You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4822 lines
137KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. Libavfilter is the filtering API of FFmpeg. It is the substitute of
  5. the now deprecated 'vhooks' and started as a Google Summer of Code
  6. project.
  7. Audio filtering integration into the main FFmpeg repository is a work in
  8. progress, so audio API and ABI should not be considered stable yet.
  9. In libavfilter, it is possible for filters to have multiple inputs and
  10. multiple outputs.
  11. To illustrate the sorts of things that are possible, we can
  12. use a complex filter graph. For example, the following one:
  13. @example
  14. input --> split --> fifo -----------------------> overlay --> output
  15. | ^
  16. | |
  17. +------> fifo --> crop --> vflip --------+
  18. @end example
  19. splits the stream in two streams, sends one stream through the crop filter
  20. and the vflip filter before merging it back with the other stream by
  21. overlaying it on top. You can use the following command to achieve this:
  22. @example
  23. ffmpeg -i input -vf "[in] split [T1], fifo, [T2] overlay=0:H/2 [out]; [T1] fifo, crop=iw:ih/2:0:ih/2, vflip [T2]" output
  24. @end example
  25. The result will be that in output the top half of the video is mirrored
  26. onto the bottom half.
  27. Filters are loaded using the @var{-vf} or @var{-af} option passed to
  28. @command{ffmpeg} or to @command{ffplay}. Filters in the same linear
  29. chain are separated by commas. In our example, @var{split, fifo,
  30. overlay} are in one linear chain, and @var{fifo, crop, vflip} are in
  31. another. The points where the linear chains join are labeled by names
  32. enclosed in square brackets. In our example, that is @var{[T1]} and
  33. @var{[T2]}. The special labels @var{[in]} and @var{[out]} are the points
  34. where video is input and output.
  35. Some filters take in input a list of parameters: they are specified
  36. after the filter name and an equal sign, and are separated from each other
  37. by a colon.
  38. There exist so-called @var{source filters} that do not have an
  39. audio/video input, and @var{sink filters} that will not have audio/video
  40. output.
  41. @c man end FILTERING INTRODUCTION
  42. @chapter graph2dot
  43. @c man begin GRAPH2DOT
  44. The @file{graph2dot} program included in the FFmpeg @file{tools}
  45. directory can be used to parse a filter graph description and issue a
  46. corresponding textual representation in the dot language.
  47. Invoke the command:
  48. @example
  49. graph2dot -h
  50. @end example
  51. to see how to use @file{graph2dot}.
  52. You can then pass the dot description to the @file{dot} program (from
  53. the graphviz suite of programs) and obtain a graphical representation
  54. of the filter graph.
  55. For example the sequence of commands:
  56. @example
  57. echo @var{GRAPH_DESCRIPTION} | \
  58. tools/graph2dot -o graph.tmp && \
  59. dot -Tpng graph.tmp -o graph.png && \
  60. display graph.png
  61. @end example
  62. can be used to create and display an image representing the graph
  63. described by the @var{GRAPH_DESCRIPTION} string. Note that this string must be
  64. a complete self-contained graph, with its inputs and outputs explicitly defined.
  65. For example if your command line is of the form:
  66. @example
  67. ffmpeg -i infile -vf scale=640:360 outfile
  68. @end example
  69. your @var{GRAPH_DESCRIPTION} string will need to be of the form:
  70. @example
  71. nullsrc,scale=640:360,nullsink
  72. @end example
  73. you may also need to set the @var{nullsrc} parameters and add a @var{format}
  74. filter in order to simulate a specific input file.
  75. @c man end GRAPH2DOT
  76. @chapter Filtergraph description
  77. @c man begin FILTERGRAPH DESCRIPTION
  78. A filtergraph is a directed graph of connected filters. It can contain
  79. cycles, and there can be multiple links between a pair of
  80. filters. Each link has one input pad on one side connecting it to one
  81. filter from which it takes its input, and one output pad on the other
  82. side connecting it to the one filter accepting its output.
  83. Each filter in a filtergraph is an instance of a filter class
  84. registered in the application, which defines the features and the
  85. number of input and output pads of the filter.
  86. A filter with no input pads is called a "source", a filter with no
  87. output pads is called a "sink".
  88. @anchor{Filtergraph syntax}
  89. @section Filtergraph syntax
  90. A filtergraph can be represented using a textual representation, which is
  91. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  92. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  93. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  94. @file{libavfilter/avfiltergraph.h}.
  95. A filterchain consists of a sequence of connected filters, each one
  96. connected to the previous one in the sequence. A filterchain is
  97. represented by a list of ","-separated filter descriptions.
  98. A filtergraph consists of a sequence of filterchains. A sequence of
  99. filterchains is represented by a list of ";"-separated filterchain
  100. descriptions.
  101. A filter is represented by a string of the form:
  102. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  103. @var{filter_name} is the name of the filter class of which the
  104. described filter is an instance of, and has to be the name of one of
  105. the filter classes registered in the program.
  106. The name of the filter class is optionally followed by a string
  107. "=@var{arguments}".
  108. @var{arguments} is a string which contains the parameters used to
  109. initialize the filter instance, and are described in the filter
  110. descriptions below.
  111. The list of arguments can be quoted using the character "'" as initial
  112. and ending mark, and the character '\' for escaping the characters
  113. within the quoted text; otherwise the argument string is considered
  114. terminated when the next special character (belonging to the set
  115. "[]=;,") is encountered.
  116. The name and arguments of the filter are optionally preceded and
  117. followed by a list of link labels.
  118. A link label allows to name a link and associate it to a filter output
  119. or input pad. The preceding labels @var{in_link_1}
  120. ... @var{in_link_N}, are associated to the filter input pads,
  121. the following labels @var{out_link_1} ... @var{out_link_M}, are
  122. associated to the output pads.
  123. When two link labels with the same name are found in the
  124. filtergraph, a link between the corresponding input and output pad is
  125. created.
  126. If an output pad is not labelled, it is linked by default to the first
  127. unlabelled input pad of the next filter in the filterchain.
  128. For example in the filterchain:
  129. @example
  130. nullsrc, split[L1], [L2]overlay, nullsink
  131. @end example
  132. the split filter instance has two output pads, and the overlay filter
  133. instance two input pads. The first output pad of split is labelled
  134. "L1", the first input pad of overlay is labelled "L2", and the second
  135. output pad of split is linked to the second input pad of overlay,
  136. which are both unlabelled.
  137. In a complete filterchain all the unlabelled filter input and output
  138. pads must be connected. A filtergraph is considered valid if all the
  139. filter input and output pads of all the filterchains are connected.
  140. Libavfilter will automatically insert scale filters where format
  141. conversion is required. It is possible to specify swscale flags
  142. for those automatically inserted scalers by prepending
  143. @code{sws_flags=@var{flags};}
  144. to the filtergraph description.
  145. Follows a BNF description for the filtergraph syntax:
  146. @example
  147. @var{NAME} ::= sequence of alphanumeric characters and '_'
  148. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  149. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  150. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  151. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  152. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  153. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  154. @end example
  155. @c man end FILTERGRAPH DESCRIPTION
  156. @chapter Audio Filters
  157. @c man begin AUDIO FILTERS
  158. When you configure your FFmpeg build, you can disable any of the
  159. existing filters using @code{--disable-filters}.
  160. The configure output will show the audio filters included in your
  161. build.
  162. Below is a description of the currently available audio filters.
  163. @section aconvert
  164. Convert the input audio format to the specified formats.
  165. The filter accepts a string of the form:
  166. "@var{sample_format}:@var{channel_layout}".
  167. @var{sample_format} specifies the sample format, and can be a string or the
  168. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  169. suffix for a planar sample format.
  170. @var{channel_layout} specifies the channel layout, and can be a string
  171. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  172. The special parameter "auto", signifies that the filter will
  173. automatically select the output format depending on the output filter.
  174. Some examples follow.
  175. @itemize
  176. @item
  177. Convert input to float, planar, stereo:
  178. @example
  179. aconvert=fltp:stereo
  180. @end example
  181. @item
  182. Convert input to unsigned 8-bit, automatically select out channel layout:
  183. @example
  184. aconvert=u8:auto
  185. @end example
  186. @end itemize
  187. @section aformat
  188. Convert the input audio to one of the specified formats. The framework will
  189. negotiate the most appropriate format to minimize conversions.
  190. The filter accepts the following named parameters:
  191. @table @option
  192. @item sample_fmts
  193. A comma-separated list of requested sample formats.
  194. @item sample_rates
  195. A comma-separated list of requested sample rates.
  196. @item channel_layouts
  197. A comma-separated list of requested channel layouts.
  198. @end table
  199. If a parameter is omitted, all values are allowed.
  200. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  201. @example
  202. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  203. @end example
  204. @section amerge
  205. Merge two or more audio streams into a single multi-channel stream.
  206. The filter accepts the following named options:
  207. @table @option
  208. @item inputs
  209. Set the number of inputs. Default is 2.
  210. @end table
  211. If the channel layouts of the inputs are disjoint, and therefore compatible,
  212. the channel layout of the output will be set accordingly and the channels
  213. will be reordered as necessary. If the channel layouts of the inputs are not
  214. disjoint, the output will have all the channels of the first input then all
  215. the channels of the second input, in that order, and the channel layout of
  216. the output will be the default value corresponding to the total number of
  217. channels.
  218. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  219. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  220. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  221. first input, b1 is the first channel of the second input).
  222. On the other hand, if both input are in stereo, the output channels will be
  223. in the default order: a1, a2, b1, b2, and the channel layout will be
  224. arbitrarily set to 4.0, which may or may not be the expected value.
  225. All inputs must have the same sample rate, and format.
  226. If inputs do not have the same duration, the output will stop with the
  227. shortest.
  228. Example: merge two mono files into a stereo stream:
  229. @example
  230. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  231. @end example
  232. Example: multiple merges:
  233. @example
  234. ffmpeg -f lavfi -i "
  235. amovie=input.mkv:si=0 [a0];
  236. amovie=input.mkv:si=1 [a1];
  237. amovie=input.mkv:si=2 [a2];
  238. amovie=input.mkv:si=3 [a3];
  239. amovie=input.mkv:si=4 [a4];
  240. amovie=input.mkv:si=5 [a5];
  241. [a0][a1][a2][a3][a4][a5] amerge=inputs=6" -c:a pcm_s16le output.mkv
  242. @end example
  243. @section amix
  244. Mixes multiple audio inputs into a single output.
  245. For example
  246. @example
  247. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  248. @end example
  249. will mix 3 input audio streams to a single output with the same duration as the
  250. first input and a dropout transition time of 3 seconds.
  251. The filter accepts the following named parameters:
  252. @table @option
  253. @item inputs
  254. Number of inputs. If unspecified, it defaults to 2.
  255. @item duration
  256. How to determine the end-of-stream.
  257. @table @option
  258. @item longest
  259. Duration of longest input. (default)
  260. @item shortest
  261. Duration of shortest input.
  262. @item first
  263. Duration of first input.
  264. @end table
  265. @item dropout_transition
  266. Transition time, in seconds, for volume renormalization when an input
  267. stream ends. The default value is 2 seconds.
  268. @end table
  269. @section anull
  270. Pass the audio source unchanged to the output.
  271. @section aresample
  272. Resample the input audio to the specified sample rate.
  273. The filter accepts exactly one parameter, the output sample rate. If not
  274. specified then the filter will automatically convert between its input
  275. and output sample rates.
  276. For example, to resample the input audio to 44100Hz:
  277. @example
  278. aresample=44100
  279. @end example
  280. @section asetnsamples
  281. Set the number of samples per each output audio frame.
  282. The last output packet may contain a different number of samples, as
  283. the filter will flush all the remaining samples when the input audio
  284. signal its end.
  285. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  286. separated by ":".
  287. @table @option
  288. @item nb_out_samples, n
  289. Set the number of frames per each output audio frame. The number is
  290. intended as the number of samples @emph{per each channel}.
  291. Default value is 1024.
  292. @item pad, p
  293. If set to 1, the filter will pad the last audio frame with zeroes, so
  294. that the last frame will contain the same number of samples as the
  295. previous ones. Default value is 1.
  296. @end table
  297. For example, to set the number of per-frame samples to 1234 and
  298. disable padding for the last frame, use:
  299. @example
  300. asetnsamples=n=1234:p=0
  301. @end example
  302. @section ashowinfo
  303. Show a line containing various information for each input audio frame.
  304. The input audio is not modified.
  305. The shown line contains a sequence of key/value pairs of the form
  306. @var{key}:@var{value}.
  307. A description of each shown parameter follows:
  308. @table @option
  309. @item n
  310. sequential number of the input frame, starting from 0
  311. @item pts
  312. presentation TimeStamp of the input frame, expressed as a number of
  313. time base units. The time base unit depends on the filter input pad, and
  314. is usually 1/@var{sample_rate}.
  315. @item pts_time
  316. presentation TimeStamp of the input frame, expressed as a number of
  317. seconds
  318. @item pos
  319. position of the frame in the input stream, -1 if this information in
  320. unavailable and/or meaningless (for example in case of synthetic audio)
  321. @item fmt
  322. sample format name
  323. @item chlayout
  324. channel layout description
  325. @item nb_samples
  326. number of samples (per each channel) contained in the filtered frame
  327. @item rate
  328. sample rate for the audio frame
  329. @item checksum
  330. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  331. @item plane_checksum
  332. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  333. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  334. @var{c6} @var{c7}]"
  335. @end table
  336. @section asplit
  337. Split input audio into several identical outputs.
  338. The filter accepts a single parameter which specifies the number of outputs. If
  339. unspecified, it defaults to 2.
  340. For example:
  341. @example
  342. [in] asplit [out0][out1]
  343. @end example
  344. will create two separate outputs from the same input.
  345. To create 3 or more outputs, you need to specify the number of
  346. outputs, like in:
  347. @example
  348. [in] asplit=3 [out0][out1][out2]
  349. @end example
  350. @example
  351. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  352. @end example
  353. will create 5 copies of the input audio.
  354. @section astreamsync
  355. Forward two audio streams and control the order the buffers are forwarded.
  356. The argument to the filter is an expression deciding which stream should be
  357. forwarded next: if the result is negative, the first stream is forwarded; if
  358. the result is positive or zero, the second stream is forwarded. It can use
  359. the following variables:
  360. @table @var
  361. @item b1 b2
  362. number of buffers forwarded so far on each stream
  363. @item s1 s2
  364. number of samples forwarded so far on each stream
  365. @item t1 t2
  366. current timestamp of each stream
  367. @end table
  368. The default value is @code{t1-t2}, which means to always forward the stream
  369. that has a smaller timestamp.
  370. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  371. input, while avoiding too much of a desynchronization:
  372. @example
  373. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  374. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  375. [a2] [b2] amerge
  376. @end example
  377. @section atempo
  378. Adjust audio tempo.
  379. The filter accepts exactly one parameter, the audio tempo. If not
  380. specified then the filter will assume nominal 1.0 tempo. Tempo must
  381. be in the [0.5, 2.0] range.
  382. For example, to slow down audio to 80% tempo:
  383. @example
  384. atempo=0.8
  385. @end example
  386. For example, to speed up audio to 125% tempo:
  387. @example
  388. atempo=1.25
  389. @end example
  390. @section earwax
  391. Make audio easier to listen to on headphones.
  392. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  393. so that when listened to on headphones the stereo image is moved from
  394. inside your head (standard for headphones) to outside and in front of
  395. the listener (standard for speakers).
  396. Ported from SoX.
  397. @section pan
  398. Mix channels with specific gain levels. The filter accepts the output
  399. channel layout followed by a set of channels definitions.
  400. This filter is also designed to remap efficiently the channels of an audio
  401. stream.
  402. The filter accepts parameters of the form:
  403. "@var{l}:@var{outdef}:@var{outdef}:..."
  404. @table @option
  405. @item l
  406. output channel layout or number of channels
  407. @item outdef
  408. output channel specification, of the form:
  409. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  410. @item out_name
  411. output channel to define, either a channel name (FL, FR, etc.) or a channel
  412. number (c0, c1, etc.)
  413. @item gain
  414. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  415. @item in_name
  416. input channel to use, see out_name for details; it is not possible to mix
  417. named and numbered input channels
  418. @end table
  419. If the `=' in a channel specification is replaced by `<', then the gains for
  420. that specification will be renormalized so that the total is 1, thus
  421. avoiding clipping noise.
  422. @subsection Mixing examples
  423. For example, if you want to down-mix from stereo to mono, but with a bigger
  424. factor for the left channel:
  425. @example
  426. pan=1:c0=0.9*c0+0.1*c1
  427. @end example
  428. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  429. 7-channels surround:
  430. @example
  431. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  432. @end example
  433. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  434. that should be preferred (see "-ac" option) unless you have very specific
  435. needs.
  436. @subsection Remapping examples
  437. The channel remapping will be effective if, and only if:
  438. @itemize
  439. @item gain coefficients are zeroes or ones,
  440. @item only one input per channel output,
  441. @end itemize
  442. If all these conditions are satisfied, the filter will notify the user ("Pure
  443. channel mapping detected"), and use an optimized and lossless method to do the
  444. remapping.
