You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

723 lines
24KB

  1. /*
  2. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  5. * the algorithm used
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * huffyuv encoder
  26. */
  27. #include "avcodec.h"
  28. #include "huffyuv.h"
  29. #include "huffman.h"
  30. #include "huffyuvencdsp.h"
  31. #include "internal.h"
  32. #include "put_bits.h"
  33. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
  34. uint8_t *src, int w, int left)
  35. {
  36. int i;
  37. if (w < 32) {
  38. for (i = 0; i < w; i++) {
  39. const int temp = src[i];
  40. dst[i] = temp - left;
  41. left = temp;
  42. }
  43. return left;
  44. } else {
  45. for (i = 0; i < 16; i++) {
  46. const int temp = src[i];
  47. dst[i] = temp - left;
  48. left = temp;
  49. }
  50. s->hencdsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
  51. return src[w-1];
  52. }
  53. }
  54. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
  55. uint8_t *src, int w,
  56. int *red, int *green, int *blue,
  57. int *alpha)
  58. {
  59. int i;
  60. int r, g, b, a;
  61. r = *red;
  62. g = *green;
  63. b = *blue;
  64. a = *alpha;
  65. for (i = 0; i < FFMIN(w, 4); i++) {
  66. const int rt = src[i * 4 + R];
  67. const int gt = src[i * 4 + G];
  68. const int bt = src[i * 4 + B];
  69. const int at = src[i * 4 + A];
  70. dst[i * 4 + R] = rt - r;
  71. dst[i * 4 + G] = gt - g;
  72. dst[i * 4 + B] = bt - b;
  73. dst[i * 4 + A] = at - a;
  74. r = rt;
  75. g = gt;
  76. b = bt;
  77. a = at;
  78. }
  79. s->hencdsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
  80. *red = src[(w - 1) * 4 + R];
  81. *green = src[(w - 1) * 4 + G];
  82. *blue = src[(w - 1) * 4 + B];
  83. *alpha = src[(w - 1) * 4 + A];
  84. }
  85. static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
  86. uint8_t *src, int w,
  87. int *red, int *green, int *blue)
  88. {
  89. int i;
  90. int r, g, b;
  91. r = *red;
  92. g = *green;
  93. b = *blue;
  94. for (i = 0; i < FFMIN(w, 16); i++) {
  95. const int rt = src[i * 3 + 0];
  96. const int gt = src[i * 3 + 1];
  97. const int bt = src[i * 3 + 2];
  98. dst[i * 3 + 0] = rt - r;
  99. dst[i * 3 + 1] = gt - g;
  100. dst[i * 3 + 2] = bt - b;
  101. r = rt;
  102. g = gt;
  103. b = bt;
  104. }
  105. s->hencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
  106. *red = src[(w - 1) * 3 + 0];
  107. *green = src[(w - 1) * 3 + 1];
  108. *blue = src[(w - 1) * 3 + 2];
  109. }
  110. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
  111. {
  112. int i;
  113. int index = 0;
  114. for (i = 0; i < 256;) {
  115. int val = len[i];
  116. int repeat = 0;
  117. for (; i < 256 && len[i] == val && repeat < 255; i++)
  118. repeat++;
  119. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  120. if ( repeat > 7) {
  121. buf[index++] = val;
  122. buf[index++] = repeat;
  123. } else {
  124. buf[index++] = val | (repeat << 5);
  125. }
  126. }
  127. return index;
  128. }
  129. static av_cold int encode_init(AVCodecContext *avctx)
  130. {
  131. HYuvContext *s = avctx->priv_data;
  132. int i, j;
  133. ff_huffyuv_common_init(avctx);
  134. ff_huffyuvencdsp_init(&s->hencdsp);
  135. avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772
  136. avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  137. s->version = 2;
  138. avctx->coded_frame = av_frame_alloc();
  139. if (!avctx->coded_frame)
  140. return AVERROR(ENOMEM);
  141. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  142. avctx->coded_frame->key_frame = 1;
  143. switch (avctx->pix_fmt) {
  144. case AV_PIX_FMT_YUV420P:
  145. case AV_PIX_FMT_YUV422P:
  146. if (s->width & 1) {
  147. av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
  148. return -1;
  149. }
  150. s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
  151. break;
  152. case AV_PIX_FMT_RGB32:
  153. s->bitstream_bpp = 32;
  154. break;
  155. case AV_PIX_FMT_RGB24:
  156. s->bitstream_bpp = 24;
  157. break;
  158. default:
  159. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  160. return -1;
  161. }
  162. avctx->bits_per_coded_sample = s->bitstream_bpp;
