You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

747 lines
33KB

  1. /*
  2. * HEVC video decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2013 Seppo Tomperi
  6. * Copyright (C) 2013 Wassim Hamidouche
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "libavutil/common.h"
  25. #include "libavutil/internal.h"
  26. #include "cabac_functions.h"
  27. #include "golomb.h"
  28. #include "hevc.h"
  29. #include "bit_depth_template.c"
  30. #define LUMA 0
  31. #define CB 1
  32. #define CR 2
  33. static const uint8_t tctable[54] = {
  34. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18
  35. 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37
  36. 5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 // QP 38...53
  37. };
  38. static const uint8_t betatable[52] = {
  39. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18
  40. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37
  41. 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 // QP 38...51
  42. };
  43. static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
  44. {
  45. static const int qp_c[] = {
  46. 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
  47. };
  48. int qp, qp_i, offset, idxt;
  49. // slice qp offset is not used for deblocking
  50. if (c_idx == 1)
  51. offset = s->pps->cb_qp_offset;
  52. else
  53. offset = s->pps->cr_qp_offset;
  54. qp_i = av_clip(qp_y + offset, 0, 57);
  55. if (s->sps->chroma_format_idc == 1) {
  56. if (qp_i < 30)
  57. qp = qp_i;
  58. else if (qp_i > 43)
  59. qp = qp_i - 6;
  60. else
  61. qp = qp_c[qp_i - 30];
  62. } else {
  63. qp = av_clip(qp_i, 0, 51);
  64. }
  65. idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
  66. return tctable[idxt];
  67. }
  68. static int get_qPy_pred(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
  69. {
  70. HEVCLocalContext *lc = s->HEVClc;
  71. int ctb_size_mask = (1 << s->sps->log2_ctb_size) - 1;
  72. int MinCuQpDeltaSizeMask = (1 << (s->sps->log2_ctb_size -
  73. s->pps->diff_cu_qp_delta_depth)) - 1;
  74. int xQgBase = xBase - (xBase & MinCuQpDeltaSizeMask);
  75. int yQgBase = yBase - (yBase & MinCuQpDeltaSizeMask);
  76. int min_cb_width = s->sps->min_cb_width;
  77. int x_cb = xQgBase >> s->sps->log2_min_cb_size;
  78. int y_cb = yQgBase >> s->sps->log2_min_cb_size;
  79. int availableA = (xBase & ctb_size_mask) &&
  80. (xQgBase & ctb_size_mask);
  81. int availableB = (yBase & ctb_size_mask) &&
  82. (yQgBase & ctb_size_mask);
  83. int qPy_pred, qPy_a, qPy_b;
  84. // qPy_pred
  85. if (lc->first_qp_group || (!xQgBase && !yQgBase)) {
  86. lc->first_qp_group = !lc->tu.is_cu_qp_delta_coded;
  87. qPy_pred = s->sh.slice_qp;
  88. } else {
  89. qPy_pred = lc->qPy_pred;
  90. }
  91. // qPy_a
  92. if (availableA == 0)
  93. qPy_a = qPy_pred;
  94. else
  95. qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];
  96. // qPy_b
  97. if (availableB == 0)
  98. qPy_b = qPy_pred;
  99. else
  100. qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];
  101. av_assert2(qPy_a >= -s->sps->qp_bd_offset && qPy_a < 52);
  102. av_assert2(qPy_b >= -s->sps->qp_bd_offset && qPy_b < 52);
  103. return (qPy_a + qPy_b + 1) >> 1;
  104. }
  105. void ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase, int log2_cb_size)
  106. {
  107. int qp_y = get_qPy_pred(s, xBase, yBase, log2_cb_size);
  108. if (s->HEVClc->tu.cu_qp_delta != 0) {
  109. int off = s->sps->qp_bd_offset;
  110. s->HEVClc->qp_y = FFUMOD(qp_y + s->HEVClc->tu.cu_qp_delta + 52 + 2 * off,
  111. 52 + off) - off;
  112. } else
  113. s->HEVClc->qp_y = qp_y;
  114. }
  115. static int get_qPy(HEVCContext *s, int xC, int yC)
  116. {
  117. int log2_min_cb_size = s->sps->log2_min_cb_size;
  118. int x = xC >> log2_min_cb_size;
  119. int y = yC >> log2_min_cb_size;
  120. return s->qp_y_tab[x + y * s->sps->min_cb_width];
  121. }
