You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

640 lines
18KB

  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * FFT/IFFT transforms.
  26. */
  27. #include <stdlib.h>
  28. #include <string.h>
  29. #include "libavutil/mathematics.h"
  30. #include "libavutil/thread.h"
  31. #include "fft.h"
  32. #include "fft-internal.h"
  33. #if FFT_FIXED_32
  34. #include "fft_table.h"
  35. static void av_cold fft_lut_init(void)
  36. {
  37. int n = 0;
  38. ff_fft_lut_init(ff_fft_offsets_lut, 0, 1 << 17, &n);
  39. }
  40. #else /* FFT_FIXED_32 */
  41. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  42. #if !CONFIG_HARDCODED_TABLES
  43. COSTABLE(16);
  44. COSTABLE(32);
  45. COSTABLE(64);
  46. COSTABLE(128);
  47. COSTABLE(256);
  48. COSTABLE(512);
  49. COSTABLE(1024);
  50. COSTABLE(2048);
  51. COSTABLE(4096);
  52. COSTABLE(8192);
  53. COSTABLE(16384);
  54. COSTABLE(32768);
  55. COSTABLE(65536);
  56. COSTABLE(131072);
  57. static av_cold void init_ff_cos_tabs(int index)
  58. {
  59. int i;
  60. int m = 1<<index;
  61. double freq = 2*M_PI/m;
  62. FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
  63. for(i=0; i<=m/4; i++)
  64. tab[i] = FIX15(cos(i*freq));
  65. for(i=1; i<m/4; i++)
  66. tab[m/2-i] = tab[i];
  67. }
  68. typedef struct CosTabsInitOnce {
  69. void (*func)(void);
  70. AVOnce control;
  71. } CosTabsInitOnce;
  72. #define INIT_FF_COS_TABS_FUNC(index, size) \
  73. static av_cold void init_ff_cos_tabs_ ## size (void)\
  74. { \
  75. init_ff_cos_tabs(index); \
  76. }
  77. INIT_FF_COS_TABS_FUNC(4, 16)
  78. INIT_FF_COS_TABS_FUNC(5, 32)
  79. INIT_FF_COS_TABS_FUNC(6, 64)
  80. INIT_FF_COS_TABS_FUNC(7, 128)
  81. INIT_FF_COS_TABS_FUNC(8, 256)
  82. INIT_FF_COS_TABS_FUNC(9, 512)
  83. INIT_FF_COS_TABS_FUNC(10, 1024)
  84. INIT_FF_COS_TABS_FUNC(11, 2048)
  85. INIT_FF_COS_TABS_FUNC(12, 4096)
  86. INIT_FF_COS_TABS_FUNC(13, 8192)
  87. INIT_FF_COS_TABS_FUNC(14, 16384)
  88. INIT_FF_COS_TABS_FUNC(15, 32768)
  89. INIT_FF_COS_TABS_FUNC(16, 65536)
  90. INIT_FF_COS_TABS_FUNC(17, 131072)
  91. static CosTabsInitOnce cos_tabs_init_once[] = {
  92. { NULL },
  93. { NULL },
  94. { NULL },
  95. { NULL },
  96. { init_ff_cos_tabs_16, AV_ONCE_INIT },
  97. { init_ff_cos_tabs_32, AV_ONCE_INIT },
  98. { init_ff_cos_tabs_64, AV_ONCE_INIT },
  99. { init_ff_cos_tabs_128, AV_ONCE_INIT },
  100. { init_ff_cos_tabs_256, AV_ONCE_INIT },
  101. { init_ff_cos_tabs_512, AV_ONCE_INIT },
  102. { init_ff_cos_tabs_1024, AV_ONCE_INIT },
  103. { init_ff_cos_tabs_2048, AV_ONCE_INIT },
  104. { init_ff_cos_tabs_4096, AV_ONCE_INIT },
  105. { init_ff_cos_tabs_8192, AV_ONCE_INIT },
  106. { init_ff_cos_tabs_16384, AV_ONCE_INIT },
  107. { init_ff_cos_tabs_32768, AV_ONCE_INIT },
  108. { init_ff_cos_tabs_65536, AV_ONCE_INIT },
  109. { init_ff_cos_tabs_131072, AV_ONCE_INIT },
  110. };
  111. #endif
