You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1506 lines
49KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "thread.h"
  34. #define VLC_BITS 11
  35. #if HAVE_BIGENDIAN
  36. #define B 3
  37. #define G 2
  38. #define R 1
  39. #define A 0
  40. #else
  41. #define B 0
  42. #define G 1
  43. #define R 2
  44. #define A 3
  45. #endif
  46. typedef enum Predictor{
  47. LEFT= 0,
  48. PLANE,
  49. MEDIAN,
  50. } Predictor;
  51. typedef struct HYuvContext{
  52. AVCodecContext *avctx;
  53. Predictor predictor;
  54. GetBitContext gb;
  55. PutBitContext pb;
  56. int interlaced;
  57. int decorrelate;
  58. int bitstream_bpp;
  59. int version;
  60. int yuy2; //use yuy2 instead of 422P
  61. int bgr32; //use bgr32 instead of bgr24
  62. int width, height;
  63. int flags;
  64. int context;
  65. int picture_number;
  66. int last_slice_end;
  67. uint8_t *temp[3];
  68. uint64_t stats[3][256];
  69. uint8_t len[3][256];
  70. uint32_t bits[3][256];
  71. uint32_t pix_bgr_map[1<<VLC_BITS];
  72. VLC vlc[6]; //Y,U,V,YY,YU,YV
  73. AVFrame picture;
  74. uint8_t *bitstream_buffer;
  75. unsigned int bitstream_buffer_size;
  76. DSPContext dsp;
  77. }HYuvContext;
  78. static const unsigned char classic_shift_luma[] = {
  79. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  80. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  81. 69,68, 0
  82. };
  83. static const unsigned char classic_shift_chroma[] = {
  84. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  85. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  86. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  87. };
  88. static const unsigned char classic_add_luma[256] = {
  89. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  90. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  91. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  92. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  93. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  94. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  95. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  96. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  97. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  98. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  99. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  100. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  101. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  102. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  103. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  104. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  105. };
  106. static const unsigned char classic_add_chroma[256] = {
  107. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  108. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  109. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  110. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  111. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  112. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  113. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  114. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  115. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  116. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  117. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  118. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  119. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  120. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  121. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  122. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  123. };
  124. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  125. int i;
  126. if(w<32){
  127. for(i=0; i<w; i++){
  128. const int temp= src[i];
  129. dst[i]= temp - left;
  130. left= temp;
  131. }
  132. return left;
  133. }else{
  134. for(i=0; i<16; i++){
  135. const int temp= src[i];
  136. dst[i]= temp - left;
  137. left= temp;
  138. }
  139. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  140. return src[w-1];
  141. }
  142. }
  143. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue, int *alpha){
  144. int i;
  145. int r,g,b,a;
  146. r= *red;
  147. g= *green;
  148. b= *blue;
  149. a= *alpha;
  150. for(i=0; i<FFMIN(w,4); i++){
  151. const int rt= src[i*4+R];
  152. const int gt= src[i*4+G];
  153. const int bt= src[i*4+B];
  154. const int at= src[i*4+A];
  155. dst[i*4+R]= rt - r;
  156. dst[i*4+G]= gt - g;
  157. dst[i*4+B]= bt - b;
  158. dst[i*4+A]= at - a;
  159. r = rt;
  160. g = gt;
  161. b = bt;
  162. a = at;
  163. }
  164. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  165. *red= src[(w-1)*4+R];
  166. *green= src[(w-1)*4+G];
  167. *blue= src[(w-1)*4+B];
  168. *alpha= src[(w-1)*4+A];
  169. }
  170. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  171. int i, val, repeat;
  172. for(i=0; i<256;){
  173. repeat= get_bits(gb, 3);
  174. val = get_bits(gb, 5);
  175. if(repeat==0)
  176. repeat= get_bits(gb, 8);
  177. //printf("%d %d\n", val, repeat);
  178. if(i+repeat > 256) {
  179. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  180. return -1;
  181. }
  182. while (repeat--)
  183. dst[i++] = val;
  184. }
  185. return 0;
  186. }
  187. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