  122. static void copy_CTB(uint8_t *dst, uint8_t *src, int width, int height,
  123. intptr_t stride_dst, intptr_t stride_src)
  124. {
  125. int i, j;
  126. if (((intptr_t)dst | (intptr_t)src | stride_dst | stride_src) & 15) {
  127. for (i = 0; i < height; i++) {
  128. for (j = 0; j < width; j+=8)
  129. AV_COPY64(dst+j, src+j);
  130. dst += stride_dst;
  131. src += stride_src;
  132. }
  133. } else {
  134. for (i = 0; i < height; i++) {
  135. for (j = 0; j < width; j+=16)
  136. AV_COPY128(dst+j, src+j);
  137. dst += stride_dst;
  138. src += stride_src;
  139. }
  140. }
  141. }
  142. static void restore_tqb_pixels(HEVCContext *s, int x0, int y0, int width, int height, int c_idx)
  143. {
  144. if ( s->pps->transquant_bypass_enable_flag ||
  145. (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) {
  146. int x, y;
  147. ptrdiff_t stride_dst = s->sao_frame->linesize[c_idx];
  148. ptrdiff_t stride_src = s->frame->linesize[c_idx];
  149. int min_pu_size = 1 << s->sps->log2_min_pu_size;
  150. int hshift = s->sps->hshift[c_idx];
  151. int vshift = s->sps->vshift[c_idx];
  152. int x_min = ((x0 ) >> s->sps->log2_min_pu_size);
  153. int y_min = ((y0 ) >> s->sps->log2_min_pu_size);
  154. int x_max = ((x0 + width ) >> s->sps->log2_min_pu_size);
  155. int y_max = ((y0 + height) >> s->sps->log2_min_pu_size);
  156. int len = min_pu_size >> hshift;
  157. for (y = y_min; y < y_max; y++) {
  158. for (x = x_min; x < x_max; x++) {
  159. if (s->is_pcm[y * s->sps->min_pu_width + x]) {
  160. int n;
  161. uint8_t *src = &s->frame->data[c_idx][ ((y << s->sps->log2_min_pu_size) >> vshift) * stride_src + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
  162. uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride_dst + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
  163. for (n = 0; n < (min_pu_size >> vshift); n++) {
  164. memcpy(src, dst, len);
  165. src += stride_src;
  166. dst += stride_dst;
  167. }
  168. }
  169. }
  170. }
  171. }
  172. }
  173. #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
  174. static void sao_filter_CTB(HEVCContext *s, int x, int y)
  175. {
  176. static const uint8_t band_tab[8] = { 0, 1, 2, 2, 3, 3, 4, 4 };
  177. int c_idx;
  178. int edges[4]; // 0 left 1 top 2 right 3 bottom
  179. int x_ctb = x >> s->sps->log2_ctb_size;
  180. int y_ctb = y >> s->sps->log2_ctb_size;
  181. int ctb_addr_rs = y_ctb * s->sps->ctb_width + x_ctb;
  182. int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  183. SAOParams *sao = &CTB(s->sao, x_ctb, y_ctb);
  184. // flags indicating unfilterable edges
  185. uint8_t vert_edge[] = { 0, 0 };
  186. uint8_t horiz_edge[] = { 0, 0 };
  187. uint8_t diag_edge[] = { 0, 0, 0, 0 };
  188. uint8_t lfase = CTB(s->filter_slice_edges, x_ctb, y_ctb);
  189. uint8_t no_tile_filter = s->pps->tiles_enabled_flag &&
  190. !s->pps->loop_filter_across_tiles_enabled_flag;
  191. uint8_t restore = no_tile_filter || !lfase;
  192. uint8_t left_tile_edge = 0;
  193. uint8_t right_tile_edge = 0;
  194. uint8_t up_tile_edge = 0;
  195. uint8_t bottom_tile_edge = 0;
  196. edges[0] = x_ctb == 0;
  197. edges[1] = y_ctb == 0;
  198. edges[2] = x_ctb == s->sps->ctb_width - 1;
  199. edges[3] = y_ctb == s->sps->ctb_height - 1;
  200. if (restore) {
  201. if (!edges[0]) {
  202. left_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
  203. vert_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
  204. }
  205. if (!edges[2]) {
  206. right_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1]];
  207. vert_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb)) || right_tile_edge;
  208. }
  209. if (!edges[1]) {
  210. up_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]];
  211. horiz_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
  212. }
  213. if (!edges[3]) {
  214. bottom_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs + s->sps->ctb_width]];