  112. COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
  113. NULL, NULL, NULL, NULL,
  114. FFT_NAME(ff_cos_16),
  115. FFT_NAME(ff_cos_32),
  116. FFT_NAME(ff_cos_64),
  117. FFT_NAME(ff_cos_128),
  118. FFT_NAME(ff_cos_256),
  119. FFT_NAME(ff_cos_512),
  120. FFT_NAME(ff_cos_1024),
  121. FFT_NAME(ff_cos_2048),
  122. FFT_NAME(ff_cos_4096),
  123. FFT_NAME(ff_cos_8192),
  124. FFT_NAME(ff_cos_16384),
  125. FFT_NAME(ff_cos_32768),
  126. FFT_NAME(ff_cos_65536),
  127. FFT_NAME(ff_cos_131072),
  128. };
  129. #endif /* FFT_FIXED_32 */
  130. static void fft_permute_c(FFTContext *s, FFTComplex *z);
  131. static void fft_calc_c(FFTContext *s, FFTComplex *z);
  132. static int split_radix_permutation(int i, int n, int inverse)
  133. {
  134. int m;
  135. if(n <= 2) return i&1;
  136. m = n >> 1;
  137. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  138. m >>= 1;
  139. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  140. else return split_radix_permutation(i, m, inverse)*4 - 1;
  141. }
  142. av_cold void ff_init_ff_cos_tabs(int index)
  143. {
  144. #if (!CONFIG_HARDCODED_TABLES) && (!FFT_FIXED_32)
  145. ff_thread_once(&cos_tabs_init_once[index].control, cos_tabs_init_once[index].func);
  146. #endif
  147. }
  148. static const int avx_tab[] = {
  149. 0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
  150. };
  151. static int is_second_half_of_fft32(int i, int n)
  152. {
  153. if (n <= 32)
  154. return i >= 16;
  155. else if (i < n/2)
  156. return is_second_half_of_fft32(i, n/2);
  157. else if (i < 3*n/4)
  158. return is_second_half_of_fft32(i - n/2, n/4);
  159. else
  160. return is_second_half_of_fft32(i - 3*n/4, n/4);
  161. }
  162. static av_cold void fft_perm_avx(FFTContext *s)
  163. {
  164. int i;
  165. int n = 1 << s->nbits;
  166. for (i = 0; i < n; i += 16) {
  167. int k;
  168. if (is_second_half_of_fft32(i, n)) {
  169. for (k = 0; k < 16; k++)
  170. s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
  171. i + avx_tab[k];
  172. } else {
  173. for (k = 0; k < 16; k++) {
  174. int j = i + k;
  175. j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
  176. s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
  177. }
  178. }
  179. }
  180. }
  181. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  182. {
  183. int i, j, n;
  184. s->revtab = NULL;
  185. s->revtab32 = NULL;
  186. if (nbits < 2 || nbits > 17)
  187. goto fail;
  188. s->nbits = nbits;
  189. n = 1 << nbits;
  190. if (nbits <= 16) {
  191. s->revtab = av_malloc(n * sizeof(uint16_t));
  192. if (!s->revtab)
  193. goto fail;
  194. } else {
  195. s->revtab32 = av_malloc(n * sizeof(uint32_t));
  196. if (!s->revtab32)
  197. goto fail;
  198. }
  199. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  200. if (!s->tmp_buf)
  201. goto fail;
  202. s->inverse = inverse;
  203. s->fft_permutation = FF_FFT_PERM_DEFAULT;
