You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1282 lines
47KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/channel_layout.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "libavutil/lfg.h"
  29. #include "avcodec.h"
  30. #include "lsp.h"
  31. #include "celp_filters.h"
  32. #include "celp_math.h"
  33. #include "acelp_filters.h"
  34. #include "acelp_vectors.h"
  35. #include "acelp_pitch_delay.h"
  36. #include "internal.h"
  37. #define AMR_USE_16BIT_TABLES
  38. #include "amr.h"
  39. #include "amrwbdata.h"
  40. #include "mips/amrwbdec_mips.h"
  41. typedef struct AMRWBContext {
  42. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  43. enum Mode fr_cur_mode; ///< mode index of current frame
  44. uint8_t fr_quality; ///< frame quality index (FQI)
  45. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  46. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  47. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  48. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  49. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  50. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  51. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  52. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  53. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  54. float *excitation; ///< points to current excitation in excitation_buf[]
  55. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  56. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  57. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  58. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  59. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  60. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  61. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  62. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  63. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  64. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  65. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  66. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  67. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  68. float demph_mem[1]; ///< previous value in the de-emphasis filter
  69. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  70. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  71. AVLFG prng; ///< random number generator for white noise excitation
  72. uint8_t first_frame; ///< flag active during decoding of the first frame
  73. ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
  74. ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
  75. CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
  76. CELPMContext celpm_ctx; ///< context for fixed point math operations
  77. } AMRWBContext;
  78. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  79. {
  80. AMRWBContext *ctx = avctx->priv_data;
  81. int i;
  82. if (avctx->channels > 1) {
  83. avpriv_report_missing_feature(avctx, "multi-channel AMR");
  84. return AVERROR_PATCHWELCOME;
  85. }
  86. avctx->channels = 1;
  87. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  88. if (!avctx->sample_rate)
  89. avctx->sample_rate = 16000;
  90. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  91. av_lfg_init(&ctx->prng, 1);
  92. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  93. ctx->first_frame = 1;
  94. for (i = 0; i < LP_ORDER; i++)
  95. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  96. for (i = 0; i < 4; i++)
  97. ctx->prediction_error[i] = MIN_ENERGY;
  98. ff_acelp_filter_init(&ctx->acelpf_ctx);
  99. ff_acelp_vectors_init(&ctx->acelpv_ctx);
  100. ff_celp_filter_init(&ctx->celpf_ctx);
  101. ff_celp_math_init(&ctx->celpm_ctx);
  102. return 0;
  103. }
  104. /**
  105. * Decode the frame header in the "MIME/storage" format. This format
  106. * is simpler and does not carry the auxiliary frame information.
  107. *
  108. * @param[in] ctx The Context
  109. * @param[in] buf Pointer to the input buffer
  110. *
  111. * @return The decoded header length in bytes
  112. */
  113. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  114. {
  115. /* Decode frame header (1st octet) */
  116. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  117. ctx->fr_quality = (buf[0] & 0x4) == 0x4;
  118. return 1;
  119. }
  120. /**
  121. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  122. *
  123. * @param[in] ind Array of 5 indexes
  124. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  125. */
  126. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  127. {
  128. int i;
  129. for (i = 0; i < 9; i++)
  130. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  131. for (i = 0; i < 7; i++)
  132. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  133. for (i = 0; i < 5; i++)
  134. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  135. for (i = 0; i < 4; i++)
  136. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  137. for (i = 0; i < 7; i++)
  138. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  139. }
  140. /**
  141. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  142. *
  143. * @param[in] ind Array of 7 indexes
  144. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  145. */
  146. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  147. {
  148. int i;
  149. for (i = 0; i < 9; i++)
  150. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  151. for (i = 0; i < 7; i++)
  152. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  153. for (i = 0; i < 3; i++)
  154. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  155. for (i = 0; i < 3; i++)
  156. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  157. for (i = 0; i < 3; i++)
  158. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  159. for (i = 0; i < 3; i++)
  160. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  161. for (i = 0; i < 4; i++)
  162. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  163. }
  164. /**
  165. * Apply mean and past ISF values using the prediction factor.
  166. * Updates past ISF vector.
