You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1097 lines
39KB

  1. /*
  2. * Copyright (c) 2010 Stefano Sabatini
  3. * Copyright (c) 2010 Baptiste Coudurier
  4. * Copyright (c) 2007 Bobby Bingham
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * overlay one video on top of another
  25. */
  26. #include "avfilter.h"
  27. #include "formats.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/eval.h"
  30. #include "libavutil/avstring.h"
  31. #include "libavutil/pixdesc.h"
  32. #include "libavutil/imgutils.h"
  33. #include "libavutil/mathematics.h"
  34. #include "libavutil/opt.h"
  35. #include "libavutil/timestamp.h"
  36. #include "internal.h"
  37. #include "drawutils.h"
  38. #include "framesync.h"
  39. #include "video.h"
  40. typedef struct ThreadData {
  41. AVFrame *dst, *src;
  42. } ThreadData;
  43. static const char *const var_names[] = {
  44. "main_w", "W", ///< width of the main video
  45. "main_h", "H", ///< height of the main video
  46. "overlay_w", "w", ///< width of the overlay video
  47. "overlay_h", "h", ///< height of the overlay video
  48. "hsub",
  49. "vsub",
  50. "x",
  51. "y",
  52. "n", ///< number of frame
  53. "pos", ///< position in the file
  54. "t", ///< timestamp expressed in seconds
  55. NULL
  56. };
  57. enum var_name {
  58. VAR_MAIN_W, VAR_MW,
  59. VAR_MAIN_H, VAR_MH,
  60. VAR_OVERLAY_W, VAR_OW,
  61. VAR_OVERLAY_H, VAR_OH,
  62. VAR_HSUB,
  63. VAR_VSUB,
  64. VAR_X,
  65. VAR_Y,
  66. VAR_N,
  67. VAR_POS,
  68. VAR_T,
  69. VAR_VARS_NB
  70. };
  71. #define MAIN 0
  72. #define OVERLAY 1
  73. #define R 0
  74. #define G 1
  75. #define B 2
  76. #define A 3
  77. #define Y 0
  78. #define U 1
  79. #define V 2
  80. enum EvalMode {
  81. EVAL_MODE_INIT,
  82. EVAL_MODE_FRAME,
  83. EVAL_MODE_NB
  84. };
  85. enum OverlayFormat {
  86. OVERLAY_FORMAT_YUV420,
  87. OVERLAY_FORMAT_YUV422,
  88. OVERLAY_FORMAT_YUV444,
  89. OVERLAY_FORMAT_RGB,
  90. OVERLAY_FORMAT_GBRP,
  91. OVERLAY_FORMAT_AUTO,
  92. OVERLAY_FORMAT_NB
  93. };
  94. typedef struct OverlayContext {
  95. const AVClass *class;
  96. int x, y; ///< position of overlaid picture
  97. uint8_t main_is_packed_rgb;
  98. uint8_t main_rgba_map[4];
  99. uint8_t main_has_alpha;
  100. uint8_t overlay_is_packed_rgb;
  101. uint8_t overlay_rgba_map[4];
  102. uint8_t overlay_has_alpha;
  103. int format; ///< OverlayFormat
  104. int alpha_format;
  105. int eval_mode; ///< EvalMode
  106. FFFrameSync fs;
  107. int main_pix_step[4]; ///< steps per pixel for each plane of the main output
  108. int overlay_pix_step[4]; ///< steps per pixel for each plane of the overlay
  109. int hsub, vsub; ///< chroma subsampling values
  110. const AVPixFmtDescriptor *main_desc; ///< format descriptor for main input
  111. double var_values[VAR_VARS_NB];
  112. char *x_expr, *y_expr;
  113. AVExpr *x_pexpr, *y_pexpr;
  114. int (*blend_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
  115. } OverlayContext;
  116. static av_cold void uninit(AVFilterContext *ctx)
  117. {
  118. OverlayContext *s = ctx->priv;
  119. ff_framesync_uninit(&s->fs);
  120. av_expr_free(s->x_pexpr); s->x_pexpr = NULL;
  121. av_expr_free(s->y_pexpr); s->y_pexpr = NULL;
  122. }
  123. static inline int normalize_xy(double d, int chroma_sub)
  124. {
  125. if (isnan(d))
  126. return INT_MAX;
  127. return (int)d & ~((1 << chroma_sub) - 1);
  128. }
  129. static void eval_expr(AVFilterContext *ctx)
  130. {
  131. OverlayContext *s = ctx->priv;
  132. s->var_values[VAR_X] = av_expr_eval(s->x_pexpr, s->var_values, NULL);
  133. s->var_values[VAR_Y] = av_expr_eval(s->y_pexpr, s->var_values, NULL);
  134. /* It is necessary if x is expressed from y */
  135. s->var_values[VAR_X] = av_expr_eval(s->x_pexpr, s->var_values, NULL);
  136. s->x = normalize_xy(s->var_values[VAR_X], s->hsub);
  137. s->y = normalize_xy(s->var_values[VAR_Y], s->vsub);
  138. }
  139. static int set_expr(AVExpr **pexpr, const char *expr, const char *option, void *log_ctx)
  140. {
  141. int ret;
  142. AVExpr *old = NULL;
  143. if (*pexpr)
  144. old = *pexpr;
  145. ret = av_expr_parse(pexpr, expr, var_names,
  146. NULL, NULL, NULL, NULL, 0, log_ctx);
  147. if (ret < 0) {
