You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1094 lines
34KB

  1. /*
  2. * copyright (c) 2006 Oded Shimon <ods15@ods15.dyndns.org>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file vorbis_enc.c
  22. * Native Vorbis encoder.
  23. * @author Oded Shimon <ods15@ods15.dyndns.org>
  24. */
  25. #include <float.h>
  26. #include "avcodec.h"
  27. #include "dsputil.h"
  28. #include "vorbis.h"
  29. #include "vorbis_enc_data.h"
  30. #undef NDEBUG
  31. #include <assert.h>
  32. typedef struct {
  33. int nentries;
  34. uint8_t * lens;
  35. uint32_t * codewords;
  36. int ndimentions;
  37. float min;
  38. float delta;
  39. int seq_p;
  40. int lookup;
  41. int * quantlist;
  42. float * dimentions;
  43. float * pow2;
  44. } codebook_t;
  45. typedef struct {
  46. int dim;
  47. int subclass;
  48. int masterbook;
  49. int * books;
  50. } floor_class_t;
  51. typedef struct {
  52. int partitions;
  53. int * partition_to_class;
  54. int nclasses;
  55. floor_class_t * classes;
  56. int multiplier;
  57. int rangebits;
  58. int values;
  59. floor1_entry_t * list;
  60. } floor_t;
  61. typedef struct {
  62. int type;
  63. int begin;
  64. int end;
  65. int partition_size;
  66. int classifications;
  67. int classbook;
  68. int8_t (*books)[8];
  69. float (*maxes)[2];
  70. } residue_t;
  71. typedef struct {
  72. int submaps;
  73. int * mux;
  74. int * floor;
  75. int * residue;
  76. int coupling_steps;
  77. int * magnitude;
  78. int * angle;
  79. } mapping_t;
  80. typedef struct {
  81. int blockflag;
  82. int mapping;
  83. } vorbis_mode_t;
  84. typedef struct {
  85. int channels;
  86. int sample_rate;
  87. int log2_blocksize[2];
  88. MDCTContext mdct[2];
  89. const float * win[2];
  90. int have_saved;
  91. float * saved;
  92. float * samples;
  93. float * floor; // also used for tmp values for mdct
  94. float * coeffs; // also used for residue after floor
  95. float quality;
  96. int ncodebooks;
  97. codebook_t * codebooks;
  98. int nfloors;
  99. floor_t * floors;
  100. int nresidues;
  101. residue_t * residues;
  102. int nmappings;
  103. mapping_t * mappings;
  104. int nmodes;
  105. vorbis_mode_t * modes;
  106. int64_t sample_count;
  107. } venc_context_t;
  108. typedef struct {
  109. int total;
  110. int total_pos;
  111. int pos;
  112. uint8_t * buf_ptr;
  113. } PutBitContext;
  114. static inline void init_put_bits(PutBitContext * pb, uint8_t * buf, int buffer_len) {
  115. pb->total = buffer_len * 8;
  116. pb->total_pos = 0;
  117. pb->pos = 0;
  118. pb->buf_ptr = buf;
  119. }
  120. static void put_bits(PutBitContext * pb, int bits, uint64_t val) {
  121. if ((pb->total_pos += bits) >= pb->total) return;
  122. if (!bits) return;
  123. if (pb->pos) {
  124. if (pb->pos > bits) {
  125. *pb->buf_ptr |= val << (8 - pb->pos);
  126. pb->pos -= bits;
  127. bits = 0;
  128. } else {
  129. *pb->buf_ptr++ |= (val << (8 - pb->pos)) & 0xFF;
  130. val >>= pb->pos;
  131. bits -= pb->pos;
  132. pb->pos = 0;
  133. }
  134. }
  135. for (; bits >= 8; bits -= 8) {
  136. *pb->buf_ptr++ = val & 0xFF;
  137. val >>= 8;
  138. }
  139. if (bits) {
  140. *pb->buf_ptr = val;
  141. pb->pos = 8 - bits;
  142. }
  143. }
  144. static inline void flush_put_bits(PutBitContext * pb) {
  145. }
  146. static inline int put_bits_count(PutBitContext * pb) {
  147. return pb->total_pos;
  148. }
  149. static inline void put_codeword(PutBitContext * pb, codebook_t * cb, int entry) {
  150. assert(entry >= 0);
  151. assert(entry < cb->nentries);
  152. assert(cb->lens[entry]);
  153. put_bits(pb, cb->lens[entry], cb->codewords[entry]);
  154. }
  155. static int cb_lookup_vals(int lookup, int dimentions, int entries) {
  156. if (lookup == 1) return ff_vorbis_nth_root(entries, dimentions);
  157. else if (lookup == 2) return dimentions * entries;
  158. return 0;
  159. }
  160. static void ready_codebook(codebook_t * cb) {
  161. int i;
  162. ff_vorbis_len2vlc(cb->lens, cb->codewords, cb->nentries);
  163. if (!cb->lookup)
  164. cb->pow2 = cb->dimentions = NULL;
