| 
							- /*
 -  * This file is part of FFmpeg.
 -  *
 -  * FFmpeg is free software; you can redistribute it and/or
 -  * modify it under the terms of the GNU Lesser General Public
 -  * License as published by the Free Software Foundation; either
 -  * version 2.1 of the License, or (at your option) any later version.
 -  *
 -  * FFmpeg is distributed in the hope that it will be useful,
 -  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 -  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 -  * Lesser General Public License for more details.
 -  *
 -  * You should have received a copy of the GNU Lesser General Public
 -  * License along with FFmpeg; if not, write to the Free Software
 -  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 -  */
 - 
 - /**
 -  * @file
 -  *@brief IntraX8 frame subdecoder image manipulation routines
 -  */
 - 
 - #include "intrax8dsp.h"
 - #include "libavutil/common.h"
 - 
 - /*
 -  * area positions, #3 is 1 pixel only, other are 8 pixels
 -  *    |66666666|
 -  *   3|44444444|55555555|
 -  * - -+--------+--------+
 -  * 1 2|XXXXXXXX|
 -  * 1 2|XXXXXXXX|
 -  * 1 2|XXXXXXXX|
 -  * 1 2|XXXXXXXX|
 -  * 1 2|XXXXXXXX|
 -  * 1 2|XXXXXXXX|
 -  * 1 2|XXXXXXXX|
 -  * 1 2|XXXXXXXX|
 -  * ^-start
 -  */
 - 
 - #define area1 (0)
 - #define area2 (8)
 - #define area3 (8 + 8)
 - #define area4 (8 + 8 + 1)
 - #define area5 (8 + 8 + 1 + 8)
 - #define area6 (8 + 8 + 1 + 16)
 - 
 - /**
 -  Collect statistics and prepare the edge pixels required by the other spatial compensation functions.
 - 
 -  * @param src pointer to the beginning of the processed block
 -  * @param dst pointer to emu_edge, edge pixels are stored the way other compensation routines do.
 -  * @param linesize byte offset between 2 vertical pixels in the source image
 -  * @param range pointer to the variable where the edge pixel range is to be stored (max-min values)
 -  * @param psum  pointer to the variable where the edge pixel sum is to be stored
 -  * @param edges Informs this routine that the block is on an image border, so it has to interpolate the missing edge pixels.
 -                 and some of the edge pixels should be interpolated, the flag has the following meaning:
 -                 1   - mb_x==0 - first block in the row, interpolate area #1,#2,#3;
 -                 2   - mb_y==0 - first row, interpolate area #3,#4,#5,#6;
 -         note:   1|2 - mb_x==mb_y==0 - first block, use 0x80 value for all areas;
 -                 4   - mb_x>= (mb_width-1) last block in the row, interpolate area #5;
 - -*/
 - static void x8_setup_spatial_compensation(uint8_t *src, uint8_t *dst,
 -                                           ptrdiff_t stride, int *range,
 -                                           int *psum, int edges)
 - {
 -     uint8_t *ptr;
 -     int sum;
 -     int i;
 -     int min_pix, max_pix;
 -     uint8_t c;
 - 
 -     if ((edges & 3) == 3) {
 -         *psum  = 0x80 * (8 + 1 + 8 + 2);
 -         *range = 0;
 -         memset(dst, 0x80, 16 + 1 + 16 + 8);
 -         /* this triggers flat_dc for sure. flat_dc avoids all (other)
 -          * prediction modes, but requires dc_level decoding. */
 -         return;
 -     }
 - 
 -     min_pix = 256;
 -     max_pix = -1;
 - 
 -     sum = 0;
 - 
 -     if (!(edges & 1)) { // (mb_x != 0) // there is previous block on this row
 -         ptr = src - 1; // left column, area 2
 -         for (i = 7; i >= 0; i--) {
 -             c              = *(ptr - 1); // area1, same mb as area2, no need to check
 -             dst[area1 + i] = c;
 -             c              = *ptr;
 - 
 -             sum           += c;
 -             min_pix        = FFMIN(min_pix, c);
 -             max_pix        = FFMAX(max_pix, c);
 -             dst[area2 + i] = c;
 - 
 -             ptr += stride;
 -         }
 -     }
 - 
 -     if (!(edges & 2)) { // (mb_y != 0) // there is row above
 -         ptr = src - stride; // top line
 -         for (i = 0; i < 8; i++) {
 -             c       = *(ptr + i);
 -             sum    += c;
 -             min_pix = FFMIN(min_pix, c);
 -             max_pix = FFMAX(max_pix, c);
 -         }
 -         if (edges & 4) { // last block on the row?