  188. int len, index;
  189. uint32_t bits=0;
  190. for(len=32; len>0; len--){
  191. for(index=0; index<256; index++){
  192. if(len_table[index]==len)
  193. dst[index]= bits++;
  194. }
  195. if(bits & 1){
  196. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  197. return -1;
  198. }
  199. bits >>= 1;
  200. }
  201. return 0;
  202. }
  203. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  204. typedef struct {
  205. uint64_t val;
  206. int name;
  207. } HeapElem;
  208. static void heap_sift(HeapElem *h, int root, int size)
  209. {
  210. while(root*2+1 < size) {
  211. int child = root*2+1;
  212. if(child < size-1 && h[child].val > h[child+1].val)
  213. child++;
  214. if(h[root].val > h[child].val) {
  215. FFSWAP(HeapElem, h[root], h[child]);
  216. root = child;
  217. } else
  218. break;
  219. }
  220. }
  221. static void generate_len_table(uint8_t *dst, const uint64_t *stats){
  222. HeapElem h[256];
  223. int up[2*256];
  224. int len[2*256];
  225. int offset, i, next;
  226. int size = 256;
  227. for(offset=1; ; offset<<=1){
  228. for(i=0; i<size; i++){
  229. h[i].name = i;
  230. h[i].val = (stats[i] << 8) + offset;
  231. }
  232. for(i=size/2-1; i>=0; i--)
  233. heap_sift(h, i, size);
  234. for(next=size; next<size*2-1; next++){
  235. // merge the two smallest entries, and put it back in the heap
  236. uint64_t min1v = h[0].val;
  237. up[h[0].name] = next;
  238. h[0].val = INT64_MAX;
  239. heap_sift(h, 0, size);
  240. up[h[0].name] = next;
  241. h[0].name = next;
  242. h[0].val += min1v;
  243. heap_sift(h, 0, size);
  244. }
  245. len[2*size-2] = 0;
  246. for(i=2*size-3; i>=size; i--)
  247. len[i] = len[up[i]] + 1;
  248. for(i=0; i<size; i++) {
  249. dst[i] = len[up[i]] + 1;
  250. if(dst[i] >= 32) break;
  251. }
  252. if(i==size) break;
  253. }
  254. }
  255. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  256. static void generate_joint_tables(HYuvContext *s){
  257. uint16_t symbols[1<<VLC_BITS];
  258. uint16_t bits[1<<VLC_BITS];
  259. uint8_t len[1<<VLC_BITS];
  260. if(s->bitstream_bpp < 24){
  261. int p, i, y, u;
  262. for(p=0; p<3; p++){
  263. for(i=y=0; y<256; y++){
  264. int len0 = s->len[0][y];
  265. int limit = VLC_BITS - len0;
  266. if(limit <= 0)
  267. continue;
  268. for(u=0; u<256; u++){
  269. int len1 = s->len[p][u];
  270. if(len1 > limit)
  271. continue;
  272. len[i] = len0 + len1;
  273. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  274. symbols[i] = (y<<8) + u;
  275. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  276. i++;
  277. }
  278. }
  279. free_vlc(&s->vlc[3+p]);
  280. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  281. }
  282. }else{
  283. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  284. int i, b, g, r, code;
  285. int p0 = s->decorrelate;
  286. int p1 = !s->decorrelate;
  287. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  288. // cover all the combinations that fit in 11 bits total, and it doesn't
  289. // matter if we miss a few rare codes.
  290. for(i=0, g=-16; g<16; g++){
  291. int len0 = s->len[p0][g&255];
  292. int limit0 = VLC_BITS - len0;
  293. if(limit0 < 2)
  294. continue;
  295. for(b=-16; b<16; b++){
  296. int len1 = s->len[p1][b&255];
  297. int limit1 = limit0 - len1;
  298. if(limit1 < 1)
  299. continue;
  300. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  301. for(r=-16; r<16; r++){
  302. int len2 = s->len[2][r&255];
  303. if(len2 > limit1)
  304. continue;
  305. len[i] = len0 + len1 + len2;
  306. bits[i] = (code << len2) + s->bits[2][r&255];
  307. if(s->decorrelate){
  308. map[i][G] = g;
  309. map[i][B] = g+b;
  310. map[i][R] = g+r;
  311. }else{
  312. map[i][B] = g;
  313. map[i][G] = b;
  314. map[i][R] = r;
  315. }
  316. i++;
  317. }
  318. }
  319. }
  320. free_vlc(&s->vlc[3]);
  321. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  322. }
  323. }
  324. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
  325. GetBitContext gb;
  326. int i;
  327. init_get_bits(&gb, src, length*8);
  328. for(i=0; i<3; i++){
  329. if(read_len_table(s->len[i], &gb)<0)
  330. return -1;
  331. if(generate_bits_table(s->bits[i], s->len[i])<0){
  332. return -1;
  333. }
  334. free_vlc(&s->vlc[i]);
  335. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  336. }
  337. generate_joint_tables(s);
  338. return (get_bits_count(&gb)+7)/8;
  339. }
  340. static int read_old_huffman_tables(HYuvContext *s){
  341. #if 1
  342. GetBitContext gb;
  343. int i;
  344. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  345. if(read_len_table(s->len[0], &gb)<0)
  346. return -1;
  347. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  348. if(read_len_table(s->len[1], &gb)<0)
  349. return -1;
  350. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  351. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  352. if(s->bitstream_bpp >= 24){
  353. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  354. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  355. }
  356. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  357. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  358. for(i=0; i<3; i++){
  359. free_vlc(&s->vlc[i]);
  360. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  361. }