  167. *
  168. * @param[in,out] isf_q Current quantized ISF
  169. * @param[in,out] isf_past Past quantized ISF
  170. */
  171. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  172. {
  173. int i;
  174. float tmp;
  175. for (i = 0; i < LP_ORDER; i++) {
  176. tmp = isf_q[i];
  177. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  178. isf_q[i] += PRED_FACTOR * isf_past[i];
  179. isf_past[i] = tmp;
  180. }
  181. }
  182. /**
  183. * Interpolate the fourth ISP vector from current and past frames
  184. * to obtain an ISP vector for each subframe.
  185. *
  186. * @param[in,out] isp_q ISPs for each subframe
  187. * @param[in] isp4_past Past ISP for subframe 4
  188. */
  189. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  190. {
  191. int i, k;
  192. for (k = 0; k < 3; k++) {
  193. float c = isfp_inter[k];
  194. for (i = 0; i < LP_ORDER; i++)
  195. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  196. }
  197. }
  198. /**
  199. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  200. * Calculate integer lag and fractional lag always using 1/4 resolution.
  201. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  202. *
  203. * @param[out] lag_int Decoded integer pitch lag
  204. * @param[out] lag_frac Decoded fractional pitch lag
  205. * @param[in] pitch_index Adaptive codebook pitch index
  206. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  207. * @param[in] subframe Current subframe index (0 to 3)
  208. */
  209. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  210. uint8_t *base_lag_int, int subframe)
  211. {
  212. if (subframe == 0 || subframe == 2) {
  213. if (pitch_index < 376) {
  214. *lag_int = (pitch_index + 137) >> 2;
  215. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  216. } else if (pitch_index < 440) {
  217. *lag_int = (pitch_index + 257 - 376) >> 1;
  218. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) * 2;
  219. /* the actual resolution is 1/2 but expressed as 1/4 */
  220. } else {
  221. *lag_int = pitch_index - 280;
  222. *lag_frac = 0;
  223. }
  224. /* minimum lag for next subframe */
  225. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  226. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  227. // XXX: the spec states clearly that *base_lag_int should be
  228. // the nearest integer to *lag_int (minus 8), but the ref code
  229. // actually always uses its floor, I'm following the latter
  230. } else {
  231. *lag_int = (pitch_index + 1) >> 2;
  232. *lag_frac = pitch_index - (*lag_int << 2);
  233. *lag_int += *base_lag_int;
  234. }
  235. }
  236. /**
  237. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  238. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  239. * relative index is used for all subframes except the first.
  240. */
  241. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  242. uint8_t *base_lag_int, int subframe, enum Mode mode)
  243. {
  244. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  245. if (pitch_index < 116) {
  246. *lag_int = (pitch_index + 69) >> 1;
  247. *lag_frac = (pitch_index - (*lag_int << 1) + 68) * 2;
  248. } else {
  249. *lag_int = pitch_index - 24;
  250. *lag_frac = 0;
  251. }
  252. // XXX: same problem as before
  253. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  254. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  255. } else {
  256. *lag_int = (pitch_index + 1) >> 1;
  257. *lag_frac = (pitch_index - (*lag_int << 1)) * 2;
  258. *lag_int += *base_lag_int;
  259. }
  260. }
  261. /**
  262. * Find the pitch vector by interpolating the past excitation at the
  263. * pitch delay, which is obtained in this function.