  215. horiz_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb + 1)) || bottom_tile_edge;
  216. }
  217. if (!edges[0] && !edges[1]) {
  218. diag_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
  219. }
  220. if (!edges[1] && !edges[2]) {
  221. diag_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb - 1)) || right_tile_edge || up_tile_edge;
  222. }
  223. if (!edges[2] && !edges[3]) {
  224. diag_edge[2] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb + 1)) || right_tile_edge || bottom_tile_edge;
  225. }
  226. if (!edges[0] && !edges[3]) {
  227. diag_edge[3] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb + 1)) || left_tile_edge || bottom_tile_edge;
  228. }
  229. }
  230. for (c_idx = 0; c_idx < (s->sps->chroma_format_idc ? 3 : 1); c_idx++) {
  231. int x0 = x >> s->sps->hshift[c_idx];
  232. int y0 = y >> s->sps->vshift[c_idx];
  233. int stride_src = s->frame->linesize[c_idx];
  234. int stride_dst = s->sao_frame->linesize[c_idx];
  235. int ctb_size_h = (1 << (s->sps->log2_ctb_size)) >> s->sps->hshift[c_idx];
  236. int ctb_size_v = (1 << (s->sps->log2_ctb_size)) >> s->sps->vshift[c_idx];
  237. int width = FFMIN(ctb_size_h, (s->sps->width >> s->sps->hshift[c_idx]) - x0);
  238. int height = FFMIN(ctb_size_v, (s->sps->height >> s->sps->vshift[c_idx]) - y0);
  239. int tab = band_tab[(FFALIGN(width, 8) >> 3) - 1];
  240. uint8_t *src = &s->frame->data[c_idx][y0 * stride_src + (x0 << s->sps->pixel_shift)];
  241. uint8_t *dst = &s->sao_frame->data[c_idx][y0 * stride_dst + (x0 << s->sps->pixel_shift)];
  242. switch (sao->type_idx[c_idx]) {
  243. case SAO_BAND:
  244. copy_CTB(dst, src, width << s->sps->pixel_shift, height, stride_dst, stride_src);
  245. s->hevcdsp.sao_band_filter[tab](src, dst, stride_src, stride_dst,
  246. sao->offset_val[c_idx], sao->band_position[c_idx],
  247. width, height);
  248. restore_tqb_pixels(s, x, y, width, height, c_idx);
  249. sao->type_idx[c_idx] = SAO_APPLIED;
  250. break;
  251. case SAO_EDGE:
  252. {
  253. uint8_t left_pixels = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb).type_idx[c_idx] != SAO_APPLIED);
  254. if (!edges[1]) {
  255. uint8_t top_left = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb-1).type_idx[c_idx] != SAO_APPLIED);
  256. uint8_t top_right = !edges[2] && (CTB(s->sao, x_ctb+1, y_ctb-1).type_idx[c_idx] != SAO_APPLIED);
  257. if (CTB(s->sao, x_ctb , y_ctb-1).type_idx[c_idx] == 0)
  258. memcpy( dst - stride_dst - (top_left << s->sps->pixel_shift),
  259. src - stride_src - (top_left << s->sps->pixel_shift),
  260. (top_left + width + top_right) << s->sps->pixel_shift);
  261. else {
  262. if (top_left)
  263. memcpy( dst - stride_dst - (1 << s->sps->pixel_shift),
  264. src - stride_src - (1 << s->sps->pixel_shift),
  265. 1 << s->sps->pixel_shift);
  266. if(top_right)
  267. memcpy( dst - stride_dst + (width << s->sps->pixel_shift),
  268. src - stride_src + (width << s->sps->pixel_shift),
  269. 1 << s->sps->pixel_shift);
  270. }
  271. }
  272. if (!edges[3]) { // bottom and bottom right
  273. uint8_t bottom_left = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb+1).type_idx[c_idx] != SAO_APPLIED);
  274. memcpy( dst + height * stride_dst - (bottom_left << s->sps->pixel_shift),
  275. src + height * stride_src - (bottom_left << s->sps->pixel_shift),
  276. (width + 1 + bottom_left) << s->sps->pixel_shift);
  277. }
  278. copy_CTB(dst - (left_pixels << s->sps->pixel_shift),
  279. src - (left_pixels << s->sps->pixel_shift),
  280. (width + 1 + left_pixels) << s->sps->pixel_shift, height, stride_dst, stride_src);
  281. s->hevcdsp.sao_edge_filter[restore](src, dst,
  282. stride_src, stride_dst,
  283. sao,
  284. edges, width,
  285. height, c_idx,
  286. vert_edge,
  287. horiz_edge,
  288. diag_edge);
  289. restore_tqb_pixels(s, x, y, width, height, c_idx);
  290. sao->type_idx[c_idx] = SAO_APPLIED;
  291. break;
