You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1407 lines
43KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  23. * the algorithm used
  24. */
  25. /**
  26. * @file huffyuv.c
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "bitstream.h"
  31. #include "dsputil.h"
  32. #define VLC_BITS 11
  33. #ifdef WORDS_BIGENDIAN
  34. #define B 3
  35. #define G 2
  36. #define R 1
  37. #else
  38. #define B 0
  39. #define G 1
  40. #define R 2
  41. #endif
  42. typedef enum Predictor{
  43. LEFT= 0,
  44. PLANE,
  45. MEDIAN,
  46. } Predictor;
  47. typedef struct HYuvContext{
  48. AVCodecContext *avctx;
  49. Predictor predictor;
  50. GetBitContext gb;
  51. PutBitContext pb;
  52. int interlaced;
  53. int decorrelate;
  54. int bitstream_bpp;
  55. int version;
  56. int yuy2; //use yuy2 instead of 422P
  57. int bgr32; //use bgr32 instead of bgr24
  58. int width, height;
  59. int flags;
  60. int context;
  61. int picture_number;
  62. int last_slice_end;
  63. uint8_t *temp[3];
  64. uint64_t stats[3][256];
  65. uint8_t len[3][256];
  66. uint32_t bits[3][256];
  67. VLC vlc[3];
  68. AVFrame picture;
  69. uint8_t *bitstream_buffer;
  70. unsigned int bitstream_buffer_size;
  71. DSPContext dsp;
  72. }HYuvContext;
  73. static const unsigned char classic_shift_luma[] = {
  74. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  75. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  76. 69,68, 0
  77. };
  78. static const unsigned char classic_shift_chroma[] = {
  79. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  80. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  81. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  82. };
  83. static const unsigned char classic_add_luma[256] = {
  84. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  85. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  86. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  87. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  88. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  89. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  90. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  91. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  92. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  93. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  94. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  95. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  96. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  97. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  98. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  99. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  100. };
  101. static const unsigned char classic_add_chroma[256] = {
  102. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  103. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  104. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  105. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  106. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  107. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  108. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  109. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  110. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  111. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  112. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  113. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  114. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  115. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  116. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  117. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  118. };
  119. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  120. int i;
  121. for(i=0; i<w-1; i++){
  122. acc+= src[i];
  123. dst[i]= acc;
  124. i++;
  125. acc+= src[i];
  126. dst[i]= acc;
  127. }
  128. for(; i<w; i++){
  129. acc+= src[i];
  130. dst[i]= acc;
  131. }
  132. return acc;
  133. }
  134. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  135. int i;
  136. uint8_t l, lt;
  137. l= *left;
  138. lt= *left_top;
  139. for(i=0; i<w; i++){
  140. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  141. lt= src1[i];
  142. dst[i]= l;
  143. }
  144. *left= l;
  145. *left_top= lt;
  146. }
  147. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  148. int i;
  149. int r,g,b;
  150. r= *red;
  151. g= *green;
  152. b= *blue;
  153. for(i=0; i<w; i++){
  154. b+= src[4*i+B];
  155. g+= src[4*i+G];
  156. r+= src[4*i+R];
  157. dst[4*i+B]= b;
  158. dst[4*i+G]= g;
  159. dst[4*i+R]= r;
  160. }
  161. *red= r;
  162. *green= g;
  163. *blue= b;
  164. }
  165. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  166. int i;
  167. if(w<32){
  168. for(i=0; i<w; i++){
  169. const int temp= src[i];
  170. dst[i]= temp - left;
  171. left= temp;
  172. }
  173. return left;
  174. }else{
  175. for(i=0; i<16; i++){
  176. const int temp= src[i];
  177. dst[i]= temp - left;
  178. left= temp;
  179. }
  180. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  181. return src[w-1];
  182. }
