You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

873 lines
24KB

  1. /*
  2. * HEVC CABAC decoding
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Gildas Cocherel
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include "libavutil/attributes.h"
  24. #include "libavutil/common.h"
  25. #include "cabac_functions.h"
  26. #include "hevc.h"
  27. #define CABAC_MAX_BIN 31
  28. /**
  29. * number of bin by SyntaxElement.
  30. */
  31. av_unused static const int8_t num_bins_in_se[] = {
  32. 1, // sao_merge_flag
  33. 1, // sao_type_idx
  34. 0, // sao_eo_class
  35. 0, // sao_band_position
  36. 0, // sao_offset_abs
  37. 0, // sao_offset_sign
  38. 0, // end_of_slice_flag
  39. 3, // split_coding_unit_flag
  40. 1, // cu_transquant_bypass_flag
  41. 3, // skip_flag
  42. 3, // cu_qp_delta
  43. 1, // pred_mode
  44. 4, // part_mode
  45. 0, // pcm_flag
  46. 1, // prev_intra_luma_pred_mode
  47. 0, // mpm_idx
  48. 0, // rem_intra_luma_pred_mode
  49. 2, // intra_chroma_pred_mode
  50. 1, // merge_flag
  51. 1, // merge_idx
  52. 5, // inter_pred_idc
  53. 2, // ref_idx_l0
  54. 2, // ref_idx_l1
  55. 2, // abs_mvd_greater0_flag
  56. 2, // abs_mvd_greater1_flag
  57. 0, // abs_mvd_minus2
  58. 0, // mvd_sign_flag
  59. 1, // mvp_lx_flag
  60. 1, // no_residual_data_flag
  61. 3, // split_transform_flag
  62. 2, // cbf_luma
  63. 4, // cbf_cb, cbf_cr
  64. 2, // transform_skip_flag[][]
  65. 18, // last_significant_coeff_x_prefix
  66. 18, // last_significant_coeff_y_prefix
  67. 0, // last_significant_coeff_x_suffix
  68. 0, // last_significant_coeff_y_suffix
  69. 4, // significant_coeff_group_flag
  70. 42, // significant_coeff_flag
  71. 24, // coeff_abs_level_greater1_flag
  72. 6, // coeff_abs_level_greater2_flag
  73. 0, // coeff_abs_level_remaining
  74. 0, // coeff_sign_flag
  75. };
  76. /**
  77. * Offset to ctxIdx 0 in init_values and states, indexed by SyntaxElement.
  78. */
  79. static const int elem_offset[sizeof(num_bins_in_se)] = {
  80. 0,
  81. 1,
  82. 2,
  83. 2,
  84. 2,
  85. 2,
  86. 2,
  87. 2,
  88. 5,
  89. 6,
  90. 9,
  91. 12,
  92. 13,
  93. 17,
  94. 17,
  95. 18,
  96. 18,
  97. 18,
  98. 20,
  99. 21,
  100. 22,
  101. 27,
  102. 29,
  103. 31,
  104. 33,
  105. 35,
  106. 35,
  107. 35,
  108. 36,
  109. 37,
  110. 40,
  111. 42,
  112. 46,
  113. 48,
  114. 66,
  115. 84,
  116. 84,
  117. 84,
  118. 88,
  119. 130,
  120. 154,
  121. 160,
  122. 160,
  123. };
  124. #define CNU 154
  125. /**
  126. * Indexed by init_type
  127. */
  128. static const uint8_t init_values[3][HEVC_CONTEXTS] = {
  129. { // sao_merge_flag
  130. 153,
  131. // sao_type_idx
  132. 200,
  133. // split_coding_unit_flag
  134. 139, 141, 157,
  135. // cu_transquant_bypass_flag
  136. 154,
  137. // skip_flag
  138. CNU, CNU, CNU,
  139. // cu_qp_delta
  140. 154, 154, 154,
  141. // pred_mode
  142. CNU,
  143. // part_mode
  144. 184, CNU, CNU, CNU,
  145. // prev_intra_luma_pred_mode
  146. 184,
  147. // intra_chroma_pred_mode