  165. else {
  166. int vals = cb_lookup_vals(cb->lookup, cb->ndimentions, cb->nentries);
  167. cb->dimentions = av_malloc(sizeof(float) * cb->nentries * cb->ndimentions);
  168. cb->pow2 = av_mallocz(sizeof(float) * cb->nentries);
  169. for (i = 0; i < cb->nentries; i++) {
  170. float last = 0;
  171. int j;
  172. int div = 1;
  173. for (j = 0; j < cb->ndimentions; j++) {
  174. int off;
  175. if (cb->lookup == 1)
  176. off = (i / div) % vals; // lookup type 1
  177. else
  178. off = i * cb->ndimentions + j; // lookup type 2
  179. cb->dimentions[i * cb->ndimentions + j] = last + cb->min + cb->quantlist[off] * cb->delta;
  180. if (cb->seq_p)
  181. last = cb->dimentions[i * cb->ndimentions + j];
  182. cb->pow2[i] += cb->dimentions[i * cb->ndimentions + j]*cb->dimentions[i * cb->ndimentions + j];
  183. div *= vals;
  184. }
  185. cb->pow2[i] /= 2.;
  186. }
  187. }
  188. }
  189. static void ready_residue(residue_t * rc, venc_context_t * venc) {
  190. int i;
  191. assert(rc->type == 2);
  192. rc->maxes = av_mallocz(sizeof(float[2]) * rc->classifications);
  193. for (i = 0; i < rc->classifications; i++) {
  194. int j;
  195. codebook_t * cb;
  196. for (j = 0; j < 8; j++)
  197. if (rc->books[i][j] != -1) break;
  198. if (j == 8) continue; // zero
  199. cb = &venc->codebooks[rc->books[i][j]];
  200. assert(cb->ndimentions >= 2);
  201. assert(cb->lookup);
  202. for (j = 0; j < cb->nentries; j++) {
  203. float a;
  204. if (!cb->lens[j]) continue;
  205. a = fabs(cb->dimentions[j * cb->ndimentions]);
  206. if (a > rc->maxes[i][0])
  207. rc->maxes[i][0] = a;
  208. a = fabs(cb->dimentions[j * cb->ndimentions + 1]);
  209. if (a > rc->maxes[i][1])
  210. rc->maxes[i][1] = a;
  211. }
  212. }
  213. // small bias
  214. for (i = 0; i < rc->classifications; i++) {
  215. rc->maxes[i][0] += 0.8;
  216. rc->maxes[i][1] += 0.8;
  217. }
  218. }
  219. static void create_vorbis_context(venc_context_t * venc, AVCodecContext * avccontext) {
  220. floor_t * fc;
  221. residue_t * rc;
  222. mapping_t * mc;
  223. int i, book;
  224. venc->channels = avccontext->channels;
  225. venc->sample_rate = avccontext->sample_rate;
  226. venc->log2_blocksize[0] = venc->log2_blocksize[1] = 11;
  227. venc->ncodebooks = sizeof(cvectors)/sizeof(cvectors[0]);
  228. venc->codebooks = av_malloc(sizeof(codebook_t) * venc->ncodebooks);
  229. // codebook 0..14 - floor1 book, values 0..255
  230. // codebook 15 residue masterbook
  231. // codebook 16..29 residue
  232. for (book = 0; book < venc->ncodebooks; book++) {
  233. codebook_t * cb = &venc->codebooks[book];
  234. int vals;
  235. cb->ndimentions = cvectors[book].dim;
  236. cb->nentries = cvectors[book].real_len;
  237. cb->min = cvectors[book].min;
  238. cb->delta = cvectors[book].delta;
  239. cb->lookup = cvectors[book].lookup;
  240. cb->seq_p = 0;
  241. cb->lens = av_malloc(sizeof(uint8_t) * cb->nentries);
  242. cb->codewords = av_malloc(sizeof(uint32_t) * cb->nentries);
  243. memcpy(cb->lens, cvectors[book].clens, cvectors[book].len);
  244. memset(cb->lens + cvectors[book].len, 0, cb->nentries - cvectors[book].len);
  245. if (cb->lookup) {
  246. vals = cb_lookup_vals(cb->lookup, cb->ndimentions, cb->nentries);
  247. cb->quantlist = av_malloc(sizeof(int) * vals);
  248. for (i = 0; i < vals; i++)
  249. cb->quantlist[i] = cvectors[book].quant[i];
  250. } else {
  251. cb->quantlist = NULL;
  252. }
  253. ready_codebook(cb);
  254. }
  255. venc->nfloors = 1;
  256. venc->floors = av_malloc(sizeof(floor_t) * venc->nfloors);
  257. // just 1 floor
  258. fc = &venc->floors[0];
  259. fc->partitions = 8;
  260. fc->partition_to_class = av_malloc(sizeof(int) * fc->partitions);
  261. fc->nclasses = 0;
  262. for (i = 0; i < fc->partitions; i++) {
  263. static const int a[] = {0,1,2,2,3,3,4,4};
  264. fc->partition_to_class[i] = a[i];
  265. fc->nclasses = FFMAX(fc->nclasses, fc->partition_to_class[i]);
  266. }
  267. fc->nclasses++;
  268. fc->classes = av_malloc(sizeof(floor_class_t) * fc->nclasses);
  269. for (i = 0; i < fc->nclasses; i++) {