  183. }
  184. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  185. int i;
  186. int r,g,b;
  187. r= *red;
  188. g= *green;
  189. b= *blue;
  190. for(i=0; i<FFMIN(w,4); i++){
  191. const int rt= src[i*4+R];
  192. const int gt= src[i*4+G];
  193. const int bt= src[i*4+B];
  194. dst[i*4+R]= rt - r;
  195. dst[i*4+G]= gt - g;
  196. dst[i*4+B]= bt - b;
  197. r = rt;
  198. g = gt;
  199. b = bt;
  200. }
  201. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  202. *red= src[(w-1)*4+R];
  203. *green= src[(w-1)*4+G];
  204. *blue= src[(w-1)*4+B];
  205. }
  206. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  207. int i, val, repeat;
  208. for(i=0; i<256;){
  209. repeat= get_bits(gb, 3);
  210. val = get_bits(gb, 5);
  211. if(repeat==0)
  212. repeat= get_bits(gb, 8);
  213. //printf("%d %d\n", val, repeat);
  214. while (repeat--)
  215. dst[i++] = val;
  216. }
  217. }
  218. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  219. int len, index;
  220. uint32_t bits=0;
  221. for(len=32; len>0; len--){
  222. for(index=0; index<256; index++){
  223. if(len_table[index]==len)
  224. dst[index]= bits++;
  225. }
  226. if(bits & 1){
  227. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  228. return -1;
  229. }
  230. bits >>= 1;
  231. }
  232. return 0;
  233. }
  234. #ifdef CONFIG_ENCODERS
  235. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  236. uint64_t counts[2*size];
  237. int up[2*size];
  238. int offset, i, next;
  239. for(offset=1; ; offset<<=1){
  240. for(i=0; i<size; i++){
  241. counts[i]= stats[i] + offset - 1;
  242. }
  243. for(next=size; next<size*2; next++){
  244. uint64_t min1, min2;
  245. int min1_i, min2_i;
  246. min1=min2= INT64_MAX;
  247. min1_i= min2_i=-1;
  248. for(i=0; i<next; i++){
  249. if(min2 > counts[i]){
  250. if(min1 > counts[i]){
  251. min2= min1;
  252. min2_i= min1_i;
  253. min1= counts[i];
  254. min1_i= i;
  255. }else{
  256. min2= counts[i];
  257. min2_i= i;
  258. }
  259. }
  260. }
  261. if(min2==INT64_MAX) break;
  262. counts[next]= min1 + min2;
  263. counts[min1_i]=
  264. counts[min2_i]= INT64_MAX;
  265. up[min1_i]=
  266. up[min2_i]= next;
  267. up[next]= -1;
  268. }
  269. for(i=0; i<size; i++){
  270. int len;
  271. int index=i;
  272. for(len=0; up[index] != -1; len++)
  273. index= up[index];
  274. if(len >= 32) break;
  275. dst[i]= len;
  276. }
  277. if(i==size) break;
  278. }
  279. }
  280. #endif /* CONFIG_ENCODERS */
  281. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  282. GetBitContext gb;
  283. int i;
  284. init_get_bits(&gb, src, length*8);
  285. for(i=0; i<3; i++){
  286. read_len_table(s->len[i], &gb);
  287. if(generate_bits_table(s->bits[i], s->len[i])<0){
  288. return -1;
  289. }
  290. #if 0
  291. for(j=0; j<256; j++){
  292. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  293. }
  294. #endif
  295. free_vlc(&s->vlc[i]);
  296. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  297. }
  298. return (get_bits_count(&gb)+7)/8;
  299. }
  300. static int read_old_huffman_tables(HYuvContext *s){
  301. #if 1
  302. GetBitContext gb;
  303. int i;
  304. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  305. read_len_table(s->len[0], &gb);
  306. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  307. read_len_table(s->len[1], &gb);
  308. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  309. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  310. if(s->bitstream_bpp >= 24){
  311. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  312. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  313. }
  314. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  315. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  316. for(i=0; i<3; i++){
  317. free_vlc(&s->vlc[i]);
  318. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  319. }
  320. return 0;
  321. #else
  322. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  323. return -1;
  324. #endif
  325. }
  326. static void alloc_temp(HYuvContext *s){
  327. int i;
  328. if(s->bitstream_bpp<24){
  329. for(i=0; i<3; i++){
  330. s->temp[i]= av_malloc(s->width + 16);
  331. }
  332. }else{
  333. for(i=0; i<2; i++){
  334. s->temp[i]= av_malloc(4*s->width + 16);
  335. }
  336. }
  337. }
  338. static int common_init(AVCodecContext *avctx){
  339. HYuvContext *s = avctx->priv_data;
  340. s->avctx= avctx;
  341. s->flags= avctx->flags;
  342. dsputil_init(&s->dsp, avctx);
  343. s->width= avctx->width;
  344. s->height= avctx->height;
  345. assert(s->width>0 && s->height>0);
  346. return 0;
  347. }
  348. #ifdef CONFIG_DECODERS
  349. static int decode_init(AVCodecContext *avctx)
  350. {
  351. HYuvContext *s = avctx->priv_data;
  352. common_init(avctx);
  353. memset(s->vlc, 0, 3*sizeof(VLC));
  354. avctx->coded_frame= &s->picture;
  355. s->interlaced= s->height > 288;
  356. s->bgr32=1;
  357. //if(avctx->extradata)
  358. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  359. if(avctx->extradata_size){
  360. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  361. s->version=1; // do such files exist at all?