  148. av_log(log_ctx, AV_LOG_ERROR,
  149. "Error when evaluating the expression '%s' for %s\n",
  150. expr, option);
  151. *pexpr = old;
  152. return ret;
  153. }
  154. av_expr_free(old);
  155. return 0;
  156. }
  157. static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
  158. char *res, int res_len, int flags)
  159. {
  160. OverlayContext *s = ctx->priv;
  161. int ret;
  162. if (!strcmp(cmd, "x"))
  163. ret = set_expr(&s->x_pexpr, args, cmd, ctx);
  164. else if (!strcmp(cmd, "y"))
  165. ret = set_expr(&s->y_pexpr, args, cmd, ctx);
  166. else
  167. ret = AVERROR(ENOSYS);
  168. if (ret < 0)
  169. return ret;
  170. if (s->eval_mode == EVAL_MODE_INIT) {
  171. eval_expr(ctx);
  172. av_log(ctx, AV_LOG_VERBOSE, "x:%f xi:%d y:%f yi:%d\n",
  173. s->var_values[VAR_X], s->x,
  174. s->var_values[VAR_Y], s->y);
  175. }
  176. return ret;
  177. }
  178. static const enum AVPixelFormat alpha_pix_fmts[] = {
  179. AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
  180. AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_RGBA,
  181. AV_PIX_FMT_BGRA, AV_PIX_FMT_GBRAP, AV_PIX_FMT_NONE
  182. };
  183. static int query_formats(AVFilterContext *ctx)
  184. {
  185. OverlayContext *s = ctx->priv;
  186. /* overlay formats contains alpha, for avoiding conversion with alpha information loss */
  187. static const enum AVPixelFormat main_pix_fmts_yuv420[] = {
  188. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVA420P,
  189. AV_PIX_FMT_NV12, AV_PIX_FMT_NV21,
  190. AV_PIX_FMT_NONE
  191. };
  192. static const enum AVPixelFormat overlay_pix_fmts_yuv420[] = {
  193. AV_PIX_FMT_YUVA420P, AV_PIX_FMT_NONE
  194. };
  195. static const enum AVPixelFormat main_pix_fmts_yuv422[] = {
  196. AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_NONE
  197. };
  198. static const enum AVPixelFormat overlay_pix_fmts_yuv422[] = {
  199. AV_PIX_FMT_YUVA422P, AV_PIX_FMT_NONE
  200. };
  201. static const enum AVPixelFormat main_pix_fmts_yuv444[] = {
  202. AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE
  203. };
  204. static const enum AVPixelFormat overlay_pix_fmts_yuv444[] = {
  205. AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE
  206. };
  207. static const enum AVPixelFormat main_pix_fmts_gbrp[] = {
  208. AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_NONE
  209. };
  210. static const enum AVPixelFormat overlay_pix_fmts_gbrp[] = {
  211. AV_PIX_FMT_GBRAP, AV_PIX_FMT_NONE
  212. };
  213. static const enum AVPixelFormat main_pix_fmts_rgb[] = {
  214. AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA,
  215. AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA,
  216. AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
  217. AV_PIX_FMT_NONE
  218. };
  219. static const enum AVPixelFormat overlay_pix_fmts_rgb[] = {
  220. AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA,
  221. AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA,
  222. AV_PIX_FMT_NONE
  223. };
  224. AVFilterFormats *main_formats = NULL;
  225. AVFilterFormats *overlay_formats = NULL;
  226. int ret;
  227. switch (s->format) {
  228. case OVERLAY_FORMAT_YUV420:
  229. if (!(main_formats = ff_make_format_list(main_pix_fmts_yuv420)) ||
  230. !(overlay_formats = ff_make_format_list(overlay_pix_fmts_yuv420))) {
  231. ret = AVERROR(ENOMEM);
  232. goto fail;
  233. }
  234. break;
  235. case OVERLAY_FORMAT_YUV422:
  236. if (!(main_formats = ff_make_format_list(main_pix_fmts_yuv422)) ||
  237. !(overlay_formats = ff_make_format_list(overlay_pix_fmts_yuv422))) {
  238. ret = AVERROR(ENOMEM);
  239. goto fail;
  240. }
  241. break;
  242. case OVERLAY_FORMAT_YUV444:
  243. if (!(main_formats = ff_make_format_list(main_pix_fmts_yuv444)) ||
  244. !(overlay_formats = ff_make_format_list(overlay_pix_fmts_yuv444))) {
  245. ret = AVERROR(ENOMEM);
  246. goto fail;
  247. }
  248. break;
  249. case OVERLAY_FORMAT_RGB:
  250. if (!(main_formats = ff_make_format_list(main_pix_fmts_rgb)) ||
  251. !(overlay_formats = ff_make_format_list(overlay_pix_fmts_rgb))) {
  252. ret = AVERROR(ENOMEM);
  253. goto fail;
  254. }
  255. break;
  256. case OVERLAY_FORMAT_GBRP:
  257. if (!(main_formats = ff_make_format_list(main_pix_fmts_gbrp)) ||