  362. generate_joint_tables(s);
  363. return 0;
  364. #else
  365. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  366. return -1;
  367. #endif
  368. }
  369. static av_cold void alloc_temp(HYuvContext *s){
  370. int i;
  371. if(s->bitstream_bpp<24){
  372. for(i=0; i<3; i++){
  373. s->temp[i]= av_malloc(s->width + 16);
  374. }
  375. }else{
  376. s->temp[0]= av_mallocz(4*s->width + 16);
  377. }
  378. }
  379. static av_cold int common_init(AVCodecContext *avctx){
  380. HYuvContext *s = avctx->priv_data;
  381. s->avctx= avctx;
  382. s->flags= avctx->flags;
  383. dsputil_init(&s->dsp, avctx);
  384. s->width= avctx->width;
  385. s->height= avctx->height;
  386. assert(s->width>0 && s->height>0);
  387. return 0;
  388. }
  389. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  390. static av_cold int decode_init(AVCodecContext *avctx)
  391. {
  392. HYuvContext *s = avctx->priv_data;
  393. common_init(avctx);
  394. memset(s->vlc, 0, 3*sizeof(VLC));
  395. avctx->coded_frame= &s->picture;
  396. avcodec_get_frame_defaults(&s->picture);
  397. s->interlaced= s->height > 288;
  398. s->bgr32=1;
  399. //if(avctx->extradata)
  400. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  401. if(avctx->extradata_size){
  402. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  403. s->version=1; // do such files exist at all?
  404. else
  405. s->version=2;
  406. }else
  407. s->version=0;
  408. if(s->version==2){
  409. int method, interlace;
  410. if (avctx->extradata_size < 4)
  411. return -1;
  412. method= ((uint8_t*)avctx->extradata)[0];
  413. s->decorrelate= method&64 ? 1 : 0;
  414. s->predictor= method&63;
  415. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  416. if(s->bitstream_bpp==0)
  417. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  418. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  419. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  420. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  421. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
  422. return -1;
  423. }else{
  424. switch(avctx->bits_per_coded_sample&7){
  425. case 1:
  426. s->predictor= LEFT;
  427. s->decorrelate= 0;
  428. break;
  429. case 2:
  430. s->predictor= LEFT;
  431. s->decorrelate= 1;
  432. break;
  433. case 3:
  434. s->predictor= PLANE;
  435. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  436. break;
  437. case 4:
  438. s->predictor= MEDIAN;
  439. s->decorrelate= 0;
  440. break;
  441. default:
  442. s->predictor= LEFT; //OLD
  443. s->decorrelate= 0;
  444. break;
  445. }
  446. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  447. s->context= 0;
  448. if(read_old_huffman_tables(s) < 0)
  449. return -1;
  450. }
  451. switch(s->bitstream_bpp){
  452. case 12:
  453. avctx->pix_fmt = PIX_FMT_YUV420P;
  454. break;
  455. case 16:
  456. if(s->yuy2){
  457. avctx->pix_fmt = PIX_FMT_YUYV422;
  458. }else{
  459. avctx->pix_fmt = PIX_FMT_YUV422P;
  460. }
  461. break;
  462. case 24:
  463. case 32:
  464. if(s->bgr32){
  465. avctx->pix_fmt = PIX_FMT_RGB32;
  466. }else{
  467. avctx->pix_fmt = PIX_FMT_BGR24;
  468. }
  469. break;
  470. default:
  471. assert(0);
  472. }
  473. alloc_temp(s);
  474. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  475. return 0;
  476. }
  477. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  478. {
  479. HYuvContext *s = avctx->priv_data;
  480. int i;
  481. avctx->coded_frame= &s->picture;
  482. alloc_temp(s);
  483. for (i = 0; i < 6; i++)
  484. s->vlc[i].table = NULL;
  485. if(s->version==2){
  486. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  487. return -1;
  488. }else{
  489. if(read_old_huffman_tables(s) < 0)
  490. return -1;
  491. }
  492. return 0;
  493. }
  494. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  495. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  496. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
  497. int i;
  498. int index= 0;
  499. for(i=0; i<256;){
  500. int val= len[i];
  501. int repeat=0;
  502. for(; i<256 && len[i]==val && repeat<255; i++)
  503. repeat++;
  504. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  505. if(repeat>7){
  506. buf[index++]= val;
  507. buf[index++]= repeat;
  508. }else{
  509. buf[index++]= val | (repeat<<5);
  510. }
  511. }
  512. return index;
  513. }
  514. static av_cold int encode_init(AVCodecContext *avctx)
  515. {
  516. HYuvContext *s = avctx->priv_data;
  517. int i, j;
  518. common_init(avctx);
  519. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  520. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  521. s->version=2;
  522. avctx->coded_frame= &s->picture;
  523. switch(avctx->pix_fmt){
  524. case PIX_FMT_YUV420P:
  525. s->bitstream_bpp= 12;
  526. break;
  527. case PIX_FMT_YUV422P:
  528. s->bitstream_bpp= 16;
  529. break;
  530. case PIX_FMT_RGB32:
  531. s->bitstream_bpp= 32;
  532. break;
  533. case PIX_FMT_0RGB32:
  534. s->bitstream_bpp= 24;
  535. break;
  536. default:
  537. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  538. return -1;
  539. }
  540. avctx->bits_per_coded_sample= s->bitstream_bpp;
  541. s->decorrelate= s->bitstream_bpp >= 24;
  542. s->predictor= avctx->prediction_method;
  543. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  544. if(avctx->context_model==1){