  148. 63, 139,
  149. // merge_flag
  150. CNU,
  151. // merge_idx
  152. CNU,
  153. // inter_pred_idc
  154. CNU, CNU, CNU, CNU, CNU,
  155. // ref_idx_l0
  156. CNU, CNU,
  157. // ref_idx_l1
  158. CNU, CNU,
  159. // abs_mvd_greater1_flag
  160. CNU, CNU,
  161. // abs_mvd_greater1_flag
  162. CNU, CNU,
  163. // mvp_lx_flag
  164. CNU,
  165. // no_residual_data_flag
  166. CNU,
  167. // split_transform_flag
  168. 153, 138, 138,
  169. // cbf_luma
  170. 111, 141,
  171. // cbf_cb, cbf_cr
  172. 94, 138, 182, 154,
  173. // transform_skip_flag
  174. 139, 139,
  175. // last_significant_coeff_x_prefix
  176. 110, 110, 124, 125, 140, 153, 125, 127, 140, 109, 111, 143, 127, 111,
  177. 79, 108, 123, 63,
  178. // last_significant_coeff_y_prefix
  179. 110, 110, 124, 125, 140, 153, 125, 127, 140, 109, 111, 143, 127, 111,
  180. 79, 108, 123, 63,
  181. // significant_coeff_group_flag
  182. 91, 171, 134, 141,
  183. // significant_coeff_flag
  184. 111, 111, 125, 110, 110, 94, 124, 108, 124, 107, 125, 141, 179, 153,
  185. 125, 107, 125, 141, 179, 153, 125, 107, 125, 141, 179, 153, 125, 140,
  186. 139, 182, 182, 152, 136, 152, 136, 153, 136, 139, 111, 136, 139, 111,
  187. // coeff_abs_level_greater1_flag
  188. 140, 92, 137, 138, 140, 152, 138, 139, 153, 74, 149, 92, 139, 107,
  189. 122, 152, 140, 179, 166, 182, 140, 227, 122, 197,
  190. // coeff_abs_level_greater2_flag
  191. 138, 153, 136, 167, 152, 152, },
  192. { // sao_merge_flag
  193. 153,
  194. // sao_type_idx
  195. 185,
  196. // split_coding_unit_flag
  197. 107, 139, 126,
  198. // cu_transquant_bypass_flag
  199. 154,
  200. // skip_flag
  201. 197, 185, 201,
  202. // cu_qp_delta
  203. 154, 154, 154,
  204. // pred_mode
  205. 149,
  206. // part_mode
  207. 154, 139, 154, 154,
  208. // prev_intra_luma_pred_mode
  209. 154,
  210. // intra_chroma_pred_mode
  211. 152, 139,
  212. // merge_flag
  213. 110,
  214. // merge_idx
  215. 122,
  216. // inter_pred_idc
  217. 95, 79, 63, 31, 31,
  218. // ref_idx_l0
  219. 153, 153,
  220. // ref_idx_l1
  221. 153, 153,
  222. // abs_mvd_greater1_flag
  223. 140, 198,
  224. // abs_mvd_greater1_flag
  225. 140, 198,
  226. // mvp_lx_flag
  227. 168,
  228. // no_residual_data_flag
  229. 79,
  230. // split_transform_flag
  231. 124, 138, 94,
  232. // cbf_luma
  233. 153, 111,
  234. // cbf_cb, cbf_cr
  235. 149, 107, 167, 154,
  236. // transform_skip_flag
  237. 139, 139,
  238. // last_significant_coeff_x_prefix
  239. 125, 110, 94, 110, 95, 79, 125, 111, 110, 78, 110, 111, 111, 95,
  240. 94, 108, 123, 108,
  241. // last_significant_coeff_y_prefix
  242. 125, 110, 94, 110, 95, 79, 125, 111, 110, 78, 110, 111, 111, 95,
  243. 94, 108, 123, 108,
  244. // significant_coeff_group_flag
  245. 121, 140, 61, 154,
  246. // significant_coeff_flag
  247. 155, 154, 139, 153, 139, 123, 123, 63, 153, 166, 183, 140, 136, 153,
  248. 154, 166, 183, 140, 136, 153, 154, 166, 183, 140, 136, 153, 154, 170,