  292. }
  293. }
  294. }
  295. }
  296. static int get_pcm(HEVCContext *s, int x, int y)
  297. {
  298. int log2_min_pu_size = s->sps->log2_min_pu_size;
  299. int x_pu, y_pu;
  300. if (x < 0 || y < 0)
  301. return 2;
  302. x_pu = x >> log2_min_pu_size;
  303. y_pu = y >> log2_min_pu_size;
  304. if (x_pu >= s->sps->min_pu_width || y_pu >= s->sps->min_pu_height)
  305. return 2;
  306. return s->is_pcm[y_pu * s->sps->min_pu_width + x_pu];
  307. }
  308. #define TC_CALC(qp, bs) \
  309. tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \
  310. (tc_offset >> 1 << 1), \
  311. 0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
  312. static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
  313. {
  314. uint8_t *src;
  315. int x, y;
  316. int chroma, beta;
  317. int32_t c_tc[2], tc[2];
  318. uint8_t no_p[2] = { 0 };
  319. uint8_t no_q[2] = { 0 };
  320. int log2_ctb_size = s->sps->log2_ctb_size;
  321. int x_end, x_end2, y_end;
  322. int ctb_size = 1 << log2_ctb_size;
  323. int ctb = (x0 >> log2_ctb_size) +
  324. (y0 >> log2_ctb_size) * s->sps->ctb_width;
  325. int cur_tc_offset = s->deblock[ctb].tc_offset;
  326. int cur_beta_offset = s->deblock[ctb].beta_offset;
  327. int left_tc_offset, left_beta_offset;
  328. int tc_offset, beta_offset;
  329. int pcmf = (s->sps->pcm_enabled_flag &&
  330. s->sps->pcm.loop_filter_disable_flag) ||
  331. s->pps->transquant_bypass_enable_flag;
  332. if (x0) {
  333. left_tc_offset = s->deblock[ctb - 1].tc_offset;
  334. left_beta_offset = s->deblock[ctb - 1].beta_offset;
  335. } else {
  336. left_tc_offset = 0;
  337. left_beta_offset = 0;
  338. }
  339. x_end = x0 + ctb_size;
  340. if (x_end > s->sps->width)
  341. x_end = s->sps->width;
  342. y_end = y0 + ctb_size;
  343. if (y_end > s->sps->height)
  344. y_end = s->sps->height;
  345. tc_offset = cur_tc_offset;
  346. beta_offset = cur_beta_offset;
  347. x_end2 = x_end;
  348. if (x_end2 != s->sps->width)
  349. x_end2 -= 8;
  350. for (y = y0; y < y_end; y += 8) {
  351. // vertical filtering luma
  352. for (x = x0 ? x0 : 8; x < x_end; x += 8) {
  353. const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
  354. const int bs1 = s->vertical_bs[(x + (y + 4) * s->bs_width) >> 2];
  355. if (bs0 || bs1) {
  356. const int qp = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
  357. beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
  358. tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
  359. tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
  360. src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
  361. if (pcmf) {
  362. no_p[0] = get_pcm(s, x - 1, y);
  363. no_p[1] = get_pcm(s, x - 1, y + 4);
  364. no_q[0] = get_pcm(s, x, y);
  365. no_q[1] = get_pcm(s, x, y + 4);
  366. s->hevcdsp.hevc_v_loop_filter_luma_c(src,
  367. s->frame->linesize[LUMA],
  368. beta, tc, no_p, no_q);
  369. } else
  370. s->hevcdsp.hevc_v_loop_filter_luma(src,
  371. s->frame->linesize[LUMA],
  372. beta, tc, no_p, no_q);
  373. }
  374. }
  375. if(!y)
  376. continue;
  377. // horizontal filtering luma
  378. for (x = x0 ? x0 - 8 : 0; x < x_end2; x += 8) {
  379. const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
  380. const int bs1 = s->horizontal_bs[((x + 4) + y * s->bs_width) >> 2];
  381. if (bs0 || bs1) {
  382. const int qp = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1;
  383. tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
  384. beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
  385. beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
  386. tc[0] = bs0 ? TC_CALC(qp, bs0) : 0;
  387. tc[1] = bs1 ? TC_CALC(qp, bs1) : 0;
  388. src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
  389. if (pcmf) {
  390. no_p[0] = get_pcm(s, x, y - 1);
  391. no_p[1] = get_pcm(s, x + 4, y - 1);
  392. no_q[0] = get_pcm(s, x, y);
  393. no_q[1] = get_pcm(s, x + 4, y);
