You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1092 lines
38KB

  1. /*
  2. * Ut Video decoder
  3. * Copyright (c) 2011 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Ut Video decoder
  24. */
  25. #include <inttypes.h>
  26. #include <stdlib.h>
  27. #define CACHED_BITSTREAM_READER !ARCH_X86_32
  28. #define UNCHECKED_BITSTREAM_READER 1
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/pixdesc.h"
  31. #include "avcodec.h"
  32. #include "bswapdsp.h"
  33. #include "bytestream.h"
  34. #include "get_bits.h"
  35. #include "internal.h"
  36. #include "thread.h"
  37. #include "utvideo.h"
  38. static int build_huff10(const uint8_t *src, VLC *vlc, int *fsym)
  39. {
  40. int i;
  41. HuffEntry he[1024];
  42. int last;
  43. uint32_t codes[1024];
  44. uint8_t bits[1024];
  45. uint16_t syms[1024];
  46. uint32_t code;
  47. *fsym = -1;
  48. for (i = 0; i < 1024; i++) {
  49. he[i].sym = i;
  50. he[i].len = *src++;
  51. }
  52. qsort(he, 1024, sizeof(*he), ff_ut10_huff_cmp_len);
  53. if (!he[0].len) {
  54. *fsym = he[0].sym;
  55. return 0;
  56. }
  57. last = 1023;
  58. while (he[last].len == 255 && last)
  59. last--;
  60. if (he[last].len > 32) {
  61. return -1;
  62. }
  63. code = 1;
  64. for (i = last; i >= 0; i--) {
  65. codes[i] = code >> (32 - he[i].len);
  66. bits[i] = he[i].len;
  67. syms[i] = he[i].sym;
  68. code += 0x80000000u >> (he[i].len - 1);
  69. }
  70. #define VLC_BITS 11
  71. return ff_init_vlc_sparse(vlc, VLC_BITS, last + 1,
  72. bits, sizeof(*bits), sizeof(*bits),
  73. codes, sizeof(*codes), sizeof(*codes),
  74. syms, sizeof(*syms), sizeof(*syms), 0);
  75. }
  76. static int build_huff(const uint8_t *src, VLC *vlc, int *fsym)
  77. {
  78. int i;
  79. HuffEntry he[256];
  80. int last;
  81. uint32_t codes[256];
  82. uint8_t bits[256];
  83. uint8_t syms[256];
  84. uint32_t code;
  85. *fsym = -1;
  86. for (i = 0; i < 256; i++) {
  87. he[i].sym = i;
  88. he[i].len = *src++;
  89. }
  90. qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
  91. if (!he[0].len) {
  92. *fsym = he[0].sym;
  93. return 0;
  94. }
  95. last = 255;
  96. while (he[last].len == 255 && last)
  97. last--;
  98. if (he[last].len > 32)
  99. return -1;
  100. code = 1;
  101. for (i = last; i >= 0; i--) {
  102. codes[i] = code >> (32 - he[i].len);
  103. bits[i] = he[i].len;
  104. syms[i] = he[i].sym;
  105. code += 0x80000000u >> (he[i].len - 1);
  106. }
  107. return ff_init_vlc_sparse(vlc, VLC_BITS, last + 1,
  108. bits, sizeof(*bits), sizeof(*bits),
  109. codes, sizeof(*codes), sizeof(*codes),
  110. syms, sizeof(*syms), sizeof(*syms), 0);
  111. }
  112. static int decode_plane10(UtvideoContext *c, int plane_no,
  113. uint16_t *dst, ptrdiff_t stride,
  114. int width, int height,
  115. const uint8_t *src, const uint8_t *huff,
  116. int use_pred)
  117. {
  118. int i, j, slice, pix, ret;
  119. int sstart, send;
  120. VLC vlc;
  121. GetBitContext gb;
  122. int prev, fsym;
  123. if ((ret = build_huff10(huff, &vlc, &fsym)) < 0) {
  124. av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
  125. return ret;
  126. }
  127. if (fsym >= 0) { // build_huff reported a symbol to fill slices with
  128. send = 0;
  129. for (slice = 0; slice < c->slices; slice++) {
  130. uint16_t *dest;
  131. sstart = send;
  132. send = (height * (slice + 1) / c->slices);
  133. dest = dst + sstart * stride;
  134. prev = 0x200;
  135. for (j = sstart; j < send; j++) {
  136. for (i = 0; i < width; i++) {
  137. pix = fsym;
  138. if (use_pred) {
  139. prev += pix;
  140. prev &= 0x3FF;
  141. pix = prev;
  142. }
  143. dest[i] = pix;
  144. }
  145. dest += stride;
  146. }
  147. }
  148. return 0;
  149. }
  150. send = 0;
  151. for (slice = 0; slice < c->slices; slice++) {
  152. uint16_t *dest;
  153. int slice_data_start, slice_data_end, slice_size;
  154. sstart = send;