  163. s->decorrelate = s->bitstream_bpp >= 24;
  164. s->predictor = avctx->prediction_method;
  165. s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  166. if (avctx->context_model == 1) {
  167. s->context = avctx->context_model;
  168. if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) {
  169. av_log(avctx, AV_LOG_ERROR,
  170. "context=1 is not compatible with "
  171. "2 pass huffyuv encoding\n");
  172. return -1;
  173. }
  174. }else s->context= 0;
  175. if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
  176. if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  177. av_log(avctx, AV_LOG_ERROR,
  178. "Error: YV12 is not supported by huffyuv; use "
  179. "vcodec=ffvhuff or format=422p\n");
  180. return -1;
  181. }
  182. if (avctx->context_model) {
  183. av_log(avctx, AV_LOG_ERROR,
  184. "Error: per-frame huffman tables are not supported "
  185. "by huffyuv; use vcodec=ffvhuff\n");
  186. return -1;
  187. }
  188. if (s->interlaced != ( s->height > 288 ))
  189. av_log(avctx, AV_LOG_INFO,
  190. "using huffyuv 2.2.0 or newer interlacing flag\n");
  191. }
  192. if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) {
  193. av_log(avctx, AV_LOG_ERROR,
  194. "Error: RGB is incompatible with median predictor\n");
  195. return -1;
  196. }
  197. ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
  198. ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
  199. ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
  200. if (s->context)
  201. ((uint8_t*)avctx->extradata)[2] |= 0x40;
  202. ((uint8_t*)avctx->extradata)[3] = 0;
  203. s->avctx->extradata_size = 4;
  204. if (avctx->stats_in) {
  205. char *p = avctx->stats_in;
  206. for (i = 0; i < 3; i++)
  207. for (j = 0; j < 256; j++)
  208. s->stats[i][j] = 1;
  209. for (;;) {
  210. for (i = 0; i < 3; i++) {
  211. char *next;
  212. for (j = 0; j < 256; j++) {
  213. s->stats[i][j] += strtol(p, &next, 0);
  214. if (next == p) return -1;
  215. p = next;
  216. }
  217. }
  218. if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
  219. }
  220. } else {
  221. for (i = 0; i < 3; i++)
  222. for (j = 0; j < 256; j++) {
  223. int d = FFMIN(j, 256 - j);
  224. s->stats[i][j] = 100000000 / (d + 1);
  225. }
  226. }
  227. for (i = 0; i < 3; i++) {
  228. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  229. if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0) {
  230. return -1;
  231. }
  232. s->avctx->extradata_size +=
  233. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  234. }
  235. if (s->context) {
  236. for (i = 0; i < 3; i++) {
  237. int pels = s->width * s->height / (i ? 40 : 10);
  238. for (j = 0; j < 256; j++) {
  239. int d = FFMIN(j, 256 - j);
  240. s->stats[i][j] = pels/(d + 1);
  241. }
  242. }
  243. } else {
  244. for (i = 0; i < 3; i++)
  245. for (j = 0; j < 256; j++)
  246. s->stats[i][j]= 0;
  247. }
  248. ff_huffyuv_alloc_temp(s);
  249. s->picture_number=0;
  250. return 0;
  251. }
  252. static int encode_422_bitstream(HYuvContext *s, int offset, int count)
  253. {
  254. int i;
  255. const uint8_t *y = s->temp[0] + offset;
  256. const uint8_t *u = s->temp[1] + offset / 2;
  257. const uint8_t *v = s->temp[2] + offset / 2;
  258. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
  259. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  260. return -1;
  261. }
  262. #define LOAD4\
  263. int y0 = y[2 * i];\
  264. int y1 = y[2 * i + 1];\
  265. int u0 = u[i];\
  266. int v0 = v[i];
  267. count /= 2;
  268. if (s->flags & CODEC_FLAG_PASS1) {
  269. for(i = 0; i < count; i++) {
  270. LOAD4;
  271. s->stats[0][y0]++;
  272. s->stats[1][u0]++;
  273. s->stats[0][y1]++;
  274. s->stats[2][v0]++;
  275. }
  276. }
  277. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  278. return 0;
  279. if (s->context) {
  280. for (i = 0; i < count; i++) {
  281. LOAD4;
  282. s->stats[0][y0]++;
  283. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  284. s->stats[1][u0]++;
  285. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  286. s->stats[0][y1]++;
  287. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  288. s->stats[2][v0]++;