  264. *
  265. * @param[in,out] ctx The context
  266. * @param[in] amr_subframe Current subframe data
  267. * @param[in] subframe Current subframe index (0 to 3)
  268. */
  269. static void decode_pitch_vector(AMRWBContext *ctx,
  270. const AMRWBSubFrame *amr_subframe,
  271. const int subframe)
  272. {
  273. int pitch_lag_int, pitch_lag_frac;
  274. int i;
  275. float *exc = ctx->excitation;
  276. enum Mode mode = ctx->fr_cur_mode;
  277. if (mode <= MODE_8k85) {
  278. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  279. &ctx->base_pitch_lag, subframe, mode);
  280. } else
  281. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  282. &ctx->base_pitch_lag, subframe);
  283. ctx->pitch_lag_int = pitch_lag_int;
  284. pitch_lag_int += pitch_lag_frac > 0;
  285. /* Calculate the pitch vector by interpolating the past excitation at the
  286. pitch lag using a hamming windowed sinc function */
  287. ctx->acelpf_ctx.acelp_interpolatef(exc,
  288. exc + 1 - pitch_lag_int,
  289. ac_inter, 4,
  290. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  291. LP_ORDER, AMRWB_SFR_SIZE + 1);
  292. /* Check which pitch signal path should be used
  293. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  294. if (amr_subframe->ltp) {
  295. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  296. } else {
  297. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  298. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  299. 0.18 * exc[i + 1];
  300. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  301. }
  302. }
  303. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  304. #define BIT_STR(x,lsb,len) av_mod_uintp2((x) >> (lsb), (len))
  305. /** Get the bit at specified position */
  306. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  307. /**
  308. * The next six functions decode_[i]p_track decode exactly i pulses
  309. * positions and amplitudes (-1 or 1) in a subframe track using
  310. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  311. *
  312. * The results are given in out[], in which a negative number means
  313. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  314. *
  315. * @param[out] out Output buffer (writes i elements)
  316. * @param[in] code Pulse index (no. of bits varies, see below)
  317. * @param[in] m (log2) Number of potential positions
  318. * @param[in] off Offset for decoded positions
  319. */
  320. static inline void decode_1p_track(int *out, int code, int m, int off)
  321. {
  322. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  323. out[0] = BIT_POS(code, m) ? -pos : pos;
  324. }
  325. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  326. {
  327. int pos0 = BIT_STR(code, m, m) + off;
  328. int pos1 = BIT_STR(code, 0, m) + off;
  329. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  330. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  331. out[1] = pos0 > pos1 ? -out[1] : out[1];
  332. }
  333. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  334. {
  335. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  336. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  337. m - 1, off + half_2p);
  338. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  339. }
  340. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  341. {
  342. int half_4p, subhalf_2p;
  343. int b_offset = 1 << (m - 1);
  344. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  345. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  346. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  347. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  348. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  349. m - 2, off + half_4p + subhalf_2p);
  350. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  351. m - 1, off + half_4p);
  352. break;
  353. case 1: /* 1 pulse in A, 3 pulses in B */
  354. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  355. m - 1, off);
  356. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  357. m - 1, off + b_offset);
  358. break;
  359. case 2: /* 2 pulses in each half */
  360. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  361. m - 1, off);
  362. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  363. m - 1, off + b_offset);
  364. break;
  365. case 3: /* 3 pulses in A, 1 pulse in B */
  366. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  367. m - 1, off);
  368. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  369. m - 1, off + b_offset);
  370. break;
  371. }
  372. }
  373. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  374. {
  375. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  376. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  377. m - 1, off + half_3p);
  378. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  379. }
  380. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  381. {
  382. int b_offset = 1 << (m - 1);
  383. /* which half has more pulses in cases 0 to 2 */
  384. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  385. int half_other = b_offset - half_more;
  386. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  387. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  388. decode_1p_track(out, BIT_STR(code, 0, m),
  389. m - 1, off + half_more);
  390. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  391. m - 1, off + half_more);
  392. break;
  393. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  394. decode_1p_track(out, BIT_STR(code, 0, m),
  395. m - 1, off + half_other);
  396. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  397. m - 1, off + half_more);
  398. break;
  399. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  400. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  401. m - 1, off + half_other);
  402. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  403. m - 1, off + half_more);
  404. break;
  405. case 3: /* 3 pulses in A, 3 pulses in B */
  406. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  407. m - 1, off);
  408. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  409. m - 1, off + b_offset);
  410. break;
  411. }
  412. }
  413. /**
  414. * Decode the algebraic codebook index to pulse positions and signs,
  415. * then construct the algebraic codebook vector.