  445. For example, if you have a 5.1 source and want a stereo audio stream by
  446. dropping the extra channels:
  447. @example
  448. pan="stereo: c0=FL : c1=FR"
  449. @end example
  450. Given the same source, you can also switch front left and front right channels
  451. and keep the input channel layout:
  452. @example
  453. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  454. @end example
  455. If the input is a stereo audio stream, you can mute the front left channel (and
  456. still keep the stereo channel layout) with:
  457. @example
  458. pan="stereo:c1=c1"
  459. @end example
  460. Still with a stereo audio stream input, you can copy the right channel in both
  461. front left and right:
  462. @example
  463. pan="stereo: c0=FR : c1=FR"
  464. @end example
  465. @section silencedetect
  466. Detect silence in an audio stream.
  467. This filter logs a message when it detects that the input audio volume is less
  468. or equal to a noise tolerance value for a duration greater or equal to the
  469. minimum detected noise duration.
  470. The printed times and duration are expressed in seconds.
  471. @table @option
  472. @item duration, d
  473. Set silence duration until notification (default is 2 seconds).
  474. @item noise, n
  475. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  476. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  477. @end table
  478. Detect 5 seconds of silence with -50dB noise tolerance:
  479. @example
  480. silencedetect=n=-50dB:d=5
  481. @end example
  482. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  483. tolerance in @file{silence.mp3}:
  484. @example
  485. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  486. @end example
  487. @section volume
  488. Adjust the input audio volume.
  489. The filter accepts exactly one parameter @var{vol}, which expresses
  490. how the audio volume will be increased or decreased.
  491. Output values are clipped to the maximum value.
  492. If @var{vol} is expressed as a decimal number, the output audio
  493. volume is given by the relation:
  494. @example
  495. @var{output_volume} = @var{vol} * @var{input_volume}
  496. @end example
  497. If @var{vol} is expressed as a decimal number followed by the string
  498. "dB", the value represents the requested change in decibels of the
  499. input audio power, and the output audio volume is given by the
  500. relation:
  501. @example
  502. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  503. @end example
  504. Otherwise @var{vol} is considered an expression and its evaluated
  505. value is used for computing the output audio volume according to the
  506. first relation.
  507. Default value for @var{vol} is 1.0.
  508. @subsection Examples
  509. @itemize
  510. @item
  511. Half the input audio volume:
  512. @example
  513. volume=0.5
  514. @end example
  515. The above example is equivalent to:
  516. @example
  517. volume=1/2
  518. @end example
  519. @item
  520. Decrease input audio power by 12 decibels:
  521. @example
  522. volume=-12dB
  523. @end example
  524. @end itemize
  525. @section volumedetect
  526. Detect the volume of the input video.
  527. The filter has no parameters. The input is not modified. Statistics about
  528. the volume will be printed in the log when the input stream end is reached.
  529. In particular it will show the mean volume (root mean square), maximum
  530. volume (on a per-sample basis), and the beginning of an histogram of the
  531. registered volume values (from the maximum value to a cumulated 1/1000 of
  532. the samples).
  533. All volumes are in decibels relative to the maximum PCM value.
  534. Here is an excerpt of the output:
  535. @example
  536. [Parsed_volumedetect_0 @ 0xa23120] mean_volume: -27 dB
  537. [Parsed_volumedetect_0 @ 0xa23120] max_volume: -4 dB
  538. [Parsed_volumedetect_0 @ 0xa23120] histogram_4db: 6
  539. [Parsed_volumedetect_0 @ 0xa23120] histogram_5db: 62
  540. [Parsed_volumedetect_0 @ 0xa23120] histogram_6db: 286
  541. [Parsed_volumedetect_0 @ 0xa23120] histogram_7db: 1042
  542. [Parsed_volumedetect_0 @ 0xa23120] histogram_8db: 2551
  543. [Parsed_volumedetect_0 @ 0xa23120] histogram_9db: 4609
  544. [Parsed_volumedetect_0 @ 0xa23120] histogram_10db: 8409
  545. @end example
  546. It means that:
  547. @itemize
  548. @item
  549. The mean square energy is approximately -27 dB, or 10^-2.7.
  550. @item
  551. The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
  552. @item
  553. There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.
  554. @end itemize
  555. In other words, raising the volume by +4 dB does not cause any clipping,
  556. raising it by +5 dB causes clipping for 6 samples, etc.
  557. @section asyncts
  558. Synchronize audio data with timestamps by squeezing/stretching it and/or
  559. dropping samples/adding silence when needed.
  560. The filter accepts the following named parameters:
  561. @table @option
  562. @item compensate
  563. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  564. by default. When disabled, time gaps are covered with silence.
  565. @item min_delta
  566. Minimum difference between timestamps and audio data (in seconds) to trigger
  567. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  568. this filter, try setting this parameter to 0.
  569. @item max_comp
  570. Maximum compensation in samples per second. Relevant only with compensate=1.
  571. Default value 500.
  572. @item first_pts
  573. Assume the first pts should be this value.
  574. This allows for padding/trimming at the start of stream. By default, no
  575. assumption is made about the first frame's expected pts, so no padding or
  576. trimming is done. For example, this could be set to 0 to pad the beginning with
  577. silence if an audio stream starts after the video stream.
  578. @end table
  579. @section channelsplit
  580. Split each channel in input audio stream into a separate output stream.
  581. This filter accepts the following named parameters:
  582. @table @option
  583. @item channel_layout
  584. Channel layout of the input stream. Default is "stereo".
  585. @end table
  586. For example, assuming a stereo input MP3 file
  587. @example
  588. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  589. @end example
  590. will create an output Matroska file with two audio streams, one containing only
  591. the left channel and the other the right channel.
  592. To split a 5.1 WAV file into per-channel files
  593. @example
  594. ffmpeg -i in.wav -filter_complex
  595. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  596. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  597. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  598. side_right.wav
  599. @end example
  600. @section channelmap
  601. Remap input channels to new locations.
  602. This filter accepts the following named parameters:
  603. @table @option
  604. @item channel_layout
  605. Channel layout of the output stream.
  606. @item map
  607. Map channels from input to output. The argument is a comma-separated list of
  608. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  609. @var{in_channel} form. @var{in_channel} can be either the name of the input
  610. channel (e.g. FL for front left) or its index in the input channel layout.
  611. @var{out_channel} is the name of the output channel or its index in the output
  612. channel layout. If @var{out_channel} is not given then it is implicitly an
  613. index, starting with zero and increasing by one for each mapping.
  614. @end table
  615. If no mapping is present, the filter will implicitly map input channels to
  616. output channels preserving index.
  617. For example, assuming a 5.1+downmix input MOV file
  618. @example
  619. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  620. @end example
  621. will create an output WAV file tagged as stereo from the downmix channels of
  622. the input.
  623. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  624. @example
  625. ffmpeg -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  626. @end example
  627. @section join
  628. Join multiple input streams into one multi-channel stream.
  629. The filter accepts the following named parameters:
  630. @table @option
  631. @item inputs
  632. Number of input streams. Defaults to 2.
  633. @item channel_layout
  634. Desired output channel layout. Defaults to stereo.
  635. @item map
  636. Map channels from inputs to output. The argument is a comma-separated list of
  637. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  638. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  639. can be either the name of the input channel (e.g. FL for front left) or its
  640. index in the specified input stream. @var{out_channel} is the name of the output
  641. channel.
  642. @end table
  643. The filter will attempt to guess the mappings when those are not specified
  644. explicitly. It does so by first trying to find an unused matching input channel
  645. and if that fails it picks the first unused input channel.
  646. E.g. to join 3 inputs (with properly set channel layouts)
  647. @example
  648. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  649. @end example
  650. To build a 5.1 output from 6 single-channel streams:
  651. @example
  652. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  653. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  654. out
  655. @end example
  656. @section resample
  657. Convert the audio sample format, sample rate and channel layout. This filter is
  658. not meant to be used directly.
  659. @c man end AUDIO FILTERS
  660. @chapter Audio Sources
  661. @c man begin AUDIO SOURCES
  662. Below is a description of the currently available audio sources.
  663. @section abuffer
  664. Buffer audio frames, and make them available to the filter chain.
  665. This source is mainly intended for a programmatic use, in particular
  666. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  667. It accepts the following mandatory parameters:
  668. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  669. @table @option
  670. @item sample_rate
  671. The sample rate of the incoming audio buffers.
  672. @item sample_fmt
  673. The sample format of the incoming audio buffers.
  674. Either a sample format name or its corresponging integer representation from
  675. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  676. @item channel_layout
  677. The channel layout of the incoming audio buffers.
  678. Either a channel layout name from channel_layout_map in
  679. @file{libavutil/audioconvert.c} or its corresponding integer representation
  680. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  681. @end table
  682. For example:
  683. @example
  684. abuffer=44100:s16p:stereo
  685. @end example
  686. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  687. Since the sample format with name "s16p" corresponds to the number
  688. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  689. equivalent to:
  690. @example
  691. abuffer=44100:6:0x3
  692. @end example
  693. @section aevalsrc
  694. Generate an audio signal specified by an expression.
  695. This source accepts in input one or more expressions (one for each
  696. channel), which are evaluated and used to generate a corresponding
  697. audio signal.
  698. It accepts the syntax: @var{exprs}[::@var{options}].
  699. @var{exprs} is a list of expressions separated by ":", one for each
  700. separate channel. In case the @var{channel_layout} is not
  701. specified, the selected channel layout depends on the number of
  702. provided expressions.
  703. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  704. separated by ":".
  705. The description of the accepted options follows.
  706. @table @option
  707. @item channel_layout, c
  708. Set the channel layout. The number of channels in the specified layout
  709. must be equal to the number of specified expressions.
  710. @item duration, d
  711. Set the minimum duration of the sourced audio. See the function
  712. @code{av_parse_time()} for the accepted format.
  713. Note that the resulting duration may be greater than the specified
  714. duration, as the generated audio is always cut at the end of a
  715. complete frame.
  716. If not specified, or the expressed duration is negative, the audio is
  717. supposed to be generated forever.
  718. @item nb_samples, n
  719. Set the number of samples per channel per each output frame,
  720. default to 1024.
  721. @item sample_rate, s
  722. Specify the sample rate, default to 44100.
  723. @end table
  724. Each expression in @var{exprs} can contain the following constants:
  725. @table @option
  726. @item n
  727. number of the evaluated sample, starting from 0
  728. @item t
  729. time of the evaluated sample expressed in seconds, starting from 0
  730. @item s
  731. sample rate
  732. @end table
  733. @subsection Examples
  734. @itemize
  735. @item
  736. Generate silence:
  737. @example
  738. aevalsrc=0
  739. @end example
  740. @item
  741. Generate a sin signal with frequency of 440 Hz, set sample rate to
  742. 8000 Hz:
  743. @example
  744. aevalsrc="sin(440*2*PI*t)::s=8000"
  745. @end example
  746. @item
  747. Generate a two channels signal, specify the channel layout (Front
  748. Center + Back Center) explicitly:
  749. @example
  750. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  751. @end example
  752. @item
  753. Generate white noise:
  754. @example
  755. aevalsrc="-2+random(0)"
  756. @end example
  757. @item
  758. Generate an amplitude modulated signal:
  759. @example
  760. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  761. @end example
  762. @item
  763. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  764. @example
  765. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  766. @end example
  767. @end itemize
  768. @section anullsrc
  769. Null audio source, return unprocessed audio frames. It is mainly useful
  770. as a template and to be employed in analysis / debugging tools, or as
  771. the source for filters which ignore the input data (for example the sox
  772. synth filter).
  773. It accepts an optional sequence of @var{key}=@var{value} pairs,
  774. separated by ":".
  775. The description of the accepted options follows.
  776. @table @option
  777. @item sample_rate, s
  778. Specify the sample rate, and defaults to 44100.
  779. @item channel_layout, cl
  780. Specify the channel layout, and can be either an integer or a string
  781. representing a channel layout. The default value of @var{channel_layout}
  782. is "stereo".
  783. Check the channel_layout_map definition in
  784. @file{libavcodec/audioconvert.c} for the mapping between strings and
  785. channel layout values.
  786. @item nb_samples, n
  787. Set the number of samples per requested frames.
  788. @end table
  789. Follow some examples:
  790. @example
  791. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  792. anullsrc=r=48000:cl=4
  793. # same as
  794. anullsrc=r=48000:cl=mono
  795. @end example
  796. @section abuffer
  797. Buffer audio frames, and make them available to the filter chain.
  798. This source is not intended to be part of user-supplied graph descriptions but
  799. for insertion by calling programs through the interface defined in
  800. @file{libavfilter/buffersrc.h}.
  801. It accepts the following named parameters:
  802. @table @option
  803. @item time_base
  804. Timebase which will be used for timestamps of submitted frames. It must be
  805. either a floating-point number or in @var{numerator}/@var{denominator} form.
  806. @item sample_rate
  807. Audio sample rate.
  808. @item sample_fmt
  809. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  810. @item channel_layout
  811. Channel layout of the audio data, in the form that can be accepted by
  812. @code{av_get_channel_layout()}.
  813. @end table
  814. All the parameters need to be explicitly defined.
  815. @section flite
  816. Synthesize a voice utterance using the libflite library.
  817. To enable compilation of this filter you need to configure FFmpeg with
  818. @code{--enable-libflite}.
  819. Note that the flite library is not thread-safe.
  820. The source accepts parameters as a list of @var{key}=@var{value} pairs,
  821. separated by ":".
  822. The description of the accepted parameters follows.
  823. @table @option
  824. @item list_voices
  825. If set to 1, list the names of the available voices and exit
  826. immediately. Default value is 0.
  827. @item nb_samples, n
  828. Set the maximum number of samples per frame. Default value is 512.
  829. @item textfile
  830. Set the filename containing the text to speak.
  831. @item text
  832. Set the text to speak.
  833. @item voice, v
  834. Set the voice to use for the speech synthesis. Default value is
  835. @code{kal}. See also the @var{list_voices} option.
  836. @end table
  837. @subsection Examples
  838. @itemize
  839. @item
  840. Read from file @file{speech.txt}, and synthetize the text using the
  841. standard flite voice:
  842. @example
  843. flite=textfile=speech.txt
  844. @end example
  845. @item
  846. Read the specified text selecting the @code{slt} voice:
  847. @example
  848. flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  849. @end example
  850. @item
  851. Input text to ffmpeg:
  852. @example
  853. ffmpeg -f lavfi -i flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  854. @end example
  855. @item
  856. Make @file{ffplay} speak the specified text, using @code{flite} and
  857. the @code{lavfi} device:
  858. @example
  859. ffplay -f lavfi flite=text='No more be grieved for which that thou hast done.'
  860. @end example
  861. @end itemize
  862. For more information about libflite, check:
  863. @url{http://www.speech.cs.cmu.edu/flite/}
  864. @c man end AUDIO SOURCES
  865. @chapter Audio Sinks
  866. @c man begin AUDIO SINKS
  867. Below is a description of the currently available audio sinks.
  868. @section abuffersink
  869. Buffer audio frames, and make them available to the end of filter chain.
  870. This sink is mainly intended for programmatic use, in particular
  871. through the interface defined in @file{libavfilter/buffersink.h}.
  872. It requires a pointer to an AVABufferSinkContext structure, which
  873. defines the incoming buffers' formats, to be passed as the opaque
  874. parameter to @code{avfilter_init_filter} for initialization.
  875. @section anullsink
  876. Null audio sink, do absolutely nothing with the input audio. It is
  877. mainly useful as a template and to be employed in analysis / debugging
  878. tools.
  879. @section abuffersink
  880. This sink is intended for programmatic use. Frames that arrive on this sink can
  881. be retrieved by the calling program using the interface defined in
  882. @file{libavfilter/buffersink.h}.
  883. This filter accepts no parameters.
  884. @c man end AUDIO SINKS
  885. @chapter Video Filters
  886. @c man begin VIDEO FILTERS
  887. When you configure your FFmpeg build, you can disable any of the
  888. existing filters using @code{--disable-filters}.
  889. The configure output will show the video filters included in your
  890. build.
  891. Below is a description of the currently available video filters.
  892. @section alphaextract
  893. Extract the alpha component from the input as a grayscale video. This
  894. is especially useful with the @var{alphamerge} filter.
  895. @section alphamerge
  896. Add or replace the alpha component of the primary input with the
  897. grayscale value of a second input. This is intended for use with
  898. @var{alphaextract} to allow the transmission or storage of frame
  899. sequences that have alpha in a format that doesn't support an alpha
  900. channel.
  901. For example, to reconstruct full frames from a normal YUV-encoded video
  902. and a separate video created with @var{alphaextract}, you might use:
  903. @example
  904. movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]
  905. @end example
  906. Since this filter is designed for reconstruction, it operates on frame
  907. sequences without considering timestamps, and terminates when either
  908. input reaches end of stream. This will cause problems if your encoding
  909. pipeline drops frames. If you're trying to apply an image as an
  910. overlay to a video stream, consider the @var{overlay} filter instead.
  911. @section ass
  912. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  913. using the libass library.
  914. To enable compilation of this filter you need to configure FFmpeg with
  915. @code{--enable-libass}.
  916. This filter accepts the following named options, expressed as a
  917. sequence of @var{key}=@var{value} pairs, separated by ":".
  918. @table @option
  919. @item filename, f
  920. Set the filename of the ASS file to read. It must be specified.
  921. @item original_size
  922. Specify the size of the original video, the video for which the ASS file
  923. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  924. necessary to correctly scale the fonts if the aspect ratio has been changed.
  925. @end table
  926. If the first key is not specified, it is assumed that the first value
  927. specifies the @option{filename}.