  545. s->context= avctx->context_model;
  546. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  547. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  548. return -1;
  549. }
  550. }else s->context= 0;
  551. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  552. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  553. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  554. return -1;
  555. }
  556. if(avctx->context_model){
  557. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  558. return -1;
  559. }
  560. if(s->interlaced != ( s->height > 288 ))
  561. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  562. }
  563. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  564. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  565. return -1;
  566. }
  567. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  568. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  569. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  570. if(s->context)
  571. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  572. ((uint8_t*)avctx->extradata)[3]= 0;
  573. s->avctx->extradata_size= 4;
  574. if(avctx->stats_in){
  575. char *p= avctx->stats_in;
  576. for(i=0; i<3; i++)
  577. for(j=0; j<256; j++)
  578. s->stats[i][j]= 1;
  579. for(;;){
  580. for(i=0; i<3; i++){
  581. char *next;
  582. for(j=0; j<256; j++){
  583. s->stats[i][j]+= strtol(p, &next, 0);
  584. if(next==p) return -1;
  585. p=next;
  586. }
  587. }
  588. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  589. }
  590. }else{
  591. for(i=0; i<3; i++)
  592. for(j=0; j<256; j++){
  593. int d= FFMIN(j, 256-j);
  594. s->stats[i][j]= 100000000/(d+1);
  595. }
  596. }
  597. for(i=0; i<3; i++){
  598. generate_len_table(s->len[i], s->stats[i]);
  599. if(generate_bits_table(s->bits[i], s->len[i])<0){
  600. return -1;
  601. }
  602. s->avctx->extradata_size+=
  603. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  604. }
  605. if(s->context){
  606. for(i=0; i<3; i++){
  607. int pels = s->width*s->height / (i?40:10);
  608. for(j=0; j<256; j++){
  609. int d= FFMIN(j, 256-j);
  610. s->stats[i][j]= pels/(d+1);
  611. }
  612. }
  613. }else{
  614. for(i=0; i<3; i++)
  615. for(j=0; j<256; j++)
  616. s->stats[i][j]= 0;
  617. }
  618. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  619. alloc_temp(s);
  620. s->picture_number=0;
  621. return 0;
  622. }
  623. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  624. /* TODO instead of restarting the read when the code isn't in the first level
  625. * of the joint table, jump into the 2nd level of the individual table. */
  626. #define READ_2PIX(dst0, dst1, plane1){\
  627. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  628. if(code != 0xffff){\
  629. dst0 = code>>8;\
  630. dst1 = code;\
  631. }else{\
  632. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  633. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  634. }\
  635. }
  636. static void decode_422_bitstream(HYuvContext *s, int count){
  637. int i;
  638. count/=2;
  639. if(count >= (get_bits_left(&s->gb))/(31*4)){
  640. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  641. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  642. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  643. }
  644. }else{
  645. for(i=0; i<count; i++){
  646. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  647. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  648. }
  649. }
  650. }
  651. static void decode_gray_bitstream(HYuvContext *s, int count){
  652. int i;
  653. count/=2;
  654. if(count >= (get_bits_left(&s->gb))/(31*2)){
  655. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  656. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  657. }
  658. }else{
  659. for(i=0; i<count; i++){
  660. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  661. }
  662. }
  663. }
  664. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  665. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  666. int i;
  667. const uint8_t *y = s->temp[0] + offset;
  668. const uint8_t *u = s->temp[1] + offset/2;
  669. const uint8_t *v = s->temp[2] + offset/2;
  670. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  671. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  672. return -1;
  673. }
  674. #define LOAD4\
  675. int y0 = y[2*i];\
  676. int y1 = y[2*i+1];\
  677. int u0 = u[i];\
  678. int v0 = v[i];
  679. count/=2;
  680. if(s->flags&CODEC_FLAG_PASS1){
  681. for(i=0; i<count; i++){
  682. LOAD4;
  683. s->stats[0][y0]++;
  684. s->stats[1][u0]++;
  685. s->stats[0][y1]++;
  686. s->stats[2][v0]++;
  687. }
  688. }
  689. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  690. return 0;
  691. if(s->context){
  692. for(i=0; i<count; i++){
  693. LOAD4;
  694. s->stats[0][y0]++;
  695. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  696. s->stats[1][u0]++;
  697. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  698. s->stats[0][y1]++;
  699. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  700. s->stats[2][v0]++;
  701. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  702. }
  703. }else{
  704. for(i=0; i<count; i++){
  705. LOAD4;