  416. *
  417. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  418. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  419. * @param[in] pulse_lo LSBs part of the pulse index array
  420. * @param[in] mode Mode of the current frame
  421. */
  422. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  423. const uint16_t *pulse_lo, const enum Mode mode)
  424. {
  425. /* sig_pos stores for each track the decoded pulse position indexes
  426. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  427. int sig_pos[4][6];
  428. int spacing = (mode == MODE_6k60) ? 2 : 4;
  429. int i, j;
  430. switch (mode) {
  431. case MODE_6k60:
  432. for (i = 0; i < 2; i++)
  433. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  434. break;
  435. case MODE_8k85:
  436. for (i = 0; i < 4; i++)
  437. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  438. break;
  439. case MODE_12k65:
  440. for (i = 0; i < 4; i++)
  441. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  442. break;
  443. case MODE_14k25:
  444. for (i = 0; i < 2; i++)
  445. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  446. for (i = 2; i < 4; i++)
  447. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  448. break;
  449. case MODE_15k85:
  450. for (i = 0; i < 4; i++)
  451. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  452. break;
  453. case MODE_18k25:
  454. for (i = 0; i < 4; i++)
  455. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  456. ((int) pulse_hi[i] << 14), 4, 1);
  457. break;
  458. case MODE_19k85:
  459. for (i = 0; i < 2; i++)
  460. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  461. ((int) pulse_hi[i] << 10), 4, 1);
  462. for (i = 2; i < 4; i++)
  463. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  464. ((int) pulse_hi[i] << 14), 4, 1);
  465. break;
  466. case MODE_23k05:
  467. case MODE_23k85:
  468. for (i = 0; i < 4; i++)
  469. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  470. ((int) pulse_hi[i] << 11), 4, 1);
  471. break;
  472. }
  473. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  474. for (i = 0; i < 4; i++)
  475. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  476. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  477. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  478. }
  479. }
  480. /**
  481. * Decode pitch gain and fixed gain correction factor.
  482. *
  483. * @param[in] vq_gain Vector-quantized index for gains
  484. * @param[in] mode Mode of the current frame
  485. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  486. * @param[out] pitch_gain Decoded pitch gain
  487. */
  488. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  489. float *fixed_gain_factor, float *pitch_gain)
  490. {
  491. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  492. qua_gain_7b[vq_gain]);
  493. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  494. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  495. }
  496. /**
  497. * Apply pitch sharpening filters to the fixed codebook vector.
  498. *
  499. * @param[in] ctx The context
  500. * @param[in,out] fixed_vector Fixed codebook excitation
  501. */
  502. // XXX: Spec states this procedure should be applied when the pitch
  503. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  504. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  505. {
  506. int i;
  507. /* Tilt part */
  508. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  509. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  510. /* Periodicity enhancement part */
  511. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  512. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  513. }
  514. /**
  515. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  516. *
  517. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  518. * @param[in] p_gain, f_gain Pitch and fixed gains
  519. * @param[in] ctx The context
  520. */
  521. // XXX: There is something wrong with the precision here! The magnitudes
  522. // of the energies are not correct. Please check the reference code carefully
  523. static float voice_factor(float *p_vector, float p_gain,
  524. float *f_vector, float f_gain,
  525. CELPMContext *ctx)
  526. {
  527. double p_ener = (double) ctx->dot_productf(p_vector, p_vector,
  528. AMRWB_SFR_SIZE) *
  529. p_gain * p_gain;
  530. double f_ener = (double) ctx->dot_productf(f_vector, f_vector,
  531. AMRWB_SFR_SIZE) *
  532. f_gain * f_gain;
  533. return (p_ener - f_ener) / (p_ener + f_ener + 0.01);
  534. }
  535. /**
  536. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  537. * also known as "adaptive phase dispersion".
  538. *
  539. * @param[in] ctx The context
  540. * @param[in,out] fixed_vector Unfiltered fixed vector
  541. * @param[out] buf Space for modified vector if necessary
  542. *
  543. * @return The potentially overwritten filtered fixed vector address
  544. */
  545. static float *anti_sparseness(AMRWBContext *ctx,
  546. float *fixed_vector, float *buf)
  547. {
  548. int ir_filter_nr;
  549. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  550. return fixed_vector;
  551. if (ctx->pitch_gain[0] < 0.6) {
  552. ir_filter_nr = 0; // strong filtering
  553. } else if (ctx->pitch_gain[0] < 0.9) {
  554. ir_filter_nr = 1; // medium filtering
  555. } else
  556. ir_filter_nr = 2; // no filtering
  557. /* detect 'onset' */
  558. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  559. if (ir_filter_nr < 2)
  560. ir_filter_nr++;
  561. } else {
  562. int i, count = 0;
  563. for (i = 0; i < 6; i++)
  564. if (ctx->pitch_gain[i] < 0.6)
  565. count++;
  566. if (count > 2)
  567. ir_filter_nr = 0;
  568. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  569. ir_filter_nr--;
  570. }
  571. /* update ir filter strength history */
  572. ctx->prev_ir_filter_nr = ir_filter_nr;
  573. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  574. if (ir_filter_nr < 2) {
  575. int i;
  576. const float *coef = ir_filters_lookup[ir_filter_nr];
  577. /* Circular convolution code in the reference
  578. * decoder was modified to avoid using one
  579. * extra array. The filtered vector is given by:
  580. *
  581. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  582. */
  583. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  584. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  585. if (fixed_vector[i])
  586. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  587. AMRWB_SFR_SIZE);
  588. fixed_vector = buf;
  589. }
  590. return fixed_vector;
  591. }
  592. /**
  593. * Calculate a stability factor {teta} based on distance between
  594. * current and past isf. A value of 1 shows maximum signal stability.