  928. For example, to render the file @file{sub.ass} on top of the input
  929. video, use the command:
  930. @example
  931. ass=sub.ass
  932. @end example
  933. which is equivalent to:
  934. @example
  935. ass=filename=sub.ass
  936. @end example
  937. @section bbox
  938. Compute the bounding box for the non-black pixels in the input frame
  939. luminance plane.
  940. This filter computes the bounding box containing all the pixels with a
  941. luminance value greater than the minimum allowed value.
  942. The parameters describing the bounding box are printed on the filter
  943. log.
  944. @section blackdetect
  945. Detect video intervals that are (almost) completely black. Can be
  946. useful to detect chapter transitions, commercials, or invalid
  947. recordings. Output lines contains the time for the start, end and
  948. duration of the detected black interval expressed in seconds.
  949. In order to display the output lines, you need to set the loglevel at
  950. least to the AV_LOG_INFO value.
  951. This filter accepts a list of options in the form of
  952. @var{key}=@var{value} pairs separated by ":". A description of the
  953. accepted options follows.
  954. @table @option
  955. @item black_min_duration, d
  956. Set the minimum detected black duration expressed in seconds. It must
  957. be a non-negative floating point number.
  958. Default value is 2.0.
  959. @item picture_black_ratio_th, pic_th
  960. Set the threshold for considering a picture "black".
  961. Express the minimum value for the ratio:
  962. @example
  963. @var{nb_black_pixels} / @var{nb_pixels}
  964. @end example
  965. for which a picture is considered black.
  966. Default value is 0.98.
  967. @item pixel_black_th, pix_th
  968. Set the threshold for considering a pixel "black".
  969. The threshold expresses the maximum pixel luminance value for which a
  970. pixel is considered "black". The provided value is scaled according to
  971. the following equation:
  972. @example
  973. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  974. @end example
  975. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  976. the input video format, the range is [0-255] for YUV full-range
  977. formats and [16-235] for YUV non full-range formats.
  978. Default value is 0.10.
  979. @end table
  980. The following example sets the maximum pixel threshold to the minimum
  981. value, and detects only black intervals of 2 or more seconds:
  982. @example
  983. blackdetect=d=2:pix_th=0.00
  984. @end example
  985. @section blackframe
  986. Detect frames that are (almost) completely black. Can be useful to
  987. detect chapter transitions or commercials. Output lines consist of
  988. the frame number of the detected frame, the percentage of blackness,
  989. the position in the file if known or -1 and the timestamp in seconds.
  990. In order to display the output lines, you need to set the loglevel at
  991. least to the AV_LOG_INFO value.
  992. The filter accepts the syntax:
  993. @example
  994. blackframe[=@var{amount}:[@var{threshold}]]
  995. @end example
  996. @var{amount} is the percentage of the pixels that have to be below the
  997. threshold, and defaults to 98.
  998. @var{threshold} is the threshold below which a pixel value is
  999. considered black, and defaults to 32.
  1000. @section boxblur
  1001. Apply boxblur algorithm to the input video.
  1002. This filter accepts the parameters:
  1003. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  1004. Chroma and alpha parameters are optional, if not specified they default
  1005. to the corresponding values set for @var{luma_radius} and
  1006. @var{luma_power}.
  1007. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  1008. the radius in pixels of the box used for blurring the corresponding
  1009. input plane. They are expressions, and can contain the following
  1010. constants:
  1011. @table @option
  1012. @item w, h
  1013. the input width and height in pixels
  1014. @item cw, ch
  1015. the input chroma image width and height in pixels
  1016. @item hsub, vsub
  1017. horizontal and vertical chroma subsample values. For example for the
  1018. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1019. @end table
  1020. The radius must be a non-negative number, and must not be greater than
  1021. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  1022. and of @code{min(cw,ch)/2} for the chroma planes.
  1023. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  1024. how many times the boxblur filter is applied to the corresponding
  1025. plane.
  1026. Some examples follow:
  1027. @itemize
  1028. @item
  1029. Apply a boxblur filter with luma, chroma, and alpha radius
  1030. set to 2:
  1031. @example
  1032. boxblur=2:1
  1033. @end example
  1034. @item
  1035. Set luma radius to 2, alpha and chroma radius to 0
  1036. @example
  1037. boxblur=2:1:0:0:0:0
  1038. @end example
  1039. @item
  1040. Set luma and chroma radius to a fraction of the video dimension
  1041. @example
  1042. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  1043. @end example
  1044. @end itemize
  1045. @section colormatrix
  1046. The colormatrix filter allows conversion between any of the following color
  1047. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  1048. and FCC (@var{fcc}).
  1049. The syntax of the parameters is @var{source}:@var{destination}:
  1050. @example
  1051. colormatrix=bt601:smpte240m
  1052. @end example
  1053. @section copy
  1054. Copy the input source unchanged to the output. Mainly useful for
  1055. testing purposes.
  1056. @section crop
  1057. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  1058. The @var{keep_aspect} parameter is optional, if specified and set to a
  1059. non-zero value will force the output display aspect ratio to be the
  1060. same of the input, by changing the output sample aspect ratio.
  1061. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  1062. expressions containing the following constants:
  1063. @table @option
  1064. @item x, y
  1065. the computed values for @var{x} and @var{y}. They are evaluated for
  1066. each new frame.
  1067. @item in_w, in_h
  1068. the input width and height
  1069. @item iw, ih
  1070. same as @var{in_w} and @var{in_h}
  1071. @item out_w, out_h
  1072. the output (cropped) width and height
  1073. @item ow, oh
  1074. same as @var{out_w} and @var{out_h}
  1075. @item a
  1076. same as @var{iw} / @var{ih}
  1077. @item sar
  1078. input sample aspect ratio
  1079. @item dar
  1080. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1081. @item hsub, vsub
  1082. horizontal and vertical chroma subsample values. For example for the
  1083. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1084. @item n
  1085. the number of input frame, starting from 0
  1086. @item pos
  1087. the position in the file of the input frame, NAN if unknown
  1088. @item t
  1089. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1090. @end table
  1091. The @var{out_w} and @var{out_h} parameters specify the expressions for
  1092. the width and height of the output (cropped) video. They are
  1093. evaluated just at the configuration of the filter.
  1094. The default value of @var{out_w} is "in_w", and the default value of
  1095. @var{out_h} is "in_h".
  1096. The expression for @var{out_w} may depend on the value of @var{out_h},
  1097. and the expression for @var{out_h} may depend on @var{out_w}, but they
  1098. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  1099. evaluated after @var{out_w} and @var{out_h}.
  1100. The @var{x} and @var{y} parameters specify the expressions for the
  1101. position of the top-left corner of the output (non-cropped) area. They
  1102. are evaluated for each frame. If the evaluated value is not valid, it
  1103. is approximated to the nearest valid value.
  1104. The default value of @var{x} is "(in_w-out_w)/2", and the default
  1105. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  1106. the center of the input image.
  1107. The expression for @var{x} may depend on @var{y}, and the expression
  1108. for @var{y} may depend on @var{x}.
  1109. Follow some examples:
  1110. @example
  1111. # crop the central input area with size 100x100
  1112. crop=100:100
  1113. # crop the central input area with size 2/3 of the input video
  1114. "crop=2/3*in_w:2/3*in_h"
  1115. # crop the input video central square
  1116. crop=in_h
  1117. # delimit the rectangle with the top-left corner placed at position
  1118. # 100:100 and the right-bottom corner corresponding to the right-bottom
  1119. # corner of the input image.
  1120. crop=in_w-100:in_h-100:100:100
  1121. # crop 10 pixels from the left and right borders, and 20 pixels from
  1122. # the top and bottom borders
  1123. "crop=in_w-2*10:in_h-2*20"
  1124. # keep only the bottom right quarter of the input image
  1125. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  1126. # crop height for getting Greek harmony
  1127. "crop=in_w:1/PHI*in_w"
  1128. # trembling effect
  1129. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  1130. # erratic camera effect depending on timestamp
  1131. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  1132. # set x depending on the value of y
  1133. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  1134. @end example
  1135. @section cropdetect
  1136. Auto-detect crop size.
  1137. Calculate necessary cropping parameters and prints the recommended
  1138. parameters through the logging system. The detected dimensions
  1139. correspond to the non-black area of the input video.
  1140. It accepts the syntax:
  1141. @example
  1142. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  1143. @end example
  1144. @table @option
  1145. @item limit
  1146. Threshold, which can be optionally specified from nothing (0) to
  1147. everything (255), defaults to 24.
  1148. @item round
  1149. Value which the width/height should be divisible by, defaults to
  1150. 16. The offset is automatically adjusted to center the video. Use 2 to
  1151. get only even dimensions (needed for 4:2:2 video). 16 is best when
  1152. encoding to most video codecs.
  1153. @item reset
  1154. Counter that determines after how many frames cropdetect will reset
  1155. the previously detected largest video area and start over to detect
  1156. the current optimal crop area. Defaults to 0.
  1157. This can be useful when channel logos distort the video area. 0
  1158. indicates never reset and return the largest area encountered during
  1159. playback.
  1160. @end table
  1161. @section decimate
  1162. This filter drops frames that do not differ greatly from the previous
  1163. frame in order to reduce framerate. The main use of this filter is
  1164. for very-low-bitrate encoding (e.g. streaming over dialup modem), but
  1165. it could in theory be used for fixing movies that were
  1166. inverse-telecined incorrectly.
  1167. It accepts the following parameters:
  1168. @var{max}:@var{hi}:@var{lo}:@var{frac}.
  1169. @table @option
  1170. @item max
  1171. Set the maximum number of consecutive frames which can be dropped (if
  1172. positive), or the minimum interval between dropped frames (if
  1173. negative). If the value is 0, the frame is dropped unregarding the
  1174. number of previous sequentially dropped frames.
  1175. Default value is 0.
  1176. @item hi, lo, frac
  1177. Set the dropping threshold values.
  1178. Values for @var{hi} and @var{lo} are for 8x8 pixel blocks and
  1179. represent actual pixel value differences, so a threshold of 64
  1180. corresponds to 1 unit of difference for each pixel, or the same spread
  1181. out differently over the block.
  1182. A frame is a candidate for dropping if no 8x8 blocks differ by more
  1183. than a threshold of @var{hi}, and if no more than @var{frac} blocks (1
  1184. meaning the whole image) differ by more than a threshold of @var{lo}.
  1185. Default value for @var{hi} is 64*12, default value for @var{lo} is
  1186. 64*5, and default value for @var{frac} is 0.33.
  1187. @end table
  1188. @section delogo
  1189. Suppress a TV station logo by a simple interpolation of the surrounding
  1190. pixels. Just set a rectangle covering the logo and watch it disappear
  1191. (and sometimes something even uglier appear - your mileage may vary).
  1192. The filter accepts parameters as a string of the form
  1193. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  1194. @var{key}=@var{value} pairs, separated by ":".
  1195. The description of the accepted parameters follows.
  1196. @table @option
  1197. @item x, y
  1198. Specify the top left corner coordinates of the logo. They must be
  1199. specified.
  1200. @item w, h
  1201. Specify the width and height of the logo to clear. They must be
  1202. specified.
  1203. @item band, t
  1204. Specify the thickness of the fuzzy edge of the rectangle (added to
  1205. @var{w} and @var{h}). The default value is 4.
  1206. @item show
  1207. When set to 1, a green rectangle is drawn on the screen to simplify
  1208. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  1209. @var{band} is set to 4. The default value is 0.
  1210. @end table
  1211. Some examples follow.
  1212. @itemize
  1213. @item
  1214. Set a rectangle covering the area with top left corner coordinates 0,0
  1215. and size 100x77, setting a band of size 10:
  1216. @example
  1217. delogo=0:0:100:77:10
  1218. @end example
  1219. @item
  1220. As the previous example, but use named options:
  1221. @example
  1222. delogo=x=0:y=0:w=100:h=77:band=10
  1223. @end example
  1224. @end itemize
  1225. @section deshake
  1226. Attempt to fix small changes in horizontal and/or vertical shift. This
  1227. filter helps remove camera shake from hand-holding a camera, bumping a
  1228. tripod, moving on a vehicle, etc.
  1229. The filter accepts parameters as a string of the form
  1230. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  1231. A description of the accepted parameters follows.
  1232. @table @option
  1233. @item x, y, w, h
  1234. Specify a rectangular area where to limit the search for motion
  1235. vectors.
  1236. If desired the search for motion vectors can be limited to a
  1237. rectangular area of the frame defined by its top left corner, width
  1238. and height. These parameters have the same meaning as the drawbox
  1239. filter which can be used to visualise the position of the bounding
  1240. box.
  1241. This is useful when simultaneous movement of subjects within the frame
  1242. might be confused for camera motion by the motion vector search.
  1243. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  1244. then the full frame is used. This allows later options to be set
  1245. without specifying the bounding box for the motion vector search.
  1246. Default - search the whole frame.
  1247. @item rx, ry
  1248. Specify the maximum extent of movement in x and y directions in the
  1249. range 0-64 pixels. Default 16.
  1250. @item edge
  1251. Specify how to generate pixels to fill blanks at the edge of the
  1252. frame. An integer from 0 to 3 as follows:
  1253. @table @option
  1254. @item 0
  1255. Fill zeroes at blank locations
  1256. @item 1
  1257. Original image at blank locations
  1258. @item 2
  1259. Extruded edge value at blank locations
  1260. @item 3
  1261. Mirrored edge at blank locations
  1262. @end table
  1263. The default setting is mirror edge at blank locations.
  1264. @item blocksize
  1265. Specify the blocksize to use for motion search. Range 4-128 pixels,
  1266. default 8.
  1267. @item contrast
  1268. Specify the contrast threshold for blocks. Only blocks with more than
  1269. the specified contrast (difference between darkest and lightest
  1270. pixels) will be considered. Range 1-255, default 125.
  1271. @item search
  1272. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  1273. search. Default - exhaustive search.
  1274. @item filename
  1275. If set then a detailed log of the motion search is written to the
  1276. specified file.
  1277. @end table
  1278. @section drawbox
  1279. Draw a colored box on the input image.
  1280. It accepts the syntax:
  1281. @example
  1282. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  1283. @end example
  1284. @table @option
  1285. @item x, y
  1286. Specify the top left corner coordinates of the box. Default to 0.
  1287. @item width, height
  1288. Specify the width and height of the box, if 0 they are interpreted as
  1289. the input width and height. Default to 0.
  1290. @item color
  1291. Specify the color of the box to write, it can be the name of a color
  1292. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1293. @end table
  1294. Follow some examples:
  1295. @example
  1296. # draw a black box around the edge of the input image
  1297. drawbox
  1298. # draw a box with color red and an opacity of 50%
  1299. drawbox=10:20:200:60:red@@0.5"
  1300. @end example
  1301. @section drawtext
  1302. Draw text string or text from specified file on top of video using the
  1303. libfreetype library.
  1304. To enable compilation of this filter you need to configure FFmpeg with
  1305. @code{--enable-libfreetype}.
  1306. The filter also recognizes strftime() sequences in the provided text
  1307. and expands them accordingly. Check the documentation of strftime().
  1308. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1309. separated by ":".
  1310. The description of the accepted parameters follows.
  1311. @table @option
  1312. @item box
  1313. Used to draw a box around text using background color.
  1314. Value should be either 1 (enable) or 0 (disable).
  1315. The default value of @var{box} is 0.
  1316. @item boxcolor
  1317. The color to be used for drawing box around text.
  1318. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  1319. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1320. The default value of @var{boxcolor} is "white".
  1321. @item draw
  1322. Set an expression which specifies if the text should be drawn. If the
  1323. expression evaluates to 0, the text is not drawn. This is useful for
  1324. specifying that the text should be drawn only when specific conditions
  1325. are met.
  1326. Default value is "1".
  1327. See below for the list of accepted constants and functions.
  1328. @item fix_bounds
  1329. If true, check and fix text coords to avoid clipping.
  1330. @item fontcolor
  1331. The color to be used for drawing fonts.
  1332. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1333. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1334. The default value of @var{fontcolor} is "black".
  1335. @item fontfile
  1336. The font file to be used for drawing text. Path must be included.
  1337. This parameter is mandatory.
  1338. @item fontsize
  1339. The font size to be used for drawing text.
  1340. The default value of @var{fontsize} is 16.
  1341. @item ft_load_flags
  1342. Flags to be used for loading the fonts.
  1343. The flags map the corresponding flags supported by libfreetype, and are
  1344. a combination of the following values:
  1345. @table @var
  1346. @item default
  1347. @item no_scale
  1348. @item no_hinting
  1349. @item render
  1350. @item no_bitmap
  1351. @item vertical_layout
  1352. @item force_autohint
  1353. @item crop_bitmap
  1354. @item pedantic
  1355. @item ignore_global_advance_width
  1356. @item no_recurse
  1357. @item ignore_transform
  1358. @item monochrome
  1359. @item linear_design
  1360. @item no_autohint
  1361. @item end table
  1362. @end table
  1363. Default value is "render".
  1364. For more information consult the documentation for the FT_LOAD_*
  1365. libfreetype flags.
  1366. @item shadowcolor
  1367. The color to be used for drawing a shadow behind the drawn text. It
  1368. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1369. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1370. The default value of @var{shadowcolor} is "black".
