You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4609 lines
155KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  37. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  38. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  39. #define MB_INTRA_VLC_BITS 9
  40. extern VLC ff_msmp4_mb_i_vlc;
  41. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /** Markers used if VC-1 AP frame data */
  46. //@{
  47. enum VC1Code{
  48. VC1_CODE_RES0 = 0x00000100,
  49. VC1_CODE_ENDOFSEQ = 0x0000010A,
  50. VC1_CODE_SLICE,
  51. VC1_CODE_FIELD,
  52. VC1_CODE_FRAME,
  53. VC1_CODE_ENTRYPOINT,
  54. VC1_CODE_SEQHDR,
  55. };
  56. //@}
  57. /** Available Profiles */
  58. //@{
  59. enum Profile {
  60. PROFILE_SIMPLE,
  61. PROFILE_MAIN,
  62. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  63. PROFILE_ADVANCED
  64. };
  65. //@}
  66. /** Sequence quantizer mode */
  67. //@{
  68. enum QuantMode {
  69. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  70. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  71. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  72. QUANT_UNIFORM ///< Uniform quant used for all frames
  73. };
  74. //@}
  75. /** Where quant can be changed */
  76. //@{
  77. enum DQProfile {
  78. DQPROFILE_FOUR_EDGES,
  79. DQPROFILE_DOUBLE_EDGES,
  80. DQPROFILE_SINGLE_EDGE,
  81. DQPROFILE_ALL_MBS
  82. };
  83. //@}
  84. /** @name Where quant can be changed
  85. */
  86. //@{
  87. enum DQSingleEdge {
  88. DQSINGLE_BEDGE_LEFT,
  89. DQSINGLE_BEDGE_TOP,
  90. DQSINGLE_BEDGE_RIGHT,
  91. DQSINGLE_BEDGE_BOTTOM
  92. };
  93. //@}
  94. /** Which pair of edges is quantized with ALTPQUANT */
  95. //@{
  96. enum DQDoubleEdge {
  97. DQDOUBLE_BEDGE_TOPLEFT,
  98. DQDOUBLE_BEDGE_TOPRIGHT,
  99. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  100. DQDOUBLE_BEDGE_BOTTOMLEFT
  101. };
  102. //@}
  103. /** MV modes for P frames */
  104. //@{
  105. enum MVModes {
  106. MV_PMODE_1MV_HPEL_BILIN,
  107. MV_PMODE_1MV,
  108. MV_PMODE_1MV_HPEL,
  109. MV_PMODE_MIXED_MV,
  110. MV_PMODE_INTENSITY_COMP
  111. };
  112. //@}
  113. /** @name MV types for B frames */
  114. //@{
  115. enum BMVTypes {
  116. BMV_TYPE_BACKWARD,
  117. BMV_TYPE_FORWARD,
  118. BMV_TYPE_INTERPOLATED
  119. };
  120. //@}
  121. /** @name Block types for P/B frames */
  122. //@{
  123. enum TransformTypes {
  124. TT_8X8,
  125. TT_8X4_BOTTOM,
  126. TT_8X4_TOP,
  127. TT_8X4, //Both halves
  128. TT_4X8_RIGHT,
  129. TT_4X8_LEFT,
  130. TT_4X8, //Both halves
  131. TT_4X4
  132. };
  133. //@}
  134. /** Table for conversion between TTBLK and TTMB */
  135. static const int ttblk_to_tt[3][8] = {
  136. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  137. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  138. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  139. };
  140. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  141. /** MV P mode - the 5th element is only used for mode 1 */
  142. static const uint8_t mv_pmode_table[2][5] = {
  143. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  144. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  145. };
  146. static const uint8_t mv_pmode_table2[2][4] = {
  147. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  148. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  149. };
  150. /** One more frame type */
  151. #define BI_TYPE 7
  152. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  153. fps_dr[2] = { 1000, 1001 };
  154. static const uint8_t pquant_table[3][32] = {
  155. { /* Implicit quantizer */
  156. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  157. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  158. },
  159. { /* Explicit quantizer, pquantizer uniform */
  160. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  161. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  162. },
  163. { /* Explicit quantizer, pquantizer non-uniform */
  164. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  165. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  166. }