  595. */
  596. static float stability_factor(const float *isf, const float *isf_past)
  597. {
  598. int i;
  599. float acc = 0.0;
  600. for (i = 0; i < LP_ORDER - 1; i++)
  601. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  602. // XXX: This part is not so clear from the reference code
  603. // the result is more accurate changing the "/ 256" to "* 512"
  604. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  605. }
  606. /**
  607. * Apply a non-linear fixed gain smoothing in order to reduce
  608. * fluctuation in the energy of excitation.
  609. *
  610. * @param[in] fixed_gain Unsmoothed fixed gain
  611. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  612. * @param[in] voice_fac Frame voicing factor
  613. * @param[in] stab_fac Frame stability factor
  614. *
  615. * @return The smoothed gain
  616. */
  617. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  618. float voice_fac, float stab_fac)
  619. {
  620. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  621. float g0;
  622. // XXX: the following fixed-point constants used to in(de)crement
  623. // gain by 1.5dB were taken from the reference code, maybe it could
  624. // be simpler
  625. if (fixed_gain < *prev_tr_gain) {
  626. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  627. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  628. } else
  629. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  630. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  631. *prev_tr_gain = g0; // update next frame threshold
  632. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  633. }
  634. /**
  635. * Filter the fixed_vector to emphasize the higher frequencies.
  636. *
  637. * @param[in,out] fixed_vector Fixed codebook vector
  638. * @param[in] voice_fac Frame voicing factor
  639. */
  640. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  641. {
  642. int i;
  643. float cpe = 0.125 * (1 + voice_fac);
  644. float last = fixed_vector[0]; // holds c(i - 1)
  645. fixed_vector[0] -= cpe * fixed_vector[1];
  646. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  647. float cur = fixed_vector[i];
  648. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  649. last = cur;
  650. }
  651. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  652. }
  653. /**
  654. * Conduct 16th order linear predictive coding synthesis from excitation.
  655. *
  656. * @param[in] ctx Pointer to the AMRWBContext
  657. * @param[in] lpc Pointer to the LPC coefficients
  658. * @param[out] excitation Buffer for synthesis final excitation
  659. * @param[in] fixed_gain Fixed codebook gain for synthesis
  660. * @param[in] fixed_vector Algebraic codebook vector
  661. * @param[in,out] samples Pointer to the output samples and memory
  662. */
  663. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  664. float fixed_gain, const float *fixed_vector,
  665. float *samples)
  666. {
  667. ctx->acelpv_ctx.weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  668. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  669. /* emphasize pitch vector contribution in low bitrate modes */
  670. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  671. int i;
  672. float energy = ctx->celpm_ctx.dot_productf(excitation, excitation,
  673. AMRWB_SFR_SIZE);
  674. // XXX: Weird part in both ref code and spec. A unknown parameter
  675. // {beta} seems to be identical to the current pitch gain
  676. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  677. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  678. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  679. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  680. energy, AMRWB_SFR_SIZE);
  681. }
  682. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
  683. AMRWB_SFR_SIZE, LP_ORDER);
  684. }
  685. /**
  686. * Apply to synthesis a de-emphasis filter of the form:
  687. * H(z) = 1 / (1 - m * z^-1)
  688. *
  689. * @param[out] out Output buffer
  690. * @param[in] in Input samples array with in[-1]
  691. * @param[in] m Filter coefficient
  692. * @param[in,out] mem State from last filtering
  693. */
  694. static void de_emphasis(float *out, float *in, float m, float mem[1])
  695. {
  696. int i;
  697. out[0] = in[0] + m * mem[0];
  698. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  699. out[i] = in[i] + out[i - 1] * m;
  700. mem[0] = out[AMRWB_SFR_SIZE - 1];
  701. }
  702. /**
  703. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  704. * a FIR interpolation filter. Uses past data from before *in address.
