You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

549 lines
18KB

  1. /*
  2. * Canopus HQX decoder
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <inttypes.h>
  21. #include "libavutil/imgutils.h"
  22. #include "libavutil/intreadwrite.h"
  23. #include "avcodec.h"
  24. #include "canopus.h"
  25. #include "get_bits.h"
  26. #include "internal.h"
  27. #include "thread.h"
  28. #include "hqx.h"
  29. #include "hqxdsp.h"
  30. /* HQX has four modes - 422, 444, 422alpha and 444alpha - all 12-bit */
  31. enum HQXFormat {
  32. HQX_422 = 0,
  33. HQX_444,
  34. HQX_422A,
  35. HQX_444A,
  36. };
  37. #define HQX_HEADER_SIZE 59
  38. /* macroblock selects a group of 4 possible quants and
  39. * a block can use any of those four quantisers
  40. * one column is powers of 2, the other one is powers of 2 * 3,
  41. * then there is the special one, powers of 2 * 5 */
  42. static const int hqx_quants[16][4] = {
  43. { 0x1, 0x2, 0x4, 0x8 }, { 0x1, 0x3, 0x6, 0xC },
  44. { 0x2, 0x4, 0x8, 0x10 }, { 0x3, 0x6, 0xC, 0x18 },
  45. { 0x4, 0x8, 0x10, 0x20 }, { 0x6, 0xC, 0x18, 0x30 },
  46. { 0x8, 0x10, 0x20, 0x40 },
  47. { 0xA, 0x14, 0x28, 0x50 },
  48. { 0xC, 0x18, 0x30, 0x60 },
  49. { 0x10, 0x20, 0x40, 0x80 }, { 0x18, 0x30, 0x60, 0xC0 },
  50. { 0x20, 0x40, 0x80, 0x100 }, { 0x30, 0x60, 0xC0, 0x180 },
  51. { 0x40, 0x80, 0x100, 0x200 }, { 0x60, 0xC0, 0x180, 0x300 },
  52. { 0x80, 0x100, 0x200, 0x400 }
  53. };
  54. static const uint8_t hqx_quant_luma[64] = {
  55. 16, 16, 16, 19, 19, 19, 42, 44,
  56. 16, 16, 19, 19, 19, 38, 43, 45,
  57. 16, 19, 19, 19, 40, 41, 45, 48,
  58. 19, 19, 19, 40, 41, 42, 46, 49,
  59. 19, 19, 40, 41, 42, 43, 48, 101,
  60. 19, 38, 41, 42, 43, 44, 98, 104,
  61. 42, 43, 45, 46, 48, 98, 109, 116,
  62. 44, 45, 48, 49, 101, 104, 116, 123,
  63. };
  64. static const uint8_t hqx_quant_chroma[64] = {
  65. 16, 16, 19, 25, 26, 26, 42, 44,
  66. 16, 19, 25, 25, 26, 38, 43, 91,
  67. 19, 25, 26, 27, 40, 41, 91, 96,
  68. 25, 25, 27, 40, 41, 84, 93, 197,
  69. 26, 26, 40, 41, 84, 86, 191, 203,
  70. 26, 38, 41, 84, 86, 177, 197, 209,
  71. 42, 43, 91, 93, 191, 197, 219, 232,
  72. 44, 91, 96, 197, 203, 209, 232, 246,
  73. };
  74. static inline void put_blocks(HQXContext *ctx, int plane,
  75. int x, int y, int ilace,
  76. int16_t *block0, int16_t *block1,
  77. const uint8_t *quant)
  78. {
  79. int fields = ilace ? 2 : 1;
  80. int lsize = ctx->pic->linesize[plane];
  81. uint8_t *p = ctx->pic->data[plane] + x * 2;
  82. ctx->hqxdsp.idct_put((uint16_t *)(p + y * lsize),
  83. lsize * fields, block0, quant);
  84. ctx->hqxdsp.idct_put((uint16_t *)(p + (y + (ilace ? 1 : 8)) * lsize),
  85. lsize * fields, block1, quant);
  86. }
  87. static inline void hqx_get_ac(GetBitContext *gb, const HQXAC *ac,
  88. int *run, int *lev)
  89. {
  90. int val;