  270. floor_class_t * c = &fc->classes[i];
  271. int j, books;
  272. c->dim = floor_classes[i].dim;
  273. c->subclass = floor_classes[i].subclass;
  274. c->masterbook = floor_classes[i].masterbook;
  275. books = (1 << c->subclass);
  276. c->books = av_malloc(sizeof(int) * books);
  277. for (j = 0; j < books; j++)
  278. c->books[j] = floor_classes[i].nbooks[j];
  279. }
  280. fc->multiplier = 2;
  281. fc->rangebits = venc->log2_blocksize[0] - 1;
  282. fc->values = 2;
  283. for (i = 0; i < fc->partitions; i++)
  284. fc->values += fc->classes[fc->partition_to_class[i]].dim;
  285. fc->list = av_malloc(sizeof(floor1_entry_t) * fc->values);
  286. fc->list[0].x = 0;
  287. fc->list[1].x = 1 << fc->rangebits;
  288. for (i = 2; i < fc->values; i++) {
  289. static const int a[] = {
  290. 93, 23,372, 6, 46,186,750, 14, 33, 65,
  291. 130,260,556, 3, 10, 18, 28, 39, 55, 79,
  292. 111,158,220,312,464,650,850
  293. };
  294. fc->list[i].x = a[i - 2];
  295. }
  296. ff_vorbis_ready_floor1_list(fc->list, fc->values);
  297. venc->nresidues = 1;
  298. venc->residues = av_malloc(sizeof(residue_t) * venc->nresidues);
  299. // single residue
  300. rc = &venc->residues[0];
  301. rc->type = 2;
  302. rc->begin = 0;
  303. rc->end = 1600;
  304. rc->partition_size = 32;
  305. rc->classifications = 10;
  306. rc->classbook = 15;
  307. rc->books = av_malloc(sizeof(*rc->books) * rc->classifications);
  308. {
  309. static const int8_t a[10][8] = {
  310. { -1, -1, -1, -1, -1, -1, -1, -1, },
  311. { -1, -1, 16, -1, -1, -1, -1, -1, },
  312. { -1, -1, 17, -1, -1, -1, -1, -1, },
  313. { -1, -1, 18, -1, -1, -1, -1, -1, },
  314. { -1, -1, 19, -1, -1, -1, -1, -1, },
  315. { -1, -1, 20, -1, -1, -1, -1, -1, },
  316. { -1, -1, 21, -1, -1, -1, -1, -1, },
  317. { 22, 23, -1, -1, -1, -1, -1, -1, },
  318. { 24, 25, -1, -1, -1, -1, -1, -1, },
  319. { 26, 27, 28, -1, -1, -1, -1, -1, },
  320. };
  321. memcpy(rc->books, a, sizeof a);
  322. }
  323. ready_residue(rc, venc);
  324. venc->nmappings = 1;
  325. venc->mappings = av_malloc(sizeof(mapping_t) * venc->nmappings);
  326. // single mapping
  327. mc = &venc->mappings[0];
  328. mc->submaps = 1;
  329. mc->mux = av_malloc(sizeof(int) * venc->channels);
  330. for (i = 0; i < venc->channels; i++)
  331. mc->mux[i] = 0;
  332. mc->floor = av_malloc(sizeof(int) * mc->submaps);
  333. mc->residue = av_malloc(sizeof(int) * mc->submaps);
  334. for (i = 0; i < mc->submaps; i++) {
  335. mc->floor[i] = 0;
  336. mc->residue[i] = 0;
  337. }
  338. mc->coupling_steps = venc->channels == 2 ? 1 : 0;
  339. mc->magnitude = av_malloc(sizeof(int) * mc->coupling_steps);
  340. mc->angle = av_malloc(sizeof(int) * mc->coupling_steps);
  341. if (mc->coupling_steps) {
  342. mc->magnitude[0] = 0;
  343. mc->angle[0] = 1;
  344. }
  345. venc->nmodes = 1;
  346. venc->modes = av_malloc(sizeof(vorbis_mode_t) * venc->nmodes);
  347. // single mode
  348. venc->modes[0].blockflag = 0;
  349. venc->modes[0].mapping = 0;
  350. venc->have_saved = 0;
  351. venc->saved = av_malloc(sizeof(float) * venc->channels * (1 << venc->log2_blocksize[1]) / 2);
  352. venc->samples = av_malloc(sizeof(float) * venc->channels * (1 << venc->log2_blocksize[1]));
  353. venc->floor = av_malloc(sizeof(float) * venc->channels * (1 << venc->log2_blocksize[1]) / 2);
  354. venc->coeffs = av_malloc(sizeof(float) * venc->channels * (1 << venc->log2_blocksize[1]) / 2);
  355. venc->win[0] = ff_vorbis_vwin[venc->log2_blocksize[0] - 6];
  356. venc->win[1] = ff_vorbis_vwin[venc->log2_blocksize[1] - 6];
  357. ff_mdct_init(&venc->mdct[0], venc->log2_blocksize[0], 0);
  358. ff_mdct_init(&venc->mdct[1], venc->log2_blocksize[1], 0);
  359. }
  360. static void put_float(PutBitContext * pb, float f) {
  361. int exp, mant;
  362. uint32_t res = 0;
  363. mant = (int)ldexp(frexp(f, &exp), 20);
  364. exp += 788 - 20;
  365. if (mant < 0) { res |= (1 << 31); mant = -mant; }
  366. res |= mant | (exp << 21);
  367. put_bits(pb, 32, res);
  368. }
  369. static void put_codebook_header(PutBitContext * pb, codebook_t * cb) {