  155. send = (height * (slice + 1) / c->slices);
  156. dest = dst + sstart * stride;
  157. // slice offset and size validation was done earlier
  158. slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
  159. slice_data_end = AV_RL32(src + slice * 4);
  160. slice_size = slice_data_end - slice_data_start;
  161. if (!slice_size) {
  162. av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
  163. "yet a slice has a length of zero.\n");
  164. goto fail;
  165. }
  166. memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  167. c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
  168. (uint32_t *)(src + slice_data_start + c->slices * 4),
  169. (slice_data_end - slice_data_start + 3) >> 2);
  170. init_get_bits(&gb, c->slice_bits, slice_size * 8);
  171. prev = 0x200;
  172. for (j = sstart; j < send; j++) {
  173. for (i = 0; i < width; i++) {
  174. pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
  175. if (pix < 0) {
  176. av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
  177. goto fail;
  178. }
  179. if (use_pred) {
  180. prev += pix;
  181. prev &= 0x3FF;
  182. pix = prev;
  183. }
  184. dest[i] = pix;
  185. }
  186. dest += stride;
  187. if (get_bits_left(&gb) < 0) {
  188. av_log(c->avctx, AV_LOG_ERROR,
  189. "Slice decoding ran out of bits\n");
  190. goto fail;
  191. }
  192. }
  193. if (get_bits_left(&gb) > 32)
  194. av_log(c->avctx, AV_LOG_WARNING,
  195. "%d bits left after decoding slice\n", get_bits_left(&gb));
  196. }
  197. ff_free_vlc(&vlc);
  198. return 0;
  199. fail:
  200. ff_free_vlc(&vlc);
  201. return AVERROR_INVALIDDATA;
  202. }
  203. static int compute_cmask(int plane_no, int interlaced, enum AVPixelFormat pix_fmt)
  204. {
  205. const int is_luma = (pix_fmt == AV_PIX_FMT_YUV420P) && !plane_no;
  206. if (interlaced)
  207. return ~(1 + 2 * is_luma);
  208. return ~is_luma;
  209. }
  210. static int decode_plane(UtvideoContext *c, int plane_no,
  211. uint8_t *dst, ptrdiff_t stride,
  212. int width, int height,
  213. const uint8_t *src, int use_pred)
  214. {
  215. int i, j, slice, pix;
  216. int sstart, send;
  217. VLC vlc;
  218. GetBitContext gb;
  219. int ret, prev, fsym;
  220. const int cmask = compute_cmask(plane_no, c->interlaced, c->avctx->pix_fmt);
  221. if (c->pack) {
  222. send = 0;
  223. for (slice = 0; slice < c->slices; slice++) {
  224. GetBitContext cbit, pbit;
  225. uint8_t *dest, *p;
  226. ret = init_get_bits8_le(&cbit, c->control_stream[plane_no][slice], c->control_stream_size[plane_no][slice]);
  227. if (ret < 0)
  228. return ret;
  229. ret = init_get_bits8_le(&pbit, c->packed_stream[plane_no][slice], c->packed_stream_size[plane_no][slice]);
  230. if (ret < 0)
  231. return ret;
  232. sstart = send;
  233. send = (height * (slice + 1) / c->slices) & cmask;
  234. dest = dst + sstart * stride;
  235. if (3 * ((dst + send * stride - dest + 7)/8) > get_bits_left(&cbit))
  236. return AVERROR_INVALIDDATA;
  237. for (p = dest; p < dst + send * stride; p += 8) {
  238. int bits = get_bits_le(&cbit, 3);
  239. if (bits == 0) {
  240. *(uint64_t *) p = 0;
  241. } else {
  242. uint32_t sub = 0x80 >> (8 - (bits + 1)), add;
  243. int k;
  244. if ((bits + 1) * 8 > get_bits_left(&pbit))
  245. return AVERROR_INVALIDDATA;
  246. for (k = 0; k < 8; k++) {
  247. p[k] = get_bits_le(&pbit, bits + 1);
  248. add = (~p[k] & sub) << (8 - bits);
  249. p[k] -= sub;
  250. p[k] += add;
  251. }
  252. }
  253. }
  254. }
  255. return 0;
  256. }
  257. if (build_huff(src, &vlc, &fsym)) {
  258. av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
  259. return AVERROR_INVALIDDATA;
  260. }
  261. if (fsym >= 0) { // build_huff reported a symbol to fill slices with
  262. send = 0;
  263. for (slice = 0; slice < c->slices; slice++) {
  264. uint8_t *dest;
  265. sstart = send;
  266. send = (height * (slice + 1) / c->slices) & cmask;