  249. 153, 123, 123, 107, 121, 107, 121, 167, 151, 183, 140, 151, 183, 140,
  250. // coeff_abs_level_greater1_flag
  251. 154, 196, 196, 167, 154, 152, 167, 182, 182, 134, 149, 136, 153, 121,
  252. 136, 137, 169, 194, 166, 167, 154, 167, 137, 182,
  253. // coeff_abs_level_greater2_flag
  254. 107, 167, 91, 122, 107, 167, },
  255. { // sao_merge_flag
  256. 153,
  257. // sao_type_idx
  258. 160,
  259. // split_coding_unit_flag
  260. 107, 139, 126,
  261. // cu_transquant_bypass_flag
  262. 154,
  263. // skip_flag
  264. 197, 185, 201,
  265. // cu_qp_delta
  266. 154, 154, 154,
  267. // pred_mode
  268. 134,
  269. // part_mode
  270. 154, 139, 154, 154,
  271. // prev_intra_luma_pred_mode
  272. 183,
  273. // intra_chroma_pred_mode
  274. 152, 139,
  275. // merge_flag
  276. 154,
  277. // merge_idx
  278. 137,
  279. // inter_pred_idc
  280. 95, 79, 63, 31, 31,
  281. // ref_idx_l0
  282. 153, 153,
  283. // ref_idx_l1
  284. 153, 153,
  285. // abs_mvd_greater1_flag
  286. 169, 198,
  287. // abs_mvd_greater1_flag
  288. 169, 198,
  289. // mvp_lx_flag
  290. 168,
  291. // no_residual_data_flag
  292. 79,
  293. // split_transform_flag
  294. 224, 167, 122,
  295. // cbf_luma
  296. 153, 111,
  297. // cbf_cb, cbf_cr
  298. 149, 92, 167, 154,
  299. // transform_skip_flag
  300. 139, 139,
  301. // last_significant_coeff_x_prefix
  302. 125, 110, 124, 110, 95, 94, 125, 111, 111, 79, 125, 126, 111, 111,
  303. 79, 108, 123, 93,
  304. // last_significant_coeff_y_prefix
  305. 125, 110, 124, 110, 95, 94, 125, 111, 111, 79, 125, 126, 111, 111,
  306. 79, 108, 123, 93,
  307. // significant_coeff_group_flag
  308. 121, 140, 61, 154,
  309. // significant_coeff_flag
  310. 170, 154, 139, 153, 139, 123, 123, 63, 124, 166, 183, 140, 136, 153,
  311. 154, 166, 183, 140, 136, 153, 154, 166, 183, 140, 136, 153, 154, 170,
  312. 153, 138, 138, 122, 121, 122, 121, 167, 151, 183, 140, 151, 183, 140,
  313. // coeff_abs_level_greater1_flag
  314. 154, 196, 167, 167, 154, 152, 167, 182, 182, 134, 149, 136, 153, 121,
  315. 136, 122, 169, 208, 166, 167, 154, 152, 167, 182,
  316. // coeff_abs_level_greater2_flag
  317. 107, 167, 91, 107, 107, 167, },
  318. };
  319. void ff_hevc_save_states(HEVCContext *s, int ctb_addr_ts)
  320. {
  321. if (s->pps->entropy_coding_sync_enabled_flag &&
  322. (ctb_addr_ts % s->sps->ctb_width == 2 ||
  323. (s->sps->ctb_width == 2 &&
  324. ctb_addr_ts % s->sps->ctb_width == 0))) {
  325. memcpy(s->cabac_state, s->HEVClc.cabac_state, HEVC_CONTEXTS);
  326. }
  327. }
  328. static void load_states(HEVCContext *s)
  329. {
  330. memcpy(s->HEVClc.cabac_state, s->cabac_state, HEVC_CONTEXTS);
  331. }
  332. static void cabac_reinit(HEVCLocalContext *lc)
  333. {
  334. skip_bytes(&lc->cc, 0);
  335. }
  336. static void cabac_init_decoder(HEVCContext *s)
  337. {
  338. GetBitContext *gb = &s->HEVClc.gb;
  339. skip_bits(gb, 1);
  340. align_get_bits(gb);
  341. ff_init_cabac_decoder(&s->HEVClc.cc,
  342. gb->buffer + get_bits_count(gb) / 8,
  343. (get_bits_left(gb) + 7) / 8);
