You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

399 lines
10KB

  1. /*
  2. * Real Audio 1.0 (14.4K)
  3. * Copyright (c) 2003 the ffmpeg project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "bitstream.h"
  23. #include "ra144.h"
  24. #define NBLOCKS 4 /* number of segments within a block */
  25. #define BLOCKSIZE 40 /* (quarter) block size in 16-bit words (80 bytes) */
  26. #define HALFBLOCK 20 /* BLOCKSIZE/2 */
  27. #define BUFFERSIZE 146 /* for do_output */
  28. typedef struct {
  29. unsigned int old_energy; ///< previous frame energy
  30. /* the swapped buffers */
  31. unsigned int lpc_tables[2][10];
  32. unsigned int *lpc_coef; ///< LPC coefficients
  33. unsigned int *lpc_coef_old; ///< previous frame LPC coefficients
  34. unsigned int lpc_refl_rms;
  35. unsigned int lpc_refl_rms_old;
  36. unsigned int buffer[5];
  37. uint16_t adapt_cb[148]; ///< adaptive codebook
  38. } RA144Context;
  39. static int ra144_decode_init(AVCodecContext * avctx)
  40. {
  41. RA144Context *ractx = avctx->priv_data;
  42. ractx->lpc_coef = ractx->lpc_tables[0];
  43. ractx->lpc_coef_old = ractx->lpc_tables[1];
  44. return 0;
  45. }
  46. /**
  47. * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
  48. * odd way to make the output identical to the binary decoder.
  49. */
  50. static int t_sqrt(unsigned int x)
  51. {
  52. int s = 0;
  53. while (x > 0xfff) {
  54. s++;
  55. x = x >> 2;
  56. }
  57. return (ff_sqrt(x << 20) << s) << 2;
  58. }
  59. /**
  60. * Evaluate the LPC filter coefficients from the reflection coefficients.
  61. * Does the inverse of the eval_refl() function.
  62. */
  63. static void eval_coefs(const int *refl, int *coefs)
  64. {
  65. int buffer[10];
  66. int *b1 = buffer;
  67. int *b2 = coefs;
  68. int x, y;
  69. for (x=0; x < 10; x++) {
  70. b1[x] = refl[x] << 4;
  71. for (y=0; y < x; y++)
  72. b1[y] = ((refl[x] * b2[x-y-1]) >> 12) + b2[y];
  73. FFSWAP(int *, b1, b2);
  74. }
  75. for (x=0; x < 10; x++)
  76. coefs[x] >>= 4;
  77. }
  78. /* rotate block */
  79. static void rotate_block(const int16_t *source, int16_t *target, int offset)
  80. {
  81. int i=0, k=0;
  82. source += BUFFERSIZE - offset;
  83. while (i<BLOCKSIZE) {
  84. target[i++] = source[k++];
  85. if (k == offset)
  86. k = 0;
  87. }
  88. }
  89. /* inverse root mean square */
  90. static int irms(const int16_t *data, int factor)
  91. {
  92. unsigned int i, sum = 0;
  93. for (i=0; i < BLOCKSIZE; i++)
  94. sum += data[i] * data[i];
  95. if (sum == 0)
  96. return 0; /* OOPS - division by zero */
  97. return (0x20000000 / (t_sqrt(sum) >> 8)) * factor;
  98. }
  99. /* multiply/add wavetable */
  100. static void add_wav(int n, int skip_first, int *m, const int16_t *s1,
  101. const int8_t *s2, const int8_t *s3, int16_t *dest)
  102. {
  103. int i;
  104. int v[3];
  105. v[0] = 0;
  106. for (i=!skip_first; i<3; i++)
  107. v[i] = (gain_val_tab[n][i] * m[i]) >> (gain_exp_tab[n][i] + 1);