  267. dest = dst + sstart * stride;
  268. prev = 0x80;
  269. for (j = sstart; j < send; j++) {
  270. for (i = 0; i < width; i++) {
  271. pix = fsym;
  272. if (use_pred) {
  273. prev += pix;
  274. pix = prev;
  275. }
  276. dest[i] = pix;
  277. }
  278. dest += stride;
  279. }
  280. }
  281. return 0;
  282. }
  283. src += 256;
  284. send = 0;
  285. for (slice = 0; slice < c->slices; slice++) {
  286. uint8_t *dest;
  287. int slice_data_start, slice_data_end, slice_size;
  288. sstart = send;
  289. send = (height * (slice + 1) / c->slices) & cmask;
  290. dest = dst + sstart * stride;
  291. // slice offset and size validation was done earlier
  292. slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
  293. slice_data_end = AV_RL32(src + slice * 4);
  294. slice_size = slice_data_end - slice_data_start;
  295. if (!slice_size) {
  296. av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
  297. "yet a slice has a length of zero.\n");
  298. goto fail;
  299. }
  300. memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  301. c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
  302. (uint32_t *)(src + slice_data_start + c->slices * 4),
  303. (slice_data_end - slice_data_start + 3) >> 2);
  304. init_get_bits(&gb, c->slice_bits, slice_size * 8);
  305. prev = 0x80;
  306. for (j = sstart; j < send; j++) {
  307. for (i = 0; i < width; i++) {
  308. pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
  309. if (pix < 0) {
  310. av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
  311. goto fail;
  312. }
  313. if (use_pred) {
  314. prev += pix;
  315. pix = prev;
  316. }
  317. dest[i] = pix;
  318. }
  319. if (get_bits_left(&gb) < 0) {
  320. av_log(c->avctx, AV_LOG_ERROR,
  321. "Slice decoding ran out of bits\n");
  322. goto fail;
  323. }
  324. dest += stride;
  325. }
  326. if (get_bits_left(&gb) > 32)
  327. av_log(c->avctx, AV_LOG_WARNING,
  328. "%d bits left after decoding slice\n", get_bits_left(&gb));
  329. }
  330. ff_free_vlc(&vlc);
  331. return 0;
  332. fail:
  333. ff_free_vlc(&vlc);
  334. return AVERROR_INVALIDDATA;
  335. }
  336. #undef A
  337. #undef B
  338. #undef C
  339. static void restore_median_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
  340. int width, int height, int slices, int rmode)
  341. {
  342. int i, j, slice;
  343. int A, B, C;
  344. uint8_t *bsrc;
  345. int slice_start, slice_height;
  346. const int cmask = ~rmode;
  347. for (slice = 0; slice < slices; slice++) {
  348. slice_start = ((slice * height) / slices) & cmask;
  349. slice_height = ((((slice + 1) * height) / slices) & cmask) -
  350. slice_start;
  351. if (!slice_height)
  352. continue;
  353. bsrc = src + slice_start * stride;
  354. // first line - left neighbour prediction
  355. bsrc[0] += 0x80;
  356. c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
  357. bsrc += stride;
  358. if (slice_height <= 1)
  359. continue;
  360. // second line - first element has top prediction, the rest uses median
  361. C = bsrc[-stride];
  362. bsrc[0] += C;
  363. A = bsrc[0];
  364. for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
  365. B = bsrc[i - stride];
  366. bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
  367. C = B;
  368. A = bsrc[i];
  369. }
  370. if (width > 16)
  371. c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride + 16,
  372. bsrc + 16, width - 16, &A, &B);
  373. bsrc += stride;
  374. // the rest of lines use continuous median prediction
  375. for (j = 2; j < slice_height; j++) {
  376. c->llviddsp.add_median_pred(bsrc, bsrc - stride,
  377. bsrc, width, &A, &B);
  378. bsrc += stride;
  379. }
  380. }
  381. }
  382. /* UtVideo interlaced mode treats every two lines as a single one,
  383. * so restoring function should take care of possible padding between
  384. * two parts of the same "line".