  344. }
  345. static void cabac_init_state(HEVCContext *s)
  346. {
  347. int init_type = 2 - s->sh.slice_type;
  348. int i;
  349. if (s->sh.cabac_init_flag && s->sh.slice_type != I_SLICE)
  350. init_type ^= 3;
  351. for (i = 0; i < HEVC_CONTEXTS; i++) {
  352. int init_value = init_values[init_type][i];
  353. int m = (init_value >> 4) * 5 - 45;
  354. int n = ((init_value & 15) << 3) - 16;
  355. int pre = 2 * (((m * av_clip(s->sh.slice_qp, 0, 51)) >> 4) + n) - 127;
  356. pre ^= pre >> 31;
  357. if (pre > 124)
  358. pre = 124 + (pre & 1);
  359. s->HEVClc.cabac_state[i] = pre;
  360. }
  361. }
  362. void ff_hevc_cabac_init(HEVCContext *s, int ctb_addr_ts)
  363. {
  364. if (ctb_addr_ts == s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs]) {
  365. cabac_init_decoder(s);
  366. if (s->sh.dependent_slice_segment_flag == 0 ||
  367. (s->pps->tiles_enabled_flag &&
  368. s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]))
  369. cabac_init_state(s);
  370. if (!s->sh.first_slice_in_pic_flag &&
  371. s->pps->entropy_coding_sync_enabled_flag) {
  372. if (ctb_addr_ts % s->sps->ctb_width == 0) {
  373. if (s->sps->ctb_width == 1)
  374. cabac_init_state(s);
  375. else if (s->sh.dependent_slice_segment_flag == 1)
  376. load_states(s);
  377. }
  378. }
  379. } else {
  380. if (s->pps->tiles_enabled_flag &&
  381. s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
  382. cabac_reinit(&s->HEVClc);
  383. cabac_init_state(s);
  384. }
  385. if (s->pps->entropy_coding_sync_enabled_flag) {
  386. if (ctb_addr_ts % s->sps->ctb_width == 0) {
  387. get_cabac_terminate(&s->HEVClc.cc);
  388. cabac_reinit(&s->HEVClc);
  389. if (s->sps->ctb_width == 1)
  390. cabac_init_state(s);
  391. else
  392. load_states(s);
  393. }
  394. }
  395. }
  396. }
  397. #define GET_CABAC(ctx) get_cabac(&s->HEVClc.cc, &s->HEVClc.cabac_state[ctx])
  398. int ff_hevc_sao_merge_flag_decode(HEVCContext *s)
  399. {
  400. return GET_CABAC(elem_offset[SAO_MERGE_FLAG]);
  401. }
  402. int ff_hevc_sao_type_idx_decode(HEVCContext *s)
  403. {
  404. if (!GET_CABAC(elem_offset[SAO_TYPE_IDX]))
  405. return 0;
  406. if (!get_cabac_bypass(&s->HEVClc.cc))
  407. return SAO_BAND;
  408. return SAO_EDGE;
  409. }
  410. int ff_hevc_sao_band_position_decode(HEVCContext *s)
  411. {
  412. int i;
  413. int value = get_cabac_bypass(&s->HEVClc.cc);
  414. for (i = 0; i < 4; i++)
  415. value = (value << 1) | get_cabac_bypass(&s->HEVClc.cc);
  416. return value;
  417. }
  418. int ff_hevc_sao_offset_abs_decode(HEVCContext *s)
  419. {
  420. int i = 0;
  421. int length = (1 << (FFMIN(s->sps->bit_depth, 10) - 5)) - 1;
  422. while (i < length && get_cabac_bypass(&s->HEVClc.cc))
  423. i++;
  424. return i;
  425. }
  426. int ff_hevc_sao_offset_sign_decode(HEVCContext *s)
  427. {
  428. return get_cabac_bypass(&s->HEVClc.cc);
  429. }
  430. int ff_hevc_sao_eo_class_decode(HEVCContext *s)
  431. {
  432. int ret = get_cabac_bypass(&s->HEVClc.cc) << 1;