  258. !(overlay_formats = ff_make_format_list(overlay_pix_fmts_gbrp))) {
  259. ret = AVERROR(ENOMEM);
  260. goto fail;
  261. }
  262. break;
  263. case OVERLAY_FORMAT_AUTO:
  264. if (!(main_formats = ff_make_format_list(alpha_pix_fmts))) {
  265. ret = AVERROR(ENOMEM);
  266. goto fail;
  267. }
  268. break;
  269. default:
  270. av_assert0(0);
  271. }
  272. if (s->format == OVERLAY_FORMAT_AUTO) {
  273. ret = ff_set_common_formats(ctx, main_formats);
  274. if (ret < 0)
  275. goto fail;
  276. } else {
  277. if ((ret = ff_formats_ref(main_formats , &ctx->inputs[MAIN]->out_formats )) < 0 ||
  278. (ret = ff_formats_ref(overlay_formats, &ctx->inputs[OVERLAY]->out_formats)) < 0 ||
  279. (ret = ff_formats_ref(main_formats , &ctx->outputs[MAIN]->in_formats )) < 0)
  280. goto fail;
  281. }
  282. return 0;
  283. fail:
  284. if (main_formats)
  285. av_freep(&main_formats->formats);
  286. av_freep(&main_formats);
  287. if (overlay_formats)
  288. av_freep(&overlay_formats->formats);
  289. av_freep(&overlay_formats);
  290. return ret;
  291. }
  292. static int config_input_overlay(AVFilterLink *inlink)
  293. {
  294. AVFilterContext *ctx = inlink->dst;
  295. OverlayContext *s = inlink->dst->priv;
  296. int ret;
  297. const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format);
  298. av_image_fill_max_pixsteps(s->overlay_pix_step, NULL, pix_desc);
  299. /* Finish the configuration by evaluating the expressions
  300. now when both inputs are configured. */
  301. s->var_values[VAR_MAIN_W ] = s->var_values[VAR_MW] = ctx->inputs[MAIN ]->w;
  302. s->var_values[VAR_MAIN_H ] = s->var_values[VAR_MH] = ctx->inputs[MAIN ]->h;
  303. s->var_values[VAR_OVERLAY_W] = s->var_values[VAR_OW] = ctx->inputs[OVERLAY]->w;
  304. s->var_values[VAR_OVERLAY_H] = s->var_values[VAR_OH] = ctx->inputs[OVERLAY]->h;
  305. s->var_values[VAR_HSUB] = 1<<pix_desc->log2_chroma_w;
  306. s->var_values[VAR_VSUB] = 1<<pix_desc->log2_chroma_h;
  307. s->var_values[VAR_X] = NAN;
  308. s->var_values[VAR_Y] = NAN;
  309. s->var_values[VAR_N] = 0;
  310. s->var_values[VAR_T] = NAN;
  311. s->var_values[VAR_POS] = NAN;
  312. if ((ret = set_expr(&s->x_pexpr, s->x_expr, "x", ctx)) < 0 ||
  313. (ret = set_expr(&s->y_pexpr, s->y_expr, "y", ctx)) < 0)
  314. return ret;
  315. s->overlay_is_packed_rgb =
  316. ff_fill_rgba_map(s->overlay_rgba_map, inlink->format) >= 0;
  317. s->overlay_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts);
  318. if (s->eval_mode == EVAL_MODE_INIT) {
  319. eval_expr(ctx);
  320. av_log(ctx, AV_LOG_VERBOSE, "x:%f xi:%d y:%f yi:%d\n",
  321. s->var_values[VAR_X], s->x,
  322. s->var_values[VAR_Y], s->y);
  323. }
  324. av_log(ctx, AV_LOG_VERBOSE,
  325. "main w:%d h:%d fmt:%s overlay w:%d h:%d fmt:%s\n",
  326. ctx->inputs[MAIN]->w, ctx->inputs[MAIN]->h,
  327. av_get_pix_fmt_name(ctx->inputs[MAIN]->format),
  328. ctx->inputs[OVERLAY]->w, ctx->inputs[OVERLAY]->h,
  329. av_get_pix_fmt_name(ctx->inputs[OVERLAY]->format));
  330. return 0;
  331. }
  332. static int config_output(AVFilterLink *outlink)
  333. {
  334. AVFilterContext *ctx = outlink->src;
  335. OverlayContext *s = ctx->priv;
  336. int ret;
  337. if ((ret = ff_framesync_init_dualinput(&s->fs, ctx)) < 0)
  338. return ret;
  339. outlink->w = ctx->inputs[MAIN]->w;
  340. outlink->h = ctx->inputs[MAIN]->h;
  341. outlink->time_base = ctx->inputs[MAIN]->time_base;
  342. return ff_framesync_configure(&s->fs);
  343. }
  344. // divide by 255 and round to nearest
  345. // apply a fast variant: (X+127)/255 = ((X+127)*257+257)>>16 = ((X+128)*257)>>16
  346. #define FAST_DIV255(x) ((((x) + 128) * 257) >> 16)
  347. // calculate the unpremultiplied alpha, applying the general equation:
  348. // alpha = alpha_overlay / ( (alpha_main + alpha_overlay) - (alpha_main * alpha_overlay) )
  349. // (((x) << 16) - ((x) << 9) + (x)) is a faster version of: 255 * 255 * x
  350. // ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x)) is a faster version of: 255 * (x + y)
  351. #define UNPREMULTIPLY_ALPHA(x, y) ((((x) << 16) - ((x) << 9) + (x)) / ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x)))
  352. /**
  353. * Blend image in src to destination buffer dst at position (x, y).