  204. s->fft_permute = fft_permute_c;
  205. s->fft_calc = fft_calc_c;
  206. #if CONFIG_MDCT
  207. s->imdct_calc = ff_imdct_calc_c;
  208. s->imdct_half = ff_imdct_half_c;
  209. s->mdct_calc = ff_mdct_calc_c;
  210. #endif
  211. #if FFT_FIXED_32
  212. {
  213. static AVOnce control = AV_ONCE_INIT;
  214. ff_thread_once(&control, fft_lut_init);
  215. }
  216. #else /* FFT_FIXED_32 */
  217. #if FFT_FLOAT
  218. if (ARCH_AARCH64) ff_fft_init_aarch64(s);
  219. if (ARCH_ARM) ff_fft_init_arm(s);
  220. if (ARCH_PPC) ff_fft_init_ppc(s);
  221. if (ARCH_X86) ff_fft_init_x86(s);
  222. if (CONFIG_MDCT) s->mdct_calcw = s->mdct_calc;
  223. if (HAVE_MIPSFPU) ff_fft_init_mips(s);
  224. #else
  225. if (CONFIG_MDCT) s->mdct_calcw = ff_mdct_calcw_c;
  226. if (ARCH_ARM) ff_fft_fixed_init_arm(s);
  227. #endif
  228. for(j=4; j<=nbits; j++) {
  229. ff_init_ff_cos_tabs(j);
  230. }
  231. #endif /* FFT_FIXED_32 */
  232. if (s->fft_permutation == FF_FFT_PERM_AVX) {
  233. fft_perm_avx(s);
  234. } else {
  235. #define PROCESS_FFT_PERM_SWAP_LSBS(num) do {\
  236. for(i = 0; i < n; i++) {\
  237. int k;\
  238. j = i;\
  239. j = (j & ~3) | ((j >> 1) & 1) | ((j << 1) & 2);\
  240. k = -split_radix_permutation(i, n, s->inverse) & (n - 1);\
  241. s->revtab##num[k] = j;\
  242. } \
  243. } while(0);
  244. #define PROCESS_FFT_PERM_DEFAULT(num) do {\
  245. for(i = 0; i < n; i++) {\
  246. int k;\
  247. j = i;\
  248. k = -split_radix_permutation(i, n, s->inverse) & (n - 1);\
  249. s->revtab##num[k] = j;\
  250. } \
  251. } while(0);
  252. #define SPLIT_RADIX_PERMUTATION(num) do { \
  253. if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS) {\
  254. PROCESS_FFT_PERM_SWAP_LSBS(num) \
  255. } else {\
  256. PROCESS_FFT_PERM_DEFAULT(num) \
  257. }\
  258. } while(0);
  259. if (s->revtab)
  260. SPLIT_RADIX_PERMUTATION()
  261. if (s->revtab32)
  262. SPLIT_RADIX_PERMUTATION(32)
  263. #undef PROCESS_FFT_PERM_DEFAULT
  264. #undef PROCESS_FFT_PERM_SWAP_LSBS
  265. #undef SPLIT_RADIX_PERMUTATION
  266. }
  267. return 0;
  268. fail:
  269. av_freep(&s->revtab);
  270. av_freep(&s->revtab32);
  271. av_freep(&s->tmp_buf);
  272. return -1;
  273. }
  274. static void fft_permute_c(FFTContext *s, FFTComplex *z)
  275. {
  276. int j, np;
  277. const uint16_t *revtab = s->revtab;
  278. const uint32_t *revtab32 = s->revtab32;
  279. np = 1 << s->nbits;
  280. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  281. if (revtab) {
  282. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  283. } else
  284. for(j=0;j<np;j++) s->tmp_buf[revtab32[j]] = z[j];
  285. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  286. }
  287. av_cold void ff_fft_end(FFTContext *s)
  288. {
  289. av_freep(&s->revtab);
  290. av_freep(&s->revtab32);
  291. av_freep(&s->tmp_buf);
  292. }
  293. #if FFT_FIXED_32