  705. *
  706. * @param[out] out Buffer for interpolated signal
  707. * @param[in] in Current signal data (length 0.8*o_size)
  708. * @param[in] o_size Output signal length
  709. * @param[in] ctx The context
  710. */
  711. static void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx)
  712. {
  713. const float *in0 = in - UPS_FIR_SIZE + 1;
  714. int i, j, k;
  715. int int_part = 0, frac_part;
  716. i = 0;
  717. for (j = 0; j < o_size / 5; j++) {
  718. out[i] = in[int_part];
  719. frac_part = 4;
  720. i++;
  721. for (k = 1; k < 5; k++) {
  722. out[i] = ctx->dot_productf(in0 + int_part,
  723. upsample_fir[4 - frac_part],
  724. UPS_MEM_SIZE);
  725. int_part++;
  726. frac_part--;
  727. i++;
  728. }
  729. }
  730. }
  731. /**
  732. * Calculate the high-band gain based on encoded index (23k85 mode) or
  733. * on the low-band speech signal and the Voice Activity Detection flag.
  734. *
  735. * @param[in] ctx The context
  736. * @param[in] synth LB speech synthesis at 12.8k
  737. * @param[in] hb_idx Gain index for mode 23k85 only
  738. * @param[in] vad VAD flag for the frame
  739. */
  740. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  741. uint16_t hb_idx, uint8_t vad)
  742. {
  743. int wsp = (vad > 0);
  744. float tilt;
  745. float tmp;
  746. if (ctx->fr_cur_mode == MODE_23k85)
  747. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  748. tmp = ctx->celpm_ctx.dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1);
  749. if (tmp > 0) {
  750. tilt = tmp / ctx->celpm_ctx.dot_productf(synth, synth, AMRWB_SFR_SIZE);
  751. } else
  752. tilt = 0;
  753. /* return gain bounded by [0.1, 1.0] */
  754. return av_clipf((1.0 - tilt) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  755. }
  756. /**
  757. * Generate the high-band excitation with the same energy from the lower
  758. * one and scaled by the given gain.
  759. *
  760. * @param[in] ctx The context
  761. * @param[out] hb_exc Buffer for the excitation
  762. * @param[in] synth_exc Low-band excitation used for synthesis
  763. * @param[in] hb_gain Wanted excitation gain
  764. */
  765. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  766. const float *synth_exc, float hb_gain)
  767. {
  768. int i;
  769. float energy = ctx->celpm_ctx.dot_productf(synth_exc, synth_exc,
  770. AMRWB_SFR_SIZE);
  771. /* Generate a white-noise excitation */
  772. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  773. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  774. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  775. energy * hb_gain * hb_gain,
  776. AMRWB_SFR_SIZE_16k);
  777. }
  778. /**
  779. * Calculate the auto-correlation for the ISF difference vector.
  780. */
  781. static float auto_correlation(float *diff_isf, float mean, int lag)
  782. {
  783. int i;
  784. float sum = 0.0;
  785. for (i = 7; i < LP_ORDER - 2; i++) {
  786. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  787. sum += prod * prod;
  788. }
  789. return sum;
  790. }
  791. /**
  792. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  793. * used at mode 6k60 LP filter for the high frequency band.