  433. ret |= get_cabac_bypass(&s->HEVClc.cc);
  434. return ret;
  435. }
  436. int ff_hevc_end_of_slice_flag_decode(HEVCContext *s)
  437. {
  438. return get_cabac_terminate(&s->HEVClc.cc);
  439. }
  440. int ff_hevc_cu_transquant_bypass_flag_decode(HEVCContext *s)
  441. {
  442. return GET_CABAC(elem_offset[CU_TRANSQUANT_BYPASS_FLAG]);
  443. }
  444. int ff_hevc_skip_flag_decode(HEVCContext *s, int x0, int y0, int x_cb, int y_cb)
  445. {
  446. int min_cb_width = s->sps->min_cb_width;
  447. int inc = 0;
  448. int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
  449. int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
  450. if (s->HEVClc.ctb_left_flag || x0b)
  451. inc = !!SAMPLE_CTB(s->skip_flag, x_cb - 1, y_cb);
  452. if (s->HEVClc.ctb_up_flag || y0b)
  453. inc += !!SAMPLE_CTB(s->skip_flag, x_cb, y_cb - 1);
  454. return GET_CABAC(elem_offset[SKIP_FLAG] + inc);
  455. }
  456. int ff_hevc_cu_qp_delta_abs(HEVCContext *s)
  457. {
  458. int prefix_val = 0;
  459. int suffix_val = 0;
  460. int inc = 0;
  461. while (prefix_val < 5 && GET_CABAC(elem_offset[CU_QP_DELTA] + inc)) {
  462. prefix_val++;
  463. inc = 1;
  464. }
  465. if (prefix_val >= 5) {
  466. int k = 0;
  467. while (k < CABAC_MAX_BIN && get_cabac_bypass(&s->HEVClc.cc)) {
  468. suffix_val += 1 << k;
  469. k++;
  470. }
  471. if (k == CABAC_MAX_BIN)
  472. av_log(s->avctx, AV_LOG_ERROR, "CABAC_MAX_BIN : %d\n", k);
  473. while (k--)
  474. suffix_val += get_cabac_bypass(&s->HEVClc.cc) << k;
  475. }
  476. return prefix_val + suffix_val;
  477. }
  478. int ff_hevc_cu_qp_delta_sign_flag(HEVCContext *s)
  479. {
  480. return get_cabac_bypass(&s->HEVClc.cc);
  481. }
  482. int ff_hevc_pred_mode_decode(HEVCContext *s)
  483. {
  484. return GET_CABAC(elem_offset[PRED_MODE_FLAG]);
  485. }
  486. int ff_hevc_split_coding_unit_flag_decode(HEVCContext *s, int ct_depth, int x0, int y0)
  487. {
  488. int inc = 0, depth_left = 0, depth_top = 0;
  489. int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
  490. int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
  491. int x_cb = x0 >> s->sps->log2_min_cb_size;
  492. int y_cb = y0 >> s->sps->log2_min_cb_size;
  493. if (s->HEVClc.ctb_left_flag || x0b)
  494. depth_left = s->tab_ct_depth[(y_cb) * s->sps->min_cb_width + x_cb - 1];
  495. if (s->HEVClc.ctb_up_flag || y0b)
  496. depth_top = s->tab_ct_depth[(y_cb - 1) * s->sps->min_cb_width + x_cb];
  497. inc += (depth_left > ct_depth);
  498. inc += (depth_top > ct_depth);
  499. return GET_CABAC(elem_offset[SPLIT_CODING_UNIT_FLAG] + inc);
  500. }
  501. int ff_hevc_part_mode_decode(HEVCContext *s, int log2_cb_size)
  502. {
  503. if (GET_CABAC(elem_offset[PART_MODE])) // 1
  504. return PART_2Nx2N;
  505. if (log2_cb_size == s->sps->log2_min_cb_size) {
  506. if (s->HEVClc.cu.pred_mode == MODE_INTRA) // 0
  507. return PART_NxN;
  508. if (GET_CABAC(elem_offset[PART_MODE] + 1)) // 01
  509. return PART_2NxN;
  510. if (log2_cb_size == 3) // 00
  511. return PART_Nx2N;