  1371. @item shadowx, shadowy
  1372. The x and y offsets for the text shadow position with respect to the
  1373. position of the text. They can be either positive or negative
  1374. values. Default value for both is "0".
  1375. @item tabsize
  1376. The size in number of spaces to use for rendering the tab.
  1377. Default value is 4.
  1378. @item timecode
  1379. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1380. format. It can be used with or without text parameter. @var{timecode_rate}
  1381. option must be specified.
  1382. @item timecode_rate, rate, r
  1383. Set the timecode frame rate (timecode only).
  1384. @item text
  1385. The text string to be drawn. The text must be a sequence of UTF-8
  1386. encoded characters.
  1387. This parameter is mandatory if no file is specified with the parameter
  1388. @var{textfile}.
  1389. @item textfile
  1390. A text file containing text to be drawn. The text must be a sequence
  1391. of UTF-8 encoded characters.
  1392. This parameter is mandatory if no text string is specified with the
  1393. parameter @var{text}.
  1394. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1395. @item x, y
  1396. The expressions which specify the offsets where text will be drawn
  1397. within the video frame. They are relative to the top/left border of the
  1398. output image.
  1399. The default value of @var{x} and @var{y} is "0".
  1400. See below for the list of accepted constants and functions.
  1401. @end table
  1402. The parameters for @var{x} and @var{y} are expressions containing the
  1403. following constants and functions:
  1404. @table @option
  1405. @item dar
  1406. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1407. @item hsub, vsub
  1408. horizontal and vertical chroma subsample values. For example for the
  1409. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1410. @item line_h, lh
  1411. the height of each text line
  1412. @item main_h, h, H
  1413. the input height
  1414. @item main_w, w, W
  1415. the input width
  1416. @item max_glyph_a, ascent
  1417. the maximum distance from the baseline to the highest/upper grid
  1418. coordinate used to place a glyph outline point, for all the rendered
  1419. glyphs.
  1420. It is a positive value, due to the grid's orientation with the Y axis
  1421. upwards.
  1422. @item max_glyph_d, descent
  1423. the maximum distance from the baseline to the lowest grid coordinate
  1424. used to place a glyph outline point, for all the rendered glyphs.
  1425. This is a negative value, due to the grid's orientation, with the Y axis
  1426. upwards.
  1427. @item max_glyph_h
  1428. maximum glyph height, that is the maximum height for all the glyphs
  1429. contained in the rendered text, it is equivalent to @var{ascent} -
  1430. @var{descent}.
  1431. @item max_glyph_w
  1432. maximum glyph width, that is the maximum width for all the glyphs
  1433. contained in the rendered text
  1434. @item n
  1435. the number of input frame, starting from 0
  1436. @item rand(min, max)
  1437. return a random number included between @var{min} and @var{max}
  1438. @item sar
  1439. input sample aspect ratio
  1440. @item t
  1441. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1442. @item text_h, th
  1443. the height of the rendered text
  1444. @item text_w, tw
  1445. the width of the rendered text
  1446. @item x, y
  1447. the x and y offset coordinates where the text is drawn.
  1448. These parameters allow the @var{x} and @var{y} expressions to refer
  1449. each other, so you can for example specify @code{y=x/dar}.
  1450. @end table
  1451. If libavfilter was built with @code{--enable-fontconfig}, then
  1452. @option{fontfile} can be a fontconfig pattern or omitted.
  1453. Some examples follow.
  1454. @itemize
  1455. @item
  1456. Draw "Test Text" with font FreeSerif, using the default values for the
  1457. optional parameters.
  1458. @example
  1459. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1460. @end example
  1461. @item
  1462. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1463. and y=50 (counting from the top-left corner of the screen), text is
  1464. yellow with a red box around it. Both the text and the box have an
  1465. opacity of 20%.
  1466. @example
  1467. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1468. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1469. @end example
  1470. Note that the double quotes are not necessary if spaces are not used
  1471. within the parameter list.
  1472. @item
  1473. Show the text at the center of the video frame:
  1474. @example
  1475. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1476. @end example
  1477. @item
  1478. Show a text line sliding from right to left in the last row of the video
  1479. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1480. with no newlines.
  1481. @example
  1482. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1483. @end example
  1484. @item
  1485. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1486. @example
  1487. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1488. @end example
  1489. @item
  1490. Draw a single green letter "g", at the center of the input video.
  1491. The glyph baseline is placed at half screen height.
  1492. @example
  1493. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1494. @end example
  1495. @item
  1496. Show text for 1 second every 3 seconds:
  1497. @example
  1498. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\\,3)\\,1):text='blink'"
  1499. @end example
  1500. @item
  1501. Use fontconfig to set the font. Note that the colons need to be escaped.
  1502. @example
  1503. drawtext='fontfile=Linux Libertine O-40\\:style=Semibold:text=FFmpeg'
  1504. @end example
  1505. @end itemize
  1506. For more information about libfreetype, check:
  1507. @url{http://www.freetype.org/}.
  1508. For more information about fontconfig, check:
  1509. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1510. @section edgedetect
  1511. Detect and draw edges. The filter uses the Canny Edge Detection algorithm.
  1512. This filter accepts the following optional named parameters:
  1513. @table @option
  1514. @item low, high
  1515. Set low and high threshold values used by the Canny thresholding
  1516. algorithm.
  1517. The high threshold selects the "strong" edge pixels, which are then
  1518. connected through 8-connectivity with the "weak" edge pixels selected
  1519. by the low threshold.
  1520. @var{low} and @var{high} threshold values must be choosen in the range
  1521. [0,1], and @var{low} should be lesser or equal to @var{high}.
  1522. Default value for @var{low} is @code{20/255}, and default value for @var{high}
  1523. is @code{50/255}.
  1524. @end table
  1525. Example:
  1526. @example
  1527. edgedetect=low=0.1:high=0.4
  1528. @end example
  1529. @section fade
  1530. Apply fade-in/out effect to input video.
  1531. It accepts the parameters:
  1532. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1533. @var{type} specifies if the effect type, can be either "in" for
  1534. fade-in, or "out" for a fade-out effect.
  1535. @var{start_frame} specifies the number of the start frame for starting
  1536. to apply the fade effect.
  1537. @var{nb_frames} specifies the number of frames for which the fade
  1538. effect has to last. At the end of the fade-in effect the output video
  1539. will have the same intensity as the input video, at the end of the
  1540. fade-out transition the output video will be completely black.
  1541. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1542. separated by ":". The description of the accepted options follows.
  1543. @table @option
  1544. @item type, t
  1545. See @var{type}.
  1546. @item start_frame, s
  1547. See @var{start_frame}.
  1548. @item nb_frames, n
  1549. See @var{nb_frames}.
  1550. @item alpha
  1551. If set to 1, fade only alpha channel, if one exists on the input.
  1552. Default value is 0.
  1553. @end table
  1554. A few usage examples follow, usable too as test scenarios.
  1555. @example
  1556. # fade in first 30 frames of video
  1557. fade=in:0:30
  1558. # fade out last 45 frames of a 200-frame video
  1559. fade=out:155:45
  1560. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1561. fade=in:0:25, fade=out:975:25
  1562. # make first 5 frames black, then fade in from frame 5-24
  1563. fade=in:5:20
  1564. # fade in alpha over first 25 frames of video
  1565. fade=in:0:25:alpha=1
  1566. @end example
  1567. @section fieldorder
  1568. Transform the field order of the input video.
  1569. It accepts one parameter which specifies the required field order that
  1570. the input interlaced video will be transformed to. The parameter can
  1571. assume one of the following values:
  1572. @table @option
  1573. @item 0 or bff
  1574. output bottom field first
  1575. @item 1 or tff
  1576. output top field first
  1577. @end table
  1578. Default value is "tff".
  1579. Transformation is achieved by shifting the picture content up or down
  1580. by one line, and filling the remaining line with appropriate picture content.
  1581. This method is consistent with most broadcast field order converters.
  1582. If the input video is not flagged as being interlaced, or it is already
  1583. flagged as being of the required output field order then this filter does
  1584. not alter the incoming video.
  1585. This filter is very useful when converting to or from PAL DV material,
  1586. which is bottom field first.
  1587. For example:
  1588. @example
  1589. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1590. @end example
  1591. @section fifo
  1592. Buffer input images and send them when they are requested.
  1593. This filter is mainly useful when auto-inserted by the libavfilter
  1594. framework.
  1595. The filter does not take parameters.
  1596. @section format
  1597. Convert the input video to one of the specified pixel formats.
  1598. Libavfilter will try to pick one that is supported for the input to
  1599. the next filter.
  1600. The filter accepts a list of pixel format names, separated by ":",
  1601. for example "yuv420p:monow:rgb24".
  1602. Some examples follow:
  1603. @example
  1604. # convert the input video to the format "yuv420p"
  1605. format=yuv420p
  1606. # convert the input video to any of the formats in the list
  1607. format=yuv420p:yuv444p:yuv410p
  1608. @end example
  1609. @section fps
  1610. Convert the video to specified constant framerate by duplicating or dropping
  1611. frames as necessary.
  1612. This filter accepts the following named parameters:
  1613. @table @option
  1614. @item fps
  1615. Desired output framerate.
  1616. @end table
  1617. @section framestep
  1618. Select one frame every N.
  1619. This filter accepts in input a string representing a positive
  1620. integer. Default argument is @code{1}.
  1621. @anchor{frei0r}
  1622. @section frei0r
  1623. Apply a frei0r effect to the input video.
  1624. To enable compilation of this filter you need to install the frei0r
  1625. header and configure FFmpeg with @code{--enable-frei0r}.
  1626. The filter supports the syntax:
  1627. @example
  1628. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1629. @end example
  1630. @var{filter_name} is the name to the frei0r effect to load. If the
  1631. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1632. is searched in each one of the directories specified by the colon
  1633. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1634. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1635. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1636. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1637. for the frei0r effect.
  1638. A frei0r effect parameter can be a boolean (whose values are specified
  1639. with "y" and "n"), a double, a color (specified by the syntax
  1640. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1641. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1642. description), a position (specified by the syntax @var{X}/@var{Y},
  1643. @var{X} and @var{Y} being float numbers) and a string.
  1644. The number and kind of parameters depend on the loaded effect. If an
  1645. effect parameter is not specified the default value is set.
  1646. Some examples follow:
  1647. @itemize
  1648. @item
  1649. Apply the distort0r effect, set the first two double parameters:
  1650. @example
  1651. frei0r=distort0r:0.5:0.01
  1652. @end example
  1653. @item
  1654. Apply the colordistance effect, takes a color as first parameter:
  1655. @example
  1656. frei0r=colordistance:0.2/0.3/0.4
  1657. frei0r=colordistance:violet
  1658. frei0r=colordistance:0x112233
  1659. @end example
  1660. @item
  1661. Apply the perspective effect, specify the top left and top right image
  1662. positions:
  1663. @example
  1664. frei0r=perspective:0.2/0.2:0.8/0.2
  1665. @end example
  1666. @end itemize
  1667. For more information see:
  1668. @url{http://frei0r.dyne.org}
  1669. @section gradfun
  1670. Fix the banding artifacts that are sometimes introduced into nearly flat
  1671. regions by truncation to 8bit color depth.
  1672. Interpolate the gradients that should go where the bands are, and
  1673. dither them.
  1674. This filter is designed for playback only. Do not use it prior to
  1675. lossy compression, because compression tends to lose the dither and
  1676. bring back the bands.
  1677. The filter takes two optional parameters, separated by ':':
  1678. @var{strength}:@var{radius}
  1679. @var{strength} is the maximum amount by which the filter will change
  1680. any one pixel. Also the threshold for detecting nearly flat
  1681. regions. Acceptable values range from .51 to 255, default value is
  1682. 1.2, out-of-range values will be clipped to the valid range.
  1683. @var{radius} is the neighborhood to fit the gradient to. A larger
  1684. radius makes for smoother gradients, but also prevents the filter from
  1685. modifying the pixels near detailed regions. Acceptable values are
  1686. 8-32, default value is 16, out-of-range values will be clipped to the
  1687. valid range.
  1688. @example
  1689. # default parameters
  1690. gradfun=1.2:16
  1691. # omitting radius
  1692. gradfun=1.2
  1693. @end example
  1694. @section hflip
  1695. Flip the input video horizontally.
  1696. For example to horizontally flip the input video with @command{ffmpeg}:
  1697. @example
  1698. ffmpeg -i in.avi -vf "hflip" out.avi
  1699. @end example
  1700. @section hqdn3d
  1701. High precision/quality 3d denoise filter. This filter aims to reduce
  1702. image noise producing smooth images and making still images really
  1703. still. It should enhance compressibility.
  1704. It accepts the following optional parameters:
  1705. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1706. @table @option
  1707. @item luma_spatial
  1708. a non-negative float number which specifies spatial luma strength,
  1709. defaults to 4.0
  1710. @item chroma_spatial
  1711. a non-negative float number which specifies spatial chroma strength,
  1712. defaults to 3.0*@var{luma_spatial}/4.0
  1713. @item luma_tmp
  1714. a float number which specifies luma temporal strength, defaults to
  1715. 6.0*@var{luma_spatial}/4.0
  1716. @item chroma_tmp
  1717. a float number which specifies chroma temporal strength, defaults to
  1718. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1719. @end table
  1720. @section hue
  1721. Modify the hue and/or the saturation of the input.
  1722. This filter accepts the following optional named options:
  1723. @table @option
  1724. @item h
  1725. Specify the hue angle as a number of degrees. It accepts a float
  1726. number or an expression, and defaults to 0.0.
  1727. @item H
  1728. Specify the hue angle as a number of degrees. It accepts a float
  1729. number or an expression, and defaults to 0.0.
  1730. @item s
  1731. Specify the saturation in the [-10,10] range. It accepts a float number and
  1732. defaults to 1.0.
  1733. @end table
  1734. The @var{h}, @var{H} and @var{s} parameters are expressions containing the
  1735. following constants:
  1736. @table @option
  1737. @item n
  1738. frame count of the input frame starting from 0
  1739. @item pts
  1740. presentation timestamp of the input frame expressed in time base units
  1741. @item r
  1742. frame rate of the input video, NAN if the input frame rate is unknown
  1743. @item t
  1744. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1745. @item tb
  1746. time base of the input video
  1747. @end table
  1748. The options can also be set using the syntax: @var{hue}:@var{saturation}
  1749. In this case @var{hue} is expressed in degrees.
  1750. Some examples follow:
  1751. @itemize
  1752. @item
  1753. Set the hue to 90 degrees and the saturation to 1.0:
  1754. @example
  1755. hue=h=90:s=1
  1756. @end example
  1757. @item
  1758. Same command but expressing the hue in radians:
  1759. @example
  1760. hue=H=PI/2:s=1
  1761. @end example
  1762. @item
  1763. Same command without named options, hue must be expressed in degrees:
  1764. @example
  1765. hue=90:1
  1766. @end example
  1767. @item
  1768. Note that "h:s" syntax does not support expressions for the values of
  1769. h and s, so the following example will issue an error:
  1770. @example
  1771. hue=PI/2:1
  1772. @end example
  1773. @item
  1774. Rotate hue and make the saturation swing between 0
  1775. and 2 over a period of 1 second:
  1776. @example
  1777. hue="H=2*PI*t: s=sin(2*PI*t)+1"
  1778. @end example
  1779. @item
  1780. Apply a 3 seconds saturation fade-in effect starting at 0:
  1781. @example
  1782. hue="s=min(t/3\,1)"
  1783. @end example
  1784. The general fade-in expression can be written as:
  1785. @example
  1786. hue="s=min(0\, max((t-START)/DURATION\, 1))"
  1787. @end example
  1788. @item
  1789. Apply a 3 seconds saturation fade-out effect starting at 5 seconds:
  1790. @example
  1791. hue="s=max(0\, min(1\, (8-t)/3))"
  1792. @end example
  1793. The general fade-out expression can be written as:
  1794. @example
  1795. hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"
  1796. @end example
  1797. @end itemize
  1798. @subsection Commands
  1799. This filter supports the following command:
  1800. @table @option
  1801. @item reinit
  1802. Modify the hue and/or the saturation of the input video.
  1803. The command accepts the same named options and syntax than when calling the
  1804. filter from the command-line.
  1805. If a parameter is omitted, it is kept at its current value.
  1806. @end table
  1807. @section idet
  1808. Interlaceing detect filter. This filter tries to detect if the input is
  1809. interlaced or progressive. Top or bottom field first.
  1810. @section lut, lutrgb, lutyuv
  1811. Compute a look-up table for binding each pixel component input value
  1812. to an output value, and apply it to input video.
  1813. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1814. to an RGB input video.
  1815. These filters accept in input a ":"-separated list of options, which
  1816. specify the expressions used for computing the lookup table for the
  1817. corresponding pixel component values.
  1818. The @var{lut} filter requires either YUV or RGB pixel formats in
  1819. input, and accepts the options:
  1820. @table @option
  1821. @item @var{c0} (first pixel component)
  1822. @item @var{c1} (second pixel component)
  1823. @item @var{c2} (third pixel component)
  1824. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  1825. @end table
  1826. The exact component associated to each option depends on the format in
  1827. input.