  370. int i;
  371. int ordered = 0;
  372. put_bits(pb, 24, 0x564342); //magic
  373. put_bits(pb, 16, cb->ndimentions);
  374. put_bits(pb, 24, cb->nentries);
  375. for (i = 1; i < cb->nentries; i++)
  376. if (cb->lens[i] < cb->lens[i-1]) break;
  377. if (i == cb->nentries)
  378. ordered = 1;
  379. put_bits(pb, 1, ordered);
  380. if (ordered) {
  381. int len = cb->lens[0];
  382. put_bits(pb, 5, len - 1);
  383. i = 0;
  384. while (i < cb->nentries) {
  385. int j;
  386. for (j = 0; j+i < cb->nentries; j++)
  387. if (cb->lens[j+i] != len) break;
  388. put_bits(pb, ilog(cb->nentries - i), j);
  389. i += j;
  390. len++;
  391. }
  392. } else {
  393. int sparse = 0;
  394. for (i = 0; i < cb->nentries; i++)
  395. if (!cb->lens[i]) break;
  396. if (i != cb->nentries)
  397. sparse = 1;
  398. put_bits(pb, 1, sparse);
  399. for (i = 0; i < cb->nentries; i++) {
  400. if (sparse) put_bits(pb, 1, !!cb->lens[i]);
  401. if (cb->lens[i]) put_bits(pb, 5, cb->lens[i] - 1);
  402. }
  403. }
  404. put_bits(pb, 4, cb->lookup);
  405. if (cb->lookup) {
  406. int tmp = cb_lookup_vals(cb->lookup, cb->ndimentions, cb->nentries);
  407. int bits = ilog(cb->quantlist[0]);
  408. for (i = 1; i < tmp; i++)
  409. bits = FFMAX(bits, ilog(cb->quantlist[i]));
  410. put_float(pb, cb->min);
  411. put_float(pb, cb->delta);
  412. put_bits(pb, 4, bits - 1);
  413. put_bits(pb, 1, cb->seq_p);
  414. for (i = 0; i < tmp; i++)
  415. put_bits(pb, bits, cb->quantlist[i]);
  416. }
  417. }
  418. static void put_floor_header(PutBitContext * pb, floor_t * fc) {
  419. int i;
  420. put_bits(pb, 16, 1); // type, only floor1 is supported
  421. put_bits(pb, 5, fc->partitions);
  422. for (i = 0; i < fc->partitions; i++)
  423. put_bits(pb, 4, fc->partition_to_class[i]);
  424. for (i = 0; i < fc->nclasses; i++) {
  425. int j, books;
  426. put_bits(pb, 3, fc->classes[i].dim - 1);
  427. put_bits(pb, 2, fc->classes[i].subclass);
  428. if (fc->classes[i].subclass)
  429. put_bits(pb, 8, fc->classes[i].masterbook);
  430. books = (1 << fc->classes[i].subclass);
  431. for (j = 0; j < books; j++)
  432. put_bits(pb, 8, fc->classes[i].books[j] + 1);
  433. }
  434. put_bits(pb, 2, fc->multiplier - 1);
  435. put_bits(pb, 4, fc->rangebits);
  436. for (i = 2; i < fc->values; i++)
  437. put_bits(pb, fc->rangebits, fc->list[i].x);
  438. }
  439. static void put_residue_header(PutBitContext * pb, residue_t * rc) {
  440. int i;
  441. put_bits(pb, 16, rc->type);
  442. put_bits(pb, 24, rc->begin);
  443. put_bits(pb, 24, rc->end);
  444. put_bits(pb, 24, rc->partition_size - 1);
  445. put_bits(pb, 6, rc->classifications - 1);
  446. put_bits(pb, 8, rc->classbook);
  447. for (i = 0; i < rc->classifications; i++) {
  448. int j, tmp = 0;
  449. for (j = 0; j < 8; j++)
  450. tmp |= (rc->books[i][j] != -1) << j;
  451. put_bits(pb, 3, tmp & 7);
  452. put_bits(pb, 1, tmp > 7);
  453. if (tmp > 7)
  454. put_bits(pb, 5, tmp >> 3);
  455. }
  456. for (i = 0; i < rc->classifications; i++) {
  457. int j;
  458. for (j = 0; j < 8; j++)
  459. if (rc->books[i][j] != -1)
  460. put_bits(pb, 8, rc->books[i][j]);
  461. }
  462. }
  463. static int put_main_header(venc_context_t * venc, uint8_t ** out) {
  464. int i;
  465. PutBitContext pb;
  466. uint8_t buffer[50000] = {0}, * p = buffer;
  467. int buffer_len = sizeof buffer;
  468. int len, hlens[3];
  469. // identification header
  470. init_put_bits(&pb, p, buffer_len);
  471. put_bits(&pb, 8, 1); //magic
  472. for (i = 0; "vorbis"[i]; i++)
  473. put_bits(&pb, 8, "vorbis"[i]);
  474. put_bits(&pb, 32, 0); // version
  475. put_bits(&pb, 8, venc->channels);
  476. put_bits(&pb, 32, venc->sample_rate);
  477. put_bits(&pb, 32, 0); // bitrate
  478. put_bits(&pb, 32, 0); // bitrate
  479. put_bits(&pb, 32, 0); // bitrate
  480. put_bits(&pb, 4, venc->log2_blocksize[0]);
  481. put_bits(&pb, 4, venc->log2_blocksize[1]);
  482. put_bits(&pb, 1, 1); // framing
  483. flush_put_bits(&pb);
  484. hlens[0] = (put_bits_count(&pb) + 7) / 8;
  485. buffer_len -= hlens[0];
  486. p += hlens[0];