  91. val = show_bits(gb, ac->lut_bits);
  92. if (ac->lut[val].bits == -1) {
  93. GetBitContext gb2 = *gb;
  94. skip_bits(&gb2, ac->lut_bits);
  95. val = ac->lut[val].lev + show_bits(&gb2, ac->extra_bits);
  96. }
  97. *run = ac->lut[val].run;
  98. *lev = ac->lut[val].lev;
  99. skip_bits(gb, ac->lut[val].bits);
  100. }
  101. static int decode_block(GetBitContext *gb, VLC *vlc,
  102. const int *quants, int dcb,
  103. int16_t block[64], int *last_dc)
  104. {
  105. int q, dc;
  106. int ac_idx;
  107. int run, lev, pos = 1;
  108. memset(block, 0, 64 * sizeof(*block));
  109. dc = get_vlc2(gb, vlc->table, HQX_DC_VLC_BITS, 2);
  110. if (dc < 0)
  111. return AVERROR_INVALIDDATA;
  112. *last_dc += dc;
  113. block[0] = sign_extend(*last_dc << (12 - dcb), 12);
  114. q = quants[get_bits(gb, 2)];
  115. if (q >= 128)
  116. ac_idx = HQX_AC_Q128;
  117. else if (q >= 64)
  118. ac_idx = HQX_AC_Q64;
  119. else if (q >= 32)
  120. ac_idx = HQX_AC_Q32;
  121. else if (q >= 16)
  122. ac_idx = HQX_AC_Q16;
  123. else if (q >= 8)
  124. ac_idx = HQX_AC_Q8;
  125. else
  126. ac_idx = HQX_AC_Q0;
  127. do {
  128. hqx_get_ac(gb, &ff_hqx_ac[ac_idx], &run, &lev);
  129. pos += run;
  130. if (pos >= 64)
  131. break;
  132. block[ff_zigzag_direct[pos++]] = lev * q;
  133. } while (pos < 64);
  134. return 0;
  135. }
  136. static int hqx_decode_422(HQXContext *ctx, int slice_no, int x, int y)
  137. {
  138. HQXSlice *slice = &ctx->slice[slice_no];
  139. GetBitContext *gb = &slice->gb;
  140. const int *quants;
  141. int flag;
  142. int last_dc;
  143. int i, ret;
  144. if (ctx->interlaced)
  145. flag = get_bits1(gb);
  146. else
  147. flag = 0;
  148. quants = hqx_quants[get_bits(gb, 4)];
  149. for (i = 0; i < 8; i++) {
  150. int vlc_index = ctx->dcb - 9;
  151. if (i == 0 || i == 4 || i == 6)
  152. last_dc = 0;
  153. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  154. ctx->dcb, slice->block[i], &last_dc);
  155. if (ret < 0)
  156. return ret;
  157. }
  158. put_blocks(ctx, 0, x, y, flag, slice->block[0], slice->block[2], hqx_quant_luma);
  159. put_blocks(ctx, 0, x + 8, y, flag, slice->block[1], slice->block[3], hqx_quant_luma);
  160. put_blocks(ctx, 2, x >> 1, y, flag, slice->block[4], slice->block[5], hqx_quant_chroma);
  161. put_blocks(ctx, 1, x >> 1, y, flag, slice->block[6], slice->block[7], hqx_quant_chroma);
  162. return 0;
  163. }
  164. static int hqx_decode_422a(HQXContext *ctx, int slice_no, int x, int y)
  165. {
  166. HQXSlice *slice = &ctx->slice[slice_no];
  167. GetBitContext *gb = &slice->gb;
  168. const int *quants;
  169. int flag = 0;
  170. int last_dc;
  171. int i, ret;
  172. int cbp;
  173. cbp = get_vlc2(gb, ctx->cbp_vlc.table, ctx->cbp_vlc.bits, 1);
  174. for (i = 0; i < 12; i++)
  175. memset(slice->block[i], 0, sizeof(**slice->block) * 64);