  1828. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1829. accepts the options:
  1830. @table @option
  1831. @item @var{r} (red component)
  1832. @item @var{g} (green component)
  1833. @item @var{b} (blue component)
  1834. @item @var{a} (alpha component)
  1835. @end table
  1836. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1837. accepts the options:
  1838. @table @option
  1839. @item @var{y} (Y/luminance component)
  1840. @item @var{u} (U/Cb component)
  1841. @item @var{v} (V/Cr component)
  1842. @item @var{a} (alpha component)
  1843. @end table
  1844. The expressions can contain the following constants and functions:
  1845. @table @option
  1846. @item w, h
  1847. the input width and height
  1848. @item val
  1849. input value for the pixel component
  1850. @item clipval
  1851. the input value clipped in the @var{minval}-@var{maxval} range
  1852. @item maxval
  1853. maximum value for the pixel component
  1854. @item minval
  1855. minimum value for the pixel component
  1856. @item negval
  1857. the negated value for the pixel component value clipped in the
  1858. @var{minval}-@var{maxval} range , it corresponds to the expression
  1859. "maxval-clipval+minval"
  1860. @item clip(val)
  1861. the computed value in @var{val} clipped in the
  1862. @var{minval}-@var{maxval} range
  1863. @item gammaval(gamma)
  1864. the computed gamma correction value of the pixel component value
  1865. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1866. expression
  1867. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1868. @end table
  1869. All expressions default to "val".
  1870. Some examples follow:
  1871. @example
  1872. # negate input video
  1873. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1874. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1875. # the above is the same as
  1876. lutrgb="r=negval:g=negval:b=negval"
  1877. lutyuv="y=negval:u=negval:v=negval"
  1878. # negate luminance
  1879. lutyuv=y=negval
  1880. # remove chroma components, turns the video into a graytone image
  1881. lutyuv="u=128:v=128"
  1882. # apply a luma burning effect
  1883. lutyuv="y=2*val"
  1884. # remove green and blue components
  1885. lutrgb="g=0:b=0"
  1886. # set a constant alpha channel value on input
  1887. format=rgba,lutrgb=a="maxval-minval/2"
  1888. # correct luminance gamma by a 0.5 factor
  1889. lutyuv=y=gammaval(0.5)
  1890. @end example
  1891. @section mp
  1892. Apply an MPlayer filter to the input video.
  1893. This filter provides a wrapper around most of the filters of
  1894. MPlayer/MEncoder.
  1895. This wrapper is considered experimental. Some of the wrapped filters
  1896. may not work properly and we may drop support for them, as they will
  1897. be implemented natively into FFmpeg. Thus you should avoid
  1898. depending on them when writing portable scripts.
  1899. The filters accepts the parameters:
  1900. @var{filter_name}[:=]@var{filter_params}
  1901. @var{filter_name} is the name of a supported MPlayer filter,
  1902. @var{filter_params} is a string containing the parameters accepted by
  1903. the named filter.
  1904. The list of the currently supported filters follows:
  1905. @table @var
  1906. @item denoise3d
  1907. @item detc
  1908. @item dint
  1909. @item divtc
  1910. @item down3dright
  1911. @item dsize
  1912. @item eq2
  1913. @item eq
  1914. @item field
  1915. @item fil
  1916. @item fixpts
  1917. @item fspp
  1918. @item geq
  1919. @item harddup
  1920. @item hqdn3d
  1921. @item il
  1922. @item ilpack
  1923. @item ivtc
  1924. @item kerndeint
  1925. @item mcdeint
  1926. @item noise
  1927. @item ow
  1928. @item palette
  1929. @item perspective
  1930. @item phase
  1931. @item pp7
  1932. @item pullup
  1933. @item qp
  1934. @item rectangle
  1935. @item sab
  1936. @item softpulldown
  1937. @item softskip
  1938. @item spp
  1939. @item telecine
  1940. @item tile
  1941. @item tinterlace
  1942. @item unsharp
  1943. @item uspp
  1944. @item yuvcsp
  1945. @item yvu9
  1946. @end table
  1947. The parameter syntax and behavior for the listed filters are the same
  1948. of the corresponding MPlayer filters. For detailed instructions check
  1949. the "VIDEO FILTERS" section in the MPlayer manual.
  1950. Some examples follow:
  1951. @itemize
  1952. @item
  1953. Adjust gamma, brightness, contrast:
  1954. @example
  1955. mp=eq2=1.0:2:0.5
  1956. @end example
  1957. @item
  1958. Add temporal noise to input video:
  1959. @example
  1960. mp=noise=20t
  1961. @end example
  1962. @end itemize
  1963. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1964. @section negate
  1965. Negate input video.
  1966. This filter accepts an integer in input, if non-zero it negates the
  1967. alpha component (if available). The default value in input is 0.
  1968. @section noformat
  1969. Force libavfilter not to use any of the specified pixel formats for the
  1970. input to the next filter.
  1971. The filter accepts a list of pixel format names, separated by ":",
  1972. for example "yuv420p:monow:rgb24".
  1973. Some examples follow:
  1974. @example
  1975. # force libavfilter to use a format different from "yuv420p" for the
  1976. # input to the vflip filter
  1977. noformat=yuv420p,vflip
  1978. # convert the input video to any of the formats not contained in the list
  1979. noformat=yuv420p:yuv444p:yuv410p
  1980. @end example
  1981. @section null
  1982. Pass the video source unchanged to the output.
  1983. @section ocv
  1984. Apply video transform using libopencv.
  1985. To enable this filter install libopencv library and headers and
  1986. configure FFmpeg with @code{--enable-libopencv}.
  1987. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1988. @var{filter_name} is the name of the libopencv filter to apply.
  1989. @var{filter_params} specifies the parameters to pass to the libopencv
  1990. filter. If not specified the default values are assumed.
  1991. Refer to the official libopencv documentation for more precise
  1992. information:
  1993. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1994. Follows the list of supported libopencv filters.
  1995. @anchor{dilate}
  1996. @subsection dilate
  1997. Dilate an image by using a specific structuring element.
  1998. This filter corresponds to the libopencv function @code{cvDilate}.
  1999. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  2000. @var{struct_el} represents a structuring element, and has the syntax:
  2001. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  2002. @var{cols} and @var{rows} represent the number of columns and rows of
  2003. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  2004. point, and @var{shape} the shape for the structuring element, and
  2005. can be one of the values "rect", "cross", "ellipse", "custom".
  2006. If the value for @var{shape} is "custom", it must be followed by a
  2007. string of the form "=@var{filename}". The file with name
  2008. @var{filename} is assumed to represent a binary image, with each
  2009. printable character corresponding to a bright pixel. When a custom
  2010. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  2011. or columns and rows of the read file are assumed instead.
  2012. The default value for @var{struct_el} is "3x3+0x0/rect".
  2013. @var{nb_iterations} specifies the number of times the transform is
  2014. applied to the image, and defaults to 1.
  2015. Follow some example:
  2016. @example
  2017. # use the default values
  2018. ocv=dilate
  2019. # dilate using a structuring element with a 5x5 cross, iterate two times
  2020. ocv=dilate=5x5+2x2/cross:2
  2021. # read the shape from the file diamond.shape, iterate two times
  2022. # the file diamond.shape may contain a pattern of characters like this:
  2023. # *
  2024. # ***
  2025. # *****
  2026. # ***
  2027. # *
  2028. # the specified cols and rows are ignored (but not the anchor point coordinates)
  2029. ocv=0x0+2x2/custom=diamond.shape:2
  2030. @end example
  2031. @subsection erode
  2032. Erode an image by using a specific structuring element.
  2033. This filter corresponds to the libopencv function @code{cvErode}.
  2034. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  2035. with the same syntax and semantics as the @ref{dilate} filter.
  2036. @subsection smooth
  2037. Smooth the input video.
  2038. The filter takes the following parameters:
  2039. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  2040. @var{type} is the type of smooth filter to apply, and can be one of
  2041. the following values: "blur", "blur_no_scale", "median", "gaussian",
  2042. "bilateral". The default value is "gaussian".
  2043. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  2044. parameters whose meanings depend on smooth type. @var{param1} and
  2045. @var{param2} accept integer positive values or 0, @var{param3} and
  2046. @var{param4} accept float values.
  2047. The default value for @var{param1} is 3, the default value for the
  2048. other parameters is 0.
  2049. These parameters correspond to the parameters assigned to the
  2050. libopencv function @code{cvSmooth}.
  2051. @anchor{overlay}
  2052. @section overlay
  2053. Overlay one video on top of another.
  2054. It takes two inputs and one output, the first input is the "main"
  2055. video on which the second input is overlayed.
  2056. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  2057. @var{x} is the x coordinate of the overlayed video on the main video,
  2058. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  2059. the following parameters:
  2060. @table @option
  2061. @item main_w, main_h
  2062. main input width and height
  2063. @item W, H
  2064. same as @var{main_w} and @var{main_h}
  2065. @item overlay_w, overlay_h
  2066. overlay input width and height
  2067. @item w, h
  2068. same as @var{overlay_w} and @var{overlay_h}
  2069. @end table
  2070. @var{options} is an optional list of @var{key}=@var{value} pairs,
  2071. separated by ":".
  2072. The description of the accepted options follows.
  2073. @table @option
  2074. @item rgb
  2075. If set to 1, force the filter to accept inputs in the RGB
  2076. color space. Default value is 0.
  2077. @end table
  2078. Be aware that frames are taken from each input video in timestamp
  2079. order, hence, if their initial timestamps differ, it is a a good idea
  2080. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  2081. have them begin in the same zero timestamp, as it does the example for
  2082. the @var{movie} filter.
  2083. Follow some examples:
  2084. @example
  2085. # draw the overlay at 10 pixels from the bottom right
  2086. # corner of the main video.
  2087. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  2088. # insert a transparent PNG logo in the bottom left corner of the input
  2089. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  2090. # insert 2 different transparent PNG logos (second logo on bottom
  2091. # right corner):
  2092. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  2093. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  2094. # add a transparent color layer on top of the main video,
  2095. # WxH specifies the size of the main input to the overlay filter
  2096. color=red@.3:WxH [over]; [in][over] overlay [out]
  2097. # play an original video and a filtered version (here with the deshake filter)
  2098. # side by side
  2099. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  2100. # the previous example is the same as:
  2101. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  2102. @end example
  2103. You can chain together more overlays but the efficiency of such
  2104. approach is yet to be tested.
  2105. @section pad
  2106. Add paddings to the input image, and places the original input at the
  2107. given coordinates @var{x}, @var{y}.
  2108. It accepts the following parameters:
  2109. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  2110. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  2111. expressions containing the following constants:
  2112. @table @option
  2113. @item in_w, in_h
  2114. the input video width and height
  2115. @item iw, ih
  2116. same as @var{in_w} and @var{in_h}
  2117. @item out_w, out_h
  2118. the output width and height, that is the size of the padded area as
  2119. specified by the @var{width} and @var{height} expressions
  2120. @item ow, oh
  2121. same as @var{out_w} and @var{out_h}
  2122. @item x, y
  2123. x and y offsets as specified by the @var{x} and @var{y}
  2124. expressions, or NAN if not yet specified
  2125. @item a
  2126. same as @var{iw} / @var{ih}
  2127. @item sar
  2128. input sample aspect ratio
  2129. @item dar
  2130. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2131. @item hsub, vsub
  2132. horizontal and vertical chroma subsample values. For example for the
  2133. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2134. @end table
  2135. Follows the description of the accepted parameters.
  2136. @table @option
  2137. @item width, height
  2138. Specify the size of the output image with the paddings added. If the
  2139. value for @var{width} or @var{height} is 0, the corresponding input size
  2140. is used for the output.
  2141. The @var{width} expression can reference the value set by the
  2142. @var{height} expression, and vice versa.
  2143. The default value of @var{width} and @var{height} is 0.
  2144. @item x, y
  2145. Specify the offsets where to place the input image in the padded area
  2146. with respect to the top/left border of the output image.
  2147. The @var{x} expression can reference the value set by the @var{y}
  2148. expression, and vice versa.
  2149. The default value of @var{x} and @var{y} is 0.
  2150. @item color
  2151. Specify the color of the padded area, it can be the name of a color
  2152. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  2153. The default value of @var{color} is "black".
  2154. @end table
  2155. @subsection Examples
  2156. @itemize
  2157. @item
  2158. Add paddings with color "violet" to the input video. Output video
  2159. size is 640x480, the top-left corner of the input video is placed at
  2160. column 0, row 40:
  2161. @example
  2162. pad=640:480:0:40:violet
  2163. @end example
  2164. @item
  2165. Pad the input to get an output with dimensions increased by 3/2,
  2166. and put the input video at the center of the padded area:
  2167. @example
  2168. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  2169. @end example
  2170. @item
  2171. Pad the input to get a squared output with size equal to the maximum
  2172. value between the input width and height, and put the input video at
  2173. the center of the padded area:
  2174. @example
  2175. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  2176. @end example
  2177. @item
  2178. Pad the input to get a final w/h ratio of 16:9:
  2179. @example
  2180. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  2181. @end example
  2182. @item
  2183. In case of anamorphic video, in order to set the output display aspect
  2184. correctly, it is necessary to use @var{sar} in the expression,
  2185. according to the relation:
  2186. @example
  2187. (ih * X / ih) * sar = output_dar
  2188. X = output_dar / sar
  2189. @end example
  2190. Thus the previous example needs to be modified to:
  2191. @example
  2192. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  2193. @end example
  2194. @item
  2195. Double output size and put the input video in the bottom-right
  2196. corner of the output padded area:
  2197. @example
  2198. pad="2*iw:2*ih:ow-iw:oh-ih"
  2199. @end example
  2200. @end itemize
  2201. @section pixdesctest
  2202. Pixel format descriptor test filter, mainly useful for internal
  2203. testing. The output video should be equal to the input video.
  2204. For example:
  2205. @example
  2206. format=monow, pixdesctest
  2207. @end example
  2208. can be used to test the monowhite pixel format descriptor definition.
  2209. @section removelogo
  2210. Suppress a TV station logo, using an image file to determine which
  2211. pixels comprise the logo. It works by filling in the pixels that
  2212. comprise the logo with neighboring pixels.
  2213. This filter requires one argument which specifies the filter bitmap
  2214. file, which can be any image format supported by libavformat. The
  2215. width and height of the image file must match those of the video
  2216. stream being processed.
  2217. Pixels in the provided bitmap image with a value of zero are not
  2218. considered part of the logo, non-zero pixels are considered part of
  2219. the logo. If you use white (255) for the logo and black (0) for the
  2220. rest, you will be safe. For making the filter bitmap, it is
  2221. recommended to take a screen capture of a black frame with the logo
  2222. visible, and then using a threshold filter followed by the erode
  2223. filter once or twice.
  2224. If needed, little splotches can be fixed manually. Remember that if
  2225. logo pixels are not covered, the filter quality will be much
  2226. reduced. Marking too many pixels as part of the logo does not hurt as
  2227. much, but it will increase the amount of blurring needed to cover over
  2228. the image and will destroy more information than necessary, and extra
  2229. pixels will slow things down on a large logo.
  2230. @section scale
  2231. Scale (resize) the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  2232. The scale filter forces the output display aspect ratio to be the same
  2233. of the input, by changing the output sample aspect ratio.
  2234. The parameters @var{width} and @var{height} are expressions containing
  2235. the following constants:
  2236. @table @option
  2237. @item in_w, in_h
  2238. the input width and height
  2239. @item iw, ih
  2240. same as @var{in_w} and @var{in_h}
  2241. @item out_w, out_h
  2242. the output (cropped) width and height
  2243. @item ow, oh
  2244. same as @var{out_w} and @var{out_h}
  2245. @item a
  2246. same as @var{iw} / @var{ih}
  2247. @item sar
  2248. input sample aspect ratio
  2249. @item dar
  2250. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2251. @item hsub, vsub
  2252. horizontal and vertical chroma subsample values. For example for the
  2253. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2254. @end table
  2255. If the input image format is different from the format requested by
  2256. the next filter, the scale filter will convert the input to the
  2257. requested format.
  2258. If the value for @var{width} or @var{height} is 0, the respective input
  2259. size is used for the output.
  2260. If the value for @var{width} or @var{height} is -1, the scale filter will
  2261. use, for the respective output size, a value that maintains the aspect
  2262. ratio of the input image.
  2263. The default value of @var{width} and @var{height} is 0.
  2264. Valid values for the optional parameter @var{interl} are:
  2265. @table @option
  2266. @item 1
  2267. force interlaced aware scaling
  2268. @item -1
  2269. select interlaced aware scaling depending on whether the source frames
  2270. are flagged as interlaced or not
  2271. @end table
  2272. Unless @var{interl} is set to one of the above options, interlaced scaling will not be used.
  2273. Some examples follow:
  2274. @example
  2275. # scale the input video to a size of 200x100.
  2276. scale=200:100
  2277. # scale the input to 2x
  2278. scale=2*iw:2*ih
  2279. # the above is the same as
  2280. scale=2*in_w:2*in_h
  2281. # scale the input to 2x with forced interlaced scaling
  2282. scale=2*iw:2*ih:interl=1
  2283. # scale the input to half size
  2284. scale=iw/2:ih/2
  2285. # increase the width, and set the height to the same size
  2286. scale=3/2*iw:ow
  2287. # seek for Greek harmony
  2288. scale=iw:1/PHI*iw
  2289. scale=ih*PHI:ih
  2290. # increase the height, and set the width to 3/2 of the height
  2291. scale=3/2*oh:3/5*ih
  2292. # increase the size, but make the size a multiple of the chroma
  2293. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  2294. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  2295. scale='min(500\, iw*3/2):-1'
  2296. @end example
  2297. @section select
  2298. Select frames to pass in output.
  2299. It accepts in input an expression, which is evaluated for each input
  2300. frame. If the expression is evaluated to a non-zero value, the frame
  2301. is selected and passed to the output, otherwise it is discarded.