  487. // comment header
  488. init_put_bits(&pb, p, buffer_len);
  489. put_bits(&pb, 8, 3); //magic
  490. for (i = 0; "vorbis"[i]; i++)
  491. put_bits(&pb, 8, "vorbis"[i]);
  492. put_bits(&pb, 32, 0); // vendor length TODO
  493. put_bits(&pb, 32, 0); // amount of comments
  494. put_bits(&pb, 1, 1); // framing
  495. flush_put_bits(&pb);
  496. hlens[1] = (put_bits_count(&pb) + 7) / 8;
  497. buffer_len -= hlens[1];
  498. p += hlens[1];
  499. // setup header
  500. init_put_bits(&pb, p, buffer_len);
  501. put_bits(&pb, 8, 5); //magic
  502. for (i = 0; "vorbis"[i]; i++)
  503. put_bits(&pb, 8, "vorbis"[i]);
  504. // codebooks
  505. put_bits(&pb, 8, venc->ncodebooks - 1);
  506. for (i = 0; i < venc->ncodebooks; i++)
  507. put_codebook_header(&pb, &venc->codebooks[i]);
  508. // time domain, reserved, zero
  509. put_bits(&pb, 6, 0);
  510. put_bits(&pb, 16, 0);
  511. // floors
  512. put_bits(&pb, 6, venc->nfloors - 1);
  513. for (i = 0; i < venc->nfloors; i++)
  514. put_floor_header(&pb, &venc->floors[i]);
  515. // residues
  516. put_bits(&pb, 6, venc->nresidues - 1);
  517. for (i = 0; i < venc->nresidues; i++)
  518. put_residue_header(&pb, &venc->residues[i]);
  519. // mappings
  520. put_bits(&pb, 6, venc->nmappings - 1);
  521. for (i = 0; i < venc->nmappings; i++) {
  522. mapping_t * mc = &venc->mappings[i];
  523. int j;
  524. put_bits(&pb, 16, 0); // mapping type
  525. put_bits(&pb, 1, mc->submaps > 1);
  526. if (mc->submaps > 1)
  527. put_bits(&pb, 4, mc->submaps - 1);
  528. put_bits(&pb, 1, !!mc->coupling_steps);
  529. if (mc->coupling_steps) {
  530. put_bits(&pb, 8, mc->coupling_steps - 1);
  531. for (j = 0; j < mc->coupling_steps; j++) {
  532. put_bits(&pb, ilog(venc->channels - 1), mc->magnitude[j]);
  533. put_bits(&pb, ilog(venc->channels - 1), mc->angle[j]);
  534. }
  535. }
  536. put_bits(&pb, 2, 0); // reserved
  537. if (mc->submaps > 1)
  538. for (j = 0; j < venc->channels; j++)
  539. put_bits(&pb, 4, mc->mux[j]);
  540. for (j = 0; j < mc->submaps; j++) {
  541. put_bits(&pb, 8, 0); // reserved time configuration
  542. put_bits(&pb, 8, mc->floor[j]);
  543. put_bits(&pb, 8, mc->residue[j]);
  544. }
  545. }
  546. // modes
  547. put_bits(&pb, 6, venc->nmodes - 1);
  548. for (i = 0; i < venc->nmodes; i++) {
  549. put_bits(&pb, 1, venc->modes[i].blockflag);
  550. put_bits(&pb, 16, 0); // reserved window type
  551. put_bits(&pb, 16, 0); // reserved transform type
  552. put_bits(&pb, 8, venc->modes[i].mapping);
  553. }
  554. put_bits(&pb, 1, 1); // framing
  555. flush_put_bits(&pb);
  556. hlens[2] = (put_bits_count(&pb) + 7) / 8;
  557. len = hlens[0] + hlens[1] + hlens[2];
  558. p = *out = av_mallocz(64 + len + len/255);
  559. *p++ = 2;
  560. p += av_xiphlacing(p, hlens[0]);
  561. p += av_xiphlacing(p, hlens[1]);
  562. buffer_len = 0;
  563. for (i = 0; i < 3; i++) {
  564. memcpy(p, buffer + buffer_len, hlens[i]);
  565. p += hlens[i];
  566. buffer_len += hlens[i];
  567. }
  568. return p - *out;
  569. }
  570. static float get_floor_average(floor_t * fc, float * coeffs, int i) {
  571. int begin = fc->list[fc->list[FFMAX(i-1, 0)].sort].x;
  572. int end = fc->list[fc->list[FFMIN(i+1, fc->values - 1)].sort].x;
  573. int j;
  574. float average = 0;
  575. for (j = begin; j < end; j++)
  576. average += fabs(coeffs[j]);
  577. return average / (end - begin);
  578. }
  579. static void floor_fit(venc_context_t * venc, floor_t * fc, float * coeffs, uint_fast16_t * posts, int samples) {
  580. int range = 255 / fc->multiplier + 1;
  581. int i;
  582. float tot_average = 0.;
  583. float averages[fc->values];
  584. for (i = 0; i < fc->values; i++){
  585. averages[i] = get_floor_average(fc, coeffs, i);
  586. tot_average += averages[i];
  587. }
  588. tot_average /= fc->values;
  589. tot_average /= venc->quality;
  590. for (i = 0; i < fc->values; i++) {
  591. int position = fc->list[fc->list[i].sort].x;
  592. float average = averages[i];
  593. int j;
  594. average *= pow(tot_average / average, 0.5) * pow(1.25, position/200.); // MAGIC!