  394. s->hevcdsp.hevc_h_loop_filter_luma_c(src,
  395. s->frame->linesize[LUMA],
  396. beta, tc, no_p, no_q);
  397. } else
  398. s->hevcdsp.hevc_h_loop_filter_luma(src,
  399. s->frame->linesize[LUMA],
  400. beta, tc, no_p, no_q);
  401. }
  402. }
  403. }
  404. if (s->sps->chroma_format_idc) {
  405. for (chroma = 1; chroma <= 2; chroma++) {
  406. int h = 1 << s->sps->hshift[chroma];
  407. int v = 1 << s->sps->vshift[chroma];
  408. // vertical filtering chroma
  409. for (y = y0; y < y_end; y += (8 * v)) {
  410. for (x = x0 ? x0 : 8 * h; x < x_end; x += (8 * h)) {
  411. const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2];
  412. const int bs1 = s->vertical_bs[(x + (y + (4 * v)) * s->bs_width) >> 2];
  413. if ((bs0 == 2) || (bs1 == 2)) {
  414. const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
  415. const int qp1 = (get_qPy(s, x - 1, y + (4 * v)) + get_qPy(s, x, y + (4 * v)) + 1) >> 1;
  416. c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
  417. c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0;
  418. src = &s->frame->data[chroma][(y >> s->sps->vshift[chroma]) * s->frame->linesize[chroma] + ((x >> s->sps->hshift[chroma]) << s->sps->pixel_shift)];
  419. if (pcmf) {
  420. no_p[0] = get_pcm(s, x - 1, y);
  421. no_p[1] = get_pcm(s, x - 1, y + (4 * v));
  422. no_q[0] = get_pcm(s, x, y);
  423. no_q[1] = get_pcm(s, x, y + (4 * v));
  424. s->hevcdsp.hevc_v_loop_filter_chroma_c(src,
  425. s->frame->linesize[chroma],
  426. c_tc, no_p, no_q);
  427. } else
  428. s->hevcdsp.hevc_v_loop_filter_chroma(src,
  429. s->frame->linesize[chroma],
  430. c_tc, no_p, no_q);
  431. }
  432. }
  433. if(!y)
  434. continue;
  435. // horizontal filtering chroma
  436. tc_offset = x0 ? left_tc_offset : cur_tc_offset;
  437. x_end2 = x_end;
  438. if (x_end != s->sps->width)
  439. x_end2 = x_end - 8 * h;
  440. for (x = x0 ? x0 - 8 * h : 0; x < x_end2; x += (8 * h)) {
  441. const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2];
  442. const int bs1 = s->horizontal_bs[((x + 4 * h) + y * s->bs_width) >> 2];
  443. if ((bs0 == 2) || (bs1 == 2)) {
  444. const int qp0 = bs0 == 2 ? (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1 : 0;
  445. const int qp1 = bs1 == 2 ? (get_qPy(s, x + (4 * h), y - 1) + get_qPy(s, x + (4 * h), y) + 1) >> 1 : 0;
  446. c_tc[0] = bs0 == 2 ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
  447. c_tc[1] = bs1 == 2 ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0;
  448. src = &s->frame->data[chroma][(y >> s->sps->vshift[1]) * s->frame->linesize[chroma] + ((x >> s->sps->hshift[1]) << s->sps->pixel_shift)];
  449. if (pcmf) {
  450. no_p[0] = get_pcm(s, x, y - 1);
  451. no_p[1] = get_pcm(s, x + (4 * h), y - 1);
  452. no_q[0] = get_pcm(s, x, y);
  453. no_q[1] = get_pcm(s, x + (4 * h), y);
  454. s->hevcdsp.hevc_h_loop_filter_chroma_c(src,
  455. s->frame->linesize[chroma],
  456. c_tc, no_p, no_q);
  457. } else
  458. s->hevcdsp.hevc_h_loop_filter_chroma(src,
  459. s->frame->linesize[chroma],
  460. c_tc, no_p, no_q);
  461. }
  462. }
  463. }
  464. }
  465. }
  466. }
  467. static int boundary_strength(HEVCContext *s, MvField *curr, MvField *neigh,
  468. RefPicList *neigh_refPicList)
  469. {
  470. if (curr->pred_flag == PF_BI && neigh->pred_flag == PF_BI) {
  471. // same L0 and L1
  472. if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] &&
  473. s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] &&
  474. neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
  475. if ((FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
  476. FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
  477. (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
  478. FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4))
  479. return 1;
  480. else
  481. return 0;
  482. } else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