  354. */
  355. static av_always_inline void blend_slice_packed_rgb(AVFilterContext *ctx,
  356. AVFrame *dst, const AVFrame *src,
  357. int main_has_alpha, int x, int y,
  358. int is_straight, int jobnr, int nb_jobs)
  359. {
  360. OverlayContext *s = ctx->priv;
  361. int i, imax, j, jmax;
  362. const int src_w = src->width;
  363. const int src_h = src->height;
  364. const int dst_w = dst->width;
  365. const int dst_h = dst->height;
  366. uint8_t alpha; ///< the amount of overlay to blend on to main
  367. const int dr = s->main_rgba_map[R];
  368. const int dg = s->main_rgba_map[G];
  369. const int db = s->main_rgba_map[B];
  370. const int da = s->main_rgba_map[A];
  371. const int dstep = s->main_pix_step[0];
  372. const int sr = s->overlay_rgba_map[R];
  373. const int sg = s->overlay_rgba_map[G];
  374. const int sb = s->overlay_rgba_map[B];
  375. const int sa = s->overlay_rgba_map[A];
  376. const int sstep = s->overlay_pix_step[0];
  377. int slice_start, slice_end;
  378. uint8_t *S, *sp, *d, *dp;
  379. i = FFMAX(-y, 0);
  380. imax = FFMIN(-y + dst_h, src_h);
  381. slice_start = (imax * jobnr) / nb_jobs;
  382. slice_end = (imax * (jobnr+1)) / nb_jobs;
  383. sp = src->data[0] + (i + slice_start) * src->linesize[0];
  384. dp = dst->data[0] + (y + i + slice_start) * dst->linesize[0];
  385. for (i = i + slice_start; i < slice_end; i++) {
  386. j = FFMAX(-x, 0);
  387. S = sp + j * sstep;
  388. d = dp + (x+j) * dstep;
  389. for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) {
  390. alpha = S[sa];
  391. // if the main channel has an alpha channel, alpha has to be calculated
  392. // to create an un-premultiplied (straight) alpha value
  393. if (main_has_alpha && alpha != 0 && alpha != 255) {
  394. uint8_t alpha_d = d[da];
  395. alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
  396. }
  397. switch (alpha) {
  398. case 0:
  399. break;
  400. case 255:
  401. d[dr] = S[sr];
  402. d[dg] = S[sg];
  403. d[db] = S[sb];
  404. break;
  405. default:
  406. // main_value = main_value * (1 - alpha) + overlay_value * alpha
  407. // since alpha is in the range 0-255, the result must divided by 255
  408. d[dr] = is_straight ? FAST_DIV255(d[dr] * (255 - alpha) + S[sr] * alpha) :
  409. FFMIN(FAST_DIV255(d[dr] * (255 - alpha)) + S[sr], 255);
  410. d[dg] = is_straight ? FAST_DIV255(d[dg] * (255 - alpha) + S[sg] * alpha) :
  411. FFMIN(FAST_DIV255(d[dg] * (255 - alpha)) + S[sg], 255);
  412. d[db] = is_straight ? FAST_DIV255(d[db] * (255 - alpha) + S[sb] * alpha) :
  413. FFMIN(FAST_DIV255(d[db] * (255 - alpha)) + S[sb], 255);
  414. }
  415. if (main_has_alpha) {
  416. switch (alpha) {
  417. case 0:
  418. break;
  419. case 255:
  420. d[da] = S[sa];
  421. break;
  422. default:
  423. // apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha
  424. d[da] += FAST_DIV255((255 - d[da]) * S[sa]);
  425. }
  426. }
  427. d += dstep;
  428. S += sstep;
  429. }
  430. dp += dst->linesize[0];
  431. sp += src->linesize[0];
  432. }
  433. }
  434. static av_always_inline void blend_plane(AVFilterContext *ctx,
  435. AVFrame *dst, const AVFrame *src,
  436. int src_w, int src_h,
  437. int dst_w, int dst_h,
  438. int i, int hsub, int vsub,
  439. int x, int y,
  440. int main_has_alpha,
  441. int dst_plane,
  442. int dst_offset,
  443. int dst_step,
  444. int straight,
  445. int yuv,
  446. int jobnr,
  447. int nb_jobs)
  448. {
  449. int src_wp = AV_CEIL_RSHIFT(src_w, hsub);
  450. int src_hp = AV_CEIL_RSHIFT(src_h, vsub);
  451. int dst_wp = AV_CEIL_RSHIFT(dst_w, hsub);
  452. int dst_hp = AV_CEIL_RSHIFT(dst_h, vsub);
  453. int yp = y>>vsub;
  454. int xp = x>>hsub;
  455. uint8_t *s, *sp, *d, *dp, *dap, *a, *da, *ap;
  456. int jmax, j, k, kmax;
  457. int slice_start, slice_end;
  458. j = FFMAX(-yp, 0);
  459. jmax = FFMIN(-yp + dst_hp, src_hp);
  460. slice_start = (jmax * jobnr) / nb_jobs;
  461. slice_end = (jmax * (jobnr+1)) / nb_jobs;
  462. sp = src->data[i] + slice_start * src->linesize[i];
  463. dp = dst->data[dst_plane]
  464. + (yp + slice_start) * dst->linesize[dst_plane]
  465. + dst_offset;
  466. ap = src->data[3] + (slice_start << vsub) * src->linesize[3];
  467. dap = dst->data[3] + ((yp + slice_start) << vsub) * dst->linesize[3];
  468. for (j = j + slice_start; j < slice_end; j++) {
  469. k = FFMAX(-xp, 0);
  470. d = dp + (xp+k) * dst_step;
  471. s = sp + k;
  472. a = ap + (k<<hsub);
  473. da = dap + ((xp+k) << hsub);
  474. for (kmax = FFMIN(-xp + dst_wp, src_wp); k < kmax; k++) {
  475. int alpha_v, alpha_h, alpha;
  476. // average alpha for color components, improve quality
  477. if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) {
  478. alpha = (a[0] + a[src->linesize[3]] +
  479. a[1] + a[src->linesize[3]+1]) >> 2;
  480. } else if (hsub || vsub) {
  481. alpha_h = hsub && k+1 < src_wp ?
  482. (a[0] + a[1]) >> 1 : a[0];
  483. alpha_v = vsub && j+1 < src_hp ?
  484. (a[0] + a[src->linesize[3]]) >> 1 : a[0];
  485. alpha = (alpha_v + alpha_h) >> 1;
  486. } else
  487. alpha = a[0];
  488. // if the main channel has an alpha channel, alpha has to be calculated
  489. // to create an un-premultiplied (straight) alpha value
  490. if (main_has_alpha && alpha != 0 && alpha != 255) {
  491. // average alpha for color components, improve quality
  492. uint8_t alpha_d;
  493. if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) {
  494. alpha_d = (da[0] + da[dst->linesize[3]] +
  495. da[1] + da[dst->linesize[3]+1]) >> 2;
  496. } else if (hsub || vsub) {
  497. alpha_h = hsub && k+1 < src_wp ?
  498. (da[0] + da[1]) >> 1 : da[0];
  499. alpha_v = vsub && j+1 < src_hp ?