 -             memset(dst + area5, c, 8); // set with last pixel fr
 -             memcpy(dst + area4, ptr, 8);
 -         } else {
 -             memcpy(dst + area4, ptr, 16); // both area4 and 5
 -         }
 -         // area6 always present in the above block
 -         memcpy(dst + area6, ptr - stride, 8);
 -     }
 -     // now calculate the stuff we need
 -     if (edges & 3) { // mb_x ==0 || mb_y == 0) {
 -         int avg = (sum + 4) >> 3;
 - 
 -         if (edges & 1) // (mb_x == 0) { // implies mb_y !=0
 -             memset(dst + area1, avg, 8 + 8 + 1); // areas 1, 2, 3 are averaged
 -         else // implies y == 0 x != 0
 -             memset(dst + area3, avg, 1 + 16 + 8); // areas 3, 4, 5, 6
 - 
 -         sum += avg * 9;
 -     } else {
 -         // the edge pixel, in the top line and left column
 -         uint8_t c = *(src - 1 - stride);
 -         dst[area3] = c;
 -         sum       += c;
 -         // edge pixel is not part of min/max
 -     }
 -     *range = max_pix - min_pix;
 -     sum   += *(dst + area5) + *(dst + area5 + 1);
 -     *psum  = sum;
 - }
 - 
 - static const uint16_t zero_prediction_weights[64 * 2] = {
 -     640,  640, 669,  480, 708,  354, 748, 257,
 -     792,  198, 760,  143, 808,  101, 772,  72,
 -     480,  669, 537,  537, 598,  416, 661, 316,
 -     719,  250, 707,  185, 768,  134, 745,  97,
 -     354,  708, 416,  598, 488,  488, 564, 388,
 -     634,  317, 642,  241, 716,  179, 706, 132,
 -     257,  748, 316,  661, 388,  564, 469, 469,
 -     543,  395, 571,  311, 655,  238, 660, 180,
 -     198,  792, 250,  719, 317,  634, 395, 543,
 -     469,  469, 507,  380, 597,  299, 616, 231,
 -     161,  855, 206,  788, 266,  710, 340, 623,
 -     411,  548, 455,  455, 548,  366, 576, 288,
 -     122,  972, 159,  914, 211,  842, 276, 758,
 -     341,  682, 389,  584, 483,  483, 520, 390,
 -     110, 1172, 144, 1107, 193, 1028, 254, 932,
 -     317,  846, 366,  731, 458,  611, 499, 499,
 - };
 - 
 - static void spatial_compensation_0(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int i, j;
 -     int x, y;
 -     unsigned int p; // power divided by 2
 -     int a;
 -     uint16_t left_sum[2][8] = { { 0 } };
 -     uint16_t  top_sum[2][8] = { { 0 } };
 - 
 -     for (i = 0; i < 8; i++) {
 -         a = src[area2 + 7 - i] << 4;
 -         for (j = 0; j < 8; j++) {
 -             p                   = abs(i - j);
 -             left_sum[p & 1][j] += a >> (p >> 1);
 -         }
 -     }
 - 
 -     for (i = 0; i < 8; i++) {
 -         a = src[area4 + i] << 4;
 -         for (j = 0; j < 8; j++) {
 -             p                  = abs(i - j);
 -             top_sum[p & 1][j] += a >> (p >> 1);
 -         }
 -     }
 -     for (; i < 10; i++) {
 -         a = src[area4 + i] << 4;
 -         for (j = 5; j < 8; j++) {
 -             p                  = abs(i - j);
 -             top_sum[p & 1][j] += a >> (p >> 1);
 -         }
 -     }
 -     for (; i < 12; i++) {
 -         a = src[area4 + i] << 4;
 -         for (j = 7; j < 8; j++) {
 -             p                  = abs(i - j);
 -             top_sum[p & 1][j] += a >> (p >> 1);
 -         }
 -     }
 - 
 -     for (i = 0; i < 8; i++) {
 -         top_sum[0][i]  +=  (top_sum[1][i] * 181 + 128) >> 8; // 181 is sqrt(2)/2
 -         left_sum[0][i] += (left_sum[1][i] * 181 + 128) >> 8;
 -     }
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++)
 -             dst[x] = ((uint32_t)  top_sum[0][x] * zero_prediction_weights[y * 16 + x * 2 + 0] +
 -                       (uint32_t) left_sum[0][y] * zero_prediction_weights[y * 16 + x * 2 + 1] +
 -                       0x8000) >> 16;
 -         dst += stride;
 -     }
 - }
 - 
 - static void spatial_compensation_1(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int x, y;
 - 
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++)
 -             dst[x] = src[area4 + FFMIN(2 * y + x + 2, 15)];
 -         dst += stride;