  512. if (GET_CABAC(elem_offset[PART_MODE] + 2)) // 001
  513. return PART_Nx2N;
  514. return PART_NxN; // 000
  515. }
  516. if (!s->sps->amp_enabled_flag) {
  517. if (GET_CABAC(elem_offset[PART_MODE] + 1)) // 01
  518. return PART_2NxN;
  519. return PART_Nx2N;
  520. }
  521. if (GET_CABAC(elem_offset[PART_MODE] + 1)) { // 01X, 01XX
  522. if (GET_CABAC(elem_offset[PART_MODE] + 3)) // 011
  523. return PART_2NxN;
  524. if (get_cabac_bypass(&s->HEVClc.cc)) // 0101
  525. return PART_2NxnD;
  526. return PART_2NxnU; // 0100
  527. }
  528. if (GET_CABAC(elem_offset[PART_MODE] + 3)) // 001
  529. return PART_Nx2N;
  530. if (get_cabac_bypass(&s->HEVClc.cc)) // 0001
  531. return PART_nRx2N;
  532. return PART_nLx2N; // 0000
  533. }
  534. int ff_hevc_pcm_flag_decode(HEVCContext *s)
  535. {
  536. return get_cabac_terminate(&s->HEVClc.cc);
  537. }
  538. int ff_hevc_prev_intra_luma_pred_flag_decode(HEVCContext *s)
  539. {
  540. return GET_CABAC(elem_offset[PREV_INTRA_LUMA_PRED_FLAG]);
  541. }
  542. int ff_hevc_mpm_idx_decode(HEVCContext *s)
  543. {
  544. int i = 0;
  545. while (i < 2 && get_cabac_bypass(&s->HEVClc.cc))
  546. i++;
  547. return i;
  548. }
  549. int ff_hevc_rem_intra_luma_pred_mode_decode(HEVCContext *s)
  550. {
  551. int i;
  552. int value = get_cabac_bypass(&s->HEVClc.cc);
  553. for (i = 0; i < 4; i++)
  554. value = (value << 1) | get_cabac_bypass(&s->HEVClc.cc);
  555. return value;
  556. }
  557. int ff_hevc_intra_chroma_pred_mode_decode(HEVCContext *s)
  558. {
  559. int ret;
  560. if (!GET_CABAC(elem_offset[INTRA_CHROMA_PRED_MODE]))
  561. return 4;
  562. ret = get_cabac_bypass(&s->HEVClc.cc) << 1;
  563. ret |= get_cabac_bypass(&s->HEVClc.cc);
  564. return ret;
  565. }
  566. int ff_hevc_merge_idx_decode(HEVCContext *s)
  567. {
  568. int i = GET_CABAC(elem_offset[MERGE_IDX]);
  569. if (i != 0) {
  570. while (i < s->sh.max_num_merge_cand-1 && get_cabac_bypass(&s->HEVClc.cc))
  571. i++;
  572. }
  573. return i;
  574. }
  575. int ff_hevc_merge_flag_decode(HEVCContext *s)
  576. {
  577. return GET_CABAC(elem_offset[MERGE_FLAG]);
  578. }
  579. int ff_hevc_inter_pred_idc_decode(HEVCContext *s, int nPbW, int nPbH)
  580. {
  581. if (nPbW + nPbH == 12)
  582. return GET_CABAC(elem_offset[INTER_PRED_IDC] + 4);
  583. if (GET_CABAC(elem_offset[INTER_PRED_IDC] + s->HEVClc.ct.depth))
  584. return PRED_BI;
  585. return GET_CABAC(elem_offset[INTER_PRED_IDC] + 4);
  586. }
  587. int ff_hevc_ref_idx_lx_decode(HEVCContext *s, int num_ref_idx_lx)
  588. {
  589. int i = 0;
  590. int max = num_ref_idx_lx - 1;
  591. int max_ctx = FFMIN(max, 2);
  592. while (i < max_ctx && GET_CABAC(elem_offset[REF_IDX_L0] + i))
  593. i++;
  594. if (i == 2) {
  595. while (i < max && get_cabac_bypass(&s->HEVClc.cc))
  596. i++;
  597. }
  598. return i;
  599. }
  600. int ff_hevc_mvp_lx_flag_decode(HEVCContext *s)
  601. {
  602. return GET_CABAC(elem_offset[MVP_LX_FLAG]);
  603. }