  706. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  707. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  708. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  709. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  710. }
  711. }
  712. return 0;
  713. }
  714. static int encode_gray_bitstream(HYuvContext *s, int count){
  715. int i;
  716. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  717. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  718. return -1;
  719. }
  720. #define LOAD2\
  721. int y0 = s->temp[0][2*i];\
  722. int y1 = s->temp[0][2*i+1];
  723. #define STAT2\
  724. s->stats[0][y0]++;\
  725. s->stats[0][y1]++;
  726. #define WRITE2\
  727. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  728. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  729. count/=2;
  730. if(s->flags&CODEC_FLAG_PASS1){
  731. for(i=0; i<count; i++){
  732. LOAD2;
  733. STAT2;
  734. }
  735. }
  736. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  737. return 0;
  738. if(s->context){
  739. for(i=0; i<count; i++){
  740. LOAD2;
  741. STAT2;
  742. WRITE2;
  743. }
  744. }else{
  745. for(i=0; i<count; i++){
  746. LOAD2;
  747. WRITE2;
  748. }
  749. }
  750. return 0;
  751. }
  752. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  753. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  754. int i;
  755. for(i=0; i<count; i++){
  756. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  757. if(code != -1){
  758. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  759. }else if(decorrelate){
  760. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  761. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  762. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  763. }else{
  764. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  765. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  766. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  767. }
  768. if(alpha)
  769. s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  770. }
  771. }
  772. static void decode_bgr_bitstream(HYuvContext *s, int count){
  773. if(s->decorrelate){
  774. if(s->bitstream_bpp==24)
  775. decode_bgr_1(s, count, 1, 0);
  776. else
  777. decode_bgr_1(s, count, 1, 1);
  778. }else{
  779. if(s->bitstream_bpp==24)
  780. decode_bgr_1(s, count, 0, 0);
  781. else
  782. decode_bgr_1(s, count, 0, 1);
  783. }
  784. }
  785. static int encode_bgr_bitstream(HYuvContext *s, int count, int alpha){
  786. int i;
  787. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*(3+alpha)*count){
  788. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  789. return -1;
  790. }
  791. #define LOAD3\
  792. int g= s->temp[0][4*i+G];\
  793. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  794. int r= (s->temp[0][4*i+R] - g) & 0xff;\
  795. int a= s->temp[0][4*i+A];
  796. #define STAT3\
  797. s->stats[0][b]++;\
  798. s->stats[1][g]++;\
  799. s->stats[2][r]++;\
  800. if(alpha) s->stats[2][a]++;
  801. #define WRITE3\
  802. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  803. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  804. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);\
  805. if(alpha) put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  806. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  807. for(i=0; i<count; i++){
  808. LOAD3;
  809. STAT3;
  810. }
  811. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  812. for(i=0; i<count; i++){
  813. LOAD3;
  814. STAT3;
  815. WRITE3;
  816. }
  817. }else{
  818. for(i=0; i<count; i++){
  819. LOAD3;
  820. WRITE3;
  821. }
  822. }
  823. return 0;
  824. }
  825. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  826. static void draw_slice(HYuvContext *s, int y){
  827. int h, cy;
  828. int offset[4];
  829. if(s->avctx->draw_horiz_band==NULL)
  830. return;
  831. h= y - s->last_slice_end;
  832. y -= h;
  833. if(s->bitstream_bpp==12){
  834. cy= y>>1;
  835. }else{
  836. cy= y;
  837. }
  838. offset[0] = s->picture.linesize[0]*y;
  839. offset[1] = s->picture.linesize[1]*cy;
  840. offset[2] = s->picture.linesize[2]*cy;
  841. offset[3] = 0;
  842. emms_c();
  843. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  844. s->last_slice_end= y + h;
  845. }
  846. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  847. const uint8_t *buf = avpkt->data;
  848. int buf_size = avpkt->size;
  849. HYuvContext *s = avctx->priv_data;
  850. const int width= s->width;
  851. const int width2= s->width>>1;
  852. const int height= s->height;
  853. int fake_ystride, fake_ustride, fake_vstride;
  854. AVFrame * const p= &s->picture;
  855. int table_size= 0;
  856. AVFrame *picture = data;
  857. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  858. if (!s->bitstream_buffer)
  859. return AVERROR(ENOMEM);
  860. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  861. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  862. if(p->data[0])
  863. ff_thread_release_buffer(avctx, p);
  864. p->reference= 0;
  865. if(ff_thread_get_buffer(avctx, p) < 0){
  866. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  867. return -1;
  868. }
  869. if(s->context){
  870. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  871. if(table_size < 0)
  872. return -1;
  873. }
  874. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  875. return -1;