  108. for (i=0; i < BLOCKSIZE; i++)
  109. dest[i] = ((*(s1++))*v[0] + (*(s2++))*v[1] + (*(s3++))*v[2]) >> 12;
  110. }
  111. static void lpc_filter(const int16_t *lpc_coefs, const int16_t *adapt_coef,
  112. void *out, int *statbuf, int len)
  113. {
  114. int x, i;
  115. uint16_t work[50];
  116. int16_t *ptr = work;
  117. memcpy(work, statbuf,20);
  118. memcpy(work + 10, adapt_coef, len * 2);
  119. for (i=0; i<len; i++) {
  120. int sum = 0;
  121. int new_val;
  122. for(x=0; x<10; x++)
  123. sum += lpc_coefs[9-x] * ptr[x];
  124. sum >>= 12;
  125. new_val = ptr[10] - sum;
  126. if (new_val < -32768 || new_val > 32767) {
  127. memset(out, 0, len * 2);
  128. memset(statbuf, 0, 20);
  129. return;
  130. }
  131. ptr[10] = new_val;
  132. ptr++;
  133. }
  134. memcpy(out, work+10, len * 2);
  135. memcpy(statbuf, work + 40, 20);
  136. }
  137. static unsigned int rescale_rms(int rms, int energy)
  138. {
  139. return (rms * energy) >> 10;
  140. }
  141. static unsigned int rms(const int *data)
  142. {
  143. int x;
  144. unsigned int res = 0x10000;
  145. int b = 0;
  146. for (x=0; x<10; x++) {
  147. res = (((0x1000000 - (*data) * (*data)) >> 12) * res) >> 12;
  148. if (res == 0)
  149. return 0;
  150. while (res <= 0x3fff) {
  151. b++;
  152. res <<= 2;
  153. }
  154. data++;
  155. }
  156. if (res > 0)
  157. res = t_sqrt(res);
  158. res >>= (b + 10);
  159. return res;
  160. }
  161. /* do quarter-block output */
  162. static void do_output_subblock(RA144Context *ractx,
  163. const uint16_t *lpc_coefs, unsigned int gval,
  164. int16_t *output_buffer, GetBitContext *gb)
  165. {
  166. uint16_t buffer_a[40];
  167. uint16_t *block;
  168. int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
  169. int gain = get_bits(gb, 8);
  170. int cb1_idx = get_bits(gb, 7);
  171. int cb2_idx = get_bits(gb, 7);
  172. int m[3];
  173. if (cba_idx) {
  174. cba_idx += HALFBLOCK - 1;
  175. rotate_block(ractx->adapt_cb, buffer_a, cba_idx);
  176. m[0] = irms(buffer_a, gval) >> 12;
  177. } else {
  178. m[0] = 0;
  179. }
  180. m[1] = ((cb1_base[cb1_idx] >> 4) * gval) >> 8;
  181. m[2] = ((cb2_base[cb2_idx] >> 4) * gval) >> 8;
  182. memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
  183. (BUFFERSIZE - BLOCKSIZE) * 2);
  184. block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
  185. add_wav(gain, cba_idx, m, buffer_a, cb1_vects[cb1_idx], cb2_vects[cb2_idx],
  186. block);
  187. lpc_filter(lpc_coefs, block, output_buffer, ractx->buffer, BLOCKSIZE);
  188. }
  189. static void int_to_int16(int16_t *out, const int *inp)
  190. {
  191. int i;
  192. for (i=0; i<30; i++)
  193. *(out++) = *(inp++);
  194. }
  195. /**
  196. * Evaluate the reflection coefficients from the filter coefficients.
  197. * Does the inverse of the eval_coefs() function.
  198. *
  199. * @return 1 if one of the reflection coefficients is of magnitude greater than
  200. * 4095, 0 if not.