  483. neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
  484. if (FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
  485. FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4)
  486. return 1;
  487. else
  488. return 0;
  489. } else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
  490. neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
  491. if (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
  492. FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4)
  493. return 1;
  494. else
  495. return 0;
  496. } else {
  497. return 1;
  498. }
  499. } else if ((curr->pred_flag != PF_BI) && (neigh->pred_flag != PF_BI)){ // 1 MV
  500. Mv A, B;
  501. int ref_A, ref_B;
  502. if (curr->pred_flag & 1) {
  503. A = curr->mv[0];
  504. ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]];
  505. } else {
  506. A = curr->mv[1];
  507. ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]];
  508. }
  509. if (neigh->pred_flag & 1) {
  510. B = neigh->mv[0];
  511. ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
  512. } else {
  513. B = neigh->mv[1];
  514. ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
  515. }
  516. if (ref_A == ref_B) {
  517. if (FFABS(A.x - B.x) >= 4 || FFABS(A.y - B.y) >= 4)
  518. return 1;
  519. else
  520. return 0;
  521. } else
  522. return 1;
  523. }
  524. return 1;
  525. }
  526. void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0,
  527. int log2_trafo_size)
  528. {
  529. HEVCLocalContext *lc = s->HEVClc;
  530. MvField *tab_mvf = s->ref->tab_mvf;
  531. int log2_min_pu_size = s->sps->log2_min_pu_size;
  532. int log2_min_tu_size = s->sps->log2_min_tb_size;
  533. int min_pu_width = s->sps->min_pu_width;
  534. int min_tu_width = s->sps->min_tb_width;
  535. int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
  536. (x0 >> log2_min_pu_size)].pred_flag == PF_INTRA;
  537. int boundary_upper, boundary_left;
  538. int i, j, bs;
  539. boundary_upper = y0 > 0 && !(y0 & 7);
  540. if (boundary_upper &&
  541. ((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
  542. lc->boundary_flags & BOUNDARY_UPPER_SLICE &&
  543. (y0 % (1 << s->sps->log2_ctb_size)) == 0) ||
  544. (!s->pps->loop_filter_across_tiles_enabled_flag &&
  545. lc->boundary_flags & BOUNDARY_UPPER_TILE &&
  546. (y0 % (1 << s->sps->log2_ctb_size)) == 0)))
  547. boundary_upper = 0;
  548. if (boundary_upper) {
  549. RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ?
  550. ff_hevc_get_ref_list(s, s->ref, x0, y0 - 1) :
  551. s->ref->refPicList;
  552. int yp_pu = (y0 - 1) >> log2_min_pu_size;
  553. int yq_pu = y0 >> log2_min_pu_size;
  554. int yp_tu = (y0 - 1) >> log2_min_tu_size;
  555. int yq_tu = y0 >> log2_min_tu_size;
  556. for (i = 0; i < (1 << log2_trafo_size); i += 4) {
  557. int x_pu = (x0 + i) >> log2_min_pu_size;
  558. int x_tu = (x0 + i) >> log2_min_tu_size;
  559. MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
  560. MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
  561. uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
  562. uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
  563. if (curr->pred_flag == PF_INTRA || top->pred_flag == PF_INTRA)
  564. bs = 2;
  565. else if (curr_cbf_luma || top_cbf_luma)
  566. bs = 1;
  567. else
  568. bs = boundary_strength(s, curr, top, rpl_top);
  569. s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
  570. }
  571. }
  572. // bs for vertical TU boundaries
  573. boundary_left = x0 > 0 && !(x0 & 7);
  574. if (boundary_left &&
  575. ((!s->sh.slice_loop_filter_across_slices_enabled_flag &&
  576. lc->boundary_flags & BOUNDARY_LEFT_SLICE &&
  577. (x0 % (1 << s->sps->log2_ctb_size)) == 0) ||
  578. (!s->pps->loop_filter_across_tiles_enabled_flag &&
  579. lc->boundary_flags & BOUNDARY_LEFT_TILE &&
  580. (x0 % (1 << s->sps->log2_ctb_size)) == 0)))
  581. boundary_left = 0;