 -     }
 - }
 - 
 - static void spatial_compensation_2(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int x, y;
 - 
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++)
 -             dst[x] = src[area4 + 1 + y + x];
 -         dst += stride;
 -     }
 - }
 - 
 - static void spatial_compensation_3(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int x, y;
 - 
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++)
 -             dst[x] = src[area4 + ((y + 1) >> 1) + x];
 -         dst += stride;
 -     }
 - }
 - 
 - static void spatial_compensation_4(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int x, y;
 - 
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++)
 -             dst[x] = (src[area4 + x] + src[area6 + x] + 1) >> 1;
 -         dst += stride;
 -     }
 - }
 - 
 - static void spatial_compensation_5(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int x, y;
 - 
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++) {
 -             if (2 * x - y < 0)
 -                 dst[x] = src[area2 + 9 + 2 * x - y];
 -             else
 -                 dst[x] = src[area4 + x - ((y + 1) >> 1)];
 -         }
 -         dst += stride;
 -     }
 - }
 - 
 - static void spatial_compensation_6(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int x, y;
 - 
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++)
 -             dst[x] = src[area3 + x - y];
 -         dst += stride;
 -     }
 - }
 - 
 - static void spatial_compensation_7(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int x, y;
 - 
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++) {
 -             if (x - 2 * y > 0)
 -                 dst[x] = (src[area3 - 1 + x - 2 * y] + src[area3 + x - 2 * y] + 1) >> 1;
 -             else
 -                 dst[x] = src[area2 + 8 - y + (x >> 1)];
 -         }
 -         dst += stride;
 -     }
 - }
 - 
 - static void spatial_compensation_8(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int x, y;
 - 
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++)
 -             dst[x] = (src[area1 + 7 - y] + src[area2 + 7 - y] + 1) >> 1;
 -         dst += stride;
 -     }
 - }
 - 
 - static void spatial_compensation_9(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int x, y;
 - 
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++)
 -             dst[x] = src[area2 + 6 - FFMIN(x + y, 6)];
 -         dst += stride;
 -     }
 - }
 - 
 - static void spatial_compensation_10(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int x, y;
 - 
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++)
 -             dst[x] = (src[area2 + 7 - y] * (8 - x) + src[area4 + x] * x + 4) >> 3;
 -         dst += stride;
 -     }
 - }
 - 
 - static void spatial_compensation_11(uint8_t *src, uint8_t *dst, ptrdiff_t stride)
 - {
 -     int x, y;
 - 
 -     for (y = 0; y < 8; y++) {
 -         for (x = 0; x < 8; x++)
 -             dst[x] = (src[area2 + 7 - y] * y + src[area4 + x] * (8 - y) + 4) >> 3;
 -         dst += stride;
 -     }
 - }
 - 
 - static void x8_loop_filter(uint8_t *ptr, const ptrdiff_t a_stride,
 -                            const ptrdiff_t b_stride, int quant)
 - {
 -     int i, t;
 -     int p0, p1, p2, p3, p4, p5, p6, p7, p8, p9;
 -     int ql = (quant + 10) >> 3;
 - 
 -     for (i = 0; i < 8; i++, ptr += b_stride) {
 -         p0 = ptr[-5 * a_stride];
 -         p1 = ptr[-4 * a_stride];
 -         p2 = ptr[-3 * a_stride];
 -         p3 = ptr[-2 * a_stride];
 -         p4 = ptr[-1 * a_stride];
 -         p5 = ptr[0];
 -         p6 = ptr[1 * a_stride];
 -         p7 = ptr[2 * a_stride];
 -         p8 = ptr[3 * a_stride];
 -         p9 = ptr[4 * a_stride];
 - 
 -         t = (FFABS(p1 - p2) <= ql) +
 -             (FFABS(p2 - p3) <= ql) +
 -             (FFABS(p3 - p4) <= ql) +
 -             (FFABS(p4 - p5) <= ql);
 - 
 -         // You need at least 1 to be able to reach a total score of 6.