  289. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  290. }
  291. } else {
  292. for(i = 0; i < count; i++) {
  293. LOAD4;
  294. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  295. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  296. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  297. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  298. }
  299. }
  300. return 0;
  301. }
  302. static int encode_gray_bitstream(HYuvContext *s, int count)
  303. {
  304. int i;
  305. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
  306. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  307. return -1;
  308. }
  309. #define LOAD2\
  310. int y0 = s->temp[0][2 * i];\
  311. int y1 = s->temp[0][2 * i + 1];
  312. #define STAT2\
  313. s->stats[0][y0]++;\
  314. s->stats[0][y1]++;
  315. #define WRITE2\
  316. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  317. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  318. count /= 2;
  319. if (s->flags & CODEC_FLAG_PASS1) {
  320. for (i = 0; i < count; i++) {
  321. LOAD2;
  322. STAT2;
  323. }
  324. }
  325. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  326. return 0;
  327. if (s->context) {
  328. for (i = 0; i < count; i++) {
  329. LOAD2;
  330. STAT2;
  331. WRITE2;
  332. }
  333. } else {
  334. for (i = 0; i < count; i++) {
  335. LOAD2;
  336. WRITE2;
  337. }
  338. }
  339. return 0;
  340. }
  341. static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
  342. {
  343. int i;
  344. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
  345. 4 * planes * count) {
  346. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  347. return -1;
  348. }
  349. #define LOAD_GBRA \
  350. int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
  351. int b = s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g & 0xFF; \
  352. int r = s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g & 0xFF; \
  353. int a = s->temp[0][planes * i + A];
  354. #define STAT_BGRA \
  355. s->stats[0][b]++; \
  356. s->stats[1][g]++; \
  357. s->stats[2][r]++; \
  358. if (planes == 4) \
  359. s->stats[2][a]++;
  360. #define WRITE_GBRA \
  361. put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
  362. put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
  363. put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
  364. if (planes == 4) \
  365. put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  366. if ((s->flags & CODEC_FLAG_PASS1) &&
  367. (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  368. for (i = 0; i < count; i++) {
  369. LOAD_GBRA;
  370. STAT_BGRA;
  371. }
  372. } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
  373. for (i = 0; i < count; i++) {
  374. LOAD_GBRA;
  375. STAT_BGRA;
  376. WRITE_GBRA;
  377. }
  378. } else {
  379. for (i = 0; i < count; i++) {
  380. LOAD_GBRA;
  381. WRITE_GBRA;
  382. }
  383. }
  384. return 0;
  385. }
  386. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  387. const AVFrame *pict, int *got_packet)
  388. {
  389. HYuvContext *s = avctx->priv_data;
  390. const int width = s->width;
  391. const int width2 = s->width>>1;
  392. const int height = s->height;
  393. const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  394. const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  395. const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  396. const AVFrame * const p = pict;
  397. int i, j, size = 0, ret;
  398. if (!pkt->data &&
  399. (ret = av_new_packet(pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0) {
  400. av_log(avctx, AV_LOG_ERROR, "Error allocating output packet.\n");
  401. return ret;
  402. }
  403. if (s->context) {
  404. for (i = 0; i < 3; i++) {
  405. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  406. if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0)
  407. return -1;
  408. size += store_table(s, s->len[i], &pkt->data[size]);
  409. }
  410. for (i = 0; i < 3; i++)
  411. for (j = 0; j < 256; j++)
  412. s->stats[i][j] >>= 1;
  413. }
  414. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  415. if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
