++;
  97. uint8_t ival = byte + 0x16;
  98. const uint8_t * ptr = src + byte*2;
  99. int ptr_len = src_len - 1 - byte*2;
  100. uint8_t val = ival;
  101. uint8_t *dest_end = dest + dest_len;
  102. uint8_t *dest_start = dest;
  103. int ret;
  104. GetBitContext gb;
  105. if ((ret = init_get_bits8(&gb, ptr, ptr_len)) < 0)
  106. return ret;
  107. while (val != 0x16) {
  108. unsigned idx;
  109. if (get_bits_left(&gb) < 1)
  110. return AVERROR_INVALIDDATA;
  111. idx = val - 0x17 + get_bits1(&gb) * byte;
  112. if (idx >= 2 * byte)
  113. return AVERROR_INVALIDDATA;
  114. val = src[idx];
  115. if (val < 0x16) {
  116. if (dest >= dest_end)
  117. return dest_len;
  118. *dest++ = val;
  119. val = ival;
  120. }
  121. }
  122. return dest - dest_start;
  123. }
  124. /**
  125. * unpack simple compression
  126. *
  127. * @param dest destination buffer of dest_len, must be padded with at least 130 bytes
  128. */
  129. static void xan_unpack(uint8_t *dest, int dest_len,
  130. const uint8_t *src, int src_len)
  131. {
  132. uint8_t opcode;
  133. int size;
  134. uint8_t *dest_org = dest;
  135. uint8_t *dest_end = dest + dest_len;
  136. GetByteContext ctx;
  137. bytestream2_init(&ctx, src, src_len);
  138. while (dest < dest_end && bytestream2_get_bytes_left(&ctx)) {
  139. opcode = bytestream2_get_byte(&ctx);
  140. if (opcode < 0xe0) {
  141. int size2, back;
  142. if ((opcode & 0x80) == 0) {
  143. size = opcode & 3;
  144. back = ((opcode & 0x60) << 3) + bytestream2_get_byte(&ctx) + 1;
  145. size2 = ((opcode & 0x1c) >> 2) + 3;
  146. } else if ((opcode & 0x40) == 0) {
  147. size = bytestream2_peek_byte(&ctx) >> 6;
  148. back = (bytestream2_get_be16(&ctx) & 0x3fff) + 1;
  149. size2 = (opcode & 0x3f) + 4;
  150. } else {
  151. size = opcode & 3;
  152. back = ((opcode & 0x10) << 12) + bytestream2_get_be16(&ctx) + 1;
  153. size2 = ((opcode & 0x0c) << 6) + bytestream2_get_byte(&ctx) + 5;
  154. }
  155. if (dest_end - dest < size + size2 ||
  156. dest + size - dest_org < back ||
  157. bytestream2_get_bytes_left(&ctx) < size)
  158. return;
  159. bytestream2_get_buffer(&ctx, dest, size);
  160. dest += size;
  161. av_memcpy_backptr(dest, back, size2);
  162. dest += size2;
  163. } else {
  164. int finish = opcode >= 0xfc;
  165. size = finish ? opcode & 3 : ((opcode & 0x1f) << 2) + 4;
  166. if (dest_end - dest < size || bytestream2_get_bytes_left(&ctx) < size)
  167. return;
  168. bytestream2_get_buffer(&ctx, dest, size);
  169. dest += size;
  170. if (finish)
  171. return;
  172. }
  173. }
  174. }
  175. static inline void xan_wc3_output_pixel_run(XanContext *s, AVFrame *frame,
  176. const uint8_t *pixel_buffer, int x, int y, int pixel_count)
  177. {
  178. int stride;
  179. int line_inc;
  180. int index;
  181. int current_x;
  182. int width = s->avctx->width;
  183. uint8_t *palette_plane;
  184. palette_plane = frame->data[0];
  185. stride = frame->linesize[0];
  186. line_inc = stride - width;
  187. index = y * stride + x;
  188. current_x = x;
  189. while (pixel_count && index < s->frame_size) {
  190. int count = FFMIN(pixel_count, width - current_x);
  191. memcpy(palette_plane + index, pixel_buffer, count);
  192. pixel_count -= count;
  193. index += count;
  194. pixel_buffer += count;
  195. current_x += count;
  196. if (current_x >= width) {
  197. index += line_inc;
  198. current_x = 0;
  199. }
  200. }
  201. }
  202. static inline void xan_wc3_copy_pixel_run(XanContext *s, AVFrame *frame,
  203. int x, int y,
  204. int pixel_count, int motion_x,
  205. int motion_y)
  206. {
  207. int stride;
  208. int line_inc;