  500. (da[0] + da[dst->linesize[3]]) >> 1 : da[0];
  501. alpha_d = (alpha_v + alpha_h) >> 1;
  502. } else
  503. alpha_d = da[0];
  504. alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
  505. }
  506. if (straight) {
  507. *d = FAST_DIV255(*d * (255 - alpha) + *s * alpha);
  508. } else {
  509. if (i && yuv)
  510. *d = av_clip(FAST_DIV255((*d - 128) * (255 - alpha)) + *s - 128, -128, 128) + 128;
  511. else
  512. *d = FFMIN(FAST_DIV255(*d * (255 - alpha)) + *s, 255);
  513. }
  514. s++;
  515. d += dst_step;
  516. da += 1 << hsub;
  517. a += 1 << hsub;
  518. }
  519. dp += dst->linesize[dst_plane];
  520. sp += src->linesize[i];
  521. ap += (1 << vsub) * src->linesize[3];
  522. dap += (1 << vsub) * dst->linesize[3];
  523. }
  524. }
  525. static inline void alpha_composite(const AVFrame *src, const AVFrame *dst,
  526. int src_w, int src_h,
  527. int dst_w, int dst_h,
  528. int x, int y,
  529. int jobnr, int nb_jobs)
  530. {
  531. uint8_t alpha; ///< the amount of overlay to blend on to main
  532. uint8_t *s, *sa, *d, *da;
  533. int i, imax, j, jmax;
  534. int slice_start, slice_end;
  535. imax = FFMIN(-y + dst_h, src_h);
  536. slice_start = (imax * jobnr) / nb_jobs;
  537. slice_end = ((imax * (jobnr+1)) / nb_jobs);
  538. i = FFMAX(-y, 0);
  539. sa = src->data[3] + (i + slice_start) * src->linesize[3];
  540. da = dst->data[3] + (y + i + slice_start) * dst->linesize[3];
  541. for (i = i + slice_start; i < imax; i++) {
  542. j = FFMAX(-x, 0);
  543. s = sa + j;
  544. d = da + x+j;
  545. for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) {
  546. alpha = *s;
  547. if (alpha != 0 && alpha != 255) {
  548. uint8_t alpha_d = *d;
  549. alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
  550. }
  551. switch (alpha) {
  552. case 0:
  553. break;
  554. case 255:
  555. *d = *s;
  556. break;
  557. default:
  558. // apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha
  559. *d += FAST_DIV255((255 - *d) * *s);
  560. }
  561. d += 1;
  562. s += 1;
  563. }
  564. da += dst->linesize[3];
  565. sa += src->linesize[3];
  566. }
  567. }
  568. static av_always_inline void blend_slice_yuv(AVFilterContext *ctx,
  569. AVFrame *dst, const AVFrame *src,
  570. int hsub, int vsub,
  571. int main_has_alpha,
  572. int x, int y,
  573. int is_straight,
  574. int jobnr, int nb_jobs)
  575. {
  576. OverlayContext *s = ctx->priv;
  577. const int src_w = src->width;
  578. const int src_h = src->height;
  579. const int dst_w = dst->width;
  580. const int dst_h = dst->height;
  581. blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 0, 0, 0, x, y, main_has_alpha,
  582. s->main_desc->comp[0].plane, s->main_desc->comp[0].offset, s->main_desc->comp[0].step, is_straight, 1,
  583. jobnr, nb_jobs);
  584. blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 1, hsub, vsub, x, y, main_has_alpha,
  585. s->main_desc->comp[1].plane, s->main_desc->comp[1].offset, s->main_desc->comp[1].step, is_straight, 1,
  586. jobnr, nb_jobs);
  587. blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 2, hsub, vsub, x, y, main_has_alpha,
  588. s->main_desc->comp[2].plane, s->main_desc->comp[2].offset, s->main_desc->comp[2].step, is_straight, 1,
  589. jobnr, nb_jobs);
  590. if (main_has_alpha)
  591. alpha_composite(src, dst, src_w, src_h, dst_w, dst_h, x, y, jobnr, nb_jobs);
  592. }
  593. static av_always_inline void blend_slice_planar_rgb(AVFilterContext *ctx,
  594. AVFrame *dst, const AVFrame *src,
  595. int hsub, int vsub,
  596. int main_has_alpha,
  597. int x, int y,
  598. int is_straight,
  599. int jobnr,
  600. int nb_jobs)
  601. {
  602. OverlayContext *s = ctx->priv;
  603. const int src_w = src->width;
  604. const int src_h = src->height;
  605. const int dst_w = dst->width;
  606. const int dst_h = dst->height;
  607. blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 0, 0, 0, x, y, main_has_alpha,
  608. s->main_desc->comp[1].plane, s->main_desc->comp[1].offset, s->main_desc->comp[1].step, is_straight, 0,
  609. jobnr, nb_jobs);
  610. blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 1, hsub, vsub, x, y, main_has_alpha,
  611. s->main_desc->comp[2].plane, s->main_desc->comp[2].offset, s->main_desc->comp[2].step, is_straight, 0,
  612. jobnr, nb_jobs);
  613. blend_plane(ctx, dst, src, src_w, src_h, dst_w, dst_h, 2, hsub, vsub, x, y, main_has_alpha,
  614. s->main_desc->comp[0].plane, s->main_desc->comp[0].offset, s->main_desc->comp[0].step, is_straight, 0,
  615. jobnr, nb_jobs);
  616. if (main_has_alpha)
  617. alpha_composite(src, dst, src_w, src_h, dst_w, dst_h, x, y, jobnr, nb_jobs);
  618. }
  619. static int blend_slice_yuv420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  620. {
