| 
							- /*
 -  * AAC encoder utilities
 -  * Copyright (C) 2015 Rostislav Pehlivanov
 -  *
 -  * This file is part of FFmpeg.
 -  *
 -  * FFmpeg is free software; you can redistribute it and/or
 -  * modify it under the terms of the GNU Lesser General Public
 -  * License as published by the Free Software Foundation; either
 -  * version 2.1 of the License, or (at your option) any later version.
 -  *
 -  * FFmpeg is distributed in the hope that it will be useful,
 -  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 -  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 -  * Lesser General Public License for more details.
 -  *
 -  * You should have received a copy of the GNU Lesser General Public
 -  * License along with FFmpeg; if not, write to the Free Software
 -  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 -  */
 - 
 - /**
 -  * @file
 -  * AAC encoder utilities
 -  * @author Rostislav Pehlivanov ( atomnuker gmail com )
 -  */
 - 
 - #ifndef AVCODEC_AACENC_UTILS_H
 - #define AVCODEC_AACENC_UTILS_H
 - 
 - #include "libavutil/ffmath.h"
 - #include "aac.h"
 - #include "aacenctab.h"
 - #include "aactab.h"
 - 
 - #define ROUND_STANDARD 0.4054f
 - #define ROUND_TO_ZERO 0.1054f
 - #define C_QUANT 0.4054f
 - 
 - static inline void abs_pow34_v(float *out, const float *in, const int size)
 - {
 -     int i;
 -     for (i = 0; i < size; i++) {
 -         float a = fabsf(in[i]);
 -         out[i] = sqrtf(a * sqrtf(a));
 -     }
 - }
 - 
 - static inline float pos_pow34(float a)
 - {
 -     return sqrtf(a * sqrtf(a));
 - }
 - 
 - /**
 -  * Quantize one coefficient.
 -  * @return absolute value of the quantized coefficient
 -  * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
 -  */
 - static inline int quant(float coef, const float Q, const float rounding)
 - {
 -     float a = coef * Q;
 -     return sqrtf(a * sqrtf(a)) + rounding;
 - }
 - 
 - static inline void quantize_bands(int *out, const float *in, const float *scaled,
 -                                   int size, int is_signed, int maxval, const float Q34,
 -                                   const float rounding)
 - {
 -     int i;
 -     for (i = 0; i < size; i++) {
 -         float qc = scaled[i] * Q34;
 -         int tmp = (int)FFMIN(qc + rounding, (float)maxval);
 -         if (is_signed && in[i] < 0.0f) {
 -             tmp = -tmp;
 -         }
 -         out[i] = tmp;
 -     }
 - }
 - 
 - static inline float find_max_val(int group_len, int swb_size, const float *scaled)
 - {
 -     float maxval = 0.0f;
 -     int w2, i;
 -     for (w2 = 0; w2 < group_len; w2++) {
 -         for (i = 0; i < swb_size; i++) {
 -             maxval = FFMAX(maxval, scaled[w2*128+i]);
 -         }
 -     }
 -     return maxval;
 - }
 - 
 - static inline int find_min_book(float maxval, int sf)
 - {
 -     float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
 -     int qmaxval, cb;
 -     qmaxval = maxval * Q34 + C_QUANT;
 -     if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb)))
 -         cb = 11;
 -     else
 -         cb = aac_maxval_cb[qmaxval];
 -     return cb;
 - }
 - 
 - static inline float find_form_factor(int group_len, int swb_size, float thresh,
 -                                      const float *scaled, float nzslope) {
 -     const float iswb_size = 1.0f / swb_size;
 -     const float iswb_sizem1 = 1.0f / (swb_size - 1);
 -     const float ethresh = thresh;
 -     float form = 0.0f, weight = 0.0f;
 -     int w2, i;
 -     for (w2 = 0; w2 < group_len; w2++) {
 -         float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f;
 -         float nzl = 0;
 -         for (i = 0; i < swb_size; i++) {
 -             float s = fabsf(scaled[w2*128+i]);
 -             maxval = FFMAX(maxval, s);
 -             e += s;
 -             e2 += s *= s;
 -             /* We really don't want a hard non-zero-line count, since
 -              * even below-threshold lines do add up towards band spectral power.