  209. int curframe_index, prevframe_index;
  210. int curframe_x, prevframe_x;
  211. int width = s->avctx->width;
  212. uint8_t *palette_plane, *prev_palette_plane;
  213. if (y + motion_y < 0 || y + motion_y >= s->avctx->height ||
  214. x + motion_x < 0 || x + motion_x >= s->avctx->width)
  215. return;
  216. palette_plane = frame->data[0];
  217. prev_palette_plane = s->last_frame->data[0];
  218. if (!prev_palette_plane)
  219. prev_palette_plane = palette_plane;
  220. stride = frame->linesize[0];
  221. line_inc = stride - width;
  222. curframe_index = y * stride + x;
  223. curframe_x = x;
  224. prevframe_index = (y + motion_y) * stride + x + motion_x;
  225. prevframe_x = x + motion_x;
  226. if (prev_palette_plane == palette_plane && FFABS(motion_x + width*motion_y) < pixel_count) {
  227. avpriv_request_sample(s->avctx, "Overlapping copy");
  228. return ;
  229. }
  230. while (pixel_count &&
  231. curframe_index < s->frame_size &&
  232. prevframe_index < s->frame_size) {
  233. int count = FFMIN3(pixel_count, width - curframe_x,
  234. width - prevframe_x);
  235. memcpy(palette_plane + curframe_index,
  236. prev_palette_plane + prevframe_index, count);
  237. pixel_count -= count;
  238. curframe_index += count;
  239. prevframe_index += count;
  240. curframe_x += count;
  241. prevframe_x += count;
  242. if (curframe_x >= width) {
  243. curframe_index += line_inc;
  244. curframe_x = 0;
  245. }
  246. if (prevframe_x >= width) {
  247. prevframe_index += line_inc;
  248. prevframe_x = 0;
  249. }
  250. }
  251. }
  252. static int xan_wc3_decode_frame(XanContext *s, AVFrame *frame)
  253. {
  254. int width = s->avctx->width;
  255. int height = s->avctx->height;
  256. int total_pixels = width * height;
  257. uint8_t opcode;
  258. uint8_t flag = 0;
  259. int size = 0;
  260. int motion_x, motion_y;
  261. int x, y, ret;
  262. uint8_t *opcode_buffer = s->buffer1;
  263. uint8_t *opcode_buffer_end = s->buffer1 + s->buffer1_size;
  264. int opcode_buffer_size = s->buffer1_size;
  265. const uint8_t *imagedata_buffer = s->buffer2;
  266. /* pointers to segments inside the compressed chunk */
  267. const uint8_t *huffman_segment;
  268. GetByteContext size_segment;
  269. GetByteContext vector_segment;
  270. const uint8_t *imagedata_segment;
  271. int huffman_offset, size_offset, vector_offset, imagedata_offset,
  272. imagedata_size;
  273. if (s->size < 8)
  274. return AVERROR_INVALIDDATA;
  275. huffman_offset = AV_RL16(&s->buf[0]);
  276. size_offset = AV_RL16(&s->buf[2]);
  277. vector_offset = AV_RL16(&s->buf[4]);
  278. imagedata_offset = AV_RL16(&s->buf[6]);
  279. if (huffman_offset >= s->size ||
  280. size_offset >= s->size ||
  281. vector_offset >= s->size ||
  282. imagedata_offset >= s->size)
  283. return AVERROR_INVALIDDATA;
  284. huffman_segment = s->buf + huffman_offset;
  285. bytestream2_init(&size_segment, s->buf + size_offset, s->size - size_offset);
  286. bytestream2_init(&vector_segment, s->buf + vector_offset, s->size - vector_offset);
  287. imagedata_segment = s->buf + imagedata_offset;
  288. if ((ret = xan_huffman_decode(opcode_buffer, opcode_buffer_size,
  289. huffman_segment, s->size - huffman_offset)) < 0)
  290. return AVERROR_INVALIDDATA;
  291. opcode_buffer_end = opcode_buffer + ret;
  292. if (imagedata_segment[0] == 2) {
  293. xan_unpack(s->buffer2, s->buffer2_size,
  294. &imagedata_segment[1], s->size - imagedata_offset - 1);
  295. imagedata_size = s->buffer2_size;
  296. } else {
  297. imagedata_size = s->size - imagedata_offset - 1;
  298. imagedata_buffer = &imagedata_segment[1];