  176. for (i = 0; i < 12; i++)
  177. slice->block[i][0] = -0x800;
  178. if (cbp) {
  179. if (ctx->interlaced)
  180. flag = get_bits1(gb);
  181. quants = hqx_quants[get_bits(gb, 4)];
  182. cbp |= cbp << 4; // alpha CBP
  183. if (cbp & 0x3) // chroma CBP - top
  184. cbp |= 0x500;
  185. if (cbp & 0xC) // chroma CBP - bottom
  186. cbp |= 0xA00;
  187. for (i = 0; i < 12; i++) {
  188. if (i == 0 || i == 4 || i == 8 || i == 10)
  189. last_dc = 0;
  190. if (cbp & (1 << i)) {
  191. int vlc_index = ctx->dcb - 9;
  192. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  193. ctx->dcb, slice->block[i], &last_dc);
  194. if (ret < 0)
  195. return ret;
  196. }
  197. }
  198. }
  199. put_blocks(ctx, 3, x, y, flag, slice->block[ 0], slice->block[ 2], hqx_quant_luma);
  200. put_blocks(ctx, 3, x + 8, y, flag, slice->block[ 1], slice->block[ 3], hqx_quant_luma);
  201. put_blocks(ctx, 0, x, y, flag, slice->block[ 4], slice->block[ 6], hqx_quant_luma);
  202. put_blocks(ctx, 0, x + 8, y, flag, slice->block[ 5], slice->block[ 7], hqx_quant_luma);
  203. put_blocks(ctx, 2, x >> 1, y, flag, slice->block[ 8], slice->block[ 9], hqx_quant_chroma);
  204. put_blocks(ctx, 1, x >> 1, y, flag, slice->block[10], slice->block[11], hqx_quant_chroma);
  205. return 0;
  206. }
  207. static int hqx_decode_444(HQXContext *ctx, int slice_no, int x, int y)
  208. {
  209. HQXSlice *slice = &ctx->slice[slice_no];
  210. GetBitContext *gb = &slice->gb;
  211. const int *quants;
  212. int flag;
  213. int last_dc;
  214. int i, ret;
  215. if (ctx->interlaced)
  216. flag = get_bits1(gb);
  217. else
  218. flag = 0;
  219. quants = hqx_quants[get_bits(gb, 4)];
  220. for (i = 0; i < 12; i++) {
  221. int vlc_index = ctx->dcb - 9;
  222. if (i == 0 || i == 4 || i == 8)
  223. last_dc = 0;
  224. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  225. ctx->dcb, slice->block[i], &last_dc);
  226. if (ret < 0)
  227. return ret;
  228. }
  229. put_blocks(ctx, 0, x, y, flag, slice->block[0], slice->block[ 2], hqx_quant_luma);
  230. put_blocks(ctx, 0, x + 8, y, flag, slice->block[1], slice->block[ 3], hqx_quant_luma);
  231. put_blocks(ctx, 2, x, y, flag, slice->block[4], slice->block[ 6], hqx_quant_chroma);
  232. put_blocks(ctx, 2, x + 8, y, flag, slice->block[5], slice->block[ 7], hqx_quant_chroma);
  233. put_blocks(ctx, 1, x, y, flag, slice->block[8], slice->block[10], hqx_quant_chroma);
  234. put_blocks(ctx, 1, x + 8, y, flag, slice->block[9], slice->block[11], hqx_quant_chroma);
  235. return 0;
  236. }
  237. static int hqx_decode_444a(HQXContext *ctx, int slice_no, int x, int y)
  238. {
  239. HQXSlice *slice = &ctx->slice[slice_no];
  240. GetBitContext *gb = &slice->gb;
  241. const int *quants;
  242. int flag = 0;
  243. int last_dc;
  244. int i, ret;
  245. int cbp;
  246. cbp = get_vlc2(gb, ctx->cbp_vlc.table, ctx->cbp_vlc.bits, 1);