  385. */
  386. static void restore_median_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
  387. int width, int height, int slices, int rmode)
  388. {
  389. int i, j, slice;
  390. int A, B, C;
  391. uint8_t *bsrc;
  392. int slice_start, slice_height;
  393. const int cmask = ~(rmode ? 3 : 1);
  394. const ptrdiff_t stride2 = stride << 1;
  395. for (slice = 0; slice < slices; slice++) {
  396. slice_start = ((slice * height) / slices) & cmask;
  397. slice_height = ((((slice + 1) * height) / slices) & cmask) -
  398. slice_start;
  399. slice_height >>= 1;
  400. if (!slice_height)
  401. continue;
  402. bsrc = src + slice_start * stride;
  403. // first line - left neighbour prediction
  404. bsrc[0] += 0x80;
  405. A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
  406. c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
  407. bsrc += stride2;
  408. if (slice_height <= 1)
  409. continue;
  410. // second line - first element has top prediction, the rest uses median
  411. C = bsrc[-stride2];
  412. bsrc[0] += C;
  413. A = bsrc[0];
  414. for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
  415. B = bsrc[i - stride2];
  416. bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
  417. C = B;
  418. A = bsrc[i];
  419. }
  420. if (width > 16)
  421. c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride2 + 16,
  422. bsrc + 16, width - 16, &A, &B);
  423. c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
  424. bsrc + stride, width, &A, &B);
  425. bsrc += stride2;
  426. // the rest of lines use continuous median prediction
  427. for (j = 2; j < slice_height; j++) {
  428. c->llviddsp.add_median_pred(bsrc, bsrc - stride2,
  429. bsrc, width, &A, &B);
  430. c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
  431. bsrc + stride, width, &A, &B);
  432. bsrc += stride2;
  433. }
  434. }
  435. }
  436. static void restore_gradient_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
  437. int width, int height, int slices, int rmode)
  438. {
  439. int i, j, slice;
  440. int A, B, C;
  441. uint8_t *bsrc;
  442. int slice_start, slice_height;
  443. const int cmask = ~rmode;
  444. int min_width = FFMIN(width, 32);
  445. for (slice = 0; slice < slices; slice++) {
  446. slice_start = ((slice * height) / slices) & cmask;
  447. slice_height = ((((slice + 1) * height) / slices) & cmask) -
  448. slice_start;
  449. if (!slice_height)
  450. continue;
  451. bsrc = src + slice_start * stride;
  452. // first line - left neighbour prediction
  453. bsrc[0] += 0x80;
  454. c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
  455. bsrc += stride;
  456. if (slice_height <= 1)
  457. continue;
  458. for (j = 1; j < slice_height; j++) {
  459. // second line - first element has top prediction, the rest uses gradient
  460. bsrc[0] = (bsrc[0] + bsrc[-stride]) & 0xFF;
  461. for (i = 1; i < min_width; i++) { /* dsp need align 32 */
  462. A = bsrc[i - stride];
  463. B = bsrc[i - (stride + 1)];
  464. C = bsrc[i - 1];
  465. bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
  466. }
  467. if (width > 32)
  468. c->llviddsp.add_gradient_pred(bsrc + 32, stride, width - 32);
  469. bsrc += stride;
  470. }
  471. }
  472. }
  473. static void restore_gradient_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
  474. int width, int height, int slices, int rmode)
  475. {
  476. int i, j, slice;
  477. int A, B, C;
  478. uint8_t *bsrc;
  479. int slice_start, slice_height;
  480. const int cmask = ~(rmode ? 3 : 1);
  481. const ptrdiff_t stride2 = stride << 1;
  482. int min_width = FFMIN(width, 32);
  483. for (slice = 0; slice < slices; slice++) {
  484. slice_start = ((slice * height) / slices) & cmask;
  485. slice_height = ((((slice + 1) * height) / slices) & cmask) -
  486. slice_start;
  487. slice_height >>= 1;
  488. if (!slice_height)
  489. continue;
  490. bsrc = src + slice_start * stride;
  491. // first line - left neighbour prediction
  492. bsrc[0] += 0x80;
  493. A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
  494. c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
  495. bsrc += stride2;
  496. if (slice_height <= 1)
  497. continue;
  498. for (j = 1; j < slice_height; j++) {
  499. // second line - first element has top prediction, the rest uses gradient