  582. if (boundary_left) {
  583. RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ?
  584. ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0) :
  585. s->ref->refPicList;
  586. int xp_pu = (x0 - 1) >> log2_min_pu_size;
  587. int xq_pu = x0 >> log2_min_pu_size;
  588. int xp_tu = (x0 - 1) >> log2_min_tu_size;
  589. int xq_tu = x0 >> log2_min_tu_size;
  590. for (i = 0; i < (1 << log2_trafo_size); i += 4) {
  591. int y_pu = (y0 + i) >> log2_min_pu_size;
  592. int y_tu = (y0 + i) >> log2_min_tu_size;
  593. MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
  594. MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
  595. uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
  596. uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
  597. if (curr->pred_flag == PF_INTRA || left->pred_flag == PF_INTRA)
  598. bs = 2;
  599. else if (curr_cbf_luma || left_cbf_luma)
  600. bs = 1;
  601. else
  602. bs = boundary_strength(s, curr, left, rpl_left);
  603. s->vertical_bs[(x0 + (y0 + i) * s->bs_width) >> 2] = bs;
  604. }
  605. }
  606. if (log2_trafo_size > log2_min_pu_size && !is_intra) {
  607. RefPicList *rpl = s->ref->refPicList;
  608. // bs for TU internal horizontal PU boundaries
  609. for (j = 8; j < (1 << log2_trafo_size); j += 8) {
  610. int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
  611. int yq_pu = (y0 + j) >> log2_min_pu_size;
  612. for (i = 0; i < (1 << log2_trafo_size); i += 4) {
  613. int x_pu = (x0 + i) >> log2_min_pu_size;
  614. MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
  615. MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
  616. bs = boundary_strength(s, curr, top, rpl);
  617. s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
  618. }
  619. }
  620. // bs for TU internal vertical PU boundaries
  621. for (j = 0; j < (1 << log2_trafo_size); j += 4) {
  622. int y_pu = (y0 + j) >> log2_min_pu_size;
  623. for (i = 8; i < (1 << log2_trafo_size); i += 8) {
  624. int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
  625. int xq_pu = (x0 + i) >> log2_min_pu_size;
  626. MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
  627. MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
  628. bs = boundary_strength(s, curr, left, rpl);
  629. s->vertical_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
  630. }
  631. }
  632. }
  633. }
  634. #undef LUMA
  635. #undef CB
  636. #undef CR
  637. void ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size)
  638. {
  639. int x_end = x >= s->sps->width - ctb_size;
  640. deblocking_filter_CTB(s, x, y);
  641. if (s->sps->sao_enabled) {
  642. int y_end = y >= s->sps->height - ctb_size;
  643. if (y && x)
  644. sao_filter_CTB(s, x - ctb_size, y - ctb_size);
  645. if (x && y_end)
  646. sao_filter_CTB(s, x - ctb_size, y);
  647. if (y && x_end) {
  648. sao_filter_CTB(s, x, y - ctb_size);
  649. if (s->threads_type & FF_THREAD_FRAME )
  650. ff_thread_report_progress(&s->ref->tf, y, 0);
  651. }
  652. if (x_end && y_end) {
  653. sao_filter_CTB(s, x , y);
  654. if (s->threads_type & FF_THREAD_FRAME )
  655. ff_thread_report_progress(&s->ref->tf, y + ctb_size, 0);
  656. }
  657. } else if (s->threads_type & FF_THREAD_FRAME && x_end)
  658. ff_thread_report_progress(&s->ref->tf, y + ctb_size - 4, 0);
  659. }
  660. void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
  661. {
  662. int x_end = x_ctb >= s->sps->width - ctb_size;
  663. int y_end = y_ctb >= s->sps->height - ctb_size;
  664. if (y_ctb && x_ctb)
  665. ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size, ctb_size);
  666. if (y_ctb && x_end)
  667. ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size, ctb_size);
  668. if (x_ctb && y_end)
  669. ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb, ctb_size);
  670. }