  247. for (i = 0; i < 16; i++)
  248. memset(slice->block[i], 0, sizeof(**slice->block) * 64);
  249. for (i = 0; i < 16; i++)
  250. slice->block[i][0] = -0x800;
  251. if (cbp) {
  252. if (ctx->interlaced)
  253. flag = get_bits1(gb);
  254. quants = hqx_quants[get_bits(gb, 4)];
  255. cbp |= cbp << 4; // alpha CBP
  256. cbp |= cbp << 8; // chroma CBP
  257. for (i = 0; i < 16; i++) {
  258. if (i == 0 || i == 4 || i == 8 || i == 12)
  259. last_dc = 0;
  260. if (cbp & (1 << i)) {
  261. int vlc_index = ctx->dcb - 9;
  262. ret = decode_block(gb, &ctx->dc_vlc[vlc_index], quants,
  263. ctx->dcb, slice->block[i], &last_dc);
  264. if (ret < 0)
  265. return ret;
  266. }
  267. }
  268. }
  269. put_blocks(ctx, 3, x, y, flag, slice->block[ 0], slice->block[ 2], hqx_quant_luma);
  270. put_blocks(ctx, 3, x + 8, y, flag, slice->block[ 1], slice->block[ 3], hqx_quant_luma);
  271. put_blocks(ctx, 0, x, y, flag, slice->block[ 4], slice->block[ 6], hqx_quant_luma);
  272. put_blocks(ctx, 0, x + 8, y, flag, slice->block[ 5], slice->block[ 7], hqx_quant_luma);
  273. put_blocks(ctx, 2, x, y, flag, slice->block[ 8], slice->block[10], hqx_quant_chroma);
  274. put_blocks(ctx, 2, x + 8, y, flag, slice->block[ 9], slice->block[11], hqx_quant_chroma);
  275. put_blocks(ctx, 1, x, y, flag, slice->block[12], slice->block[14], hqx_quant_chroma);
  276. put_blocks(ctx, 1, x + 8, y, flag, slice->block[13], slice->block[15], hqx_quant_chroma);
  277. return 0;
  278. }
  279. static const int shuffle_16[16] = {
  280. 0, 5, 11, 14, 2, 7, 9, 13, 1, 4, 10, 15, 3, 6, 8, 12
  281. };
  282. static int decode_slice(HQXContext *ctx, int slice_no)
  283. {
  284. int mb_w = (ctx->width + 15) >> 4;
  285. int mb_h = (ctx->height + 15) >> 4;
  286. int grp_w = (mb_w + 4) / 5;
  287. int grp_h = (mb_h + 4) / 5;
  288. int grp_h_edge = grp_w * (mb_w / grp_w);
  289. int grp_v_edge = grp_h * (mb_h / grp_h);
  290. int grp_v_rest = mb_w - grp_h_edge;
  291. int grp_h_rest = mb_h - grp_v_edge;
  292. int num_mbs = mb_w * mb_h;
  293. int num_tiles = (num_mbs + 479) / 480;
  294. int std_tile_blocks = num_mbs / (16 * num_tiles);
  295. int g_tile = slice_no * num_tiles;
  296. int blk_addr, loc_addr, mb_x, mb_y, pos, loc_row, i;
  297. int tile_blocks, tile_limit, tile_no;
  298. for (tile_no = 0; tile_no < num_tiles; tile_no++, g_tile++) {
  299. tile_blocks = std_tile_blocks;
  300. tile_limit = -1;
  301. if (g_tile < num_mbs - std_tile_blocks * 16 * num_tiles) {
  302. tile_limit = num_mbs / (16 * num_tiles);
  303. tile_blocks++;
  304. }
  305. for (i = 0; i < tile_blocks; i++) {
  306. if (i == tile_limit)
  307. blk_addr = g_tile + 16 * num_tiles * i;
  308. else
  309. blk_addr = tile_no + 16 * num_tiles * i +
  310. num_tiles * shuffle_16[(i + slice_no) & 0xF];