  362. else
  363. s->version=2;
  364. }else
  365. s->version=0;
  366. if(s->version==2){
  367. int method, interlace;
  368. method= ((uint8_t*)avctx->extradata)[0];
  369. s->decorrelate= method&64 ? 1 : 0;
  370. s->predictor= method&63;
  371. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  372. if(s->bitstream_bpp==0)
  373. s->bitstream_bpp= avctx->bits_per_sample&~7;
  374. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  375. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  376. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  377. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  378. return -1;
  379. }else{
  380. switch(avctx->bits_per_sample&7){
  381. case 1:
  382. s->predictor= LEFT;
  383. s->decorrelate= 0;
  384. break;
  385. case 2:
  386. s->predictor= LEFT;
  387. s->decorrelate= 1;
  388. break;
  389. case 3:
  390. s->predictor= PLANE;
  391. s->decorrelate= avctx->bits_per_sample >= 24;
  392. break;
  393. case 4:
  394. s->predictor= MEDIAN;
  395. s->decorrelate= 0;
  396. break;
  397. default:
  398. s->predictor= LEFT; //OLD
  399. s->decorrelate= 0;
  400. break;
  401. }
  402. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  403. s->context= 0;
  404. if(read_old_huffman_tables(s) < 0)
  405. return -1;
  406. }
  407. switch(s->bitstream_bpp){
  408. case 12:
  409. avctx->pix_fmt = PIX_FMT_YUV420P;
  410. break;
  411. case 16:
  412. if(s->yuy2){
  413. avctx->pix_fmt = PIX_FMT_YUYV422;
  414. }else{
  415. avctx->pix_fmt = PIX_FMT_YUV422P;
  416. }
  417. break;
  418. case 24:
  419. case 32:
  420. if(s->bgr32){
  421. avctx->pix_fmt = PIX_FMT_RGB32;
  422. }else{
  423. avctx->pix_fmt = PIX_FMT_BGR24;
  424. }
  425. break;
  426. default:
  427. assert(0);
  428. }
  429. alloc_temp(s);
  430. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  431. return 0;
  432. }
  433. #endif
  434. #ifdef CONFIG_ENCODERS
  435. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  436. int i;
  437. int index= 0;
  438. for(i=0; i<256;){
  439. int val= len[i];
  440. int repeat=0;
  441. for(; i<256 && len[i]==val && repeat<255; i++)
  442. repeat++;
  443. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  444. if(repeat>7){
  445. buf[index++]= val;
  446. buf[index++]= repeat;
  447. }else{
  448. buf[index++]= val | (repeat<<5);
  449. }
  450. }
  451. return index;
  452. }
  453. static int encode_init(AVCodecContext *avctx)
  454. {
  455. HYuvContext *s = avctx->priv_data;
  456. int i, j;
  457. common_init(avctx);
  458. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  459. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  460. s->version=2;
  461. avctx->coded_frame= &s->picture;
  462. switch(avctx->pix_fmt){
  463. case PIX_FMT_YUV420P:
  464. s->bitstream_bpp= 12;
  465. break;
  466. case PIX_FMT_YUV422P:
  467. s->bitstream_bpp= 16;
  468. break;
  469. case PIX_FMT_RGB32:
  470. s->bitstream_bpp= 24;
  471. break;
  472. default:
  473. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  474. return -1;
  475. }
  476. avctx->bits_per_sample= s->bitstream_bpp;
  477. s->decorrelate= s->bitstream_bpp >= 24;
  478. s->predictor= avctx->prediction_method;
  479. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  480. if(avctx->context_model==1){
  481. s->context= avctx->context_model;
  482. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  483. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  484. return -1;
  485. }
  486. }else s->context= 0;
  487. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  488. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  489. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  490. return -1;
  491. }
  492. if(avctx->context_model){
  493. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  494. return -1;
  495. }
  496. if(s->interlaced != ( s->height > 288 ))
  497. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  498. }
  499. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  500. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  501. return -1;
  502. }
  503. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  504. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  505. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  506. if(s->context)
  507. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  508. ((uint8_t*)avctx->extradata)[3]= 0;
  509. s->avctx->extradata_size= 4;
  510. if(avctx->stats_in){
  511. char *p= avctx->stats_in;
  512. for(i=0; i<3; i++)
  513. for(j=0; j<256; j++)