  2302. The expression can contain the following constants:
  2303. @table @option
  2304. @item n
  2305. the sequential number of the filtered frame, starting from 0
  2306. @item selected_n
  2307. the sequential number of the selected frame, starting from 0
  2308. @item prev_selected_n
  2309. the sequential number of the last selected frame, NAN if undefined
  2310. @item TB
  2311. timebase of the input timestamps
  2312. @item pts
  2313. the PTS (Presentation TimeStamp) of the filtered video frame,
  2314. expressed in @var{TB} units, NAN if undefined
  2315. @item t
  2316. the PTS (Presentation TimeStamp) of the filtered video frame,
  2317. expressed in seconds, NAN if undefined
  2318. @item prev_pts
  2319. the PTS of the previously filtered video frame, NAN if undefined
  2320. @item prev_selected_pts
  2321. the PTS of the last previously filtered video frame, NAN if undefined
  2322. @item prev_selected_t
  2323. the PTS of the last previously selected video frame, NAN if undefined
  2324. @item start_pts
  2325. the PTS of the first video frame in the video, NAN if undefined
  2326. @item start_t
  2327. the time of the first video frame in the video, NAN if undefined
  2328. @item pict_type
  2329. the type of the filtered frame, can assume one of the following
  2330. values:
  2331. @table @option
  2332. @item I
  2333. @item P
  2334. @item B
  2335. @item S
  2336. @item SI
  2337. @item SP
  2338. @item BI
  2339. @end table
  2340. @item interlace_type
  2341. the frame interlace type, can assume one of the following values:
  2342. @table @option
  2343. @item PROGRESSIVE
  2344. the frame is progressive (not interlaced)
  2345. @item TOPFIRST
  2346. the frame is top-field-first
  2347. @item BOTTOMFIRST
  2348. the frame is bottom-field-first
  2349. @end table
  2350. @item key
  2351. 1 if the filtered frame is a key-frame, 0 otherwise
  2352. @item pos
  2353. the position in the file of the filtered frame, -1 if the information
  2354. is not available (e.g. for synthetic video)
  2355. @item scene
  2356. value between 0 and 1 to indicate a new scene; a low value reflects a low
  2357. probability for the current frame to introduce a new scene, while a higher
  2358. value means the current frame is more likely to be one (see the example below)
  2359. @end table
  2360. The default value of the select expression is "1".
  2361. Some examples follow:
  2362. @example
  2363. # select all frames in input
  2364. select
  2365. # the above is the same as:
  2366. select=1
  2367. # skip all frames:
  2368. select=0
  2369. # select only I-frames
  2370. select='eq(pict_type\,I)'
  2371. # select one frame every 100
  2372. select='not(mod(n\,100))'
  2373. # select only frames contained in the 10-20 time interval
  2374. select='gte(t\,10)*lte(t\,20)'
  2375. # select only I frames contained in the 10-20 time interval
  2376. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  2377. # select frames with a minimum distance of 10 seconds
  2378. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  2379. @end example
  2380. Complete example to create a mosaic of the first scenes:
  2381. @example
  2382. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  2383. @end example
  2384. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  2385. choice.
  2386. @section setdar, setsar
  2387. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  2388. output video.
  2389. This is done by changing the specified Sample (aka Pixel) Aspect
  2390. Ratio, according to the following equation:
  2391. @example
  2392. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  2393. @end example
  2394. Keep in mind that the @code{setdar} filter does not modify the pixel
  2395. dimensions of the video frame. Also the display aspect ratio set by
  2396. this filter may be changed by later filters in the filterchain,
  2397. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  2398. applied.
  2399. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  2400. the filter output video.
  2401. Note that as a consequence of the application of this filter, the
  2402. output display aspect ratio will change according to the equation
  2403. above.
  2404. Keep in mind that the sample aspect ratio set by the @code{setsar}
  2405. filter may be changed by later filters in the filterchain, e.g. if
  2406. another "setsar" or a "setdar" filter is applied.
  2407. The @code{setdar} and @code{setsar} filters accept a parameter string
  2408. which represents the wanted aspect ratio. The parameter can
  2409. be a floating point number string, an expression, or a string of the form
  2410. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  2411. and denominator of the aspect ratio. If the parameter is not
  2412. specified, it is assumed the value "0:1".
  2413. For example to change the display aspect ratio to 16:9, specify:
  2414. @example
  2415. setdar=16:9
  2416. @end example
  2417. The example above is equivalent to:
  2418. @example
  2419. setdar=1.77777
  2420. @end example
  2421. To change the sample aspect ratio to 10:11, specify:
  2422. @example
  2423. setsar=10:11
  2424. @end example
  2425. @section setfield
  2426. Force field for the output video frame.
  2427. The @code{setfield} filter marks the interlace type field for the
  2428. output frames. It does not change the input frame, but only sets the
  2429. corresponding property, which affects how the frame is treated by
  2430. following filters (e.g. @code{fieldorder} or @code{yadif}).
  2431. It accepts a string parameter, which can assume the following values:
  2432. @table @samp
  2433. @item auto
  2434. Keep the same field property.
  2435. @item bff
  2436. Mark the frame as bottom-field-first.
  2437. @item tff
  2438. Mark the frame as top-field-first.
  2439. @item prog
  2440. Mark the frame as progressive.
  2441. @end table
  2442. @section showinfo
  2443. Show a line containing various information for each input video frame.
  2444. The input video is not modified.
  2445. The shown line contains a sequence of key/value pairs of the form
  2446. @var{key}:@var{value}.
  2447. A description of each shown parameter follows:
  2448. @table @option
  2449. @item n
  2450. sequential number of the input frame, starting from 0
  2451. @item pts
  2452. Presentation TimeStamp of the input frame, expressed as a number of
  2453. time base units. The time base unit depends on the filter input pad.
  2454. @item pts_time
  2455. Presentation TimeStamp of the input frame, expressed as a number of
  2456. seconds
  2457. @item pos
  2458. position of the frame in the input stream, -1 if this information in
  2459. unavailable and/or meaningless (for example in case of synthetic video)
  2460. @item fmt
  2461. pixel format name
  2462. @item sar
  2463. sample aspect ratio of the input frame, expressed in the form
  2464. @var{num}/@var{den}
  2465. @item s
  2466. size of the input frame, expressed in the form
  2467. @var{width}x@var{height}
  2468. @item i
  2469. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2470. for bottom field first)
  2471. @item iskey
  2472. 1 if the frame is a key frame, 0 otherwise
  2473. @item type
  2474. picture type of the input frame ("I" for an I-frame, "P" for a
  2475. P-frame, "B" for a B-frame, "?" for unknown type).
  2476. Check also the documentation of the @code{AVPictureType} enum and of
  2477. the @code{av_get_picture_type_char} function defined in
  2478. @file{libavutil/avutil.h}.
  2479. @item checksum
  2480. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2481. @item plane_checksum
  2482. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2483. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2484. @end table
  2485. @section slicify
  2486. Pass the images of input video on to next video filter as multiple
  2487. slices.
  2488. @example
  2489. ffmpeg -i in.avi -vf "slicify=32" out.avi
  2490. @end example
  2491. The filter accepts the slice height as parameter. If the parameter is
  2492. not specified it will use the default value of 16.
  2493. Adding this in the beginning of filter chains should make filtering
  2494. faster due to better use of the memory cache.
  2495. @section smartblur
  2496. Blur the input video without impacting the outlines.
  2497. The filter accepts the following parameters:
  2498. @var{luma_radius}:@var{luma_strength}:@var{luma_threshold}[:@var{chroma_radius}:@var{chroma_strength}:@var{chroma_threshold}]
  2499. Parameters prefixed by @var{luma} indicate that they work on the
  2500. luminance of the pixels whereas parameters prefixed by @var{chroma}
  2501. refer to the chrominance of the pixels.
  2502. If the chroma parameters are not set, the luma parameters are used for
  2503. either the luminance and the chrominance of the pixels.
  2504. @var{luma_radius} or @var{chroma_radius} must be a float number in the
  2505. range [0.1,5.0] that specifies the variance of the gaussian filter
  2506. used to blur the image (slower if larger).
  2507. @var{luma_strength} or @var{chroma_strength} must be a float number in
  2508. the range [-1.0,1.0] that configures the blurring. A value included in
  2509. [0.0,1.0] will blur the image whereas a value included in [-1.0,0.0]
  2510. will sharpen the image.
  2511. @var{luma_threshold} or @var{chroma_threshold} must be an integer in
  2512. the range [-30,30] that is used as a coefficient to determine whether
  2513. a pixel should be blurred or not. A value of 0 will filter all the
  2514. image, a value included in [0,30] will filter flat areas and a value
  2515. included in [-30,0] will filter edges.
  2516. @section split
  2517. Split input video into several identical outputs.
  2518. The filter accepts a single parameter which specifies the number of outputs. If
  2519. unspecified, it defaults to 2.
  2520. For example
  2521. @example
  2522. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2523. @end example
  2524. will create 5 copies of the input video.
  2525. For example:
  2526. @example
  2527. [in] split [splitout1][splitout2];
  2528. [splitout1] crop=100:100:0:0 [cropout];
  2529. [splitout2] pad=200:200:100:100 [padout];
  2530. @end example
  2531. will create two separate outputs from the same input, one cropped and
  2532. one padded.
  2533. @section super2xsai
  2534. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2535. Interpolate) pixel art scaling algorithm.
  2536. Useful for enlarging pixel art images without reducing sharpness.
  2537. @section swapuv
  2538. Swap U & V plane.
  2539. @section thumbnail
  2540. Select the most representative frame in a given sequence of consecutive frames.
  2541. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2542. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2543. the next batch of @var{N} frames until the end.
  2544. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2545. value will result in a higher memory usage, so a high value is not recommended.
  2546. The following example extract one picture each 50 frames:
  2547. @example
  2548. thumbnail=50
  2549. @end example
  2550. Complete example of a thumbnail creation with @command{ffmpeg}:
  2551. @example
  2552. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2553. @end example
  2554. @section tile
  2555. Tile several successive frames together.
  2556. It accepts as argument the tile size (i.e. the number of lines and columns)
  2557. in the form "@var{w}x@var{h}".
  2558. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2559. nokey}) in a movie:
  2560. @example
  2561. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2562. @end example
  2563. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2564. duplicating each output frame to accomodate the originally detected frame
  2565. rate.
  2566. @section tinterlace
  2567. Perform various types of temporal field interlacing.
  2568. Frames are counted starting from 1, so the first input frame is
  2569. considered odd.
  2570. This filter accepts a single parameter specifying the mode. Available
  2571. modes are:
  2572. @table @samp
  2573. @item merge, 0
  2574. Move odd frames into the upper field, even into the lower field,
  2575. generating a double height frame at half framerate.
  2576. @item drop_odd, 1
  2577. Only output even frames, odd frames are dropped, generating a frame with
  2578. unchanged height at half framerate.
  2579. @item drop_even, 2
  2580. Only output odd frames, even frames are dropped, generating a frame with
  2581. unchanged height at half framerate.
  2582. @item pad, 3
  2583. Expand each frame to full height, but pad alternate lines with black,
  2584. generating a frame with double height at the same input framerate.
  2585. @item interleave_top, 4
  2586. Interleave the upper field from odd frames with the lower field from
  2587. even frames, generating a frame with unchanged height at half framerate.
  2588. @item interleave_bottom, 5
  2589. Interleave the lower field from odd frames with the upper field from
  2590. even frames, generating a frame with unchanged height at half framerate.
  2591. @item interlacex2, 6
  2592. Double frame rate with unchanged height. Frames are inserted each
  2593. containing the second temporal field from the previous input frame and
  2594. the first temporal field from the next input frame. This mode relies on
  2595. the top_field_first flag. Useful for interlaced video displays with no
  2596. field synchronisation.
  2597. @end table
  2598. Numeric values are deprecated but are accepted for backward
  2599. compatibility reasons.
  2600. Default mode is @code{merge}.
  2601. @section transpose
  2602. Transpose rows with columns in the input video and optionally flip it.
  2603. This filter accepts the following named parameters:
  2604. @table @option
  2605. @item dir
  2606. Specify the transposition direction. Can assume the following values:
  2607. @table @samp
  2608. @item 0, 4
  2609. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2610. @example
  2611. L.R L.l
  2612. . . -> . .
  2613. l.r R.r
  2614. @end example
  2615. @item 1, 5
  2616. Rotate by 90 degrees clockwise, that is:
  2617. @example
  2618. L.R l.L
  2619. . . -> . .
  2620. l.r r.R
  2621. @end example
  2622. @item 2, 6
  2623. Rotate by 90 degrees counterclockwise, that is:
  2624. @example
  2625. L.R R.r
  2626. . . -> . .
  2627. l.r L.l
  2628. @end example
  2629. @item 3, 7
  2630. Rotate by 90 degrees clockwise and vertically flip, that is:
  2631. @example
  2632. L.R r.R
  2633. . . -> . .
  2634. l.r l.L
  2635. @end example
  2636. @end table
  2637. For values between 4-7, the transposition is only done if the input
  2638. video geometry is portrait and not landscape. These values are
  2639. deprecated, the @code{passthrough} option should be used instead.
  2640. @item passthrough
  2641. Do not apply the transposition if the input geometry matches the one
  2642. specified by the specified value. It accepts the following values:
  2643. @table @samp
  2644. @item none
  2645. Always apply transposition.
  2646. @item portrait
  2647. Preserve portrait geometry (when @var{height} >= @var{width}).
  2648. @item landscape
  2649. Preserve landscape geometry (when @var{width} >= @var{height}).
  2650. @end table
  2651. Default value is @code{none}.
  2652. @end table
  2653. @section unsharp
  2654. Sharpen or blur the input video.
  2655. It accepts the following parameters:
  2656. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2657. Negative values for the amount will blur the input video, while positive
  2658. values will sharpen. All parameters are optional and default to the
  2659. equivalent of the string '5:5:1.0:5:5:0.0'.
  2660. @table @option
  2661. @item luma_msize_x
  2662. Set the luma matrix horizontal size. It can be an integer between 3
  2663. and 13, default value is 5.
  2664. @item luma_msize_y
  2665. Set the luma matrix vertical size. It can be an integer between 3
  2666. and 13, default value is 5.
  2667. @item luma_amount
  2668. Set the luma effect strength. It can be a float number between -2.0
  2669. and 5.0, default value is 1.0.
  2670. @item chroma_msize_x
  2671. Set the chroma matrix horizontal size. It can be an integer between 3
  2672. and 13, default value is 5.
  2673. @item chroma_msize_y
  2674. Set the chroma matrix vertical size. It can be an integer between 3
  2675. and 13, default value is 5.
  2676. @item chroma_amount
  2677. Set the chroma effect strength. It can be a float number between -2.0
  2678. and 5.0, default value is 0.0.
  2679. @end table
  2680. @example
  2681. # Strong luma sharpen effect parameters
  2682. unsharp=7:7:2.5
  2683. # Strong blur of both luma and chroma parameters
  2684. unsharp=7:7:-2:7:7:-2
  2685. # Use the default values with @command{ffmpeg}
  2686. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2687. @end example
  2688. @section vflip
  2689. Flip the input video vertically.
  2690. @example
  2691. ffmpeg -i in.avi -vf "vflip" out.avi
  2692. @end example
  2693. @section yadif
  2694. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2695. filter").
  2696. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2697. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2698. following values:
  2699. @table @option
  2700. @item 0
  2701. output 1 frame for each frame
  2702. @item 1
  2703. output 1 frame for each field
  2704. @item 2
  2705. like 0 but skips spatial interlacing check
  2706. @item 3
  2707. like 1 but skips spatial interlacing check
  2708. @end table
  2709. Default value is 0.
  2710. @var{parity} specifies the picture field parity assumed for the input
  2711. interlaced video, accepts one of the following values:
  2712. @table @option
  2713. @item 0
  2714. assume top field first
  2715. @item 1
  2716. assume bottom field first
  2717. @item -1
  2718. enable automatic detection
  2719. @end table
  2720. Default value is -1.
  2721. If interlacing is unknown or decoder does not export this information,
  2722. top field first will be assumed.
  2723. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2724. and only deinterlace frames marked as interlaced
  2725. @table @option
  2726. @item 0
  2727. deinterlace all frames
  2728. @item 1
  2729. only deinterlace frames marked as interlaced
  2730. @end table
  2731. Default value is 0.
  2732. @c man end VIDEO FILTERS
  2733. @chapter Video Sources
  2734. @c man begin VIDEO SOURCES
  2735. Below is a description of the currently available video sources.
  2736. @section buffer
  2737. Buffer video frames, and make them available to the filter chain.
  2738. This source is mainly intended for a programmatic use, in particular
  2739. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2740. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2741. separated by ":". A description of the accepted options follows.
  2742. @table @option
  2743. @item video_size
  2744. Specify the size (width and height) of the buffered video frames.
  2745. @item pix_fmt
  2746. A string representing the pixel format of the buffered video frames.
  2747. It may be a number corresponding to a pixel format, or a pixel format
  2748. name.