  167. };
  168. /** @name VC-1 VLC tables and defines
  169. * @todo TODO move this into the context
  170. */
  171. //@{
  172. #define VC1_BFRACTION_VLC_BITS 7
  173. static VLC vc1_bfraction_vlc;
  174. #define VC1_IMODE_VLC_BITS 4
  175. static VLC vc1_imode_vlc;
  176. #define VC1_NORM2_VLC_BITS 3
  177. static VLC vc1_norm2_vlc;
  178. #define VC1_NORM6_VLC_BITS 9
  179. static VLC vc1_norm6_vlc;
  180. /* Could be optimized, one table only needs 8 bits */
  181. #define VC1_TTMB_VLC_BITS 9 //12
  182. static VLC vc1_ttmb_vlc[3];
  183. #define VC1_MV_DIFF_VLC_BITS 9 //15
  184. static VLC vc1_mv_diff_vlc[4];
  185. #define VC1_CBPCY_P_VLC_BITS 9 //14
  186. static VLC vc1_cbpcy_p_vlc[4];
  187. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  188. static VLC vc1_4mv_block_pattern_vlc[4];
  189. #define VC1_TTBLK_VLC_BITS 5
  190. static VLC vc1_ttblk_vlc[3];
  191. #define VC1_SUBBLKPAT_VLC_BITS 6
  192. static VLC vc1_subblkpat_vlc[3];
  193. static VLC vc1_ac_coeff_table[8];
  194. //@}
  195. enum CodingSet {
  196. CS_HIGH_MOT_INTRA = 0,
  197. CS_HIGH_MOT_INTER,
  198. CS_LOW_MOT_INTRA,
  199. CS_LOW_MOT_INTER,
  200. CS_MID_RATE_INTRA,
  201. CS_MID_RATE_INTER,
  202. CS_HIGH_RATE_INTRA,
  203. CS_HIGH_RATE_INTER
  204. };
  205. /** @name Overlap conditions for Advanced Profile */
  206. //@{
  207. enum COTypes {
  208. CONDOVER_NONE = 0,
  209. CONDOVER_ALL,
  210. CONDOVER_SELECT
  211. };
  212. //@}
  213. /** The VC1 Context
  214. * @fixme Change size wherever another size is more efficient
  215. * Many members are only used for Advanced Profile
  216. */
  217. typedef struct VC1Context{
  218. MpegEncContext s;
  219. int bits;
  220. /** Simple/Main Profile sequence header */
  221. //@{
  222. int res_sm; ///< reserved, 2b
  223. int res_x8; ///< reserved
  224. int multires; ///< frame-level RESPIC syntax element present
  225. int res_fasttx; ///< reserved, always 1
  226. int res_transtab; ///< reserved, always 0
  227. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  228. ///< at frame level
  229. int res_rtm_flag; ///< reserved, set to 1
  230. int reserved; ///< reserved
  231. //@}
  232. /** Advanced Profile */
  233. //@{
  234. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  235. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  236. int postprocflag; ///< Per-frame processing suggestion flag present
  237. int broadcast; ///< TFF/RFF present
  238. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  239. int tfcntrflag; ///< TFCNTR present
  240. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  241. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  242. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  243. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  244. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  245. int hrd_param_flag; ///< Presence of Hypothetical Reference
  246. ///< Decoder parameters
  247. int psf; ///< Progressive Segmented Frame
  248. //@}
  249. /** Sequence header data for all Profiles
  250. * TODO: choose between ints, uint8_ts and monobit flags
  251. */
  252. //@{
  253. int profile; ///< 2bits, Profile
  254. int frmrtq_postproc; ///< 3bits,
  255. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  256. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  257. int extended_mv; ///< Ext MV in P/B (not in Simple)
  258. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  259. int vstransform; ///< variable-size [48]x[48] transform type + info
  260. int overlap; ///< overlapped transforms in use
  261. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  262. int finterpflag; ///< INTERPFRM present
  263. //@}
  264. /** Frame decoding info for all profiles */
  265. //@{
  266. uint8_t mv_mode; ///< MV coding monde
  267. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  268. int k_x; ///< Number of bits for MVs (depends on MV range)
  269. int k_y; ///< Number of bits for MVs (depends on MV range)
  270. int range_x, range_y; ///< MV range