  794. *
  795. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  796. * values on input
  797. */
  798. static void extrapolate_isf(float isf[LP_ORDER_16k])
  799. {
  800. float diff_isf[LP_ORDER - 2], diff_mean;
  801. float corr_lag[3];
  802. float est, scale;
  803. int i, j, i_max_corr;
  804. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  805. /* Calculate the difference vector */
  806. for (i = 0; i < LP_ORDER - 2; i++)
  807. diff_isf[i] = isf[i + 1] - isf[i];
  808. diff_mean = 0.0;
  809. for (i = 2; i < LP_ORDER - 2; i++)
  810. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  811. /* Find which is the maximum autocorrelation */
  812. i_max_corr = 0;
  813. for (i = 0; i < 3; i++) {
  814. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  815. if (corr_lag[i] > corr_lag[i_max_corr])
  816. i_max_corr = i;
  817. }
  818. i_max_corr++;
  819. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  820. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  821. - isf[i - 2 - i_max_corr];
  822. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  823. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  824. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  825. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  826. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  827. diff_isf[j] = scale * (isf[i] - isf[i - 1]);
  828. /* Stability insurance */
  829. for (i = 1; i < LP_ORDER_16k - LP_ORDER; i++)
  830. if (diff_isf[i] + diff_isf[i - 1] < 5.0) {
  831. if (diff_isf[i] > diff_isf[i - 1]) {
  832. diff_isf[i - 1] = 5.0 - diff_isf[i];
  833. } else
  834. diff_isf[i] = 5.0 - diff_isf[i - 1];
  835. }
  836. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  837. isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15));
  838. /* Scale the ISF vector for 16000 Hz */
  839. for (i = 0; i < LP_ORDER_16k - 1; i++)
  840. isf[i] *= 0.8;
  841. }
  842. /**
  843. * Spectral expand the LP coefficients using the equation:
  844. * y[i] = x[i] * (gamma ** i)
  845. *
  846. * @param[out] out Output buffer (may use input array)
  847. * @param[in] lpc LP coefficients array
  848. * @param[in] gamma Weighting factor
  849. * @param[in] size LP array size
  850. */
  851. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  852. {
  853. int i;
  854. float fac = gamma;
  855. for (i = 0; i < size; i++) {
  856. out[i] = lpc[i] * fac;
  857. fac *= gamma;
  858. }
  859. }
  860. /**
  861. * Conduct 20th order linear predictive coding synthesis for the high
  862. * frequency band excitation at 16kHz.
  863. *
  864. * @param[in] ctx The context
  865. * @param[in] subframe Current subframe index (0 to 3)
  866. * @param[in,out] samples Pointer to the output speech samples
  867. * @param[in] exc Generated white-noise scaled excitation
  868. * @param[in] isf Current frame isf vector
  869. * @param[in] isf_past Past frame final isf vector
  870. */
  871. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  872. const float *exc, const float *isf, const float *isf_past)
  873. {
  874. float hb_lpc[LP_ORDER_16k];
  875. enum Mode mode = ctx->fr_cur_mode;
  876. if (mode == MODE_6k60) {
  877. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  878. double e_isp[LP_ORDER_16k];
  879. ctx->acelpv_ctx.weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  880. 1.0 - isfp_inter[subframe], LP_ORDER);
  881. extrapolate_isf(e_isf);
  882. e_isf[LP_ORDER_16k - 1] *= 2.0;
  883. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  884. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  885. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  886. } else {
  887. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  888. }
  889. ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  890. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  891. }
  892. /**
  893. * Apply a 15th order filter to high-band samples.
  894. * The filter characteristic depends on the given coefficients.
  895. *
  896. * @param[out] out Buffer for filtered output
  897. * @param[in] fir_coef Filter coefficients
  898. * @param[in,out] mem State from last filtering (updated)
  899. * @param[in] in Input speech data (high-band)
  900. *
  901. * @remark It is safe to pass the same array in in and out parameters
  902. */
  903. #ifndef hb_fir_filter
  904. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  905. float mem[HB_FIR_SIZE], const float *in)
  906. {
  907. int i, j;
  908. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  909. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  910. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  911. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  912. out[i] = 0.0;
  913. for (j = 0; j <= HB_FIR_SIZE; j++)
  914. out[i] += data[i + j] * fir_coef[j];
  915. }
  916. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  917. }
  918. #endif /* hb_fir_filter */
  919. /**
  920. * Update context state before the next subframe.