  500. bsrc[0] = (bsrc[0] + bsrc[-stride2]) & 0xFF;
  501. for (i = 1; i < min_width; i++) { /* dsp need align 32 */
  502. A = bsrc[i - stride2];
  503. B = bsrc[i - (stride2 + 1)];
  504. C = bsrc[i - 1];
  505. bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
  506. }
  507. if (width > 32)
  508. c->llviddsp.add_gradient_pred(bsrc + 32, stride2, width - 32);
  509. A = bsrc[-stride];
  510. B = bsrc[-(1 + stride + stride - width)];
  511. C = bsrc[width - 1];
  512. bsrc[stride] = (A - B + C + bsrc[stride]) & 0xFF;
  513. for (i = 1; i < width; i++) {
  514. A = bsrc[i - stride];
  515. B = bsrc[i - (1 + stride)];
  516. C = bsrc[i - 1 + stride];
  517. bsrc[i + stride] = (A - B + C + bsrc[i + stride]) & 0xFF;
  518. }
  519. bsrc += stride2;
  520. }
  521. }
  522. }
  523. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  524. AVPacket *avpkt)
  525. {
  526. const uint8_t *buf = avpkt->data;
  527. int buf_size = avpkt->size;
  528. UtvideoContext *c = avctx->priv_data;
  529. int i, j;
  530. const uint8_t *plane_start[5];
  531. int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
  532. int ret;
  533. GetByteContext gb;
  534. ThreadFrame frame = { .f = data };
  535. if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
  536. return ret;
  537. /* parse plane structure to get frame flags and validate slice offsets */
  538. bytestream2_init(&gb, buf, buf_size);
  539. if (c->pack) {
  540. const uint8_t *packed_stream;
  541. const uint8_t *control_stream;
  542. GetByteContext pb;
  543. uint32_t nb_cbs;
  544. int left;
  545. c->frame_info = PRED_GRADIENT << 8;
  546. if (bytestream2_get_byte(&gb) != 1)
  547. return AVERROR_INVALIDDATA;
  548. bytestream2_skip(&gb, 3);
  549. c->offset = bytestream2_get_le32(&gb);
  550. if (buf_size <= c->offset + 8LL)
  551. return AVERROR_INVALIDDATA;
  552. bytestream2_init(&pb, buf + 8 + c->offset, buf_size - 8 - c->offset);
  553. nb_cbs = bytestream2_get_le32(&pb);
  554. if (nb_cbs > c->offset)
  555. return AVERROR_INVALIDDATA;
  556. packed_stream = buf + 8;
  557. control_stream = packed_stream + (c->offset - nb_cbs);
  558. left = control_stream - packed_stream;
  559. for (i = 0; i < c->planes; i++) {
  560. for (j = 0; j < c->slices; j++) {
  561. c->packed_stream[i][j] = packed_stream;
  562. c->packed_stream_size[i][j] = bytestream2_get_le32(&pb);
  563. if (c->packed_stream_size[i][j] > left)
  564. return AVERROR_INVALIDDATA;
  565. left -= c->packed_stream_size[i][j];
  566. packed_stream += c->packed_stream_size[i][j];
  567. }
  568. }
  569. left = buf + buf_size - control_stream;
  570. for (i = 0; i < c->planes; i++) {
  571. for (j = 0; j < c->slices; j++) {
  572. c->control_stream[i][j] = control_stream;
  573. c->control_stream_size[i][j] = bytestream2_get_le32(&pb);
  574. if (c->control_stream_size[i][j] > left)
  575. return AVERROR_INVALIDDATA;
  576. left -= c->control_stream_size[i][j];
  577. control_stream += c->control_stream_size[i][j];
  578. }
  579. }
  580. } else if (c->pro) {
  581. if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
  582. av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
  583. return AVERROR_INVALIDDATA;
  584. }
  585. c->frame_info = bytestream2_get_le32u(&gb);
  586. c->slices = ((c->frame_info >> 16) & 0xff) + 1;
  587. for (i = 0; i < c->planes; i++) {
  588. plane_start[i] = gb.buffer;
  589. if (bytestream2_get_bytes_left(&gb) < 1024 + 4 * c->slices) {
  590. av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
  591. return AVERROR_INVALIDDATA;
  592. }
  593. slice_start = 0;
  594. slice_end = 0;
  595. for (j = 0; j < c->slices; j++) {
  596. slice_end = bytestream2_get_le32u(&gb);
  597. if (slice_end < 0 || slice_end < slice_start ||
  598. bytestream2_get_bytes_left(&gb) < slice_end + 1024LL) {
  599. av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
  600. return AVERROR_INVALIDDATA;
  601. }
  602. slice_size = slice_end - slice_start;
  603. slice_start = slice_end;
  604. max_slice_size = FFMAX(max_slice_size, slice_size);
  605. }
  606. plane_size = slice_end;
  607. bytestream2_skipu(&gb, plane_size);
  608. bytestream2_skipu(&gb, 1024);
  609. }
  610. plane_start[c->planes] = gb.buffer;
  611. } else {
  612. for (i = 0; i < c->planes; i++) {
  613. plane_start[i] = gb.buffer;
  614. if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