  416. avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  417. int lefty, leftu, leftv, y, cy;
  418. put_bits(&s->pb, 8, leftv = p->data[2][0]);
  419. put_bits(&s->pb, 8, lefty = p->data[0][1]);
  420. put_bits(&s->pb, 8, leftu = p->data[1][0]);
  421. put_bits(&s->pb, 8, p->data[0][0]);
  422. lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  423. leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  424. leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  425. encode_422_bitstream(s, 2, width-2);
  426. if (s->predictor==MEDIAN) {
  427. int lefttopy, lefttopu, lefttopv;
  428. cy = y = 1;
  429. if (s->interlaced) {
  430. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
  431. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
  432. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
  433. encode_422_bitstream(s, 0, width);
  434. y++; cy++;
  435. }
  436. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
  437. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
  438. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
  439. encode_422_bitstream(s, 0, 4);
  440. lefttopy = p->data[0][3];
  441. lefttopu = p->data[1][1];
  442. lefttopv = p->data[2][1];
  443. s->hencdsp.sub_hfyu_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy);
  444. s->hencdsp.sub_hfyu_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
  445. s->hencdsp.sub_hfyu_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
  446. encode_422_bitstream(s, 0, width - 4);
  447. y++; cy++;
  448. for (; y < height; y++,cy++) {
  449. uint8_t *ydst, *udst, *vdst;
  450. if (s->bitstream_bpp == 12) {
  451. while (2 * cy > y) {
  452. ydst = p->data[0] + p->linesize[0] * y;
  453. s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
  454. encode_gray_bitstream(s, width);
  455. y++;
  456. }
  457. if (y >= height) break;
  458. }
  459. ydst = p->data[0] + p->linesize[0] * y;
  460. udst = p->data[1] + p->linesize[1] * cy;
  461. vdst = p->data[2] + p->linesize[2] * cy;
  462. s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
  463. s->hencdsp.sub_hfyu_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  464. s->hencdsp.sub_hfyu_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  465. encode_422_bitstream(s, 0, width);
  466. }
  467. } else {
  468. for (cy = y = 1; y < height; y++, cy++) {
  469. uint8_t *ydst, *udst, *vdst;
  470. /* encode a luma only line & y++ */
  471. if (s->bitstream_bpp == 12) {
  472. ydst = p->data[0] + p->linesize[0] * y;
  473. if (s->predictor == PLANE && s->interlaced < y) {
  474. s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  475. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  476. } else {
  477. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  478. }
  479. encode_gray_bitstream(s, width);
  480. y++;
  481. if (y >= height) break;
  482. }
  483. ydst = p->data[0] + p->linesize[0] * y;
  484. udst = p->data[1] + p->linesize[1] * cy;
  485. vdst = p->data[2] + p->linesize[2] * cy;
  486. if (s->predictor == PLANE && s->interlaced < cy) {
  487. s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  488. s->hencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  489. s->hencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  490. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  491. leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  492. leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  493. } else {
  494. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  495. leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  496. leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  497. }
  498. encode_422_bitstream(s, 0, width);
  499. }
  500. }
  501. } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
  502. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  503. const int stride = -p->linesize[0];
  504. const int fake_stride = -fake_ystride;
  505. int y;
  506. int leftr, leftg, leftb, lefta;
  507. put_bits(&s->pb, 8, lefta = data[A]);
  508. put_bits(&s->pb, 8, leftr = data[R]);
  509. put_bits(&s->pb, 8, leftg = data[G]);
  510. put_bits(&s->pb, 8, leftb = data[B]);