  604. int ff_hevc_no_residual_syntax_flag_decode(HEVCContext *s)
  605. {
  606. return GET_CABAC(elem_offset[NO_RESIDUAL_DATA_FLAG]);
  607. }
  608. int ff_hevc_abs_mvd_greater0_flag_decode(HEVCContext *s)
  609. {
  610. return GET_CABAC(elem_offset[ABS_MVD_GREATER0_FLAG]);
  611. }
  612. int ff_hevc_abs_mvd_greater1_flag_decode(HEVCContext *s)
  613. {
  614. return GET_CABAC(elem_offset[ABS_MVD_GREATER1_FLAG] + 1);
  615. }
  616. int ff_hevc_mvd_decode(HEVCContext *s)
  617. {
  618. int ret = 2;
  619. int k = 1;
  620. while (k < CABAC_MAX_BIN && get_cabac_bypass(&s->HEVClc.cc)) {
  621. ret += 1 << k;
  622. k++;
  623. }
  624. if (k == CABAC_MAX_BIN)
  625. av_log(s->avctx, AV_LOG_ERROR, "CABAC_MAX_BIN : %d\n", k);
  626. while (k--)
  627. ret += get_cabac_bypass(&s->HEVClc.cc) << k;
  628. return get_cabac_bypass_sign(&s->HEVClc.cc, -ret);
  629. }
  630. int ff_hevc_mvd_sign_flag_decode(HEVCContext *s)
  631. {
  632. return get_cabac_bypass_sign(&s->HEVClc.cc, -1);
  633. }
  634. int ff_hevc_split_transform_flag_decode(HEVCContext *s, int log2_trafo_size)
  635. {
  636. return GET_CABAC(elem_offset[SPLIT_TRANSFORM_FLAG] + 5 - log2_trafo_size);
  637. }
  638. int ff_hevc_cbf_cb_cr_decode(HEVCContext *s, int trafo_depth)
  639. {
  640. return GET_CABAC(elem_offset[CBF_CB_CR] + trafo_depth);
  641. }
  642. int ff_hevc_cbf_luma_decode(HEVCContext *s, int trafo_depth)
  643. {
  644. return GET_CABAC(elem_offset[CBF_LUMA] + !trafo_depth);
  645. }
  646. int ff_hevc_transform_skip_flag_decode(HEVCContext *s, int c_idx)
  647. {
  648. return GET_CABAC(elem_offset[TRANSFORM_SKIP_FLAG] + !!c_idx);
  649. }
  650. #define LAST_SIG_COEFF(elem) \
  651. int i = 0; \
  652. int max = (log2_size << 1) - 1; \
  653. int ctx_offset, ctx_shift; \
  654. \
  655. if (c_idx == 0) { \
  656. ctx_offset = 3 * (log2_size - 2) + ((log2_size - 1) >> 2); \
  657. ctx_shift = (log2_size + 1) >> 2; \
  658. } else { \
  659. ctx_offset = 15; \
  660. ctx_shift = log2_size - 2; \
  661. } \
  662. while (i < max && \
  663. GET_CABAC(elem_offset[elem] + (i >> ctx_shift) + ctx_offset)) \
  664. i++; \
  665. return i;
  666. int ff_hevc_last_significant_coeff_x_prefix_decode(HEVCContext *s, int c_idx,
  667. int log2_size)
  668. {
  669. LAST_SIG_COEFF(LAST_SIGNIFICANT_COEFF_X_PREFIX)
  670. }
  671. int ff_hevc_last_significant_coeff_y_prefix_decode(HEVCContext *s, int c_idx,
  672. int log2_size)
  673. {
  674. LAST_SIG_COEFF(LAST_SIGNIFICANT_COEFF_Y_PREFIX)
  675. }
  676. int ff_hevc_last_significant_coeff_suffix_decode(HEVCContext *s,
  677. int last_significant_coeff_prefix)
  678. {
  679. int i;
  680. int length = (last_significant_coeff_prefix >> 1) - 1;
  681. int value = get_cabac_bypass(&s->HEVClc.cc);
  682. for (i = 1; i < length; i++)
  683. value = (value << 1) | get_cabac_bypass(&s->HEVClc.cc);
  684. return value;
  685. }
  686. int ff_hevc_significant_coeff_group_flag_decode(HEVCContext *s, int c_idx, int ctx_cg)
  687. {
  688. int inc;
  689. inc = FFMIN(ctx_cg, 1) + (c_idx>0 ? 2 : 0);