  294. static void fft_calc_c(FFTContext *s, FFTComplex *z) {
  295. int nbits, i, n, num_transforms, offset, step;
  296. int n4, n2, n34;
  297. unsigned tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
  298. FFTComplex *tmpz;
  299. const int fft_size = (1 << s->nbits);
  300. int64_t accu;
  301. num_transforms = (0x2aab >> (16 - s->nbits)) | 1;
  302. for (n=0; n<num_transforms; n++){
  303. offset = ff_fft_offsets_lut[n] << 2;
  304. tmpz = z + offset;
  305. tmp1 = tmpz[0].re + (unsigned)tmpz[1].re;
  306. tmp5 = tmpz[2].re + (unsigned)tmpz[3].re;
  307. tmp2 = tmpz[0].im + (unsigned)tmpz[1].im;
  308. tmp6 = tmpz[2].im + (unsigned)tmpz[3].im;
  309. tmp3 = tmpz[0].re - (unsigned)tmpz[1].re;
  310. tmp8 = tmpz[2].im - (unsigned)tmpz[3].im;
  311. tmp4 = tmpz[0].im - (unsigned)tmpz[1].im;
  312. tmp7 = tmpz[2].re - (unsigned)tmpz[3].re;
  313. tmpz[0].re = tmp1 + tmp5;
  314. tmpz[2].re = tmp1 - tmp5;
  315. tmpz[0].im = tmp2 + tmp6;
  316. tmpz[2].im = tmp2 - tmp6;
  317. tmpz[1].re = tmp3 + tmp8;
  318. tmpz[3].re = tmp3 - tmp8;
  319. tmpz[1].im = tmp4 - tmp7;
  320. tmpz[3].im = tmp4 + tmp7;
  321. }
  322. if (fft_size < 8)
  323. return;
  324. num_transforms = (num_transforms >> 1) | 1;
  325. for (n=0; n<num_transforms; n++){
  326. offset = ff_fft_offsets_lut[n] << 3;
  327. tmpz = z + offset;
  328. tmp1 = tmpz[4].re + (unsigned)tmpz[5].re;
  329. tmp3 = tmpz[6].re + (unsigned)tmpz[7].re;
  330. tmp2 = tmpz[4].im + (unsigned)tmpz[5].im;
  331. tmp4 = tmpz[6].im + (unsigned)tmpz[7].im;
  332. tmp5 = tmp1 + tmp3;
  333. tmp7 = tmp1 - tmp3;
  334. tmp6 = tmp2 + tmp4;
  335. tmp8 = tmp2 - tmp4;
  336. tmp1 = tmpz[4].re - (unsigned)tmpz[5].re;
  337. tmp2 = tmpz[4].im - (unsigned)tmpz[5].im;
  338. tmp3 = tmpz[6].re - (unsigned)tmpz[7].re;
  339. tmp4 = tmpz[6].im - (unsigned)tmpz[7].im;
  340. tmpz[4].re = tmpz[0].re - tmp5;
  341. tmpz[0].re = tmpz[0].re + tmp5;
  342. tmpz[4].im = tmpz[0].im - tmp6;
  343. tmpz[0].im = tmpz[0].im + tmp6;
  344. tmpz[6].re = tmpz[2].re - tmp8;
  345. tmpz[2].re = tmpz[2].re + tmp8;
  346. tmpz[6].im = tmpz[2].im + tmp7;
  347. tmpz[2].im = tmpz[2].im - tmp7;
  348. accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp1 + tmp2);
  349. tmp5 = (int32_t)((accu + 0x40000000) >> 31);
  350. accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 - tmp4);
  351. tmp7 = (int32_t)((accu + 0x40000000) >> 31);
  352. accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp2 - tmp1);
  353. tmp6 = (int32_t)((accu + 0x40000000) >> 31);
  354. accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 + tmp4);
  355. tmp8 = (int32_t)((accu + 0x40000000) >> 31);
  356. tmp1 = tmp5 + tmp7;
  357. tmp3 = tmp5 - tmp7;
  358. tmp2 = tmp6 + tmp8;
  359. tmp4 = tmp6 - tmp8;
  360. tmpz[5].re = tmpz[1].re - tmp1;
  361. tmpz[1].re = tmpz[1].re + tmp1;
  362. tmpz[5].im = tmpz[1].im - tmp2;
  363. tmpz[1].im = tmpz[1].im + tmp2;