  876. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  877. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  878. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  879. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  880. s->last_slice_end= 0;
  881. if(s->bitstream_bpp<24){
  882. int y, cy;
  883. int lefty, leftu, leftv;
  884. int lefttopy, lefttopu, lefttopv;
  885. if(s->yuy2){
  886. p->data[0][3]= get_bits(&s->gb, 8);
  887. p->data[0][2]= get_bits(&s->gb, 8);
  888. p->data[0][1]= get_bits(&s->gb, 8);
  889. p->data[0][0]= get_bits(&s->gb, 8);
  890. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  891. return -1;
  892. }else{
  893. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  894. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  895. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  896. p->data[0][0]= get_bits(&s->gb, 8);
  897. switch(s->predictor){
  898. case LEFT:
  899. case PLANE:
  900. decode_422_bitstream(s, width-2);
  901. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  902. if(!(s->flags&CODEC_FLAG_GRAY)){
  903. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  904. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  905. }
  906. for(cy=y=1; y<s->height; y++,cy++){
  907. uint8_t *ydst, *udst, *vdst;
  908. if(s->bitstream_bpp==12){
  909. decode_gray_bitstream(s, width);
  910. ydst= p->data[0] + p->linesize[0]*y;
  911. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  912. if(s->predictor == PLANE){
  913. if(y>s->interlaced)
  914. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  915. }
  916. y++;
  917. if(y>=s->height) break;
  918. }
  919. draw_slice(s, y);
  920. ydst= p->data[0] + p->linesize[0]*y;
  921. udst= p->data[1] + p->linesize[1]*cy;
  922. vdst= p->data[2] + p->linesize[2]*cy;
  923. decode_422_bitstream(s, width);
  924. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  925. if(!(s->flags&CODEC_FLAG_GRAY)){
  926. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  927. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  928. }
  929. if(s->predictor == PLANE){
  930. if(cy>s->interlaced){
  931. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  932. if(!(s->flags&CODEC_FLAG_GRAY)){
  933. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  934. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  935. }
  936. }
  937. }
  938. }
  939. draw_slice(s, height);
  940. break;
  941. case MEDIAN:
  942. /* first line except first 2 pixels is left predicted */
  943. decode_422_bitstream(s, width-2);
  944. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  945. if(!(s->flags&CODEC_FLAG_GRAY)){
  946. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  947. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  948. }
  949. cy=y=1;
  950. /* second line is left predicted for interlaced case */
  951. if(s->interlaced){
  952. decode_422_bitstream(s, width);
  953. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  954. if(!(s->flags&CODEC_FLAG_GRAY)){
  955. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  956. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  957. }
  958. y++; cy++;
  959. }
  960. /* next 4 pixels are left predicted too */
  961. decode_422_bitstream(s, 4);
  962. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  963. if(!(s->flags&CODEC_FLAG_GRAY)){
  964. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  965. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  966. }
  967. /* next line except the first 4 pixels is median predicted */
  968. lefttopy= p->data[0][3];
  969. decode_422_bitstream(s, width-4);
  970. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  971. if(!(s->flags&CODEC_FLAG_GRAY)){
  972. lefttopu= p->data[1][1];
  973. lefttopv= p->data[2][1];
  974. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  975. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  976. }
  977. y++; cy++;
  978. for(; y<height; y++,cy++){
  979. uint8_t *ydst, *udst, *vdst;
  980. if(s->bitstream_bpp==12){
  981. while(2*cy > y){
  982. decode_gray_bitstream(s, width);
  983. ydst= p->data[0] + p->linesize[0]*y;
  984. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  985. y++;
  986. }
  987. if(y>=height) break;
  988. }
  989. draw_slice(s, y);
  990. decode_422_bitstream(s, width);
  991. ydst= p->data[0] + p->linesize[0]*y;
  992. udst= p->data[1] + p->linesize[1]*cy;
  993. vdst= p->data[2] + p->linesize[2]*cy;
  994. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  995. if(!(s->flags&CODEC_FLAG_GRAY)){
  996. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  997. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  998. }
  999. }
  1000. draw_slice(s, height);
  1001. break;
  1002. }
  1003. }
  1004. }else{
  1005. int y;
  1006. int leftr, leftg, leftb, lefta;
  1007. const int last_line= (height-1)*p->linesize[0];
  1008. if(s->bitstream_bpp==32){
  1009. lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
  1010. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1011. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1012. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1013. }else{
  1014. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1015. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1016. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1017. lefta= p->data[0][last_line+A]= 255;