  595. for (j = 0; j < range - 1; j++)
  596. if (ff_vorbis_floor1_inverse_db_table[j * fc->multiplier] > average) break;
  597. posts[fc->list[i].sort] = j;
  598. }
  599. }
  600. static int render_point(int x0, int y0, int x1, int y1, int x) {
  601. return y0 + (x - x0) * (y1 - y0) / (x1 - x0);
  602. }
  603. static void floor_encode(venc_context_t * venc, floor_t * fc, PutBitContext * pb, uint_fast16_t * posts, float * floor, int samples) {
  604. int range = 255 / fc->multiplier + 1;
  605. int coded[fc->values]; // first 2 values are unused
  606. int i, counter;
  607. put_bits(pb, 1, 1); // non zero
  608. put_bits(pb, ilog(range - 1), posts[0]);
  609. put_bits(pb, ilog(range - 1), posts[1]);
  610. coded[0] = coded[1] = 1;
  611. for (i = 2; i < fc->values; i++) {
  612. int predicted = render_point(fc->list[fc->list[i].low].x,
  613. posts[fc->list[i].low],
  614. fc->list[fc->list[i].high].x,
  615. posts[fc->list[i].high],
  616. fc->list[i].x);
  617. int highroom = range - predicted;
  618. int lowroom = predicted;
  619. int room = FFMIN(highroom, lowroom);
  620. if (predicted == posts[i]) {
  621. coded[i] = 0; // must be used later as flag!
  622. continue;
  623. } else {
  624. if (!coded[fc->list[i].low ]) coded[fc->list[i].low ] = -1;
  625. if (!coded[fc->list[i].high]) coded[fc->list[i].high] = -1;
  626. }
  627. if (posts[i] > predicted) {
  628. if (posts[i] - predicted > room)
  629. coded[i] = posts[i] - predicted + lowroom;
  630. else
  631. coded[i] = (posts[i] - predicted) << 1;
  632. } else {
  633. if (predicted - posts[i] > room)
  634. coded[i] = predicted - posts[i] + highroom - 1;
  635. else
  636. coded[i] = ((predicted - posts[i]) << 1) - 1;
  637. }
  638. }
  639. counter = 2;
  640. for (i = 0; i < fc->partitions; i++) {
  641. floor_class_t * c = &fc->classes[fc->partition_to_class[i]];
  642. int k, cval = 0, csub = 1<<c->subclass;
  643. if (c->subclass) {
  644. codebook_t * book = &venc->codebooks[c->masterbook];
  645. int cshift = 0;
  646. for (k = 0; k < c->dim; k++) {
  647. int l;
  648. for (l = 0; l < csub; l++) {
  649. int maxval = 1;
  650. if (c->books[l] != -1)
  651. maxval = venc->codebooks[c->books[l]].nentries;
  652. // coded could be -1, but this still works, cause that is 0
  653. if (coded[counter + k] < maxval) break;
  654. }
  655. assert(l != csub);
  656. cval |= l << cshift;
  657. cshift += c->subclass;
  658. }
  659. put_codeword(pb, book, cval);
  660. }
  661. for (k = 0; k < c->dim; k++) {
  662. int book = c->books[cval & (csub-1)];
  663. int entry = coded[counter++];
  664. cval >>= c->subclass;
  665. if (book == -1) continue;
  666. if (entry == -1) entry = 0;
  667. put_codeword(pb, &venc->codebooks[book], entry);
  668. }
  669. }
  670. ff_vorbis_floor1_render_list(fc->list, fc->values, posts, coded, fc->multiplier, floor, samples);
  671. }
  672. static float * put_vector(codebook_t * book, PutBitContext * pb, float * num) {
  673. int i, entry = -1;
  674. float distance = FLT_MAX;
  675. assert(book->dimentions);
  676. for (i = 0; i < book->nentries; i++) {
  677. float * vec = book->dimentions + i * book->ndimentions, d = book->pow2[i];
  678. int j;
  679. if (!book->lens[i]) continue;
  680. for (j = 0; j < book->ndimentions; j++)
  681. d -= vec[j] * num[j];
  682. if (distance > d) {
  683. entry = i;
  684. distance = d;
  685. }
  686. }
  687. put_codeword(pb, book, entry);
  688. return &book->dimentions[entry * book->ndimentions];
  689. }
  690. static void residue_encode(venc_context_t * venc, residue_t * rc, PutBitContext * pb, float * coeffs, int samples, int real_ch) {
  691. int pass, i, j, p, k;
  692. int psize = rc->partition_size;
  693. int partitions = (rc->end - rc->begin) / psize;
  694. int channels = (rc->type == 2) ? 1 : real_ch;
  695. int classes[channels][partitions];
  696. int classwords = venc->codebooks[rc->classbook].ndimentions;
  697. assert(rc->type == 2);
  698. assert(real_ch == 2);
  699. for (p = 0; p < partitions; p++) {
  700. float max1 = 0., max2 = 0.;
  701. int s = rc->begin + p * psize;
  702. for (k = s; k < s + psize; k += 2) {
  703. max1 = FFMAX(max1, fabs(coeffs[ k / real_ch]));
  704. max2 = FFMAX(max2, fabs(coeffs[samples + k / real_ch]));
  705. }
  706. for (i = 0; i < rc->classifications - 1; i++) {