  514. s->stats[i][j]= 1;
  515. for(;;){
  516. for(i=0; i<3; i++){
  517. char *next;
  518. for(j=0; j<256; j++){
  519. s->stats[i][j]+= strtol(p, &next, 0);
  520. if(next==p) return -1;
  521. p=next;
  522. }
  523. }
  524. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  525. }
  526. }else{
  527. for(i=0; i<3; i++)
  528. for(j=0; j<256; j++){
  529. int d= FFMIN(j, 256-j);
  530. s->stats[i][j]= 100000000/(d+1);
  531. }
  532. }
  533. for(i=0; i<3; i++){
  534. generate_len_table(s->len[i], s->stats[i], 256);
  535. if(generate_bits_table(s->bits[i], s->len[i])<0){
  536. return -1;
  537. }
  538. s->avctx->extradata_size+=
  539. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  540. }
  541. if(s->context){
  542. for(i=0; i<3; i++){
  543. int pels = s->width*s->height / (i?40:10);
  544. for(j=0; j<256; j++){
  545. int d= FFMIN(j, 256-j);
  546. s->stats[i][j]= pels/(d+1);
  547. }
  548. }
  549. }else{
  550. for(i=0; i<3; i++)
  551. for(j=0; j<256; j++)
  552. s->stats[i][j]= 0;
  553. }
  554. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  555. alloc_temp(s);
  556. s->picture_number=0;
  557. return 0;
  558. }
  559. #endif /* CONFIG_ENCODERS */
  560. static void decode_422_bitstream(HYuvContext *s, int count){
  561. int i;
  562. count/=2;
  563. for(i=0; i<count; i++){
  564. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  565. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  566. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  567. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  568. }
  569. }
  570. static void decode_gray_bitstream(HYuvContext *s, int count){
  571. int i;
  572. count/=2;
  573. for(i=0; i<count; i++){
  574. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  575. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  576. }
  577. }
  578. #ifdef CONFIG_ENCODERS
  579. static int encode_422_bitstream(HYuvContext *s, int count){
  580. int i;
  581. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  582. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  583. return -1;
  584. }
  585. #define LOAD4\
  586. int y0 = s->temp[0][2*i];\
  587. int y1 = s->temp[0][2*i+1];\
  588. int u0 = s->temp[1][i];\
  589. int v0 = s->temp[2][i];
  590. count/=2;
  591. if(s->flags&CODEC_FLAG_PASS1){
  592. for(i=0; i<count; i++){
  593. LOAD4;
  594. s->stats[0][y0]++;
  595. s->stats[1][u0]++;
  596. s->stats[0][y1]++;
  597. s->stats[2][v0]++;
  598. }
  599. }
  600. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  601. return 0;
  602. if(s->context){
  603. for(i=0; i<count; i++){
  604. LOAD4;
  605. s->stats[0][y0]++;
  606. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  607. s->stats[1][u0]++;
  608. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  609. s->stats[0][y1]++;
  610. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  611. s->stats[2][v0]++;
  612. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  613. }
  614. }else{
  615. for(i=0; i<count; i++){
  616. LOAD4;
  617. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  618. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  619. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  620. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  621. }
  622. }
  623. return 0;
  624. }
  625. static int encode_gray_bitstream(HYuvContext *s, int count){
  626. int i;
  627. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  628. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  629. return -1;
  630. }
  631. #define LOAD2\
  632. int y0 = s->temp[0][2*i];\
  633. int y1 = s->temp[0][2*i+1];
  634. #define STAT2\
  635. s->stats[0][y0]++;\
  636. s->stats[0][y1]++;
  637. #define WRITE2\
  638. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  639. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  640. count/=2;
  641. if(s->flags&CODEC_FLAG_PASS1){
  642. for(i=0; i<count; i++){
  643. LOAD2;
  644. STAT2;
  645. }
  646. }
  647. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  648. return 0;
  649. if(s->context){
  650. for(i=0; i<count; i++){
  651. LOAD2;
  652. STAT2;
  653. WRITE2;
  654. }
  655. }else{
  656. for(i=0; i<count; i++){
  657. LOAD2;
  658. WRITE2;
  659. }
  660. }
  661. return 0;
  662. }
  663. #endif /* CONFIG_ENCODERS */
  664. static void decode_bgr_bitstream(HYuvContext *s, int count){
  665. int i;
  666. if(s->decorrelate){
  667. if(s->bitstream_bpp==24){
  668. for(i=0; i<count; i++){