  615. av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
  616. return AVERROR_INVALIDDATA;
  617. }
  618. bytestream2_skipu(&gb, 256);
  619. slice_start = 0;
  620. slice_end = 0;
  621. for (j = 0; j < c->slices; j++) {
  622. slice_end = bytestream2_get_le32u(&gb);
  623. if (slice_end < 0 || slice_end < slice_start ||
  624. bytestream2_get_bytes_left(&gb) < slice_end) {
  625. av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
  626. return AVERROR_INVALIDDATA;
  627. }
  628. slice_size = slice_end - slice_start;
  629. slice_start = slice_end;
  630. max_slice_size = FFMAX(max_slice_size, slice_size);
  631. }
  632. plane_size = slice_end;
  633. bytestream2_skipu(&gb, plane_size);
  634. }
  635. plane_start[c->planes] = gb.buffer;
  636. if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
  637. av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
  638. return AVERROR_INVALIDDATA;
  639. }
  640. c->frame_info = bytestream2_get_le32u(&gb);
  641. }
  642. av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n",
  643. c->frame_info);
  644. c->frame_pred = (c->frame_info >> 8) & 3;
  645. max_slice_size += 4*avctx->width;
  646. if (!c->pack) {
  647. av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
  648. max_slice_size + AV_INPUT_BUFFER_PADDING_SIZE);
  649. if (!c->slice_bits) {
  650. av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
  651. return AVERROR(ENOMEM);
  652. }
  653. }
  654. switch (c->avctx->pix_fmt) {
  655. case AV_PIX_FMT_GBRP:
  656. case AV_PIX_FMT_GBRAP:
  657. for (i = 0; i < c->planes; i++) {
  658. ret = decode_plane(c, i, frame.f->data[i],
  659. frame.f->linesize[i], avctx->width,
  660. avctx->height, plane_start[i],
  661. c->frame_pred == PRED_LEFT);
  662. if (ret)
  663. return ret;
  664. if (c->frame_pred == PRED_MEDIAN) {
  665. if (!c->interlaced) {
  666. restore_median_planar(c, frame.f->data[i],
  667. frame.f->linesize[i], avctx->width,
  668. avctx->height, c->slices, 0);
  669. } else {
  670. restore_median_planar_il(c, frame.f->data[i],
  671. frame.f->linesize[i],
  672. avctx->width, avctx->height, c->slices,
  673. 0);
  674. }
  675. } else if (c->frame_pred == PRED_GRADIENT) {
  676. if (!c->interlaced) {
  677. restore_gradient_planar(c, frame.f->data[i],
  678. frame.f->linesize[i], avctx->width,
  679. avctx->height, c->slices, 0);
  680. } else {
  681. restore_gradient_planar_il(c, frame.f->data[i],
  682. frame.f->linesize[i],
  683. avctx->width, avctx->height, c->slices,
  684. 0);
  685. }
  686. }
  687. }
  688. c->utdsp.restore_rgb_planes(frame.f->data[2], frame.f->data[0], frame.f->data[1],
  689. frame.f->linesize[2], frame.f->linesize[0], frame.f->linesize[1],
  690. avctx->width, avctx->height);
  691. break;
  692. case AV_PIX_FMT_GBRAP10:
  693. case AV_PIX_FMT_GBRP10:
  694. for (i = 0; i < c->planes; i++) {
  695. ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i],
  696. frame.f->linesize[i] / 2, avctx->width,
  697. avctx->height, plane_start[i],
  698. plane_start[i + 1] - 1024,
  699. c->frame_pred == PRED_LEFT);
  700. if (ret)
  701. return ret;
  702. }
  703. c->utdsp.restore_rgb_planes10((uint16_t *)frame.f->data[2], (uint16_t *)frame.f->data[0], (uint16_t *)frame.f->data[1],
  704. frame.f->linesize[2] / 2, frame.f->linesize[0] / 2, frame.f->linesize[1] / 2,
  705. avctx->width, avctx->height);
  706. break;
  707. case AV_PIX_FMT_YUV420P:
  708. for (i = 0; i < 3; i++) {
  709. ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
  710. avctx->width >> !!i, avctx->height >> !!i,
  711. plane_start[i], c->frame_pred == PRED_LEFT);
  712. if (ret)
  713. return ret;
  714. if (c->frame_pred == PRED_MEDIAN) {
  715. if (!c->interlaced) {
  716. restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
  717. avctx->width >> !!i, avctx->height >> !!i,
  718. c->slices, !i);
  719. } else {
  720. restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
  721. avctx->width >> !!i,
  722. avctx->height >> !!i,
  723. c->slices, !i);
  724. }
  725. } else if (c->frame_pred == PRED_GRADIENT) {
  726. if (!c->interlaced) {
  727. restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
  728. avctx->width >> !!i, avctx->height >> !!i,
  729. c->slices, !i);
  730. } else {
  731. restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