  201. */
  202. static int eval_refl(const int16_t *coefs, int *refl, RA144Context *ractx)
  203. {
  204. int retval = 0;
  205. int b, c, i;
  206. unsigned int u;
  207. int buffer1[10];
  208. int buffer2[10];
  209. int *bp1 = buffer1;
  210. int *bp2 = buffer2;
  211. for (i=0; i < 10; i++)
  212. buffer2[i] = coefs[i];
  213. u = refl[9] = bp2[9];
  214. if (u + 0x1000 > 0x1fff) {
  215. av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
  216. return 0;
  217. }
  218. for (c=8; c >= 0; c--) {
  219. if (u == 0x1000)
  220. u++;
  221. if (u == 0xfffff000)
  222. u--;
  223. b = 0x1000-((u * u) >> 12);
  224. if (b == 0)
  225. b++;
  226. for (u=0; u<=c; u++)
  227. bp1[u] = ((bp2[u] - ((refl[c+1] * bp2[c-u]) >> 12)) * (0x1000000 / b)) >> 12;
  228. refl[c] = u = bp1[c];
  229. if ((u + 0x1000) > 0x1fff)
  230. retval = 1;
  231. FFSWAP(int *, bp1, bp2);
  232. }
  233. return retval;
  234. }
  235. static int interp(RA144Context *ractx, int16_t *out, int block_num,
  236. int copynew, int energy)
  237. {
  238. int work[10];
  239. int a = block_num + 1;
  240. int b = NBLOCKS - a;
  241. int x;
  242. // Interpolate block coefficients from the this frame forth block and
  243. // last frame forth block
  244. for (x=0; x<30; x++)
  245. out[x] = (a * ractx->lpc_coef[x] + b * ractx->lpc_coef_old[x])>> 2;
  246. if (eval_refl(out, work, ractx)) {
  247. // The interpolated coefficients are unstable, copy either new or old
  248. // coefficients
  249. if (copynew) {
  250. int_to_int16(out, ractx->lpc_coef);
  251. return rescale_rms(ractx->lpc_refl_rms, energy);
  252. } else {
  253. int_to_int16(out, ractx->lpc_coef_old);
  254. return rescale_rms(ractx->lpc_refl_rms_old, energy);
  255. }
  256. } else {
  257. return rescale_rms(rms(work), energy);
  258. }
  259. }
  260. /* Uncompress one block (20 bytes -> 160*2 bytes) */
  261. static int ra144_decode_frame(AVCodecContext * avctx,
  262. void *vdata, int *data_size,
  263. const uint8_t * buf, int buf_size)
  264. {
  265. static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
  266. unsigned int refl_rms[4]; // RMS of the reflection coefficients
  267. uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block
  268. unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame
  269. int i, c;
  270. int16_t *data = vdata;
  271. unsigned int energy;
  272. RA144Context *ractx = avctx->priv_data;
  273. GetBitContext gb;
  274. if(buf_size < 20) {
  275. av_log(avctx, AV_LOG_ERROR,
  276. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  277. *data_size = 0;
  278. return buf_size;
  279. }
  280. init_get_bits(&gb, buf, 20 * 8);
  281. for (i=0; i<10; i++)
  282. // "<< 1"? Doesn't this make one value out of two of the table useless?
  283. lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i]) << 1];
  284. eval_coefs(lpc_refl, ractx->lpc_coef);
  285. ractx->lpc_refl_rms = rms(lpc_refl);
  286. energy = energy_tab[get_bits(&gb, 5) << 1]; // Useless table entries?
  287. refl_rms[0] = interp(ractx, block_coefs[0], 0, 0, ractx->old_energy);
  288. refl_rms[1] = interp(ractx, block_coefs[1], 1, energy > ractx->old_energy,
  289. t_sqrt(energy*ractx->old_energy) >> 12);
  290. refl_rms[2] = interp(ractx, block_coefs[2], 2, 1, energy);
  291. refl_rms[3] = rescale_rms(ractx->lpc_refl_rms, energy);
  292. int_to_int16(block_coefs[3], ractx->lpc_coef);
  293. /* do output */
  294. for (c=0; c<4; c++) {
  295. do_output_subblock(ractx, block_coefs[c], refl_rms[c], data, &gb);
  296. for (i=0; i<BLOCKSIZE; i++) {
  297. *data = av_clip_int16(*data << 2);
  298. data++;
  299. }
  300. }
  301. ractx->old_energy = energy;
  302. ractx->lpc_refl_rms_old = ractx->lpc_refl_rms;
  303. FFSWAP(unsigned int *, ractx->lpc_coef_old, ractx->lpc_coef);
  304. *data_size = 2*160;
  305. return 20;
  306. }
  307. AVCodec ra_144_decoder =
  308. {
  309. "real_144",
  310. CODEC_TYPE_AUDIO,
  311. CODEC_ID_RA_144,
  312. sizeof(RA144Context),
  313. ra144_decode_init,
  314. NULL,
  315. NULL,
  316. ra144_decode_frame,
  317. .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
  318. };