  364. tmpz[7].re = tmpz[3].re - tmp4;
  365. tmpz[3].re = tmpz[3].re + tmp4;
  366. tmpz[7].im = tmpz[3].im + tmp3;
  367. tmpz[3].im = tmpz[3].im - tmp3;
  368. }
  369. step = 1 << ((MAX_LOG2_NFFT-4) - 4);
  370. n4 = 4;
  371. for (nbits=4; nbits<=s->nbits; nbits++){
  372. n2 = 2*n4;
  373. n34 = 3*n4;
  374. num_transforms = (num_transforms >> 1) | 1;
  375. for (n=0; n<num_transforms; n++){
  376. const FFTSample *w_re_ptr = ff_w_tab_sr + step;
  377. const FFTSample *w_im_ptr = ff_w_tab_sr + MAX_FFT_SIZE/(4*16) - step;
  378. offset = ff_fft_offsets_lut[n] << nbits;
  379. tmpz = z + offset;
  380. tmp5 = tmpz[ n2].re + (unsigned)tmpz[n34].re;
  381. tmp1 = tmpz[ n2].re - (unsigned)tmpz[n34].re;
  382. tmp6 = tmpz[ n2].im + (unsigned)tmpz[n34].im;
  383. tmp2 = tmpz[ n2].im - (unsigned)tmpz[n34].im;
  384. tmpz[ n2].re = tmpz[ 0].re - tmp5;
  385. tmpz[ 0].re = tmpz[ 0].re + tmp5;
  386. tmpz[ n2].im = tmpz[ 0].im - tmp6;
  387. tmpz[ 0].im = tmpz[ 0].im + tmp6;
  388. tmpz[n34].re = tmpz[n4].re - tmp2;
  389. tmpz[ n4].re = tmpz[n4].re + tmp2;
  390. tmpz[n34].im = tmpz[n4].im + tmp1;
  391. tmpz[ n4].im = tmpz[n4].im - tmp1;
  392. for (i=1; i<n4; i++){
  393. FFTSample w_re = w_re_ptr[0];
  394. FFTSample w_im = w_im_ptr[0];
  395. accu = (int64_t)w_re*tmpz[ n2+i].re;
  396. accu += (int64_t)w_im*tmpz[ n2+i].im;
  397. tmp1 = (int32_t)((accu + 0x40000000) >> 31);
  398. accu = (int64_t)w_re*tmpz[ n2+i].im;
  399. accu -= (int64_t)w_im*tmpz[ n2+i].re;
  400. tmp2 = (int32_t)((accu + 0x40000000) >> 31);
  401. accu = (int64_t)w_re*tmpz[n34+i].re;
  402. accu -= (int64_t)w_im*tmpz[n34+i].im;
  403. tmp3 = (int32_t)((accu + 0x40000000) >> 31);
  404. accu = (int64_t)w_re*tmpz[n34+i].im;
  405. accu += (int64_t)w_im*tmpz[n34+i].re;
  406. tmp4 = (int32_t)((accu + 0x40000000) >> 31);
  407. tmp5 = tmp1 + tmp3;
  408. tmp1 = tmp1 - tmp3;
  409. tmp6 = tmp2 + tmp4;
  410. tmp2 = tmp2 - tmp4;
  411. tmpz[ n2+i].re = tmpz[ i].re - tmp5;
  412. tmpz[ i].re = tmpz[ i].re + tmp5;
  413. tmpz[ n2+i].im = tmpz[ i].im - tmp6;
  414. tmpz[ i].im = tmpz[ i].im + tmp6;
  415. tmpz[n34+i].re = tmpz[n4+i].re - tmp2;
  416. tmpz[ n4+i].re = tmpz[n4+i].re + tmp2;
  417. tmpz[n34+i].im = tmpz[n4+i].im + tmp1;
  418. tmpz[ n4+i].im = tmpz[n4+i].im - tmp1;
  419. w_re_ptr += step;
  420. w_im_ptr -= step;
  421. }
  422. }
  423. step >>= 1;
  424. n4 <<= 1;
  425. }
  426. }
  427. #else /* FFT_FIXED_32 */
  428. #define BUTTERFLIES(a0,a1,a2,a3) {\
  429. BF(t3, t5, t5, t1);\
  430. BF(a2.re, a0.re, a0.re, t5);\
  431. BF(a3.im, a1.im, a1.im, t3);\
  432. BF(t4, t6, t2, t6);\
  433. BF(a3.re, a1.re, a1.re, t4);\
  434. BF(a2.im, a0.im, a0.im, t6);\
  435. }
  436. // force loading all the inputs before storing any.
  437. // this is slightly slower for small data, but avoids store->load aliasing
  438. // for addresses separated by large powers of 2.