  511. sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
  512. &leftr, &leftg, &leftb, &lefta);
  513. encode_bgra_bitstream(s, width - 1, 4);
  514. for (y = 1; y < s->height; y++) {
  515. uint8_t *dst = data + y*stride;
  516. if (s->predictor == PLANE && s->interlaced < y) {
  517. s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
  518. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
  519. &leftr, &leftg, &leftb, &lefta);
  520. } else {
  521. sub_left_prediction_bgr32(s, s->temp[0], dst, width,
  522. &leftr, &leftg, &leftb, &lefta);
  523. }
  524. encode_bgra_bitstream(s, width, 4);
  525. }
  526. } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
  527. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  528. const int stride = -p->linesize[0];
  529. const int fake_stride = -fake_ystride;
  530. int y;
  531. int leftr, leftg, leftb;
  532. put_bits(&s->pb, 8, leftr = data[0]);
  533. put_bits(&s->pb, 8, leftg = data[1]);
  534. put_bits(&s->pb, 8, leftb = data[2]);
  535. put_bits(&s->pb, 8, 0);
  536. sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
  537. &leftr, &leftg, &leftb);
  538. encode_bgra_bitstream(s, width-1, 3);
  539. for (y = 1; y < s->height; y++) {
  540. uint8_t *dst = data + y * stride;
  541. if (s->predictor == PLANE && s->interlaced < y) {
  542. s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
  543. width * 3);
  544. sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
  545. &leftr, &leftg, &leftb);
  546. } else {
  547. sub_left_prediction_rgb24(s, s->temp[0], dst, width,
  548. &leftr, &leftg, &leftb);
  549. }
  550. encode_bgra_bitstream(s, width, 3);
  551. }
  552. } else {
  553. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  554. }
  555. emms_c();
  556. size += (put_bits_count(&s->pb) + 31) / 8;
  557. put_bits(&s->pb, 16, 0);
  558. put_bits(&s->pb, 15, 0);
  559. size /= 4;
  560. if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
  561. int j;
  562. char *p = avctx->stats_out;
  563. char *end = p + 1024*30;
  564. for (i = 0; i < 3; i++) {
  565. for (j = 0; j < 256; j++) {
  566. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  567. p += strlen(p);
  568. s->stats[i][j]= 0;
  569. }
  570. snprintf(p, end-p, "\n");
  571. p++;
  572. }
  573. } else
  574. avctx->stats_out[0] = '\0';
  575. if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  576. flush_put_bits(&s->pb);
  577. s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size);
  578. }
  579. s->picture_number++;
  580. pkt->size = size * 4;
  581. pkt->flags |= AV_PKT_FLAG_KEY;
  582. *got_packet = 1;
  583. return 0;
  584. }
  585. static av_cold int encode_end(AVCodecContext *avctx)
  586. {
  587. HYuvContext *s = avctx->priv_data;
  588. ff_huffyuv_common_end(s);
  589. av_freep(&avctx->extradata);
  590. av_freep(&avctx->stats_out);
  591. av_frame_free(&avctx->coded_frame);
  592. return 0;
  593. }
  594. AVCodec ff_huffyuv_encoder = {
  595. .name = "huffyuv",
  596. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  597. .type = AVMEDIA_TYPE_VIDEO,
  598. .id = AV_CODEC_ID_HUFFYUV,
  599. .priv_data_size = sizeof(HYuvContext),
  600. .init = encode_init,
  601. .encode2 = encode_frame,
  602. .close = encode_end,
  603. .pix_fmts = (const enum AVPixelFormat[]){
  604. AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
  605. AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  606. },
  607. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
  608. FF_CODEC_CAP_INIT_CLEANUP,
  609. };
  610. #if CONFIG_FFVHUFF_ENCODER
  611. AVCodec ff_ffvhuff_encoder = {
  612. .name = "ffvhuff",
  613. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  614. .type = AVMEDIA_TYPE_VIDEO,
  615. .id = AV_CODEC_ID_FFVHUFF,
  616. .priv_data_size = sizeof(HYuvContext),
  617. .init = encode_init,
  618. .encode2 = encode_frame,
  619. .close = encode_end,
  620. .pix_fmts = (const enum AVPixelFormat[]){
  621. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
  622. AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  623. },
  624. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
  625. FF_CODEC_CAP_INIT_CLEANUP,
  626. };
  627. #endif