 -         if (t > 0) {
 -             t += (FFABS(p5 - p6) <= ql) +
 -                  (FFABS(p6 - p7) <= ql) +
 -                  (FFABS(p7 - p8) <= ql) +
 -                  (FFABS(p8 - p9) <= ql) +
 -                  (FFABS(p0 - p1) <= ql);
 -             if (t >= 6) {
 -                 int min, max;
 - 
 -                 min = max = p1;
 -                 min = FFMIN(min, p3);
 -                 max = FFMAX(max, p3);
 -                 min = FFMIN(min, p5);
 -                 max = FFMAX(max, p5);
 -                 min = FFMIN(min, p8);
 -                 max = FFMAX(max, p8);
 -                 if (max - min < 2 * quant) { // early stop
 -                     min = FFMIN(min, p2);
 -                     max = FFMAX(max, p2);
 -                     min = FFMIN(min, p4);
 -                     max = FFMAX(max, p4);
 -                     min = FFMIN(min, p6);
 -                     max = FFMAX(max, p6);
 -                     min = FFMIN(min, p7);
 -                     max = FFMAX(max, p7);
 -                     if (max - min < 2 * quant) {
 -                         ptr[-2 * a_stride] = (4 * p2 + 3 * p3 + 1 * p7 + 4) >> 3;
 -                         ptr[-1 * a_stride] = (3 * p2 + 3 * p4 + 2 * p7 + 4) >> 3;
 -                         ptr[0]             = (2 * p2 + 3 * p5 + 3 * p7 + 4) >> 3;
 -                         ptr[1 * a_stride]  = (1 * p2 + 3 * p6 + 4 * p7 + 4) >> 3;
 -                         continue;
 -                     }
 -                 }
 -             }
 -         }
 -         {
 -             int x, x0, x1, x2;
 -             int m;
 - 
 -             x0 = (2 * p3 - 5 * p4 + 5 * p5 - 2 * p6 + 4) >> 3;
 -             if (FFABS(x0) < quant) {
 -                 x1 = (2 * p1 - 5 * p2 + 5 * p3 - 2 * p4 + 4) >> 3;
 -                 x2 = (2 * p5 - 5 * p6 + 5 * p7 - 2 * p8 + 4) >> 3;
 - 
 -                 x = FFABS(x0) - FFMIN(FFABS(x1), FFABS(x2));
 -                 m = p4 - p5;
 - 
 -                 if (x > 0 && (m ^ x0) < 0) {
 -                     int32_t sign;
 - 
 -                     sign = m >> 31;
 -                     m    = (m ^ sign) - sign; // abs(m)
 -                     m  >>= 1;
 - 
 -                     x = 5 * x >> 3;
 - 
 -                     if (x > m)
 -                         x = m;
 - 
 -                     x = (x ^ sign) - sign;
 - 
 -                     ptr[-1 * a_stride] -= x;
 -                     ptr[0]             += x;
 -                 }
 -             }
 -         }
 -     }
 - }
 - 
 - static void x8_h_loop_filter(uint8_t *src, ptrdiff_t stride, int qscale)
 - {
 -     x8_loop_filter(src, stride, 1, qscale);
 - }
 - 
 - static void x8_v_loop_filter(uint8_t *src, ptrdiff_t stride, int qscale)
 - {
 -     x8_loop_filter(src, 1, stride, qscale);
 - }
 - 
 - av_cold void ff_intrax8dsp_init(IntraX8DSPContext *dsp)
 - {
 -     dsp->h_loop_filter              = x8_h_loop_filter;
 -     dsp->v_loop_filter              = x8_v_loop_filter;
 -     dsp->setup_spatial_compensation = x8_setup_spatial_compensation;
 -     dsp->spatial_compensation[0]    = spatial_compensation_0;
 -     dsp->spatial_compensation[1]    = spatial_compensation_1;
 -     dsp->spatial_compensation[2]    = spatial_compensation_2;
 -     dsp->spatial_compensation[3]    = spatial_compensation_3;
 -     dsp->spatial_compensation[4]    = spatial_compensation_4;
 -     dsp->spatial_compensation[5]    = spatial_compensation_5;
 -     dsp->spatial_compensation[6]    = spatial_compensation_6;
 -     dsp->spatial_compensation[7]    = spatial_compensation_7;
 -     dsp->spatial_compensation[8]    = spatial_compensation_8;
 -     dsp->spatial_compensation[9]    = spatial_compensation_9;
 -     dsp->spatial_compensation[10]   = spatial_compensation_10;
 -     dsp->spatial_compensation[11]   = spatial_compensation_11;
 - }
 
 
  |