  271. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  272. /** pquant parameters */
  273. //@{
  274. uint8_t dquantfrm;
  275. uint8_t dqprofile;
  276. uint8_t dqsbedge;
  277. uint8_t dqbilevel;
  278. //@}
  279. /** AC coding set indexes
  280. * @see 8.1.1.10, p(1)10
  281. */
  282. //@{
  283. int c_ac_table_index; ///< Chroma index from ACFRM element
  284. int y_ac_table_index; ///< Luma index from AC2FRM element
  285. //@}
  286. int ttfrm; ///< Transform type info present at frame level
  287. uint8_t ttmbf; ///< Transform type flag
  288. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  289. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  290. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  291. int pqindex; ///< raw pqindex used in coding set selection
  292. int a_avail, c_avail;
  293. uint8_t *mb_type_base, *mb_type[3];
  294. /** Luma compensation parameters */
  295. //@{
  296. uint8_t lumscale;
  297. uint8_t lumshift;
  298. //@}
  299. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  300. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  301. uint8_t respic; ///< Frame-level flag for resized images
  302. int buffer_fullness; ///< HRD info
  303. /** Ranges:
  304. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  305. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  306. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  307. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  308. */
  309. uint8_t mvrange;
  310. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  311. VLC *cbpcy_vlc; ///< CBPCY VLC table
  312. int tt_index; ///< Index for Transform Type tables
  313. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  314. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  315. int mv_type_is_raw; ///< mv type mb plane is not coded
  316. int dmb_is_raw; ///< direct mb plane is raw
  317. int skip_is_raw; ///< skip mb plane is not coded
  318. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  319. int use_ic; ///< use intensity compensation in B-frames
  320. int rnd; ///< rounding control
  321. /** Frame decoding info for S/M profiles only */
  322. //@{
  323. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  324. uint8_t interpfrm;
  325. //@}
  326. /** Frame decoding info for Advanced profile */
  327. //@{
  328. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  329. uint8_t numpanscanwin;
  330. uint8_t tfcntr;
  331. uint8_t rptfrm, tff, rff;
  332. uint16_t topleftx;
  333. uint16_t toplefty;
  334. uint16_t bottomrightx;
  335. uint16_t bottomrighty;
  336. uint8_t uvsamp;
  337. uint8_t postproc;
  338. int hrd_num_leaky_buckets;
  339. uint8_t bit_rate_exponent;
  340. uint8_t buffer_size_exponent;
  341. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  342. int acpred_is_raw;
  343. uint8_t* over_flags_plane; ///< Overflags bitplane
  344. int overflg_is_raw;
  345. uint8_t condover;
  346. uint16_t *hrd_rate, *hrd_buffer;
  347. uint8_t *hrd_fullness;
  348. uint8_t range_mapy_flag;
  349. uint8_t range_mapuv_flag;
  350. uint8_t range_mapy;
  351. uint8_t range_mapuv;
  352. //@}
  353. int p_frame_skipped;
  354. int bi_type;
  355. } VC1Context;
  356. /**
  357. * Get unary code of limited length
  358. * @fixme FIXME Slow and ugly
  359. * @param gb GetBitContext
  360. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  361. * @param[in] len Maximum length
  362. * @return Unary length/index
  363. */
  364. static int get_prefix(GetBitContext *gb, int stop, int len)
  365. {
  366. #if 1
  367. int i;
  368. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  369. return i;
  370. /* int i = 0, tmp = !stop;
  371. while (i != len && tmp != stop)
  372. {
  373. tmp = get_bits(gb, 1);
  374. i++;
  375. }
  376. if (i == len && tmp != stop) return len+1;
  377. return i;*/
  378. #else
  379. unsigned int buf;
  380. int log;
  381. OPEN_READER(re, gb);
  382. UPDATE_CACHE(re, gb);
  383. buf=GET_CACHE(re, gb); //Still not sure
  384. if (stop) buf = ~buf;
  385. log= av_log2(-buf); //FIXME: -?