  621. OverlayContext *s = ctx->priv;
  622. ThreadData *td = arg;
  623. blend_slice_yuv(ctx, td->dst, td->src, 1, 1, 0, s->x, s->y, 1, jobnr, nb_jobs);
  624. return 0;
  625. }
  626. static int blend_slice_yuva420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  627. {
  628. OverlayContext *s = ctx->priv;
  629. ThreadData *td = arg;
  630. blend_slice_yuv(ctx, td->dst, td->src, 1, 1, 1, s->x, s->y, 1, jobnr, nb_jobs);
  631. return 0;
  632. }
  633. static int blend_slice_yuv422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  634. {
  635. OverlayContext *s = ctx->priv;
  636. ThreadData *td = arg;
  637. blend_slice_yuv(ctx, td->dst, td->src, 1, 0, 0, s->x, s->y, 1, jobnr, nb_jobs);
  638. return 0;
  639. }
  640. static int blend_slice_yuva422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  641. {
  642. OverlayContext *s = ctx->priv;
  643. ThreadData *td = arg;
  644. blend_slice_yuv(ctx, td->dst, td->src, 1, 0, 1, s->x, s->y, 1, jobnr, nb_jobs);
  645. return 0;
  646. }
  647. static int blend_slice_yuv444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  648. {
  649. OverlayContext *s = ctx->priv;
  650. ThreadData *td = arg;
  651. blend_slice_yuv(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 1, jobnr, nb_jobs);
  652. return 0;
  653. }
  654. static int blend_slice_yuva444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  655. {
  656. OverlayContext *s = ctx->priv;
  657. ThreadData *td = arg;
  658. blend_slice_yuv(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 1, jobnr, nb_jobs);
  659. return 0;
  660. }
  661. static int blend_slice_gbrp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  662. {
  663. OverlayContext *s = ctx->priv;
  664. ThreadData *td = arg;
  665. blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 1, jobnr, nb_jobs);
  666. return 0;
  667. }
  668. static int blend_slice_gbrap(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  669. {
  670. OverlayContext *s = ctx->priv;
  671. ThreadData *td = arg;
  672. blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 1, jobnr, nb_jobs);
  673. return 0;
  674. }
  675. static int blend_slice_yuv420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  676. {
  677. OverlayContext *s = ctx->priv;
  678. ThreadData *td = arg;
  679. blend_slice_yuv(ctx, td->dst, td->src, 1, 1, 0, s->x, s->y, 0, jobnr, nb_jobs);
  680. return 0;
  681. }
  682. static int blend_slice_yuva420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  683. {
  684. OverlayContext *s = ctx->priv;
  685. ThreadData *td = arg;
  686. blend_slice_yuv(ctx, td->dst, td->src, 1, 1, 1, s->x, s->y, 0, jobnr, nb_jobs);
  687. return 0;
  688. }
  689. static int blend_slice_yuv422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  690. {
  691. OverlayContext *s = ctx->priv;
  692. ThreadData *td = arg;
  693. blend_slice_yuv(ctx, td->dst, td->src, 1, 0, 0, s->x, s->y, 0, jobnr, nb_jobs);
  694. return 0;
  695. }
  696. static int blend_slice_yuva422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  697. {
  698. OverlayContext *s = ctx->priv;
  699. ThreadData *td = arg;
  700. blend_slice_yuv(ctx, td->dst, td->src, 1, 0, 1, s->x, s->y, 0, jobnr, nb_jobs);
  701. return 0;
  702. }
  703. static int blend_slice_yuv444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  704. {
  705. OverlayContext *s = ctx->priv;
  706. ThreadData *td = arg;
  707. blend_slice_yuv(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 0, jobnr, nb_jobs);
  708. return 0;
  709. }
  710. static int blend_slice_yuva444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  711. {
  712. OverlayContext *s = ctx->priv;
  713. ThreadData *td = arg;
  714. blend_slice_yuv(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 0, jobnr, nb_jobs);
  715. return 0;
  716. }
  717. static int blend_slice_gbrp_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  718. {
  719. OverlayContext *s = ctx->priv;
  720. ThreadData *td = arg;
  721. blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 0, jobnr, nb_jobs);
  722. return 0;
  723. }
  724. static int blend_slice_gbrap_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  725. {
  726. OverlayContext *s = ctx->priv;
  727. ThreadData *td = arg;
  728. blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 0, jobnr, nb_jobs);
  729. return 0;
  730. }
  731. static int blend_slice_rgb(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  732. {
  733. OverlayContext *s = ctx->priv;
  734. ThreadData *td = arg;
  735. blend_slice_packed_rgb(ctx, td->dst, td->src, 0, s->x, s->y, 1, jobnr, nb_jobs);
  736. return 0;
  737. }
  738. static int blend_slice_rgba(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  739. {