  669. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  670. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  671. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  672. }
  673. }else{
  674. for(i=0; i<count; i++){
  675. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  676. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  677. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  678. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  679. }
  680. }
  681. }else{
  682. if(s->bitstream_bpp==24){
  683. for(i=0; i<count; i++){
  684. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  685. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  686. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  687. }
  688. }else{
  689. for(i=0; i<count; i++){
  690. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  691. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  692. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  693. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  694. }
  695. }
  696. }
  697. }
  698. static int encode_bgr_bitstream(HYuvContext *s, int count){
  699. int i;
  700. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  701. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  702. return -1;
  703. }
  704. #define LOAD3\
  705. int g= s->temp[0][4*i+G];\
  706. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  707. int r= (s->temp[0][4*i+R] - g) & 0xff;
  708. #define STAT3\
  709. s->stats[0][b]++;\
  710. s->stats[1][g]++;\
  711. s->stats[2][r]++;
  712. #define WRITE3\
  713. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  714. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  715. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  716. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  717. for(i=0; i<count; i++){
  718. LOAD3;
  719. STAT3;
  720. }
  721. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  722. for(i=0; i<count; i++){
  723. LOAD3;
  724. STAT3;
  725. WRITE3;
  726. }
  727. }else{
  728. for(i=0; i<count; i++){
  729. LOAD3;
  730. WRITE3;
  731. }
  732. }
  733. return 0;
  734. }
  735. #ifdef CONFIG_DECODERS
  736. static void draw_slice(HYuvContext *s, int y){
  737. int h, cy;
  738. int offset[4];
  739. if(s->avctx->draw_horiz_band==NULL)
  740. return;
  741. h= y - s->last_slice_end;
  742. y -= h;
  743. if(s->bitstream_bpp==12){
  744. cy= y>>1;
  745. }else{
  746. cy= y;
  747. }
  748. offset[0] = s->picture.linesize[0]*y;
  749. offset[1] = s->picture.linesize[1]*cy;
  750. offset[2] = s->picture.linesize[2]*cy;
  751. offset[3] = 0;
  752. emms_c();
  753. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  754. s->last_slice_end= y + h;
  755. }
  756. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  757. HYuvContext *s = avctx->priv_data;
  758. const int width= s->width;
  759. const int width2= s->width>>1;
  760. const int height= s->height;
  761. int fake_ystride, fake_ustride, fake_vstride;
  762. AVFrame * const p= &s->picture;
  763. int table_size= 0;
  764. AVFrame *picture = data;
  765. s->bitstream_buffer= av_fast_realloc(s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  766. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  767. if(p->data[0])
  768. avctx->release_buffer(avctx, p);
  769. p->reference= 0;
  770. if(avctx->get_buffer(avctx, p) < 0){
  771. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  772. return -1;
  773. }
  774. if(s->context){
  775. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  776. if(table_size < 0)
  777. return -1;
  778. }
  779. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  780. return -1;
  781. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  782. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  783. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  784. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  785. s->last_slice_end= 0;
  786. if(s->bitstream_bpp<24){
  787. int y, cy;
  788. int lefty, leftu, leftv;
  789. int lefttopy, lefttopu, lefttopv;
  790. if(s->yuy2){
  791. p->data[0][3]= get_bits(&s->gb, 8);
  792. p->data[0][2]= get_bits(&s->gb, 8);
  793. p->data[0][1]= get_bits(&s->gb, 8);
  794. p->data[0][0]= get_bits(&s->gb, 8);
  795. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  796. return -1;
  797. }else{
  798. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  799. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  800. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  801. p->data[0][0]= get_bits(&s->gb, 8);
  802. switch(s->predictor){