  386. if (log < limit){
  387. LAST_SKIP_BITS(re, gb, log+1);
  388. CLOSE_READER(re, gb);
  389. return log;
  390. }
  391. LAST_SKIP_BITS(re, gb, limit);
  392. CLOSE_READER(re, gb);
  393. return limit;
  394. #endif
  395. }
  396. static inline int decode210(GetBitContext *gb){
  397. int n;
  398. n = get_bits1(gb);
  399. if (n == 1)
  400. return 0;
  401. else
  402. return 2 - get_bits1(gb);
  403. }
  404. /**
  405. * Init VC-1 specific tables and VC1Context members
  406. * @param v The VC1Context to initialize
  407. * @return Status
  408. */
  409. static int vc1_init_common(VC1Context *v)
  410. {
  411. static int done = 0;
  412. int i = 0;
  413. v->hrd_rate = v->hrd_buffer = NULL;
  414. /* VLC tables */
  415. if(!done)
  416. {
  417. done = 1;
  418. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  419. vc1_bfraction_bits, 1, 1,
  420. vc1_bfraction_codes, 1, 1, 1);
  421. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  422. vc1_norm2_bits, 1, 1,
  423. vc1_norm2_codes, 1, 1, 1);
  424. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  425. vc1_norm6_bits, 1, 1,
  426. vc1_norm6_codes, 2, 2, 1);
  427. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  428. vc1_imode_bits, 1, 1,
  429. vc1_imode_codes, 1, 1, 1);
  430. for (i=0; i<3; i++)
  431. {
  432. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  433. vc1_ttmb_bits[i], 1, 1,
  434. vc1_ttmb_codes[i], 2, 2, 1);
  435. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  436. vc1_ttblk_bits[i], 1, 1,
  437. vc1_ttblk_codes[i], 1, 1, 1);
  438. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  439. vc1_subblkpat_bits[i], 1, 1,
  440. vc1_subblkpat_codes[i], 1, 1, 1);
  441. }
  442. for(i=0; i<4; i++)
  443. {
  444. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  445. vc1_4mv_block_pattern_bits[i], 1, 1,
  446. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  447. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  448. vc1_cbpcy_p_bits[i], 1, 1,
  449. vc1_cbpcy_p_codes[i], 2, 2, 1);
  450. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  451. vc1_mv_diff_bits[i], 1, 1,
  452. vc1_mv_diff_codes[i], 2, 2, 1);
  453. }
  454. for(i=0; i<8; i++)
  455. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  456. &vc1_ac_tables[i][0][1], 8, 4,
  457. &vc1_ac_tables[i][0][0], 8, 4, 1);
  458. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  459. &ff_msmp4_mb_i_table[0][1], 4, 2,
  460. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  461. }
  462. /* Other defaults */
  463. v->pq = -1;
  464. v->mvrange = 0; /* 7.1.1.18, p80 */
  465. return 0;
  466. }
  467. /***********************************************************************/
  468. /**
  469. * @defgroup bitplane VC9 Bitplane decoding
  470. * @see 8.7, p56
  471. * @{
  472. */
  473. /** @addtogroup bitplane
  474. * Imode types
  475. * @{
  476. */
  477. enum Imode {
  478. IMODE_RAW,
  479. IMODE_NORM2,
  480. IMODE_DIFF2,
  481. IMODE_NORM6,
  482. IMODE_DIFF6,
  483. IMODE_ROWSKIP,
  484. IMODE_COLSKIP
  485. };
  486. /** @} */ //imode defines
  487. /** Decode rows by checking if they are skipped
  488. * @param plane Buffer to store decoded bits
  489. * @param[in] width Width of this buffer
  490. * @param[in] height Height of this buffer
  491. * @param[in] stride of this buffer
  492. */
  493. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  494. int x, y;
  495. for (y=0; y<height; y++){
  496. if (!get_bits(gb, 1)) //rowskip