  732. avctx->width >> !!i,
  733. avctx->height >> !!i,
  734. c->slices, !i);
  735. }
  736. }
  737. }
  738. break;
  739. case AV_PIX_FMT_YUV422P:
  740. for (i = 0; i < 3; i++) {
  741. ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
  742. avctx->width >> !!i, avctx->height,
  743. plane_start[i], c->frame_pred == PRED_LEFT);
  744. if (ret)
  745. return ret;
  746. if (c->frame_pred == PRED_MEDIAN) {
  747. if (!c->interlaced) {
  748. restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
  749. avctx->width >> !!i, avctx->height,
  750. c->slices, 0);
  751. } else {
  752. restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
  753. avctx->width >> !!i, avctx->height,
  754. c->slices, 0);
  755. }
  756. } else if (c->frame_pred == PRED_GRADIENT) {
  757. if (!c->interlaced) {
  758. restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
  759. avctx->width >> !!i, avctx->height,
  760. c->slices, 0);
  761. } else {
  762. restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
  763. avctx->width >> !!i, avctx->height,
  764. c->slices, 0);
  765. }
  766. }
  767. }
  768. break;
  769. case AV_PIX_FMT_YUV444P:
  770. for (i = 0; i < 3; i++) {
  771. ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
  772. avctx->width, avctx->height,
  773. plane_start[i], c->frame_pred == PRED_LEFT);
  774. if (ret)
  775. return ret;
  776. if (c->frame_pred == PRED_MEDIAN) {
  777. if (!c->interlaced) {
  778. restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
  779. avctx->width, avctx->height,
  780. c->slices, 0);
  781. } else {
  782. restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
  783. avctx->width, avctx->height,
  784. c->slices, 0);
  785. }
  786. } else if (c->frame_pred == PRED_GRADIENT) {
  787. if (!c->interlaced) {
  788. restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
  789. avctx->width, avctx->height,
  790. c->slices, 0);
  791. } else {
  792. restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
  793. avctx->width, avctx->height,
  794. c->slices, 0);
  795. }
  796. }
  797. }
  798. break;
  799. case AV_PIX_FMT_YUV422P10:
  800. for (i = 0; i < 3; i++) {
  801. ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], frame.f->linesize[i] / 2,
  802. avctx->width >> !!i, avctx->height,
  803. plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
  804. if (ret)
  805. return ret;
  806. }
  807. break;
  808. }
  809. frame.f->key_frame = 1;
  810. frame.f->pict_type = AV_PICTURE_TYPE_I;
  811. frame.f->interlaced_frame = !!c->interlaced;
  812. *got_frame = 1;
  813. /* always report that the buffer was completely consumed */
  814. return buf_size;
  815. }
  816. static av_cold int decode_init(AVCodecContext *avctx)
  817. {
  818. UtvideoContext * const c = avctx->priv_data;
  819. int h_shift, v_shift;
  820. c->avctx = avctx;
  821. ff_utvideodsp_init(&c->utdsp);
  822. ff_bswapdsp_init(&c->bdsp);
  823. ff_llviddsp_init(&c->llviddsp);
  824. c->slice_bits_size = 0;
  825. switch (avctx->codec_tag) {
  826. case MKTAG('U', 'L', 'R', 'G'):
  827. c->planes = 3;
  828. avctx->pix_fmt = AV_PIX_FMT_GBRP;
  829. break;
  830. case MKTAG('U', 'L', 'R', 'A'):
  831. c->planes = 4;
  832. avctx->pix_fmt = AV_PIX_FMT_GBRAP;
  833. break;
  834. case MKTAG('U', 'L', 'Y', '0'):
  835. c->planes = 3;
  836. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  837. avctx->colorspace = AVCOL_SPC_BT470BG;
  838. break;
  839. case MKTAG('U', 'L', 'Y', '2'):
  840. c->planes = 3;
  841. avctx->pix_fmt = AV_PIX_FMT_YUV422P;
  842. avctx->colorspace = AVCOL_SPC_BT470BG;
  843. break;
  844. case MKTAG('U', 'L', 'Y', '4'):
  845. c->planes = 3;
  846. avctx->pix_fmt = AV_PIX_FMT_YUV444P;
  847. avctx->colorspace = AVCOL_SPC_BT470BG;
  848. break;
  849. case MKTAG('U', 'Q', 'Y', '2'):
  850. c->planes = 3;
  851. c->pro = 1;
  852. avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
  853. break;
  854. case MKTAG('U', 'Q', 'R', 'G'):
  855. c->planes = 3;
  856. c->pro = 1;
  857. avctx->pix_fmt = AV_PIX_FMT_GBRP10;
  858. break;
  859. case MKTAG('U', 'Q', 'R', 'A'):
  860. c->planes = 4;
  861. c->pro = 1;
  862. avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
  863. break;
  864. case MKTAG('U', 'L', 'H', '0'):
  865. c->planes = 3;