  707. if (max1 < rc->maxes[i][0] && max2 < rc->maxes[i][1]) break;
  708. }
  709. classes[0][p] = i;
  710. }
  711. for (pass = 0; pass < 8; pass++) {
  712. p = 0;
  713. while (p < partitions) {
  714. if (pass == 0)
  715. for (j = 0; j < channels; j++) {
  716. codebook_t * book = &venc->codebooks[rc->classbook];
  717. int entry = 0;
  718. for (i = 0; i < classwords; i++) {
  719. entry *= rc->classifications;
  720. entry += classes[j][p + i];
  721. }
  722. put_codeword(pb, book, entry);
  723. }
  724. for (i = 0; i < classwords && p < partitions; i++, p++) {
  725. for (j = 0; j < channels; j++) {
  726. int nbook = rc->books[classes[j][p]][pass];
  727. codebook_t * book = &venc->codebooks[nbook];
  728. float * buf = coeffs + samples*j + rc->begin + p*psize;
  729. if (nbook == -1) continue;
  730. assert(rc->type == 0 || rc->type == 2);
  731. assert(!(psize % book->ndimentions));
  732. if (rc->type == 0) {
  733. for (k = 0; k < psize; k += book->ndimentions) {
  734. float * a = put_vector(book, pb, &buf[k]);
  735. int l;
  736. for (l = 0; l < book->ndimentions; l++)
  737. buf[k + l] -= a[l];
  738. }
  739. } else {
  740. int s = rc->begin + p * psize, a1, b1;
  741. a1 = (s % real_ch) * samples;
  742. b1 = s / real_ch;
  743. s = real_ch * samples;
  744. for (k = 0; k < psize; k += book->ndimentions) {
  745. int dim, a2 = a1, b2 = b1;
  746. float vec[book->ndimentions], * pv = vec;
  747. for (dim = book->ndimentions; dim--; ) {
  748. *pv++ = coeffs[a2 + b2];
  749. if ((a2 += samples) == s) {
  750. a2=0;
  751. b2++;
  752. }
  753. }
  754. pv = put_vector(book, pb, vec);
  755. for (dim = book->ndimentions; dim--; ) {
  756. coeffs[a1 + b1] -= *pv++;
  757. if ((a1 += samples) == s) {
  758. a1=0;
  759. b1++;
  760. }
  761. }
  762. }
  763. }
  764. }
  765. }
  766. }
  767. }
  768. }
  769. static int apply_window_and_mdct(venc_context_t * venc, signed short * audio, int samples) {
  770. int i, j, channel;
  771. const float * win = venc->win[0];
  772. int window_len = 1 << (venc->log2_blocksize[0] - 1);
  773. float n = (float)(1 << venc->log2_blocksize[0]) / 4.;
  774. // FIXME use dsp
  775. if (!venc->have_saved && !samples) return 0;
  776. if (venc->have_saved) {
  777. for (channel = 0; channel < venc->channels; channel++) {
  778. memcpy(venc->samples + channel*window_len*2, venc->saved + channel*window_len, sizeof(float)*window_len);
  779. }
  780. } else {
  781. for (channel = 0; channel < venc->channels; channel++) {
  782. memset(venc->samples + channel*window_len*2, 0, sizeof(float)*window_len);
  783. }
  784. }
  785. if (samples) {
  786. for (channel = 0; channel < venc->channels; channel++) {
  787. float * offset = venc->samples + channel*window_len*2 + window_len;
  788. j = channel;
  789. for (i = 0; i < samples; i++, j += venc->channels)
  790. offset[i] = -audio[j] / 32768. / n * win[window_len - i - 1]; //FIXME find out why the sign has to be fliped
  791. }
  792. } else {
  793. for (channel = 0; channel < venc->channels; channel++) {
  794. memset(venc->samples + channel*window_len*2 + window_len, 0, sizeof(float)*window_len);
  795. }
  796. }
  797. for (channel = 0; channel < venc->channels; channel++) {
  798. ff_mdct_calc(&venc->mdct[0], venc->coeffs + channel*window_len, venc->samples + channel*window_len*2);
  799. }
  800. if (samples) {
  801. for (channel = 0; channel < venc->channels; channel++) {
  802. float * offset = venc->saved + channel*window_len;
  803. j = channel;
  804. for (i = 0; i < samples; i++, j += venc->channels)
  805. offset[i] = -audio[j] / 32768. / n * win[i]; //FIXME find out why the sign has to be fliped
  806. }
  807. venc->have_saved = 1;
  808. } else {
  809. venc->have_saved = 0;
  810. }
  811. return 1;
  812. }
  813. static av_cold int vorbis_encode_init(AVCodecContext * avccontext)
  814. {
  815. venc_context_t * venc = avccontext->priv_data;
  816. if (avccontext->channels != 2) {
  817. av_log(avccontext, AV_LOG_ERROR, "Current FFmpeg Vorbis encoder only supports 2 channels.\n");
  818. return -1;
  819. }
  820. create_vorbis_context(venc, avccontext);
  821. if (avccontext->flags & CODEC_FLAG_QSCALE)
  822. venc->quality = avccontext->global_quality / (float)FF_QP2LAMBDA / 10.;
  823. else
  824. venc->quality = 1.;
  825. venc->quality *= venc->quality;