  803. case LEFT:
  804. case PLANE:
  805. decode_422_bitstream(s, width-2);
  806. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  807. if(!(s->flags&CODEC_FLAG_GRAY)){
  808. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  809. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  810. }
  811. for(cy=y=1; y<s->height; y++,cy++){
  812. uint8_t *ydst, *udst, *vdst;
  813. if(s->bitstream_bpp==12){
  814. decode_gray_bitstream(s, width);
  815. ydst= p->data[0] + p->linesize[0]*y;
  816. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  817. if(s->predictor == PLANE){
  818. if(y>s->interlaced)
  819. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  820. }
  821. y++;
  822. if(y>=s->height) break;
  823. }
  824. draw_slice(s, y);
  825. ydst= p->data[0] + p->linesize[0]*y;
  826. udst= p->data[1] + p->linesize[1]*cy;
  827. vdst= p->data[2] + p->linesize[2]*cy;
  828. decode_422_bitstream(s, width);
  829. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  830. if(!(s->flags&CODEC_FLAG_GRAY)){
  831. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  832. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  833. }
  834. if(s->predictor == PLANE){
  835. if(cy>s->interlaced){
  836. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  837. if(!(s->flags&CODEC_FLAG_GRAY)){
  838. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  839. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  840. }
  841. }
  842. }
  843. }
  844. draw_slice(s, height);
  845. break;
  846. case MEDIAN:
  847. /* first line except first 2 pixels is left predicted */
  848. decode_422_bitstream(s, width-2);
  849. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  850. if(!(s->flags&CODEC_FLAG_GRAY)){
  851. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  852. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  853. }
  854. cy=y=1;
  855. /* second line is left predicted for interlaced case */
  856. if(s->interlaced){
  857. decode_422_bitstream(s, width);
  858. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  859. if(!(s->flags&CODEC_FLAG_GRAY)){
  860. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  861. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  862. }
  863. y++; cy++;
  864. }
  865. /* next 4 pixels are left predicted too */
  866. decode_422_bitstream(s, 4);
  867. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  868. if(!(s->flags&CODEC_FLAG_GRAY)){
  869. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  870. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  871. }
  872. /* next line except the first 4 pixels is median predicted */
  873. lefttopy= p->data[0][3];
  874. decode_422_bitstream(s, width-4);
  875. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  876. if(!(s->flags&CODEC_FLAG_GRAY)){
  877. lefttopu= p->data[1][1];
  878. lefttopv= p->data[2][1];
  879. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  880. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  881. }
  882. y++; cy++;
  883. for(; y<height; y++,cy++){
  884. uint8_t *ydst, *udst, *vdst;
  885. if(s->bitstream_bpp==12){
  886. while(2*cy > y){
  887. decode_gray_bitstream(s, width);
  888. ydst= p->data[0] + p->linesize[0]*y;
  889. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  890. y++;
  891. }
  892. if(y>=height) break;
  893. }
  894. draw_slice(s, y);
  895. decode_422_bitstream(s, width);
  896. ydst= p->data[0] + p->linesize[0]*y;
  897. udst= p->data[1] + p->linesize[1]*cy;
  898. vdst= p->data[2] + p->linesize[2]*cy;
  899. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  900. if(!(s->flags&CODEC_FLAG_GRAY)){
  901. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  902. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  903. }
  904. }
  905. draw_slice(s, height);
  906. break;
  907. }
  908. }
  909. }else{
  910. int y;
  911. int leftr, leftg, leftb;
  912. const int last_line= (height-1)*p->linesize[0];
  913. if(s->bitstream_bpp==32){
  914. skip_bits(&s->gb, 8);
  915. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  916. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  917. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  918. }else{
  919. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  920. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  921. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  922. skip_bits(&s->gb, 8);
  923. }
  924. if(s->bgr32){
  925. switch(s->predictor){
  926. case LEFT:
  927. case PLANE:
  928. decode_bgr_bitstream(s, width-1);
  929. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  930. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  931. decode_bgr_bitstream(s, width);
  932. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  933. if(s->predictor == PLANE){
  934. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  935. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  936. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  937. }
  938. }
  939. }
  940. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  941. break;
  942. default:
  943. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  944. }
  945. }else{
  946. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  947. return -1;
  948. }
  949. }
  950. emms_c();
  951. *picture= *p;
  952. *data_size = sizeof(AVFrame);
  953. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  954. }
  955. #endif
  956. static int common_end(HYuvContext *s){
  957. int i;
  958. for(i=0; i<3; i++){
  959. av_freep(&s->temp[i]);
  960. }
  961. return 0;
  962. }
  963. #ifdef CONFIG_DECODERS
  964. static int decode_end(AVCodecContext *avctx)
  965. {
  966. HYuvContext *s = avctx->priv_data;
  967. int i;
  968. common_end(s);
  969. av_freep(&s->bitstream_buffer);
  970. for(i=0; i<3; i++){
  971. free_vlc(&s->vlc[i]);
  972. }
  973. return 0;
  974. }
  975. #endif
  976. #ifdef CONFIG_ENCODERS
  977. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  978. HYuvContext *s = avctx->priv_data;
  979. AVFrame *pict = data;
  980. const int width= s->width;
  981. const int width2= s->width>>1;
  982. const int height= s->height;
  983. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  984. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  985. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  986. AVFrame * const p= &s->picture;
  987. int i, j, size=0;
  988. *p = *pict;
  989. p->pict_type= FF_I_TYPE;
  990. p->key_frame= 1;
  991. if(s->context){
  992. for(i=0; i<3; i++){
  993. generate_len_table(s->len[i], s->stats[i], 256);
  994. if(generate_bits_table(s->bits[i], s->len[i])<0)
  995. return -1;
  996. size+= store_table(s, s->len[i], &buf[size]);
  997. }
  998. for(i=0; i<3; i++)
  999. for(j=0; j<256; j++)
  1000. s->stats[i][j] >>= 1;
  1001. }
  1002. init_put_bits(&s->pb, buf+size, buf_size-size);
  1003. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1004. int lefty, leftu, leftv, y, cy;
  1005. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1006. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1007. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1008. put_bits(&s->pb, 8, p->data[0][0]);
  1009. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  1010. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  1011. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  1012. encode_422_bitstream(s, width-2);
  1013. if(s->predictor==MEDIAN){
  1014. int lefttopy, lefttopu, lefttopv;
  1015. cy=y=1;
  1016. if(s->interlaced){
  1017. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1018. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1019. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1020. encode_422_bitstream(s, width);
  1021. y++; cy++;
  1022. }
  1023. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1024. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1025. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1026. encode_422_bitstream(s, 4);
  1027. lefttopy= p->data[0][3];
  1028. lefttopu= p->data[1][1];
  1029. lefttopv= p->data[2][1];
  1030. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1031. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1032. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1033. encode_422_bitstream(s, width-4);
  1034. y++; cy++;
  1035. for(; y<height; y++,cy++){
  1036. uint8_t *ydst, *udst, *vdst;
  1037. if(s->bitstream_bpp==12){
  1038. while(2*cy > y){
  1039. ydst= p->data[0] + p->linesize[0]*y;
  1040. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1041. encode_gray_bitstream(s, width);
  1042. y++;
  1043. }
  1044. if(y>=height) break;
  1045. }
  1046. ydst= p->data[0] + p->linesize[0]*y;
  1047. udst= p->data[1] + p->linesize[1]*cy;
  1048. vdst= p->data[2] + p->linesize[2]*cy;
  1049. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1050. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1051. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1052. encode_422_bitstream(s, width);
  1053. }
  1054. }else{
  1055. for(cy=y=1; y<height; y++,cy++){