  1018. skip_bits(&s->gb, 8);
  1019. }
  1020. if(s->bgr32){
  1021. switch(s->predictor){
  1022. case LEFT:
  1023. case PLANE:
  1024. decode_bgr_bitstream(s, width-1);
  1025. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
  1026. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1027. decode_bgr_bitstream(s, width);
  1028. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1029. if(s->predictor == PLANE){
  1030. if(s->bitstream_bpp!=32) lefta=0;
  1031. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1032. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1033. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1034. }
  1035. }
  1036. }
  1037. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1038. break;
  1039. default:
  1040. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1041. }
  1042. }else{
  1043. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1044. return -1;
  1045. }
  1046. }
  1047. emms_c();
  1048. *picture= *p;
  1049. *data_size = sizeof(AVFrame);
  1050. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1051. }
  1052. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1053. static int common_end(HYuvContext *s){
  1054. int i;
  1055. for(i=0; i<3; i++){
  1056. av_freep(&s->temp[i]);
  1057. }
  1058. return 0;
  1059. }
  1060. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1061. static av_cold int decode_end(AVCodecContext *avctx)
  1062. {
  1063. HYuvContext *s = avctx->priv_data;
  1064. int i;
  1065. if (s->picture.data[0])
  1066. avctx->release_buffer(avctx, &s->picture);
  1067. common_end(s);
  1068. av_freep(&s->bitstream_buffer);
  1069. for(i=0; i<6; i++){
  1070. free_vlc(&s->vlc[i]);
  1071. }
  1072. return 0;
  1073. }
  1074. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1075. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1076. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1077. HYuvContext *s = avctx->priv_data;
  1078. AVFrame *pict = data;
  1079. const int width= s->width;
  1080. const int width2= s->width>>1;
  1081. const int height= s->height;
  1082. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1083. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1084. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1085. AVFrame * const p= &s->picture;
  1086. int i, j, size=0;
  1087. *p = *pict;
  1088. p->pict_type= AV_PICTURE_TYPE_I;
  1089. p->key_frame= 1;
  1090. if(s->context){
  1091. for(i=0; i<3; i++){
  1092. generate_len_table(s->len[i], s->stats[i]);
  1093. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1094. return -1;
  1095. size+= store_table(s, s->len[i], &buf[size]);
  1096. }
  1097. for(i=0; i<3; i++)
  1098. for(j=0; j<256; j++)
  1099. s->stats[i][j] >>= 1;
  1100. }
  1101. init_put_bits(&s->pb, buf+size, buf_size-size);
  1102. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1103. int lefty, leftu, leftv, y, cy;
  1104. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1105. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1106. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1107. put_bits(&s->pb, 8, p->data[0][0]);
  1108. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1109. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1110. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1111. encode_422_bitstream(s, 2, width-2);
  1112. if(s->predictor==MEDIAN){
  1113. int lefttopy, lefttopu, lefttopv;
  1114. cy=y=1;
  1115. if(s->interlaced){
  1116. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1117. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1118. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1119. encode_422_bitstream(s, 0, width);
  1120. y++; cy++;
  1121. }
  1122. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1123. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1124. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1125. encode_422_bitstream(s, 0, 4);
  1126. lefttopy= p->data[0][3];
  1127. lefttopu= p->data[1][1];
  1128. lefttopv= p->data[2][1];
  1129. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1130. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1131. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1132. encode_422_bitstream(s, 0, width-4);
  1133. y++; cy++;
  1134. for(; y<height; y++,cy++){
  1135. uint8_t *ydst, *udst, *vdst;
  1136. if(s->bitstream_bpp==12){
  1137. while(2*cy > y){
  1138. ydst= p->data[0] + p->linesize[0]*y;
  1139. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1140. encode_gray_bitstream(s, width);
  1141. y++;
  1142. }
  1143. if(y>=height) break;
  1144. }
  1145. ydst= p->data[0] + p->linesize[0]*y;
  1146. udst= p->data[1] + p->linesize[1]*cy;
  1147. vdst= p->data[2] + p->linesize[2]*cy;
  1148. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1149. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1150. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1151. encode_422_bitstream(s, 0, width);
  1152. }
  1153. }else{
  1154. for(cy=y=1; y<height; y++,cy++){
  1155. uint8_t *ydst, *udst, *vdst;
  1156. /* encode a luma only line & y++ */
  1157. if(s->bitstream_bpp==12){
  1158. ydst= p->data[0] + p->linesize[0]*y;
  1159. if(s->predictor == PLANE && s->interlaced < y){