 -              * So, fall steeply towards zero, but smoothly
 -              */
 -             if (s >= ethresh) {
 -                 nzl += 1.0f;
 -             } else {
 -                 if (nzslope == 2.f)
 -                     nzl += (s / ethresh) * (s / ethresh);
 -                 else
 -                     nzl += ff_fast_powf(s / ethresh, nzslope);
 -             }
 -         }
 -         if (e2 > thresh) {
 -             float frm;
 -             e *= iswb_size;
 - 
 -             /** compute variance */
 -             for (i = 0; i < swb_size; i++) {
 -                 float d = fabsf(scaled[w2*128+i]) - e;
 -                 var += d*d;
 -             }
 -             var = sqrtf(var * iswb_sizem1);
 - 
 -             e2 *= iswb_size;
 -             frm = e / FFMIN(e+4*var,maxval);
 -             form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl);
 -             weight += e2;
 -         }
 -     }
 -     if (weight > 0) {
 -         return form / weight;
 -     } else {
 -         return 1.0f;
 -     }
 - }
 - 
 - /** Return the minimum scalefactor where the quantized coef does not clip. */
 - static inline uint8_t coef2minsf(float coef)
 - {
 -     return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
 - }
 - 
 - /** Return the maximum scalefactor where the quantized coef is not zero. */
 - static inline uint8_t coef2maxsf(float coef)
 - {
 -     return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
 - }
 - 
 - /*
 -  * Returns the closest possible index to an array of float values, given a value.
 -  */
 - static inline int quant_array_idx(const float val, const float *arr, const int num)
 - {
 -     int i, index = 0;
 -     float quant_min_err = INFINITY;
 -     for (i = 0; i < num; i++) {
 -         float error = (val - arr[i])*(val - arr[i]);
 -         if (error < quant_min_err) {
 -             quant_min_err = error;
 -             index = i;
 -         }
 -     }
 -     return index;
 - }
 - 
 - /**
 -  * approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
 -  */
 - static av_always_inline float bval2bmax(float b)
 - {
 -     return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f);
 - }
 - 
 - /*
 -  * Compute a nextband map to be used with SF delta constraint utilities.
 -  * The nextband array should contain 128 elements, and positions that don't
 -  * map to valid, nonzero bands of the form w*16+g (with w being the initial
 -  * window of the window group, only) are left indetermined.
 -  */
 - static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
 - {
 -     unsigned char prevband = 0;
 -     int w, g;
 -     /** Just a safe default */
 -     for (g = 0; g < 128; g++)
 -         nextband[g] = g;
 - 
 -     /** Now really navigate the nonzero band chain */
 -     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 -         for (g = 0; g < sce->ics.num_swb; g++) {
 -             if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT)
 -                 prevband = nextband[prevband] = w*16+g;
 -         }
 -     }
 -     nextband[prevband] = prevband; /* terminate */
 - }
 - 
 - /*
 -  * Updates nextband to reflect a removed band (equivalent to
 -  * calling ff_init_nextband_map after marking a band as zero)
 -  */
 - static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band)
 - {
 -     nextband[prevband] = nextband[band];
 - }
 - 
 - /*
 -  * Checks whether the specified band could be removed without inducing
 -  * scalefactor delta that violates SF delta encoding constraints.
 -  * prev_sf has to be the scalefactor of the previous nonzero, nonspecial
 -  * band, in encoding order, or negative if there was no such band.
 -  */
 - static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce,
 -     const uint8_t *nextband, int prev_sf, int band)
 - {
 -     return prev_sf >= 0
 -         && sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF)
 -         && sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF);
 - }
 - 
 - /*
 -  * Checks whether the specified band's scalefactor could be replaced
 -  * with another one without violating SF delta encoding constraints.
 -  * prev_sf has to be the scalefactor of the previous nonzero, nonsepcial
 -  * band, in encoding order, or negative if there was no such band.
 -  */
 - static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce,
 -     const uint8_t *nextband, int prev_sf, int new_sf, int band)
 - {
 -     return new_sf >= (prev_sf - SCALE_MAX_DIFF)
 -         && new_sf <= (prev_sf + SCALE_MAX_DIFF)
 -         && sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF)
 -         && sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF);
 - }
 - 
 - /**
 -  * linear congruential pseudorandom number generator
 -  *
 -  * @param   previous_val    pointer to the current state of the generator
 -  *
 -  * @return  Returns a 32-bit pseudorandom integer
 -  */
 - static av_always_inline int lcg_random(unsigned previous_val)
 - {
 -     union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 };
 -     return v.s;
 - }
 - 
 - #define ERROR_IF(cond, ...) \
 -     if (cond) { \
 -         av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \
 -         return AVERROR(EINVAL); \
 -     }
 - 
 - #define WARN_IF(cond, ...) \
 -     if (cond) { \
 -         av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \
 -     }
 - 
 - #endif /* AVCODEC_AACENC_UTILS_H */
 
 
  |