  439. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  440. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  441. BF(t3, t5, t5, t1);\
  442. BF(a2.re, a0.re, r0, t5);\
  443. BF(a3.im, a1.im, i1, t3);\
  444. BF(t4, t6, t2, t6);\
  445. BF(a3.re, a1.re, r1, t4);\
  446. BF(a2.im, a0.im, i0, t6);\
  447. }
  448. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  449. CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
  450. CMUL(t5, t6, a3.re, a3.im, wre, wim);\
  451. BUTTERFLIES(a0,a1,a2,a3)\
  452. }
  453. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  454. t1 = a2.re;\
  455. t2 = a2.im;\
  456. t5 = a3.re;\
  457. t6 = a3.im;\
  458. BUTTERFLIES(a0,a1,a2,a3)\
  459. }
  460. /* z[0...8n-1], w[1...2n-1] */
  461. #define PASS(name)\
  462. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  463. {\
  464. FFTDouble t1, t2, t3, t4, t5, t6;\
  465. int o1 = 2*n;\
  466. int o2 = 4*n;\
  467. int o3 = 6*n;\
  468. const FFTSample *wim = wre+o1;\
  469. n--;\
  470. \
  471. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  472. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  473. do {\
  474. z += 2;\
  475. wre += 2;\
  476. wim -= 2;\
  477. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  478. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  479. } while(--n);\
  480. }
  481. PASS(pass)
  482. #if !CONFIG_SMALL
  483. #undef BUTTERFLIES
  484. #define BUTTERFLIES BUTTERFLIES_BIG
  485. PASS(pass_big)
  486. #endif
  487. #define DECL_FFT(n,n2,n4)\
  488. static void fft##n(FFTComplex *z)\
  489. {\
  490. fft##n2(z);\
  491. fft##n4(z+n4*2);\
  492. fft##n4(z+n4*3);\
  493. pass(z,FFT_NAME(ff_cos_##n),n4/2);\
  494. }
  495. static void fft4(FFTComplex *z)
  496. {
  497. FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
  498. BF(t3, t1, z[0].re, z[1].re);
  499. BF(t8, t6, z[3].re, z[2].re);
  500. BF(z[2].re, z[0].re, t1, t6);
  501. BF(t4, t2, z[0].im, z[1].im);
  502. BF(t7, t5, z[2].im, z[3].im);
  503. BF(z[3].im, z[1].im, t4, t8);
  504. BF(z[3].re, z[1].re, t3, t7);
  505. BF(z[2].im, z[0].im, t2, t5);
  506. }
  507. static void fft8(FFTComplex *z)
  508. {
  509. FFTDouble t1, t2, t3, t4, t5, t6;
  510. fft4(z);
  511. BF(t1, z[5].re, z[4].re, -z[5].re);
  512. BF(t2, z[5].im, z[4].im, -z[5].im);
  513. BF(t5, z[7].re, z[6].re, -z[7].re);
  514. BF(t6, z[7].im, z[6].im, -z[7].im);
  515. BUTTERFLIES(z[0],z[2],z[4],z[6]);
  516. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  517. }
  518. #if !CONFIG_SMALL
  519. static void fft16(FFTComplex *z)
  520. {
  521. FFTDouble t1, t2, t3, t4, t5, t6;
  522. FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
  523. FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
  524. fft8(z);
  525. fft4(z+8);
  526. fft4(z+12);
  527. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  528. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  529. TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
  530. TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
  531. }
  532. #else
  533. DECL_FFT(16,8,4)
  534. #endif
  535. DECL_FFT(32,16,8)
  536. DECL_FFT(64,32,16)
  537. DECL_FFT(128,64,32)
  538. DECL_FFT(256,128,64)
  539. DECL_FFT(512,256,128)
  540. #if !CONFIG_SMALL
  541. #define pass pass_big
  542. #endif
  543. DECL_FFT(1024,512,256)
  544. DECL_FFT(2048,1024,512)
  545. DECL_FFT(4096,2048,1024)
  546. DECL_FFT(8192,4096,2048)
  547. DECL_FFT(16384,8192,4096)
  548. DECL_FFT(32768,16384,8192)
  549. DECL_FFT(65536,32768,16384)
  550. DECL_FFT(131072,65536,32768)
  551. static void (* const fft_dispatch[])(FFTComplex*) = {
  552. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  553. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
  554. };
  555. static void fft_calc_c(FFTContext *s, FFTComplex *z)
  556. {
  557. fft_dispatch[s->nbits-2](z);
  558. }
  559. #endif /* FFT_FIXED_32 */