  299. }
  300. /* use the decoded data segments to build the frame */
  301. x = y = 0;
  302. while (total_pixels && opcode_buffer < opcode_buffer_end) {
  303. opcode = *opcode_buffer++;
  304. size = 0;
  305. switch (opcode) {
  306. case 0:
  307. flag ^= 1;
  308. continue;
  309. case 1:
  310. case 2:
  311. case 3:
  312. case 4:
  313. case 5:
  314. case 6:
  315. case 7:
  316. case 8:
  317. size = opcode;
  318. break;
  319. case 12:
  320. case 13:
  321. case 14:
  322. case 15:
  323. case 16:
  324. case 17:
  325. case 18:
  326. size += (opcode - 10);
  327. break;
  328. case 9:
  329. case 19:
  330. if (bytestream2_get_bytes_left(&size_segment) < 1) {
  331. av_log(s->avctx, AV_LOG_ERROR, "size_segment overread\n");
  332. return AVERROR_INVALIDDATA;
  333. }
  334. size = bytestream2_get_byte(&size_segment);
  335. break;
  336. case 10:
  337. case 20:
  338. if (bytestream2_get_bytes_left(&size_segment) < 2) {
  339. av_log(s->avctx, AV_LOG_ERROR, "size_segment overread\n");
  340. return AVERROR_INVALIDDATA;
  341. }
  342. size = bytestream2_get_be16(&size_segment);
  343. break;
  344. case 11:
  345. case 21:
  346. if (bytestream2_get_bytes_left(&size_segment) < 3) {
  347. av_log(s->avctx, AV_LOG_ERROR, "size_segment overread\n");
  348. return AVERROR_INVALIDDATA;
  349. }
  350. size = bytestream2_get_be24(&size_segment);
  351. break;
  352. }
  353. if (size > total_pixels)
  354. break;
  355. if (opcode < 12) {
  356. flag ^= 1;
  357. if (flag) {
  358. /* run of (size) pixels is unchanged from last frame */
  359. xan_wc3_copy_pixel_run(s, frame, x, y, size, 0, 0);
  360. } else {
  361. /* output a run of pixels from imagedata_buffer */
  362. if (imagedata_size < size)
  363. break;
  364. xan_wc3_output_pixel_run(s, frame, imagedata_buffer, x, y, size);
  365. imagedata_buffer += size;
  366. imagedata_size -= size;
  367. }
  368. } else {
  369. uint8_t vector;
  370. if (bytestream2_get_bytes_left(&vector_segment) <= 0) {
  371. av_log(s->avctx, AV_LOG_ERROR, "vector_segment overread\n");
  372. return AVERROR_INVALIDDATA;
  373. }
  374. /* run-based motion compensation from last frame */
  375. vector = bytestream2_get_byte(&vector_segment);
  376. motion_x = sign_extend(vector >> 4, 4);
  377. motion_y = sign_extend(vector & 0xF, 4);
  378. /* copy a run of pixels from the previous frame */
  379. xan_wc3_copy_pixel_run(s, frame, x, y, size, motion_x, motion_y);
  380. flag = 0;
  381. }
  382. /* coordinate accounting */
  383. total_pixels -= size;
  384. y += (x + size) / width;
  385. x = (x + size) % width;
  386. }
  387. return 0;
  388. }
  389. #if RUNTIME_GAMMA
  390. static inline unsigned mul(unsigned a, unsigned b)
  391. {
  392. return (a * b) >> 16;
  393. }
  394. static inline unsigned pow4(unsigned a)
  395. {
  396. unsigned square = mul(a, a);
  397. return mul(square, square);
  398. }
  399. static inline unsigned pow5(unsigned a)
  400. {
  401. return mul(pow4(a), a);
  402. }
  403. static uint8_t gamma_corr(uint8_t in) {
  404. unsigned lo, hi = 0xff40, target;
  405. int i = 15;
  406. in = (in << 2) | (in >> 6);
  407. /* equivalent float code:
  408. if (in >= 252)
  409. return 253;
  410. return round(pow(in / 256.0, 0.8) * 256);
  411. */
  412. lo = target = in << 8;
  413. do {
  414. unsigned mid = (lo + hi) >> 1;
  415. unsigned pow = pow5(mid);
  416. if (pow > target) hi = mid;
  417. else lo = mid;
  418. } while (--i);
  419. return (pow4((lo + hi) >> 1) + 0x80) >> 8;
  420. }
  421. #else
  422. /**
  423. * This is a gamma correction that xan3 applies to all palette entries.