  2749. @item time_base
  2750. Specify the timebase assumed by the timestamps of the buffered frames.
  2751. @item time_base
  2752. Specify the frame rate expected for the video stream.
  2753. @item pixel_aspect
  2754. Specify the sample aspect ratio assumed by the video frames.
  2755. @item sws_param
  2756. Specify the optional parameters to be used for the scale filter which
  2757. is automatically inserted when an input change is detected in the
  2758. input size or format.
  2759. @end table
  2760. For example:
  2761. @example
  2762. buffer=size=320x240:pix_fmt=yuv410p:time_base=1/24:pixel_aspect=1/1
  2763. @end example
  2764. will instruct the source to accept video frames with size 320x240 and
  2765. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2766. square pixels (1:1 sample aspect ratio).
  2767. Since the pixel format with name "yuv410p" corresponds to the number 6
  2768. (check the enum AVPixelFormat definition in @file{libavutil/pixfmt.h}),
  2769. this example corresponds to:
  2770. @example
  2771. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  2772. @end example
  2773. Alternatively, the options can be specified as a flat string, but this
  2774. syntax is deprecated:
  2775. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  2776. @section cellauto
  2777. Create a pattern generated by an elementary cellular automaton.
  2778. The initial state of the cellular automaton can be defined through the
  2779. @option{filename}, and @option{pattern} options. If such options are
  2780. not specified an initial state is created randomly.
  2781. At each new frame a new row in the video is filled with the result of
  2782. the cellular automaton next generation. The behavior when the whole
  2783. frame is filled is defined by the @option{scroll} option.
  2784. This source accepts a list of options in the form of
  2785. @var{key}=@var{value} pairs separated by ":". A description of the
  2786. accepted options follows.
  2787. @table @option
  2788. @item filename, f
  2789. Read the initial cellular automaton state, i.e. the starting row, from
  2790. the specified file.
  2791. In the file, each non-whitespace character is considered an alive
  2792. cell, a newline will terminate the row, and further characters in the
  2793. file will be ignored.
  2794. @item pattern, p
  2795. Read the initial cellular automaton state, i.e. the starting row, from
  2796. the specified string.
  2797. Each non-whitespace character in the string is considered an alive
  2798. cell, a newline will terminate the row, and further characters in the
  2799. string will be ignored.
  2800. @item rate, r
  2801. Set the video rate, that is the number of frames generated per second.
  2802. Default is 25.
  2803. @item random_fill_ratio, ratio
  2804. Set the random fill ratio for the initial cellular automaton row. It
  2805. is a floating point number value ranging from 0 to 1, defaults to
  2806. 1/PHI.
  2807. This option is ignored when a file or a pattern is specified.
  2808. @item random_seed, seed
  2809. Set the seed for filling randomly the initial row, must be an integer
  2810. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2811. set to -1, the filter will try to use a good random seed on a best
  2812. effort basis.
  2813. @item rule
  2814. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2815. Default value is 110.
  2816. @item size, s
  2817. Set the size of the output video.
  2818. If @option{filename} or @option{pattern} is specified, the size is set
  2819. by default to the width of the specified initial state row, and the
  2820. height is set to @var{width} * PHI.
  2821. If @option{size} is set, it must contain the width of the specified
  2822. pattern string, and the specified pattern will be centered in the
  2823. larger row.
  2824. If a filename or a pattern string is not specified, the size value
  2825. defaults to "320x518" (used for a randomly generated initial state).
  2826. @item scroll
  2827. If set to 1, scroll the output upward when all the rows in the output
  2828. have been already filled. If set to 0, the new generated row will be
  2829. written over the top row just after the bottom row is filled.
  2830. Defaults to 1.
  2831. @item start_full, full
  2832. If set to 1, completely fill the output with generated rows before
  2833. outputting the first frame.
  2834. This is the default behavior, for disabling set the value to 0.
  2835. @item stitch
  2836. If set to 1, stitch the left and right row edges together.
  2837. This is the default behavior, for disabling set the value to 0.
  2838. @end table
  2839. @subsection Examples
  2840. @itemize
  2841. @item
  2842. Read the initial state from @file{pattern}, and specify an output of
  2843. size 200x400.
  2844. @example
  2845. cellauto=f=pattern:s=200x400
  2846. @end example
  2847. @item
  2848. Generate a random initial row with a width of 200 cells, with a fill
  2849. ratio of 2/3:
  2850. @example
  2851. cellauto=ratio=2/3:s=200x200
  2852. @end example
  2853. @item
  2854. Create a pattern generated by rule 18 starting by a single alive cell
  2855. centered on an initial row with width 100:
  2856. @example
  2857. cellauto=p=@@:s=100x400:full=0:rule=18
  2858. @end example
  2859. @item
  2860. Specify a more elaborated initial pattern:
  2861. @example
  2862. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2863. @end example
  2864. @end itemize
  2865. @section mandelbrot
  2866. Generate a Mandelbrot set fractal, and progressively zoom towards the
  2867. point specified with @var{start_x} and @var{start_y}.
  2868. This source accepts a list of options in the form of
  2869. @var{key}=@var{value} pairs separated by ":". A description of the
  2870. accepted options follows.
  2871. @table @option
  2872. @item end_pts
  2873. Set the terminal pts value. Default value is 400.
  2874. @item end_scale
  2875. Set the terminal scale value.
  2876. Must be a floating point value. Default value is 0.3.
  2877. @item inner
  2878. Set the inner coloring mode, that is the algorithm used to draw the
  2879. Mandelbrot fractal internal region.
  2880. It shall assume one of the following values:
  2881. @table @option
  2882. @item black
  2883. Set black mode.
  2884. @item convergence
  2885. Show time until convergence.
  2886. @item mincol
  2887. Set color based on point closest to the origin of the iterations.
  2888. @item period
  2889. Set period mode.
  2890. @end table
  2891. Default value is @var{mincol}.
  2892. @item bailout
  2893. Set the bailout value. Default value is 10.0.
  2894. @item maxiter
  2895. Set the maximum of iterations performed by the rendering
  2896. algorithm. Default value is 7189.
  2897. @item outer
  2898. Set outer coloring mode.
  2899. It shall assume one of following values:
  2900. @table @option
  2901. @item iteration_count
  2902. Set iteration cound mode.
  2903. @item normalized_iteration_count
  2904. set normalized iteration count mode.
  2905. @end table
  2906. Default value is @var{normalized_iteration_count}.
  2907. @item rate, r
  2908. Set frame rate, expressed as number of frames per second. Default
  2909. value is "25".
  2910. @item size, s
  2911. Set frame size. Default value is "640x480".
  2912. @item start_scale
  2913. Set the initial scale value. Default value is 3.0.
  2914. @item start_x
  2915. Set the initial x position. Must be a floating point value between
  2916. -100 and 100. Default value is -0.743643887037158704752191506114774.
  2917. @item start_y
  2918. Set the initial y position. Must be a floating point value between
  2919. -100 and 100. Default value is -0.131825904205311970493132056385139.
  2920. @end table
  2921. @section mptestsrc
  2922. Generate various test patterns, as generated by the MPlayer test filter.
  2923. The size of the generated video is fixed, and is 256x256.
  2924. This source is useful in particular for testing encoding features.
  2925. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2926. separated by ":". The description of the accepted options follows.
  2927. @table @option
  2928. @item rate, r
  2929. Specify the frame rate of the sourced video, as the number of frames
  2930. generated per second. It has to be a string in the format
  2931. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2932. number or a valid video frame rate abbreviation. The default value is
  2933. "25".
  2934. @item duration, d
  2935. Set the video duration of the sourced video. The accepted syntax is:
  2936. @example
  2937. [-]HH:MM:SS[.m...]
  2938. [-]S+[.m...]
  2939. @end example
  2940. See also the function @code{av_parse_time()}.
  2941. If not specified, or the expressed duration is negative, the video is
  2942. supposed to be generated forever.
  2943. @item test, t
  2944. Set the number or the name of the test to perform. Supported tests are:
  2945. @table @option
  2946. @item dc_luma
  2947. @item dc_chroma
  2948. @item freq_luma
  2949. @item freq_chroma
  2950. @item amp_luma
  2951. @item amp_chroma
  2952. @item cbp
  2953. @item mv
  2954. @item ring1
  2955. @item ring2
  2956. @item all
  2957. @end table
  2958. Default value is "all", which will cycle through the list of all tests.
  2959. @end table
  2960. For example the following:
  2961. @example
  2962. testsrc=t=dc_luma
  2963. @end example
  2964. will generate a "dc_luma" test pattern.
  2965. @section frei0r_src
  2966. Provide a frei0r source.
  2967. To enable compilation of this filter you need to install the frei0r
  2968. header and configure FFmpeg with @code{--enable-frei0r}.
  2969. The source supports the syntax:
  2970. @example
  2971. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2972. @end example
  2973. @var{size} is the size of the video to generate, may be a string of the
  2974. form @var{width}x@var{height} or a frame size abbreviation.
  2975. @var{rate} is the rate of the video to generate, may be a string of
  2976. the form @var{num}/@var{den} or a frame rate abbreviation.
  2977. @var{src_name} is the name to the frei0r source to load. For more
  2978. information regarding frei0r and how to set the parameters read the
  2979. section @ref{frei0r} in the description of the video filters.
  2980. For example, to generate a frei0r partik0l source with size 200x200
  2981. and frame rate 10 which is overlayed on the overlay filter main input:
  2982. @example
  2983. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2984. @end example
  2985. @section life
  2986. Generate a life pattern.
  2987. This source is based on a generalization of John Conway's life game.
  2988. The sourced input represents a life grid, each pixel represents a cell
  2989. which can be in one of two possible states, alive or dead. Every cell
  2990. interacts with its eight neighbours, which are the cells that are
  2991. horizontally, vertically, or diagonally adjacent.
  2992. At each interaction the grid evolves according to the adopted rule,
  2993. which specifies the number of neighbor alive cells which will make a
  2994. cell stay alive or born. The @option{rule} option allows to specify
  2995. the rule to adopt.
  2996. This source accepts a list of options in the form of
  2997. @var{key}=@var{value} pairs separated by ":". A description of the
  2998. accepted options follows.
  2999. @table @option
  3000. @item filename, f
  3001. Set the file from which to read the initial grid state. In the file,
  3002. each non-whitespace character is considered an alive cell, and newline
  3003. is used to delimit the end of each row.
  3004. If this option is not specified, the initial grid is generated
  3005. randomly.
  3006. @item rate, r
  3007. Set the video rate, that is the number of frames generated per second.
  3008. Default is 25.
  3009. @item random_fill_ratio, ratio
  3010. Set the random fill ratio for the initial random grid. It is a
  3011. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  3012. It is ignored when a file is specified.
  3013. @item random_seed, seed
  3014. Set the seed for filling the initial random grid, must be an integer
  3015. included between 0 and UINT32_MAX. If not specified, or if explicitly
  3016. set to -1, the filter will try to use a good random seed on a best
  3017. effort basis.
  3018. @item rule
  3019. Set the life rule.
  3020. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  3021. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  3022. @var{NS} specifies the number of alive neighbor cells which make a
  3023. live cell stay alive, and @var{NB} the number of alive neighbor cells
  3024. which make a dead cell to become alive (i.e. to "born").
  3025. "s" and "b" can be used in place of "S" and "B", respectively.
  3026. Alternatively a rule can be specified by an 18-bits integer. The 9
  3027. high order bits are used to encode the next cell state if it is alive
  3028. for each number of neighbor alive cells, the low order bits specify
  3029. the rule for "borning" new cells. Higher order bits encode for an
  3030. higher number of neighbor cells.
  3031. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  3032. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  3033. Default value is "S23/B3", which is the original Conway's game of life
  3034. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  3035. cells, and will born a new cell if there are three alive cells around
  3036. a dead cell.
  3037. @item size, s
  3038. Set the size of the output video.
  3039. If @option{filename} is specified, the size is set by default to the
  3040. same size of the input file. If @option{size} is set, it must contain
  3041. the size specified in the input file, and the initial grid defined in
  3042. that file is centered in the larger resulting area.
  3043. If a filename is not specified, the size value defaults to "320x240"
  3044. (used for a randomly generated initial grid).
  3045. @item stitch
  3046. If set to 1, stitch the left and right grid edges together, and the
  3047. top and bottom edges also. Defaults to 1.
  3048. @item mold
  3049. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  3050. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  3051. value from 0 to 255.
  3052. @item life_color
  3053. Set the color of living (or new born) cells.
  3054. @item death_color
  3055. Set the color of dead cells. If @option{mold} is set, this is the first color
  3056. used to represent a dead cell.
  3057. @item mold_color
  3058. Set mold color, for definitely dead and moldy cells.
  3059. @end table
  3060. @subsection Examples
  3061. @itemize
  3062. @item
  3063. Read a grid from @file{pattern}, and center it on a grid of size
  3064. 300x300 pixels:
  3065. @example
  3066. life=f=pattern:s=300x300
  3067. @end example
  3068. @item
  3069. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  3070. @example
  3071. life=ratio=2/3:s=200x200
  3072. @end example
  3073. @item
  3074. Specify a custom rule for evolving a randomly generated grid:
  3075. @example
  3076. life=rule=S14/B34
  3077. @end example
  3078. @item
  3079. Full example with slow death effect (mold) using @command{ffplay}:
  3080. @example
  3081. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  3082. @end example
  3083. @end itemize
  3084. @section color, nullsrc, rgbtestsrc, smptebars, testsrc
  3085. The @code{color} source provides an uniformly colored input.
  3086. The @code{nullsrc} source returns unprocessed video frames. It is
  3087. mainly useful to be employed in analysis / debugging tools, or as the
  3088. source for filters which ignore the input data.
  3089. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  3090. detecting RGB vs BGR issues. You should see a red, green and blue
  3091. stripe from top to bottom.
  3092. The @code{smptebars} source generates a color bars pattern, based on
  3093. the SMPTE Engineering Guideline EG 1-1990.
  3094. The @code{testsrc} source generates a test video pattern, showing a
  3095. color pattern, a scrolling gradient and a timestamp. This is mainly
  3096. intended for testing purposes.
  3097. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  3098. separated by ":". The description of the accepted options follows.
  3099. @table @option
  3100. @item color, c
  3101. Specify the color of the source, only used in the @code{color}
  3102. source. It can be the name of a color (case insensitive match) or a
  3103. 0xRRGGBB[AA] sequence, possibly followed by an alpha specifier. The
  3104. default value is "black".
  3105. @item size, s
  3106. Specify the size of the sourced video, it may be a string of the form
  3107. @var{width}x@var{height}, or the name of a size abbreviation. The
  3108. default value is "320x240".
  3109. @item rate, r
  3110. Specify the frame rate of the sourced video, as the number of frames
  3111. generated per second. It has to be a string in the format
  3112. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3113. number or a valid video frame rate abbreviation. The default value is
  3114. "25".
  3115. @item sar
  3116. Set the sample aspect ratio of the sourced video.
  3117. @item duration, d
  3118. Set the video duration of the sourced video. The accepted syntax is:
  3119. @example
  3120. [-]HH[:MM[:SS[.m...]]]
  3121. [-]S+[.m...]
  3122. @end example
  3123. See also the function @code{av_parse_time()}.
  3124. If not specified, or the expressed duration is negative, the video is
  3125. supposed to be generated forever.
  3126. @item decimals, n
  3127. Set the number of decimals to show in the timestamp, only used in the
  3128. @code{testsrc} source.
  3129. The displayed timestamp value will correspond to the original
  3130. timestamp value multiplied by the power of 10 of the specified
  3131. value. Default value is 0.
  3132. @end table
  3133. For example the following:
  3134. @example
  3135. testsrc=duration=5.3:size=qcif:rate=10
  3136. @end example
  3137. will generate a video with a duration of 5.3 seconds, with size
  3138. 176x144 and a frame rate of 10 frames per second.
  3139. The following graph description will generate a red source
  3140. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  3141. frames per second.
  3142. @example
  3143. color=c=red@@0.2:s=qcif:r=10
  3144. @end example
  3145. If the input content is to be ignored, @code{nullsrc} can be used. The
  3146. following command generates noise in the luminance plane by employing
  3147. the @code{mp=geq} filter:
  3148. @example
  3149. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  3150. @end example
  3151. @c man end VIDEO SOURCES
  3152. @chapter Video Sinks
  3153. @c man begin VIDEO SINKS
  3154. Below is a description of the currently available video sinks.
  3155. @section buffersink
  3156. Buffer video frames, and make them available to the end of the filter
  3157. graph.
  3158. This sink is mainly intended for a programmatic use, in particular
  3159. through the interface defined in @file{libavfilter/buffersink.h}.
  3160. It does not require a string parameter in input, but you need to
  3161. specify a pointer to a list of supported pixel formats terminated by
  3162. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  3163. when initializing this sink.
  3164. @section nullsink
  3165. Null video sink, do absolutely nothing with the input video. It is
  3166. mainly useful as a template and to be employed in analysis / debugging
  3167. tools.
  3168. @c man end VIDEO SINKS
  3169. @chapter Multimedia Filters
  3170. @c man begin MULTIMEDIA FILTERS
  3171. Below is a description of the currently available multimedia filters.
  3172. @section asendcmd, sendcmd
  3173. Send commands to filters in the filtergraph.
  3174. These filters read commands to be sent to other filters in the
  3175. filtergraph.