  921. */
  922. static void update_sub_state(AMRWBContext *ctx)
  923. {
  924. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  925. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  926. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  927. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  928. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  929. LP_ORDER * sizeof(float));
  930. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  931. UPS_MEM_SIZE * sizeof(float));
  932. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  933. LP_ORDER_16k * sizeof(float));
  934. }
  935. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  936. int *got_frame_ptr, AVPacket *avpkt)
  937. {
  938. AMRWBContext *ctx = avctx->priv_data;
  939. AVFrame *frame = data;
  940. AMRWBFrame *cf = &ctx->frame;
  941. const uint8_t *buf = avpkt->data;
  942. int buf_size = avpkt->size;
  943. int expected_fr_size, header_size;
  944. float *buf_out;
  945. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  946. float fixed_gain_factor; // fixed gain correction factor (gamma)
  947. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  948. float synth_fixed_gain; // the fixed gain that synthesis should use
  949. float voice_fac, stab_fac; // parameters used for gain smoothing
  950. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  951. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  952. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  953. float hb_gain;
  954. int sub, i, ret;
  955. /* get output buffer */
  956. frame->nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  957. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  958. return ret;
  959. buf_out = (float *)frame->data[0];
  960. header_size = decode_mime_header(ctx, buf);
  961. if (ctx->fr_cur_mode > MODE_SID) {
  962. av_log(avctx, AV_LOG_ERROR,
  963. "Invalid mode %d\n", ctx->fr_cur_mode);
  964. return AVERROR_INVALIDDATA;
  965. }
  966. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  967. if (buf_size < expected_fr_size) {
  968. av_log(avctx, AV_LOG_ERROR,
  969. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  970. *got_frame_ptr = 0;
  971. return AVERROR_INVALIDDATA;
  972. }
  973. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  974. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  975. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  976. avpriv_request_sample(avctx, "SID mode");
  977. return AVERROR_PATCHWELCOME;
  978. }
  979. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  980. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  981. /* Decode the quantized ISF vector */
  982. if (ctx->fr_cur_mode == MODE_6k60) {
  983. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  984. } else {
  985. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  986. }
  987. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  988. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  989. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  990. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  991. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  992. /* Generate a ISP vector for each subframe */
  993. if (ctx->first_frame) {
  994. ctx->first_frame = 0;
  995. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  996. }
  997. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  998. for (sub = 0; sub < 4; sub++)
  999. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  1000. for (sub = 0; sub < 4; sub++) {
  1001. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  1002. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  1003. /* Decode adaptive codebook (pitch vector) */
  1004. decode_pitch_vector(ctx, cur_subframe, sub);
  1005. /* Decode innovative codebook (fixed vector) */
  1006. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  1007. cur_subframe->pul_il, ctx->fr_cur_mode);
  1008. pitch_sharpening(ctx, ctx->fixed_vector);
  1009. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  1010. &fixed_gain_factor, &ctx->pitch_gain[0]);
  1011. ctx->fixed_gain[0] =
  1012. ff_amr_set_fixed_gain(fixed_gain_factor,
  1013. ctx->celpm_ctx.dot_productf(ctx->fixed_vector,
  1014. ctx->fixed_vector,
  1015. AMRWB_SFR_SIZE) /
  1016. AMRWB_SFR_SIZE,
  1017. ctx->prediction_error,
  1018. ENERGY_MEAN, energy_pred_fac);
  1019. /* Calculate voice factor and store tilt for next subframe */
  1020. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  1021. ctx->fixed_vector, ctx->fixed_gain[0],
  1022. &ctx->celpm_ctx);
  1023. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  1024. /* Construct current excitation */
  1025. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  1026. ctx->excitation[i] *= ctx->pitch_gain[0];
  1027. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  1028. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1029. }
  1030. /* Post-processing of excitation elements */
  1031. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1032. voice_fac, stab_fac);
  1033. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1034. spare_vector);
  1035. pitch_enhancer(synth_fixed_vector, voice_fac);
  1036. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1037. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1038. /* Synthesis speech post-processing */
  1039. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1040. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1041. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1042. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1043. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1044. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1045. AMRWB_SFR_SIZE_16k, &ctx->celpm_ctx);
  1046. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1047. ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(hb_samples,
  1048. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1049. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1050. hb_gain = find_hb_gain(ctx, hb_samples,
  1051. cur_subframe->hb_gain, cf->vad);
  1052. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1053. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1054. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1055. /* High-band post-processing filters */
  1056. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1057. &ctx->samples_hb[LP_ORDER_16k]);
  1058. if (ctx->fr_cur_mode == MODE_23k85)
  1059. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1060. hb_samples);
  1061. /* Add the low and high frequency bands */
  1062. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1063. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1064. /* Update buffers and history */
  1065. update_sub_state(ctx);
  1066. }
  1067. /* update state for next frame */
  1068. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1069. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1070. *got_frame_ptr = 1;
  1071. return expected_fr_size;
  1072. }
  1073. AVCodec ff_amrwb_decoder = {
  1074. .name = "amrwb",
  1075. .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
  1076. .type = AVMEDIA_TYPE_AUDIO,
  1077. .id = AV_CODEC_ID_AMR_WB,
  1078. .priv_data_size = sizeof(AMRWBContext),
  1079. .init = amrwb_decode_init,
  1080. .decode = amrwb_decode_frame,
  1081. .capabilities = AV_CODEC_CAP_DR1,
  1082. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1083. AV_SAMPLE_FMT_NONE },
  1084. };