  690. return GET_CABAC(elem_offset[SIGNIFICANT_COEFF_GROUP_FLAG] + inc);
  691. }
  692. int ff_hevc_significant_coeff_flag_decode(HEVCContext *s, int c_idx, int x_c, int y_c,
  693. int log2_trafo_size, int scan_idx, int prev_sig)
  694. {
  695. static const uint8_t ctx_idx_map[] = {
  696. 0, 1, 4, 5, 2, 3, 4, 5, 6, 6, 8, 8, 7, 7, 8, 8
  697. };
  698. int x_cg = x_c >> 2;
  699. int y_cg = y_c >> 2;
  700. int sig_ctx, inc;
  701. if (x_c + y_c == 0) {
  702. sig_ctx = 0;
  703. } else if (log2_trafo_size == 2) {
  704. sig_ctx = ctx_idx_map[(y_c << 2) + x_c];
  705. } else {
  706. switch (prev_sig) {
  707. case 0: {
  708. int x_off = x_c & 3;
  709. int y_off = y_c & 3;
  710. sig_ctx = ((x_off + y_off) == 0) ? 2 : ((x_off + y_off) <= 2) ? 1 : 0;
  711. }
  712. break;
  713. case 1:
  714. sig_ctx = 2 - FFMIN(y_c & 3, 2);
  715. break;
  716. case 2:
  717. sig_ctx = 2 - FFMIN(x_c & 3, 2);
  718. break;
  719. default:
  720. sig_ctx = 2;
  721. }
  722. if (c_idx == 0 && (x_cg > 0 || y_cg > 0))
  723. sig_ctx += 3;
  724. if (log2_trafo_size == 3) {
  725. sig_ctx += (scan_idx == SCAN_DIAG) ? 9 : 15;
  726. } else {
  727. sig_ctx += c_idx ? 12 : 21;
  728. }
  729. }
  730. if (c_idx == 0)
  731. inc = sig_ctx;
  732. else
  733. inc = sig_ctx + 27;
  734. return GET_CABAC(elem_offset[SIGNIFICANT_COEFF_FLAG] + inc);
  735. }
  736. int ff_hevc_coeff_abs_level_greater1_flag_decode(HEVCContext *s, int c_idx, int inc)
  737. {
  738. if (c_idx > 0)
  739. inc += 16;
  740. return GET_CABAC(elem_offset[COEFF_ABS_LEVEL_GREATER1_FLAG] + inc);
  741. }
  742. int ff_hevc_coeff_abs_level_greater2_flag_decode(HEVCContext *s, int c_idx, int inc)
  743. {
  744. if (c_idx > 0)
  745. inc += 4;
  746. return GET_CABAC(elem_offset[COEFF_ABS_LEVEL_GREATER2_FLAG] + inc);
  747. }
  748. int ff_hevc_coeff_abs_level_remaining(HEVCContext *s, int base_level, int rc_rice_param)
  749. {
  750. int prefix = 0;
  751. int suffix = 0;
  752. int last_coeff_abs_level_remaining;
  753. int i;
  754. while (prefix < CABAC_MAX_BIN && get_cabac_bypass(&s->HEVClc.cc))
  755. prefix++;
  756. if (prefix == CABAC_MAX_BIN)
  757. av_log(s->avctx, AV_LOG_ERROR, "CABAC_MAX_BIN : %d\n", prefix);
  758. if (prefix < 3) {
  759. for (i = 0; i < rc_rice_param; i++)
  760. suffix = (suffix << 1) | get_cabac_bypass(&s->HEVClc.cc);
  761. last_coeff_abs_level_remaining = (prefix << rc_rice_param) + suffix;
  762. } else {
  763. int prefix_minus3 = prefix - 3;
  764. for (i = 0; i < prefix_minus3 + rc_rice_param; i++)
  765. suffix = (suffix << 1) | get_cabac_bypass(&s->HEVClc.cc);
  766. last_coeff_abs_level_remaining = (((1 << prefix_minus3) + 3 - 1)
  767. << rc_rice_param) + suffix;
  768. }
  769. return last_coeff_abs_level_remaining;
  770. }
  771. int ff_hevc_coeff_sign_flag(HEVCContext *s, uint8_t nb)
  772. {
  773. int i;
  774. int ret = 0;
  775. for (i = 0; i < nb; i++)
  776. ret = (ret << 1) | get_cabac_bypass(&s->HEVClc.cc);
  777. return ret;
  778. }