  866. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  867. avctx->colorspace = AVCOL_SPC_BT709;
  868. break;
  869. case MKTAG('U', 'L', 'H', '2'):
  870. c->planes = 3;
  871. avctx->pix_fmt = AV_PIX_FMT_YUV422P;
  872. avctx->colorspace = AVCOL_SPC_BT709;
  873. break;
  874. case MKTAG('U', 'L', 'H', '4'):
  875. c->planes = 3;
  876. avctx->pix_fmt = AV_PIX_FMT_YUV444P;
  877. avctx->colorspace = AVCOL_SPC_BT709;
  878. break;
  879. case MKTAG('U', 'M', 'Y', '2'):
  880. c->planes = 3;
  881. c->pack = 1;
  882. avctx->pix_fmt = AV_PIX_FMT_YUV422P;
  883. avctx->colorspace = AVCOL_SPC_BT470BG;
  884. break;
  885. case MKTAG('U', 'M', 'H', '2'):
  886. c->planes = 3;
  887. c->pack = 1;
  888. avctx->pix_fmt = AV_PIX_FMT_YUV422P;
  889. avctx->colorspace = AVCOL_SPC_BT709;
  890. break;
  891. case MKTAG('U', 'M', 'Y', '4'):
  892. c->planes = 3;
  893. c->pack = 1;
  894. avctx->pix_fmt = AV_PIX_FMT_YUV444P;
  895. avctx->colorspace = AVCOL_SPC_BT470BG;
  896. break;
  897. case MKTAG('U', 'M', 'H', '4'):
  898. c->planes = 3;
  899. c->pack = 1;
  900. avctx->pix_fmt = AV_PIX_FMT_YUV444P;
  901. avctx->colorspace = AVCOL_SPC_BT709;
  902. break;
  903. case MKTAG('U', 'M', 'R', 'G'):
  904. c->planes = 3;
  905. c->pack = 1;
  906. avctx->pix_fmt = AV_PIX_FMT_GBRP;
  907. break;
  908. case MKTAG('U', 'M', 'R', 'A'):
  909. c->planes = 4;
  910. c->pack = 1;
  911. avctx->pix_fmt = AV_PIX_FMT_GBRAP;
  912. break;
  913. default:
  914. av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
  915. avctx->codec_tag);
  916. return AVERROR_INVALIDDATA;
  917. }
  918. av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &h_shift, &v_shift);
  919. if ((avctx->width & ((1<<h_shift)-1)) ||
  920. (avctx->height & ((1<<v_shift)-1))) {
  921. avpriv_request_sample(avctx, "Odd dimensions");
  922. return AVERROR_PATCHWELCOME;
  923. }
  924. if (c->pack && avctx->extradata_size >= 16) {
  925. av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
  926. avctx->extradata[3], avctx->extradata[2],
  927. avctx->extradata[1], avctx->extradata[0]);
  928. av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
  929. AV_RB32(avctx->extradata + 4));
  930. c->compression = avctx->extradata[8];
  931. if (c->compression != 2)
  932. avpriv_request_sample(avctx, "Unknown compression type");
  933. c->slices = avctx->extradata[9] + 1;
  934. } else if (!c->pro && avctx->extradata_size >= 16) {
  935. av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
  936. avctx->extradata[3], avctx->extradata[2],
  937. avctx->extradata[1], avctx->extradata[0]);
  938. av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
  939. AV_RB32(avctx->extradata + 4));
  940. c->frame_info_size = AV_RL32(avctx->extradata + 8);
  941. c->flags = AV_RL32(avctx->extradata + 12);
  942. if (c->frame_info_size != 4)
  943. avpriv_request_sample(avctx, "Frame info not 4 bytes");
  944. av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08"PRIX32"\n", c->flags);
  945. c->slices = (c->flags >> 24) + 1;
  946. c->compression = c->flags & 1;
  947. c->interlaced = c->flags & 0x800;
  948. } else if (c->pro && avctx->extradata_size == 8) {
  949. av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
  950. avctx->extradata[3], avctx->extradata[2],
  951. avctx->extradata[1], avctx->extradata[0]);
  952. av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
  953. AV_RB32(avctx->extradata + 4));
  954. c->interlaced = 0;
  955. c->frame_info_size = 4;
  956. } else {
  957. av_log(avctx, AV_LOG_ERROR,
  958. "Insufficient extradata size %d, should be at least 16\n",
  959. avctx->extradata_size);
  960. return AVERROR_INVALIDDATA;
  961. }
  962. return 0;
  963. }
  964. static av_cold int decode_end(AVCodecContext *avctx)
  965. {
  966. UtvideoContext * const c = avctx->priv_data;
  967. av_freep(&c->slice_bits);
  968. return 0;
  969. }
  970. AVCodec ff_utvideo_decoder = {
  971. .name = "utvideo",
  972. .long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
  973. .type = AVMEDIA_TYPE_VIDEO,
  974. .id = AV_CODEC_ID_UTVIDEO,
  975. .priv_data_size = sizeof(UtvideoContext),
  976. .init = decode_init,
  977. .close = decode_end,
  978. .decode = decode_frame,
  979. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
  980. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
  981. };