  1160. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1161. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1162. }else{
  1163. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1164. }
  1165. encode_gray_bitstream(s, width);
  1166. y++;
  1167. if(y>=height) break;
  1168. }
  1169. ydst= p->data[0] + p->linesize[0]*y;
  1170. udst= p->data[1] + p->linesize[1]*cy;
  1171. vdst= p->data[2] + p->linesize[2]*cy;
  1172. if(s->predictor == PLANE && s->interlaced < cy){
  1173. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1174. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1175. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1176. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1177. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1178. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1179. }else{
  1180. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1181. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1182. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1183. }
  1184. encode_422_bitstream(s, 0, width);
  1185. }
  1186. }
  1187. }else if(avctx->pix_fmt == PIX_FMT_RGB32 || avctx->pix_fmt == PIX_FMT_0RGB32){
  1188. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1189. const int stride = -p->linesize[0];
  1190. const int fake_stride = -fake_ystride;
  1191. int y;
  1192. int leftr, leftg, leftb, lefta;
  1193. if(s->bitstream_bpp == 32) put_bits(&s->pb, 8, lefta= data[A]);
  1194. put_bits(&s->pb, 8, leftr= data[R]);
  1195. put_bits(&s->pb, 8, leftg= data[G]);
  1196. put_bits(&s->pb, 8, leftb= data[B]);
  1197. if(s->bitstream_bpp == 24) put_bits(&s->pb, 8, 0);
  1198. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb, &lefta);
  1199. encode_bgr_bitstream(s, width-1, s->bitstream_bpp == 32);
  1200. for(y=1; y<s->height; y++){
  1201. uint8_t *dst = data + y*stride;
  1202. if(s->predictor == PLANE && s->interlaced < y){
  1203. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1204. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta);
  1205. }else{
  1206. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta);
  1207. }
  1208. encode_bgr_bitstream(s, width, s->bitstream_bpp == 32);
  1209. }
  1210. }else{
  1211. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1212. }
  1213. emms_c();
  1214. size+= (put_bits_count(&s->pb)+31)/8;
  1215. put_bits(&s->pb, 16, 0);
  1216. put_bits(&s->pb, 15, 0);
  1217. size/= 4;
  1218. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1219. int j;
  1220. char *p= avctx->stats_out;
  1221. char *end= p + 1024*30;
  1222. for(i=0; i<3; i++){
  1223. for(j=0; j<256; j++){
  1224. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1225. p+= strlen(p);
  1226. s->stats[i][j]= 0;
  1227. }
  1228. snprintf(p, end-p, "\n");
  1229. p++;
  1230. }
  1231. } else
  1232. avctx->stats_out[0] = '\0';
  1233. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1234. flush_put_bits(&s->pb);
  1235. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1236. }
  1237. s->picture_number++;
  1238. return size*4;
  1239. }
  1240. static av_cold int encode_end(AVCodecContext *avctx)
  1241. {
  1242. HYuvContext *s = avctx->priv_data;
  1243. common_end(s);
  1244. av_freep(&avctx->extradata);
  1245. av_freep(&avctx->stats_out);
  1246. return 0;
  1247. }
  1248. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1249. #if CONFIG_HUFFYUV_DECODER
  1250. AVCodec ff_huffyuv_decoder = {
  1251. .name = "huffyuv",
  1252. .type = AVMEDIA_TYPE_VIDEO,
  1253. .id = CODEC_ID_HUFFYUV,
  1254. .priv_data_size = sizeof(HYuvContext),
  1255. .init = decode_init,
  1256. .close = decode_end,
  1257. .decode = decode_frame,
  1258. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1259. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1260. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1261. };
  1262. #endif
  1263. #if CONFIG_FFVHUFF_DECODER
  1264. AVCodec ff_ffvhuff_decoder = {
  1265. .name = "ffvhuff",
  1266. .type = AVMEDIA_TYPE_VIDEO,
  1267. .id = CODEC_ID_FFVHUFF,
  1268. .priv_data_size = sizeof(HYuvContext),
  1269. .init = decode_init,
  1270. .close = decode_end,
  1271. .decode = decode_frame,
  1272. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1273. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1274. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1275. };
  1276. #endif
  1277. #if CONFIG_HUFFYUV_ENCODER
  1278. AVCodec ff_huffyuv_encoder = {
  1279. .name = "huffyuv",
  1280. .type = AVMEDIA_TYPE_VIDEO,
  1281. .id = CODEC_ID_HUFFYUV,
  1282. .priv_data_size = sizeof(HYuvContext),
  1283. .init = encode_init,
  1284. .encode = encode_frame,
  1285. .close = encode_end,
  1286. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_0RGB32, PIX_FMT_RGB32, PIX_FMT_NONE},
  1287. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1288. };
  1289. #endif
  1290. #if CONFIG_FFVHUFF_ENCODER
  1291. AVCodec ff_ffvhuff_encoder = {
  1292. .name = "ffvhuff",
  1293. .type = AVMEDIA_TYPE_VIDEO,
  1294. .id = CODEC_ID_FFVHUFF,
  1295. .priv_data_size = sizeof(HYuvContext),
  1296. .init = encode_init,
  1297. .encode = encode_frame,
  1298. .close = encode_end,
  1299. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_0RGB32, PIX_FMT_RGB32, PIX_FMT_NONE},
  1300. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1301. };
  1302. #endif