  740. OverlayContext *s = ctx->priv;
  741. ThreadData *td = arg;
  742. blend_slice_packed_rgb(ctx, td->dst, td->src, 1, s->x, s->y, 1, jobnr, nb_jobs);
  743. return 0;
  744. }
  745. static int blend_slice_rgb_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  746. {
  747. OverlayContext *s = ctx->priv;
  748. ThreadData *td = arg;
  749. blend_slice_packed_rgb(ctx, td->dst, td->src, 0, s->x, s->y, 0, jobnr, nb_jobs);
  750. return 0;
  751. }
  752. static int blend_slice_rgba_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  753. {
  754. OverlayContext *s = ctx->priv;
  755. ThreadData *td = arg;
  756. blend_slice_packed_rgb(ctx, td->dst, td->src, 1, s->x, s->y, 0, jobnr, nb_jobs);
  757. return 0;
  758. }
  759. static int config_input_main(AVFilterLink *inlink)
  760. {
  761. OverlayContext *s = inlink->dst->priv;
  762. const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format);
  763. av_image_fill_max_pixsteps(s->main_pix_step, NULL, pix_desc);
  764. s->hsub = pix_desc->log2_chroma_w;
  765. s->vsub = pix_desc->log2_chroma_h;
  766. s->main_desc = pix_desc;
  767. s->main_is_packed_rgb =
  768. ff_fill_rgba_map(s->main_rgba_map, inlink->format) >= 0;
  769. s->main_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts);
  770. switch (s->format) {
  771. case OVERLAY_FORMAT_YUV420:
  772. s->blend_slice = s->main_has_alpha ? blend_slice_yuva420 : blend_slice_yuv420;
  773. break;
  774. case OVERLAY_FORMAT_YUV422:
  775. s->blend_slice = s->main_has_alpha ? blend_slice_yuva422 : blend_slice_yuv422;
  776. break;
  777. case OVERLAY_FORMAT_YUV444:
  778. s->blend_slice = s->main_has_alpha ? blend_slice_yuva444 : blend_slice_yuv444;
  779. break;
  780. case OVERLAY_FORMAT_RGB:
  781. s->blend_slice = s->main_has_alpha ? blend_slice_rgba : blend_slice_rgb;
  782. break;
  783. case OVERLAY_FORMAT_GBRP:
  784. s->blend_slice = s->main_has_alpha ? blend_slice_gbrap : blend_slice_gbrp;
  785. break;
  786. case OVERLAY_FORMAT_AUTO:
  787. switch (inlink->format) {
  788. case AV_PIX_FMT_YUVA420P:
  789. s->blend_slice = blend_slice_yuva420;
  790. break;
  791. case AV_PIX_FMT_YUVA422P:
  792. s->blend_slice = blend_slice_yuva422;
  793. break;
  794. case AV_PIX_FMT_YUVA444P:
  795. s->blend_slice = blend_slice_yuva444;
  796. break;
  797. case AV_PIX_FMT_ARGB:
  798. case AV_PIX_FMT_RGBA:
  799. case AV_PIX_FMT_BGRA:
  800. case AV_PIX_FMT_ABGR:
  801. s->blend_slice = blend_slice_rgba;
  802. break;
  803. case AV_PIX_FMT_GBRAP:
  804. s->blend_slice = blend_slice_gbrap;
  805. break;
  806. default:
  807. av_assert0(0);
  808. break;
  809. }
  810. break;
  811. }
  812. if (!s->alpha_format)
  813. return 0;
  814. switch (s->format) {
  815. case OVERLAY_FORMAT_YUV420:
  816. s->blend_slice = s->main_has_alpha ? blend_slice_yuva420_pm : blend_slice_yuv420_pm;
  817. break;
  818. case OVERLAY_FORMAT_YUV422:
  819. s->blend_slice = s->main_has_alpha ? blend_slice_yuva422_pm : blend_slice_yuv422_pm;
  820. break;
  821. case OVERLAY_FORMAT_YUV444:
  822. s->blend_slice = s->main_has_alpha ? blend_slice_yuva444_pm : blend_slice_yuv444_pm;
  823. break;
  824. case OVERLAY_FORMAT_RGB:
  825. s->blend_slice = s->main_has_alpha ? blend_slice_rgba_pm : blend_slice_rgb_pm;
  826. break;
  827. case OVERLAY_FORMAT_GBRP:
  828. s->blend_slice = s->main_has_alpha ? blend_slice_gbrap_pm : blend_slice_gbrp_pm;
  829. break;
  830. case OVERLAY_FORMAT_AUTO:
  831. switch (inlink->format) {
  832. case AV_PIX_FMT_YUVA420P:
  833. s->blend_slice = blend_slice_yuva420_pm;
  834. break;
  835. case AV_PIX_FMT_YUVA422P:
  836. s->blend_slice = blend_slice_yuva422_pm;
  837. break;
  838. case AV_PIX_FMT_YUVA444P:
  839. s->blend_slice = blend_slice_yuva444_pm;
  840. break;
  841. case AV_PIX_FMT_ARGB:
  842. case AV_PIX_FMT_RGBA:
  843. case AV_PIX_FMT_BGRA:
  844. case AV_PIX_FMT_ABGR:
  845. s->blend_slice = blend_slice_rgba_pm;
  846. break;
  847. case AV_PIX_FMT_GBRAP:
  848. s->blend_slice = blend_slice_gbrap_pm;
  849. break;
  850. default:
  851. av_assert0(0);
  852. break;
  853. }
  854. break;
  855. }
  856. return 0;
  857. }
  858. static int do_blend(FFFrameSync *fs)
  859. {
  860. AVFilterContext *ctx = fs->parent;
  861. AVFrame *mainpic, *second;
  862. OverlayContext *s = ctx->priv;
  863. AVFilterLink *inlink = ctx->inputs[0];
  864. int ret;
  865. ret = ff_framesync_dualinput_get_writable(fs, &mainpic, &second);
  866. if (ret < 0)
  867. return ret;
  868. if (!second)
  869. return ff_filter_frame(ctx->outputs[0], mainpic);
  870. if (s->eval_mode == EVAL_MODE_FRAME) {
  871. int64_t pos = mainpic->pkt_pos;
  872. s->var_values[VAR_N] = inlink->frame_count_out;
  873. s->var_values[VAR_T] = mainpic->pts == AV_NOPTS_VALUE ?