  826. avccontext->extradata_size = put_main_header(venc, (uint8_t**)&avccontext->extradata);
  827. avccontext->frame_size = 1 << (venc->log2_blocksize[0] - 1);
  828. avccontext->coded_frame = avcodec_alloc_frame();
  829. avccontext->coded_frame->key_frame = 1;
  830. return 0;
  831. }
  832. static int vorbis_encode_frame(AVCodecContext * avccontext, unsigned char * packets, int buf_size, void *data)
  833. {
  834. venc_context_t * venc = avccontext->priv_data;
  835. signed short * audio = data;
  836. int samples = data ? avccontext->frame_size : 0;
  837. vorbis_mode_t * mode;
  838. mapping_t * mapping;
  839. PutBitContext pb;
  840. int i;
  841. if (!apply_window_and_mdct(venc, audio, samples)) return 0;
  842. samples = 1 << (venc->log2_blocksize[0] - 1);
  843. init_put_bits(&pb, packets, buf_size);
  844. put_bits(&pb, 1, 0); // magic bit
  845. put_bits(&pb, ilog(venc->nmodes - 1), 0); // 0 bits, the mode
  846. mode = &venc->modes[0];
  847. mapping = &venc->mappings[mode->mapping];
  848. if (mode->blockflag) {
  849. put_bits(&pb, 1, 0);
  850. put_bits(&pb, 1, 0);
  851. }
  852. for (i = 0; i < venc->channels; i++) {
  853. floor_t * fc = &venc->floors[mapping->floor[mapping->mux[i]]];
  854. uint_fast16_t posts[fc->values];
  855. floor_fit(venc, fc, &venc->coeffs[i * samples], posts, samples);
  856. floor_encode(venc, fc, &pb, posts, &venc->floor[i * samples], samples);
  857. }
  858. for (i = 0; i < venc->channels * samples; i++) {
  859. venc->coeffs[i] /= venc->floor[i];
  860. }
  861. for (i = 0; i < mapping->coupling_steps; i++) {
  862. float * mag = venc->coeffs + mapping->magnitude[i] * samples;
  863. float * ang = venc->coeffs + mapping->angle[i] * samples;
  864. int j;
  865. for (j = 0; j < samples; j++) {
  866. float a = ang[j];
  867. ang[j] -= mag[j];
  868. if (mag[j] > 0) ang[j] = -ang[j];
  869. if (ang[j] < 0) mag[j] = a;
  870. }
  871. }
  872. residue_encode(venc, &venc->residues[mapping->residue[mapping->mux[0]]], &pb, venc->coeffs, samples, venc->channels);
  873. avccontext->coded_frame->pts = venc->sample_count;
  874. venc->sample_count += avccontext->frame_size;
  875. flush_put_bits(&pb);
  876. return (put_bits_count(&pb) + 7) / 8;
  877. }
  878. static av_cold int vorbis_encode_close(AVCodecContext * avccontext)
  879. {
  880. venc_context_t * venc = avccontext->priv_data;
  881. int i;
  882. if (venc->codebooks)
  883. for (i = 0; i < venc->ncodebooks; i++) {
  884. av_freep(&venc->codebooks[i].lens);
  885. av_freep(&venc->codebooks[i].codewords);
  886. av_freep(&venc->codebooks[i].quantlist);
  887. av_freep(&venc->codebooks[i].dimentions);
  888. av_freep(&venc->codebooks[i].pow2);
  889. }
  890. av_freep(&venc->codebooks);
  891. if (venc->floors)
  892. for (i = 0; i < venc->nfloors; i++) {
  893. int j;
  894. if (venc->floors[i].classes)
  895. for (j = 0; j < venc->floors[i].nclasses; j++)
  896. av_freep(&venc->floors[i].classes[j].books);
  897. av_freep(&venc->floors[i].classes);
  898. av_freep(&venc->floors[i].partition_to_class);
  899. av_freep(&venc->floors[i].list);
  900. }
  901. av_freep(&venc->floors);
  902. if (venc->residues)
  903. for (i = 0; i < venc->nresidues; i++) {
  904. av_freep(&venc->residues[i].books);
  905. av_freep(&venc->residues[i].maxes);
  906. }
  907. av_freep(&venc->residues);
  908. if (venc->mappings)
  909. for (i = 0; i < venc->nmappings; i++) {
  910. av_freep(&venc->mappings[i].mux);
  911. av_freep(&venc->mappings[i].floor);
  912. av_freep(&venc->mappings[i].residue);
  913. av_freep(&venc->mappings[i].magnitude);
  914. av_freep(&venc->mappings[i].angle);
  915. }
  916. av_freep(&venc->mappings);
  917. av_freep(&venc->modes);
  918. av_freep(&venc->saved);
  919. av_freep(&venc->samples);
  920. av_freep(&venc->floor);
  921. av_freep(&venc->coeffs);
  922. ff_mdct_end(&venc->mdct[0]);
  923. ff_mdct_end(&venc->mdct[1]);
  924. av_freep(&avccontext->coded_frame);
  925. av_freep(&avccontext->extradata);
  926. return 0 ;
  927. }
  928. AVCodec vorbis_encoder = {
  929. "vorbis",
  930. CODEC_TYPE_AUDIO,
  931. CODEC_ID_VORBIS,
  932. sizeof(venc_context_t),
  933. vorbis_encode_init,
  934. vorbis_encode_frame,
  935. vorbis_encode_close,
  936. .capabilities= CODEC_CAP_DELAY,
  937. .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  938. .long_name = NULL_IF_CONFIG_SMALL("Vorbis"),
  939. };