  424. *
  425. * There is a peculiarity, namely that the values are clamped to 253 -
  426. * it seems likely that this table was calculated by a buggy fixed-point
  427. * implementation, the one above under RUNTIME_GAMMA behaves like this for
  428. * example.
  429. * The exponent value of 0.8 can be explained by this as well, since 0.8 = 4/5
  430. * and thus pow(x, 0.8) is still easy to calculate.
  431. * Also, the input values are first rotated to the left by 2.
  432. */
  433. static const uint8_t gamma_lookup[256] = {
  434. 0x00, 0x09, 0x10, 0x16, 0x1C, 0x21, 0x27, 0x2C,
  435. 0x31, 0x35, 0x3A, 0x3F, 0x43, 0x48, 0x4C, 0x50,
  436. 0x54, 0x59, 0x5D, 0x61, 0x65, 0x69, 0x6D, 0x71,
  437. 0x75, 0x79, 0x7D, 0x80, 0x84, 0x88, 0x8C, 0x8F,
  438. 0x93, 0x97, 0x9A, 0x9E, 0xA2, 0xA5, 0xA9, 0xAC,
  439. 0xB0, 0xB3, 0xB7, 0xBA, 0xBE, 0xC1, 0xC5, 0xC8,
  440. 0xCB, 0xCF, 0xD2, 0xD5, 0xD9, 0xDC, 0xDF, 0xE3,
  441. 0xE6, 0xE9, 0xED, 0xF0, 0xF3, 0xF6, 0xFA, 0xFD,
  442. 0x03, 0x0B, 0x12, 0x18, 0x1D, 0x23, 0x28, 0x2D,
  443. 0x32, 0x36, 0x3B, 0x40, 0x44, 0x49, 0x4D, 0x51,
  444. 0x56, 0x5A, 0x5E, 0x62, 0x66, 0x6A, 0x6E, 0x72,
  445. 0x76, 0x7A, 0x7D, 0x81, 0x85, 0x89, 0x8D, 0x90,
  446. 0x94, 0x98, 0x9B, 0x9F, 0xA2, 0xA6, 0xAA, 0xAD,
  447. 0xB1, 0xB4, 0xB8, 0xBB, 0xBF, 0xC2, 0xC5, 0xC9,
  448. 0xCC, 0xD0, 0xD3, 0xD6, 0xDA, 0xDD, 0xE0, 0xE4,
  449. 0xE7, 0xEA, 0xED, 0xF1, 0xF4, 0xF7, 0xFA, 0xFD,
  450. 0x05, 0x0D, 0x13, 0x19, 0x1F, 0x24, 0x29, 0x2E,
  451. 0x33, 0x38, 0x3C, 0x41, 0x45, 0x4A, 0x4E, 0x52,
  452. 0x57, 0x5B, 0x5F, 0x63, 0x67, 0x6B, 0x6F, 0x73,
  453. 0x77, 0x7B, 0x7E, 0x82, 0x86, 0x8A, 0x8D, 0x91,
  454. 0x95, 0x99, 0x9C, 0xA0, 0xA3, 0xA7, 0xAA, 0xAE,
  455. 0xB2, 0xB5, 0xB9, 0xBC, 0xBF, 0xC3, 0xC6, 0xCA,
  456. 0xCD, 0xD0, 0xD4, 0xD7, 0xDA, 0xDE, 0xE1, 0xE4,
  457. 0xE8, 0xEB, 0xEE, 0xF1, 0xF5, 0xF8, 0xFB, 0xFD,
  458. 0x07, 0x0E, 0x15, 0x1A, 0x20, 0x25, 0x2A, 0x2F,
  459. 0x34, 0x39, 0x3D, 0x42, 0x46, 0x4B, 0x4F, 0x53,
  460. 0x58, 0x5C, 0x60, 0x64, 0x68, 0x6C, 0x70, 0x74,
  461. 0x78, 0x7C, 0x7F, 0x83, 0x87, 0x8B, 0x8E, 0x92,
  462. 0x96, 0x99, 0x9D, 0xA1, 0xA4, 0xA8, 0xAB, 0xAF,
  463. 0xB2, 0xB6, 0xB9, 0xBD, 0xC0, 0xC4, 0xC7, 0xCB,
  464. 0xCE, 0xD1, 0xD5, 0xD8, 0xDB, 0xDF, 0xE2, 0xE5,
  465. 0xE9, 0xEC, 0xEF, 0xF2, 0xF6, 0xF9, 0xFC, 0xFD
  466. };
  467. #endif
  468. static int xan_decode_frame(AVCodecContext *avctx,
  469. void *data, int *got_frame,
  470. AVPacket *avpkt)
  471. {
  472. AVFrame *frame = data;
  473. const uint8_t *buf = avpkt->data;
  474. int ret, buf_size = avpkt->size;
  475. XanContext *s = avctx->priv_data;
  476. GetByteContext ctx;
  477. int tag = 0;
  478. bytestream2_init(&ctx, buf, buf_size);
  479. while (bytestream2_get_bytes_left(&ctx) > 8 && tag != VGA__TAG) {
  480. unsigned *tmpptr;
  481. uint32_t new_pal;
  482. int size;
  483. int i;
  484. tag = bytestream2_get_le32(&ctx);