  1056. uint8_t *ydst, *udst, *vdst;
  1057. /* encode a luma only line & y++ */
  1058. if(s->bitstream_bpp==12){
  1059. ydst= p->data[0] + p->linesize[0]*y;
  1060. if(s->predictor == PLANE && s->interlaced < y){
  1061. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1062. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1063. }else{
  1064. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1065. }
  1066. encode_gray_bitstream(s, width);
  1067. y++;
  1068. if(y>=height) break;
  1069. }
  1070. ydst= p->data[0] + p->linesize[0]*y;
  1071. udst= p->data[1] + p->linesize[1]*cy;
  1072. vdst= p->data[2] + p->linesize[2]*cy;
  1073. if(s->predictor == PLANE && s->interlaced < cy){
  1074. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1075. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1076. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1077. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1078. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1079. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1080. }else{
  1081. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1082. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1083. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1084. }
  1085. encode_422_bitstream(s, width);
  1086. }
  1087. }
  1088. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1089. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1090. const int stride = -p->linesize[0];
  1091. const int fake_stride = -fake_ystride;
  1092. int y;
  1093. int leftr, leftg, leftb;
  1094. put_bits(&s->pb, 8, leftr= data[R]);
  1095. put_bits(&s->pb, 8, leftg= data[G]);
  1096. put_bits(&s->pb, 8, leftb= data[B]);
  1097. put_bits(&s->pb, 8, 0);
  1098. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1099. encode_bgr_bitstream(s, width-1);
  1100. for(y=1; y<s->height; y++){
  1101. uint8_t *dst = data + y*stride;
  1102. if(s->predictor == PLANE && s->interlaced < y){
  1103. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1104. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1105. }else{
  1106. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1107. }
  1108. encode_bgr_bitstream(s, width);
  1109. }
  1110. }else{
  1111. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1112. }
  1113. emms_c();
  1114. size+= (put_bits_count(&s->pb)+31)/8;
  1115. size/= 4;
  1116. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1117. int j;
  1118. char *p= avctx->stats_out;
  1119. char *end= p + 1024*30;
  1120. for(i=0; i<3; i++){
  1121. for(j=0; j<256; j++){
  1122. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1123. p+= strlen(p);
  1124. s->stats[i][j]= 0;
  1125. }
  1126. snprintf(p, end-p, "\n");
  1127. p++;
  1128. }
  1129. } else
  1130. avctx->stats_out[0] = '\0';
  1131. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1132. flush_put_bits(&s->pb);
  1133. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1134. }
  1135. s->picture_number++;
  1136. return size*4;
  1137. }
  1138. static int encode_end(AVCodecContext *avctx)
  1139. {
  1140. HYuvContext *s = avctx->priv_data;
  1141. common_end(s);
  1142. av_freep(&avctx->extradata);
  1143. av_freep(&avctx->stats_out);
  1144. return 0;
  1145. }
  1146. #endif /* CONFIG_ENCODERS */
  1147. #ifdef CONFIG_DECODERS
  1148. AVCodec huffyuv_decoder = {
  1149. "huffyuv",
  1150. CODEC_TYPE_VIDEO,
  1151. CODEC_ID_HUFFYUV,
  1152. sizeof(HYuvContext),
  1153. decode_init,
  1154. NULL,
  1155. decode_end,
  1156. decode_frame,
  1157. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1158. NULL
  1159. };
  1160. AVCodec ffvhuff_decoder = {
  1161. "ffvhuff",
  1162. CODEC_TYPE_VIDEO,
  1163. CODEC_ID_FFVHUFF,
  1164. sizeof(HYuvContext),
  1165. decode_init,
  1166. NULL,
  1167. decode_end,
  1168. decode_frame,
  1169. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1170. NULL
  1171. };
  1172. #endif
  1173. #ifdef CONFIG_ENCODERS
  1174. AVCodec huffyuv_encoder = {
  1175. "huffyuv",
  1176. CODEC_TYPE_VIDEO,
  1177. CODEC_ID_HUFFYUV,
  1178. sizeof(HYuvContext),
  1179. encode_init,
  1180. encode_frame,
  1181. encode_end,
  1182. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, -1},
  1183. };
  1184. AVCodec ffvhuff_encoder = {
  1185. "ffvhuff",
  1186. CODEC_TYPE_VIDEO,
  1187. CODEC_ID_FFVHUFF,
  1188. sizeof(HYuvContext),
  1189. encode_init,
  1190. encode_frame,
  1191. encode_end,
  1192. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, -1},
  1193. };
  1194. #endif //CONFIG_ENCODERS