  311. loc_row = grp_h * (blk_addr / (grp_h * mb_w));
  312. loc_addr = blk_addr % (grp_h * mb_w);
  313. if (loc_row >= grp_v_edge) {
  314. mb_x = grp_w * (loc_addr / (grp_h_rest * grp_w));
  315. pos = loc_addr % (grp_h_rest * grp_w);
  316. } else {
  317. mb_x = grp_w * (loc_addr / (grp_h * grp_w));
  318. pos = loc_addr % (grp_h * grp_w);
  319. }
  320. if (mb_x >= grp_h_edge) {
  321. mb_x += pos % grp_v_rest;
  322. mb_y = loc_row + (pos / grp_v_rest);
  323. } else {
  324. mb_x += pos % grp_w;
  325. mb_y = loc_row + (pos / grp_w);
  326. }
  327. ctx->decode_func(ctx, slice_no, mb_x * 16, mb_y * 16);
  328. }
  329. }
  330. return 0;
  331. }
  332. static int decode_slice_thread(AVCodecContext *avctx, void *arg,
  333. int slice_no, int threadnr)
  334. {
  335. HQXContext *ctx = avctx->priv_data;
  336. uint32_t *slice_off = ctx->slice_off;
  337. int ret;
  338. if (slice_off[slice_no] < HQX_HEADER_SIZE ||
  339. slice_off[slice_no] >= slice_off[slice_no + 1] ||
  340. slice_off[slice_no + 1] > ctx->data_size) {
  341. av_log(avctx, AV_LOG_ERROR, "Invalid slice size %d.\n", ctx->data_size);
  342. return AVERROR_INVALIDDATA;
  343. }
  344. ret = init_get_bits8(&ctx->slice[slice_no].gb,
  345. ctx->src + slice_off[slice_no],
  346. slice_off[slice_no + 1] - slice_off[slice_no]);
  347. if (ret < 0)
  348. return ret;
  349. return decode_slice(ctx, slice_no);
  350. }
  351. static int hqx_decode_frame(AVCodecContext *avctx, void *data,
  352. int *got_picture_ptr, AVPacket *avpkt)
  353. {
  354. HQXContext *ctx = avctx->priv_data;
  355. ThreadFrame frame = { .f = data };
  356. uint8_t *src = avpkt->data;
  357. uint32_t info_tag;
  358. int data_start;
  359. int i, ret;
  360. if (avpkt->size < 4 + 4) {
  361. av_log(avctx, AV_LOG_ERROR, "Frame is too small %d.\n", avpkt->size);
  362. return AVERROR_INVALIDDATA;
  363. }
  364. info_tag = AV_RL32(src);
  365. if (info_tag == MKTAG('I', 'N', 'F', 'O')) {
  366. uint32_t info_offset = AV_RL32(src + 4);
  367. if (info_offset > INT_MAX || info_offset + 8 > avpkt->size) {
  368. av_log(avctx, AV_LOG_ERROR,
  369. "Invalid INFO header offset: 0x%08"PRIX32" is too large.\n",
  370. info_offset);
  371. return AVERROR_INVALIDDATA;
  372. }
  373. ff_canopus_parse_info_tag(avctx, src + 8, info_offset);
  374. info_offset += 8;
  375. src += info_offset;
  376. }
  377. data_start = src - avpkt->data;
  378. ctx->data_size = avpkt->size - data_start;
  379. ctx->src = src;
  380. ctx->pic = data;
  381. if (ctx->data_size < HQX_HEADER_SIZE) {
  382. av_log(avctx, AV_LOG_ERROR, "Frame too small.\n");
  383. return AVERROR_INVALIDDATA;
  384. }
  385. if (src[0] != 'H' || src[1] != 'Q') {
  386. av_log(avctx, AV_LOG_ERROR, "Not an HQX frame.\n");
  387. return AVERROR_INVALIDDATA;
  388. }
  389. ctx->interlaced = !(src[2] & 0x80);
  390. ctx->format = src[2] & 7;