  874. NAN : mainpic->pts * av_q2d(inlink->time_base);
  875. s->var_values[VAR_POS] = pos == -1 ? NAN : pos;
  876. s->var_values[VAR_OVERLAY_W] = s->var_values[VAR_OW] = second->width;
  877. s->var_values[VAR_OVERLAY_H] = s->var_values[VAR_OH] = second->height;
  878. s->var_values[VAR_MAIN_W ] = s->var_values[VAR_MW] = mainpic->width;
  879. s->var_values[VAR_MAIN_H ] = s->var_values[VAR_MH] = mainpic->height;
  880. eval_expr(ctx);
  881. av_log(ctx, AV_LOG_DEBUG, "n:%f t:%f pos:%f x:%f xi:%d y:%f yi:%d\n",
  882. s->var_values[VAR_N], s->var_values[VAR_T], s->var_values[VAR_POS],
  883. s->var_values[VAR_X], s->x,
  884. s->var_values[VAR_Y], s->y);
  885. }
  886. if (s->x < mainpic->width && s->x + second->width >= 0 ||
  887. s->y < mainpic->height && s->y + second->height >= 0) {
  888. ThreadData td;
  889. td.dst = mainpic;
  890. td.src = second;
  891. ctx->internal->execute(ctx, s->blend_slice, &td, NULL, FFMIN(FFMIN(mainpic->height - s->y, second->height),
  892. ff_filter_get_nb_threads(ctx)));
  893. }
  894. return ff_filter_frame(ctx->outputs[0], mainpic);
  895. }
  896. static av_cold int init(AVFilterContext *ctx)
  897. {
  898. OverlayContext *s = ctx->priv;
  899. s->fs.on_event = do_blend;
  900. return 0;
  901. }
  902. static int activate(AVFilterContext *ctx)
  903. {
  904. OverlayContext *s = ctx->priv;
  905. return ff_framesync_activate(&s->fs);
  906. }
  907. #define OFFSET(x) offsetof(OverlayContext, x)
  908. #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  909. static const AVOption overlay_options[] = {
  910. { "x", "set the x expression", OFFSET(x_expr), AV_OPT_TYPE_STRING, {.str = "0"}, CHAR_MIN, CHAR_MAX, FLAGS },
  911. { "y", "set the y expression", OFFSET(y_expr), AV_OPT_TYPE_STRING, {.str = "0"}, CHAR_MIN, CHAR_MAX, FLAGS },
  912. { "eof_action", "Action to take when encountering EOF from secondary input ",
  913. OFFSET(fs.opt_eof_action), AV_OPT_TYPE_INT, { .i64 = EOF_ACTION_REPEAT },
  914. EOF_ACTION_REPEAT, EOF_ACTION_PASS, .flags = FLAGS, "eof_action" },
  915. { "repeat", "Repeat the previous frame.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_REPEAT }, .flags = FLAGS, "eof_action" },
  916. { "endall", "End both streams.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_ENDALL }, .flags = FLAGS, "eof_action" },
  917. { "pass", "Pass through the main input.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_PASS }, .flags = FLAGS, "eof_action" },
  918. { "eval", "specify when to evaluate expressions", OFFSET(eval_mode), AV_OPT_TYPE_INT, {.i64 = EVAL_MODE_FRAME}, 0, EVAL_MODE_NB-1, FLAGS, "eval" },
  919. { "init", "eval expressions once during initialization", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_INIT}, .flags = FLAGS, .unit = "eval" },
  920. { "frame", "eval expressions per-frame", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_FRAME}, .flags = FLAGS, .unit = "eval" },
  921. { "shortest", "force termination when the shortest input terminates", OFFSET(fs.opt_shortest), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
  922. { "format", "set output format", OFFSET(format), AV_OPT_TYPE_INT, {.i64=OVERLAY_FORMAT_YUV420}, 0, OVERLAY_FORMAT_NB-1, FLAGS, "format" },
  923. { "yuv420", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV420}, .flags = FLAGS, .unit = "format" },
  924. { "yuv422", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV422}, .flags = FLAGS, .unit = "format" },
  925. { "yuv444", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV444}, .flags = FLAGS, .unit = "format" },
  926. { "rgb", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_RGB}, .flags = FLAGS, .unit = "format" },
  927. { "gbrp", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_GBRP}, .flags = FLAGS, .unit = "format" },
  928. { "auto", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_AUTO}, .flags = FLAGS, .unit = "format" },
  929. { "repeatlast", "repeat overlay of the last overlay frame", OFFSET(fs.opt_repeatlast), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS },
  930. { "alpha", "alpha format", OFFSET(alpha_format), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "alpha_format" },
  931. { "straight", "", 0, AV_OPT_TYPE_CONST, {.i64=0}, .flags = FLAGS, .unit = "alpha_format" },
  932. { "premultiplied", "", 0, AV_OPT_TYPE_CONST, {.i64=1}, .flags = FLAGS, .unit = "alpha_format" },
  933. { NULL }
  934. };
  935. FRAMESYNC_DEFINE_CLASS(overlay, OverlayContext, fs);
  936. static const AVFilterPad avfilter_vf_overlay_inputs[] = {
  937. {
  938. .name = "main",
  939. .type = AVMEDIA_TYPE_VIDEO,
  940. .config_props = config_input_main,
  941. },
  942. {
  943. .name = "overlay",
  944. .type = AVMEDIA_TYPE_VIDEO,
  945. .config_props = config_input_overlay,
  946. },
  947. { NULL }
  948. };
  949. static const AVFilterPad avfilter_vf_overlay_outputs[] = {
  950. {
  951. .name = "default",
  952. .type = AVMEDIA_TYPE_VIDEO,
  953. .config_props = config_output,
  954. },
  955. { NULL }
  956. };
  957. AVFilter ff_vf_overlay = {
  958. .name = "overlay",
  959. .description = NULL_IF_CONFIG_SMALL("Overlay a video source on top of the input."),
  960. .preinit = overlay_framesync_preinit,
  961. .init = init,
  962. .uninit = uninit,
  963. .priv_size = sizeof(OverlayContext),
  964. .priv_class = &overlay_class,
  965. .query_formats = query_formats,
  966. .activate = activate,
  967. .process_command = process_command,
  968. .inputs = avfilter_vf_overlay_inputs,
  969. .outputs = avfilter_vf_overlay_outputs,
  970. .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
  971. AVFILTER_FLAG_SLICE_THREADS,
  972. };