  485. size = bytestream2_get_be32(&ctx);
  486. if (size < 0) {
  487. av_log(avctx, AV_LOG_ERROR, "Invalid tag size %d\n", size);
  488. return AVERROR_INVALIDDATA;
  489. }
  490. size = FFMIN(size, bytestream2_get_bytes_left(&ctx));
  491. switch (tag) {
  492. case PALT_TAG:
  493. if (size < PALETTE_SIZE)
  494. return AVERROR_INVALIDDATA;
  495. if (s->palettes_count >= PALETTES_MAX)
  496. return AVERROR_INVALIDDATA;
  497. tmpptr = av_realloc_array(s->palettes,
  498. s->palettes_count + 1, AVPALETTE_SIZE);
  499. if (!tmpptr)
  500. return AVERROR(ENOMEM);
  501. s->palettes = tmpptr;
  502. tmpptr += s->palettes_count * AVPALETTE_COUNT;
  503. for (i = 0; i < PALETTE_COUNT; i++) {
  504. #if RUNTIME_GAMMA
  505. int r = gamma_corr(bytestream2_get_byteu(&ctx));
  506. int g = gamma_corr(bytestream2_get_byteu(&ctx));
  507. int b = gamma_corr(bytestream2_get_byteu(&ctx));
  508. #else
  509. int r = gamma_lookup[bytestream2_get_byteu(&ctx)];
  510. int g = gamma_lookup[bytestream2_get_byteu(&ctx)];
  511. int b = gamma_lookup[bytestream2_get_byteu(&ctx)];
  512. #endif
  513. *tmpptr++ = (0xFFU << 24) | (r << 16) | (g << 8) | b;
  514. }
  515. s->palettes_count++;
  516. break;
  517. case SHOT_TAG:
  518. if (size < 4)
  519. return AVERROR_INVALIDDATA;
  520. new_pal = bytestream2_get_le32(&ctx);
  521. if (new_pal < s->palettes_count) {
  522. s->cur_palette = new_pal;
  523. } else
  524. av_log(avctx, AV_LOG_ERROR, "Invalid palette selected\n");
  525. break;
  526. case VGA__TAG:
  527. break;
  528. default:
  529. bytestream2_skip(&ctx, size);
  530. break;
  531. }
  532. }
  533. buf_size = bytestream2_get_bytes_left(&ctx);
  534. if (s->palettes_count <= 0) {
  535. av_log(s->avctx, AV_LOG_ERROR, "No palette found\n");
  536. return AVERROR_INVALIDDATA;
  537. }
  538. if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0)
  539. return ret;
  540. if (!s->frame_size)
  541. s->frame_size = frame->linesize[0] * s->avctx->height;
  542. memcpy(frame->data[1],
  543. s->palettes + s->cur_palette * AVPALETTE_COUNT, AVPALETTE_SIZE);
  544. s->buf = ctx.buffer;
  545. s->size = buf_size;
  546. if (xan_wc3_decode_frame(s, frame) < 0)
  547. return AVERROR_INVALIDDATA;
  548. av_frame_unref(s->last_frame);
  549. if ((ret = av_frame_ref(s->last_frame, frame)) < 0)
  550. return ret;
  551. *got_frame = 1;
  552. /* always report that the buffer was completely consumed */
  553. return buf_size;
  554. }
  555. AVCodec ff_xan_wc3_decoder = {
  556. .name = "xan_wc3",
  557. .long_name = NULL_IF_CONFIG_SMALL("Wing Commander III / Xan"),
  558. .type = AVMEDIA_TYPE_VIDEO,
  559. .id = AV_CODEC_ID_XAN_WC3,
  560. .priv_data_size = sizeof(XanContext),
  561. .init = xan_decode_init,
  562. .close = xan_decode_end,
  563. .decode = xan_decode_frame,
  564. .capabilities = AV_CODEC_CAP_DR1,
  565. };