  391. ctx->dcb = (src[3] & 3) + 8;
  392. ctx->width = AV_RB16(src + 4);
  393. ctx->height = AV_RB16(src + 6);
  394. for (i = 0; i < 17; i++)
  395. ctx->slice_off[i] = AV_RB24(src + 8 + i * 3);
  396. if (ctx->dcb == 8) {
  397. av_log(avctx, AV_LOG_ERROR, "Invalid DC precision %d.\n", ctx->dcb);
  398. return AVERROR_INVALIDDATA;
  399. }
  400. ret = av_image_check_size(ctx->width, ctx->height, 0, avctx);
  401. if (ret < 0) {
  402. av_log(avctx, AV_LOG_ERROR, "Invalid stored dimensions %dx%d.\n",
  403. ctx->width, ctx->height);
  404. return AVERROR_INVALIDDATA;
  405. }
  406. avctx->coded_width = FFALIGN(ctx->width, 16);
  407. avctx->coded_height = FFALIGN(ctx->height, 16);
  408. avctx->width = ctx->width;
  409. avctx->height = ctx->height;
  410. avctx->bits_per_raw_sample = 10;
  411. switch (ctx->format) {
  412. case HQX_422:
  413. avctx->pix_fmt = AV_PIX_FMT_YUV422P16;
  414. ctx->decode_func = hqx_decode_422;
  415. break;
  416. case HQX_444:
  417. avctx->pix_fmt = AV_PIX_FMT_YUV444P16;
  418. ctx->decode_func = hqx_decode_444;
  419. break;
  420. case HQX_422A:
  421. avctx->pix_fmt = AV_PIX_FMT_YUVA422P16;
  422. ctx->decode_func = hqx_decode_422a;
  423. break;
  424. case HQX_444A:
  425. avctx->pix_fmt = AV_PIX_FMT_YUVA444P16;
  426. ctx->decode_func = hqx_decode_444a;
  427. break;
  428. default:
  429. av_log(avctx, AV_LOG_ERROR, "Invalid format: %d.\n", ctx->format);
  430. return AVERROR_INVALIDDATA;
  431. }
  432. ret = ff_thread_get_buffer(avctx, &frame, 0);
  433. if (ret < 0)
  434. return ret;
  435. avctx->execute2(avctx, decode_slice_thread, NULL, NULL, 16);
  436. ctx->pic->key_frame = 1;
  437. ctx->pic->pict_type = AV_PICTURE_TYPE_I;
  438. *got_picture_ptr = 1;
  439. return avpkt->size;
  440. }
  441. static av_cold int hqx_decode_close(AVCodecContext *avctx)
  442. {
  443. int i;
  444. HQXContext *ctx = avctx->priv_data;
  445. if (avctx->internal->is_copy)
  446. return 0;
  447. ff_free_vlc(&ctx->cbp_vlc);
  448. for (i = 0; i < 3; i++) {
  449. ff_free_vlc(&ctx->dc_vlc[i]);
  450. }
  451. return 0;
  452. }
  453. static av_cold int hqx_decode_init(AVCodecContext *avctx)
  454. {
  455. HQXContext *ctx = avctx->priv_data;
  456. ff_hqxdsp_init(&ctx->hqxdsp);
  457. return ff_hqx_init_vlcs(ctx);
  458. }
  459. AVCodec ff_hqx_decoder = {
  460. .name = "hqx",
  461. .long_name = NULL_IF_CONFIG_SMALL("Canopus HQX"),
  462. .type = AVMEDIA_TYPE_VIDEO,
  463. .id = AV_CODEC_ID_HQX,
  464. .priv_data_size = sizeof(HQXContext),
  465. .init = hqx_decode_init,
  466. .decode = hqx_decode_frame,
  467. .close = hqx_decode_close,
  468. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SLICE_THREADS |
  469. AV_CODEC_CAP_FRAME_THREADS,
  470. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
  471. FF_CODEC_CAP_INIT_CLEANUP,
  472. };