  3176. @code{asendcmd} must be inserted between two audio filters,
  3177. @code{sendcmd} must be inserted between two video filters, but apart
  3178. from that they act the same way.
  3179. The specification of commands can be provided in the filter arguments
  3180. with the @var{commands} option, or in a file specified by the
  3181. @var{filename} option.
  3182. These filters accept the following options:
  3183. @table @option
  3184. @item commands, c
  3185. Set the commands to be read and sent to the other filters.
  3186. @item filename, f
  3187. Set the filename of the commands to be read and sent to the other
  3188. filters.
  3189. @end table
  3190. @subsection Commands syntax
  3191. A commands description consists of a sequence of interval
  3192. specifications, comprising a list of commands to be executed when a
  3193. particular event related to that interval occurs. The occurring event
  3194. is typically the current frame time entering or leaving a given time
  3195. interval.
  3196. An interval is specified by the following syntax:
  3197. @example
  3198. @var{START}[-@var{END}] @var{COMMANDS};
  3199. @end example
  3200. The time interval is specified by the @var{START} and @var{END} times.
  3201. @var{END} is optional and defaults to the maximum time.
  3202. The current frame time is considered within the specified interval if
  3203. it is included in the interval [@var{START}, @var{END}), that is when
  3204. the time is greater or equal to @var{START} and is lesser than
  3205. @var{END}.
  3206. @var{COMMANDS} consists of a sequence of one or more command
  3207. specifications, separated by ",", relating to that interval. The
  3208. syntax of a command specification is given by:
  3209. @example
  3210. [@var{FLAGS}] @var{TARGET} @var{COMMAND} @var{ARG}
  3211. @end example
  3212. @var{FLAGS} is optional and specifies the type of events relating to
  3213. the time interval which enable sending the specified command, and must
  3214. be a non-null sequence of identifier flags separated by "+" or "|" and
  3215. enclosed between "[" and "]".
  3216. The following flags are recognized:
  3217. @table @option
  3218. @item enter
  3219. The command is sent when the current frame timestamp enters the
  3220. specified interval. In other words, the command is sent when the
  3221. previous frame timestamp was not in the given interval, and the
  3222. current is.
  3223. @item leave
  3224. The command is sent when the current frame timestamp leaves the
  3225. specified interval. In other words, the command is sent when the
  3226. previous frame timestamp was in the given interval, and the
  3227. current is not.
  3228. @end table
  3229. If @var{FLAGS} is not specified, a default value of @code{[enter]} is
  3230. assumed.
  3231. @var{TARGET} specifies the target of the command, usually the name of
  3232. the filter class or a specific filter instance name.
  3233. @var{COMMAND} specifies the name of the command for the target filter.
  3234. @var{ARG} is optional and specifies the optional list of argument for
  3235. the given @var{COMMAND}.
  3236. Between one interval specification and another, whitespaces, or
  3237. sequences of characters starting with @code{#} until the end of line,
  3238. are ignored and can be used to annotate comments.
  3239. A simplified BNF description of the commands specification syntax
  3240. follows:
  3241. @example
  3242. @var{COMMAND_FLAG} ::= "enter" | "leave"
  3243. @var{COMMAND_FLAGS} ::= @var{COMMAND_FLAG} [(+|"|")@var{COMMAND_FLAG}]
  3244. @var{COMMAND} ::= ["[" @var{COMMAND_FLAGS} "]"] @var{TARGET} @var{COMMAND} [@var{ARG}]
  3245. @var{COMMANDS} ::= @var{COMMAND} [,@var{COMMANDS}]
  3246. @var{INTERVAL} ::= @var{START}[-@var{END}] @var{COMMANDS}
  3247. @var{INTERVALS} ::= @var{INTERVAL}[;@var{INTERVALS}]
  3248. @end example
  3249. @subsection Examples
  3250. @itemize
  3251. @item
  3252. Specify audio tempo change at second 4:
  3253. @example
  3254. asendcmd=c='4.0 atempo tempo 1.5',atempo
  3255. @end example
  3256. @item
  3257. Specify a list of drawtext and hue commands in a file.
  3258. @example
  3259. # show text in the interval 5-10
  3260. 5.0-10.0 [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=hello world',
  3261. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=';
  3262. # desaturate the image in the interval 15-20
  3263. 15.0-20.0 [enter] hue reinit s=0,
  3264. [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=nocolor',
  3265. [leave] hue reinit s=1,
  3266. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=color';
  3267. # apply an exponential saturation fade-out effect, starting from time 25
  3268. 25 [enter] hue s=exp(t-25)
  3269. @end example
  3270. A filtergraph allowing to read and process the above command list
  3271. stored in a file @file{test.cmd}, can be specified with:
  3272. @example
  3273. sendcmd=f=test.cmd,drawtext=fontfile=FreeSerif.ttf:text='',hue
  3274. @end example
  3275. @end itemize
  3276. @section asetpts, setpts
  3277. Change the PTS (presentation timestamp) of the input frames.
  3278. @code{asetpts} works on audio frames, @code{setpts} on video frames.
  3279. Accept in input an expression evaluated through the eval API, which
  3280. can contain the following constants:
  3281. @table @option
  3282. @item FRAME_RATE
  3283. frame rate, only defined for constant frame-rate video
  3284. @item PTS
  3285. the presentation timestamp in input
  3286. @item N
  3287. the count of the input frame, starting from 0.
  3288. @item NB_CONSUMED_SAMPLES
  3289. the number of consumed samples, not including the current frame (only
  3290. audio)
  3291. @item NB_SAMPLES
  3292. the number of samples in the current frame (only audio)
  3293. @item SAMPLE_RATE
  3294. audio sample rate
  3295. @item STARTPTS
  3296. the PTS of the first frame
  3297. @item STARTT
  3298. the time in seconds of the first frame
  3299. @item INTERLACED
  3300. tell if the current frame is interlaced
  3301. @item T
  3302. the time in seconds of the current frame
  3303. @item TB
  3304. the time base
  3305. @item POS
  3306. original position in the file of the frame, or undefined if undefined
  3307. for the current frame
  3308. @item PREV_INPTS
  3309. previous input PTS
  3310. @item PREV_INT
  3311. previous input time in seconds
  3312. @item PREV_OUTPTS
  3313. previous output PTS
  3314. @item PREV_OUTT
  3315. previous output time in seconds
  3316. @end table
  3317. @subsection Examples
  3318. @itemize
  3319. @item
  3320. Start counting PTS from zero
  3321. @example
  3322. setpts=PTS-STARTPTS
  3323. @end example
  3324. @item
  3325. Apply fast motion effect:
  3326. @example
  3327. setpts=0.5*PTS
  3328. @end example
  3329. @item
  3330. Apply slow motion effect:
  3331. @example
  3332. setpts=2.0*PTS
  3333. @end example
  3334. @item
  3335. Set fixed rate of 25 frames per second:
  3336. @example
  3337. setpts=N/(25*TB)
  3338. @end example
  3339. @item
  3340. Set fixed rate 25 fps with some jitter:
  3341. @example
  3342. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  3343. @end example
  3344. @item
  3345. Apply an offset of 10 seconds to the input PTS:
  3346. @example
  3347. setpts=PTS+10/TB
  3348. @end example
  3349. @end itemize
  3350. @section ebur128
  3351. EBU R128 scanner filter. This filter takes an audio stream as input and outputs
  3352. it unchanged. By default, it logs a message at a frequency of 10Hz with the
  3353. Momentary loudness (identified by @code{M}), Short-term loudness (@code{S}),
  3354. Integrated loudness (@code{I}) and Loudness Range (@code{LRA}).
  3355. The filter also has a video output (see the @var{video} option) with a real
  3356. time graph to observe the loudness evolution. The graphic contains the logged
  3357. message mentioned above, so it is not printed anymore when this option is set,
  3358. unless the verbose logging is set. The main graphing area contains the
  3359. short-term loudness (3 seconds of analysis), and the gauge on the right is for
  3360. the momentary loudness (400 milliseconds).
  3361. More information about the Loudness Recommendation EBU R128 on
  3362. @url{http://tech.ebu.ch/loudness}.
  3363. The filter accepts the following named parameters:
  3364. @table @option
  3365. @item video
  3366. Activate the video output. The audio stream is passed unchanged whether this
  3367. option is set or no. The video stream will be the first output stream if
  3368. activated. Default is @code{0}.
  3369. @item size
  3370. Set the video size. This option is for video only. Default and minimum
  3371. resolution is @code{640x480}.
  3372. @item meter
  3373. Set the EBU scale meter. Default is @code{9}. Common values are @code{9} and
  3374. @code{18}, respectively for EBU scale meter +9 and EBU scale meter +18. Any
  3375. other integer value between this range is allowed.
  3376. @end table
  3377. Example of real-time graph using @command{ffplay}, with a EBU scale meter +18:
  3378. @example
  3379. ffplay -f lavfi -i "amovie=input.mp3,ebur128=video=1:meter=18 [out0][out1]"
  3380. @end example
  3381. Run an analysis with @command{ffmpeg}:
  3382. @example
  3383. ffmpeg -nostats -i input.mp3 -filter_complex ebur128 -f null -
  3384. @end example
  3385. @section settb, asettb
  3386. Set the timebase to use for the output frames timestamps.
  3387. It is mainly useful for testing timebase configuration.
  3388. It accepts in input an arithmetic expression representing a rational.
  3389. The expression can contain the constants "AVTB" (the
  3390. default timebase), "intb" (the input timebase) and "sr" (the sample rate,
  3391. audio only).
  3392. The default value for the input is "intb".
  3393. @subsection Examples
  3394. @itemize
  3395. @item
  3396. Set the timebase to 1/25:
  3397. @example
  3398. settb=1/25
  3399. @end example
  3400. @item
  3401. Set the timebase to 1/10:
  3402. @example
  3403. settb=0.1
  3404. @end example
  3405. @item
  3406. Set the timebase to 1001/1000:
  3407. @example
  3408. settb=1+0.001
  3409. @end example
  3410. @item
  3411. Set the timebase to 2*intb:
  3412. @example
  3413. settb=2*intb
  3414. @end example
  3415. @item
  3416. Set the default timebase value:
  3417. @example
  3418. settb=AVTB
  3419. @end example
  3420. @end itemize
  3421. @section concat
  3422. Concatenate audio and video streams, joining them together one after the
  3423. other.
  3424. The filter works on segments of synchronized video and audio streams. All
  3425. segments must have the same number of streams of each type, and that will
  3426. also be the number of streams at output.
  3427. The filter accepts the following named parameters:
  3428. @table @option
  3429. @item n
  3430. Set the number of segments. Default is 2.
  3431. @item v
  3432. Set the number of output video streams, that is also the number of video
  3433. streams in each segment. Default is 1.
  3434. @item a
  3435. Set the number of output audio streams, that is also the number of video
  3436. streams in each segment. Default is 0.
  3437. @end table
  3438. The filter has @var{v}+@var{a} outputs: first @var{v} video outputs, then
  3439. @var{a} audio outputs.
  3440. There are @var{n}×(@var{v}+@var{a}) inputs: first the inputs for the first
  3441. segment, in the same order as the outputs, then the inputs for the second
  3442. segment, etc.
  3443. Related streams do not always have exactly the same duration, for various
  3444. reasons including codec frame size or sloppy authoring. For that reason,
  3445. related synchronized streams (e.g. a video and its audio track) should be
  3446. concatenated at once. The concat filter will use the duration of the longest
  3447. stream in each segment (except the last one), and if necessary pad shorter
  3448. audio streams with silence.
  3449. For this filter to work correctly, all segments must start at timestamp 0.
  3450. All corresponding streams must have the same parameters in all segments; the
  3451. filtering system will automatically select a common pixel format for video
  3452. streams, and a common sample format, sample rate and channel layout for
  3453. audio streams, but other settings, such as resolution, must be converted
  3454. explicitly by the user.
  3455. Different frame rates are acceptable but will result in variable frame rate
  3456. at output; be sure to configure the output file to handle it.
  3457. Examples:
  3458. @itemize
  3459. @item
  3460. Concatenate an opening, an episode and an ending, all in bilingual version
  3461. (video in stream 0, audio in streams 1 and 2):
  3462. @example
  3463. ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
  3464. '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
  3465. concat=n=3:v=1:a=2 [v] [a1] [a2]' \
  3466. -map '[v]' -map '[a1]' -map '[a2]' output.mkv
  3467. @end example
  3468. @item
  3469. Concatenate two parts, handling audio and video separately, using the
  3470. (a)movie sources, and adjusting the resolution:
  3471. @example
  3472. movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
  3473. movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
  3474. [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]
  3475. @end example
  3476. Note that a desync will happen at the stitch if the audio and video streams
  3477. do not have exactly the same duration in the first file.
  3478. @end itemize
  3479. @section showspectrum
  3480. Convert input audio to a video output, representing the audio frequency
  3481. spectrum.
  3482. The filter accepts the following named parameters:
  3483. @table @option
  3484. @item size, s
  3485. Specify the video size for the output. Default value is @code{640x480}.
  3486. @end table
  3487. The usage is very similar to the showwaves filter; see the examples in that
  3488. section.
  3489. @section showwaves
  3490. Convert input audio to a video output, representing the samples waves.
  3491. The filter accepts the following named parameters:
  3492. @table @option
  3493. @item n
  3494. Set the number of samples which are printed on the same column. A
  3495. larger value will decrease the frame rate. Must be a positive
  3496. integer. This option can be set only if the value for @var{rate}
  3497. is not explicitly specified.
  3498. @item rate, r
  3499. Set the (approximate) output frame rate. This is done by setting the
  3500. option @var{n}. Default value is "25".
  3501. @item size, s
  3502. Specify the video size for the output. Default value is "600x240".
  3503. @end table
  3504. Some examples follow.
  3505. @itemize
  3506. @item
  3507. Output the input file audio and the corresponding video representation
  3508. at the same time:
  3509. @example
  3510. amovie=a.mp3,asplit[out0],showwaves[out1]
  3511. @end example
  3512. @item
  3513. Create a synthetic signal and show it with showwaves, forcing a
  3514. framerate of 30 frames per second:
  3515. @example
  3516. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  3517. @end example
  3518. @end itemize
  3519. @c man end MULTIMEDIA FILTERS
  3520. @chapter Multimedia Sources
  3521. @c man begin MULTIMEDIA SOURCES
  3522. Below is a description of the currently available multimedia sources.
  3523. @section amovie
  3524. This is the same as @ref{src_movie} source, except it selects an audio
  3525. stream by default.
  3526. @anchor{src_movie}
  3527. @section movie
  3528. Read audio and/or video stream(s) from a movie container.
  3529. It accepts the syntax: @var{movie_name}[:@var{options}] where
  3530. @var{movie_name} is the name of the resource to read (not necessarily
  3531. a file but also a device or a stream accessed through some protocol),
  3532. and @var{options} is an optional sequence of @var{key}=@var{value}
  3533. pairs, separated by ":".
  3534. The description of the accepted options follows.
  3535. @table @option
  3536. @item format_name, f
  3537. Specifies the format assumed for the movie to read, and can be either
  3538. the name of a container or an input device. If not specified the
  3539. format is guessed from @var{movie_name} or by probing.
  3540. @item seek_point, sp
  3541. Specifies the seek point in seconds, the frames will be output
  3542. starting from this seek point, the parameter is evaluated with
  3543. @code{av_strtod} so the numerical value may be suffixed by an IS
  3544. postfix. Default value is "0".
  3545. @item streams, s
  3546. Specifies the streams to read. Several streams can be specified, separated
  3547. by "+". The source will then have as many outputs, in the same order. The
  3548. syntax is explained in the @ref{Stream specifiers} chapter. Two special
  3549. names, "dv" and "da" specify respectively the default (best suited) video
  3550. and audio stream. Default is "dv", or "da" if the filter is called as
  3551. "amovie".
  3552. @item stream_index, si
  3553. Specifies the index of the video stream to read. If the value is -1,
  3554. the best suited video stream will be automatically selected. Default
  3555. value is "-1". Deprecated. If the filter is called "amovie", it will select
  3556. audio instead of video.
  3557. @item loop
  3558. Specifies how many times to read the stream in sequence.
  3559. If the value is less than 1, the stream will be read again and again.
  3560. Default value is "1".
  3561. Note that when the movie is looped the source timestamps are not
  3562. changed, so it will generate non monotonically increasing timestamps.
  3563. @end table
  3564. This filter allows to overlay a second video on top of main input of
  3565. a filtergraph as shown in this graph:
  3566. @example
  3567. input -----------> deltapts0 --> overlay --> output
  3568. ^
  3569. |
  3570. movie --> scale--> deltapts1 -------+
  3571. @end example
  3572. Some examples follow.
  3573. @itemize
  3574. @item
  3575. Skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  3576. on top of the input labelled as "in":
  3577. @example
  3578. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3579. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3580. @end example
  3581. @item
  3582. Read from a video4linux2 device, and overlay it on top of the input
  3583. labelled as "in":
  3584. @example
  3585. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3586. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3587. @end example
  3588. @item
  3589. Read the first video stream and the audio stream with id 0x81 from
  3590. dvd.vob; the video is connected to the pad named "video" and the audio is
  3591. connected to the pad named "audio":
  3592. @example
  3593. movie=dvd.vob:s=v:0+#0x81 [video] [audio]
  3594. @end example
  3595. @end itemize
  3596. @c man end MULTIMEDIA SOURCES