  497. memset(plane, 0, width);
  498. else
  499. for (x=0; x<width; x++)
  500. plane[x] = get_bits(gb, 1);
  501. plane += stride;
  502. }
  503. }
  504. /** Decode columns by checking if they are skipped
  505. * @param plane Buffer to store decoded bits
  506. * @param[in] width Width of this buffer
  507. * @param[in] height Height of this buffer
  508. * @param[in] stride of this buffer
  509. * @fixme FIXME: Optimize
  510. */
  511. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  512. int x, y;
  513. for (x=0; x<width; x++){
  514. if (!get_bits(gb, 1)) //colskip
  515. for (y=0; y<height; y++)
  516. plane[y*stride] = 0;
  517. else
  518. for (y=0; y<height; y++)
  519. plane[y*stride] = get_bits(gb, 1);
  520. plane ++;
  521. }
  522. }
  523. /** Decode a bitplane's bits
  524. * @param bp Bitplane where to store the decode bits
  525. * @param v VC-1 context for bit reading and logging
  526. * @return Status
  527. * @fixme FIXME: Optimize
  528. */
  529. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  530. {
  531. GetBitContext *gb = &v->s.gb;
  532. int imode, x, y, code, offset;
  533. uint8_t invert, *planep = data;
  534. int width, height, stride;
  535. width = v->s.mb_width;
  536. height = v->s.mb_height;
  537. stride = v->s.mb_stride;
  538. invert = get_bits(gb, 1);
  539. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  540. *raw_flag = 0;
  541. switch (imode)
  542. {
  543. case IMODE_RAW:
  544. //Data is actually read in the MB layer (same for all tests == "raw")
  545. *raw_flag = 1; //invert ignored
  546. return invert;
  547. case IMODE_DIFF2:
  548. case IMODE_NORM2:
  549. if ((height * width) & 1)
  550. {
  551. *planep++ = get_bits(gb, 1);
  552. offset = 1;
  553. }
  554. else offset = 0;
  555. // decode bitplane as one long line
  556. for (y = offset; y < height * width; y += 2) {
  557. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  558. *planep++ = code & 1;
  559. offset++;
  560. if(offset == width) {
  561. offset = 0;
  562. planep += stride - width;
  563. }
  564. *planep++ = code >> 1;
  565. offset++;
  566. if(offset == width) {
  567. offset = 0;
  568. planep += stride - width;
  569. }
  570. }
  571. break;
  572. case IMODE_DIFF6:
  573. case IMODE_NORM6:
  574. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  575. for(y = 0; y < height; y+= 3) {
  576. for(x = width & 1; x < width; x += 2) {
  577. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  578. if(code < 0){
  579. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  580. return -1;
  581. }
  582. planep[x + 0] = (code >> 0) & 1;
  583. planep[x + 1] = (code >> 1) & 1;
  584. planep[x + 0 + stride] = (code >> 2) & 1;
  585. planep[x + 1 + stride] = (code >> 3) & 1;
  586. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  587. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  588. }
  589. planep += stride * 3;
  590. }
  591. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  592. } else { // 3x2
  593. planep += (height & 1) * stride;
  594. for(y = height & 1; y < height; y += 2) {
  595. for(x = width % 3; x < width; x += 3) {
  596. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  597. if(code < 0){
  598. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  599. return -1;
  600. }
  601. planep[x + 0] = (code >> 0) & 1;
  602. planep[x + 1] = (code >> 1) & 1;
  603. planep[x + 2] = (code >> 2) & 1;
  604. planep[x + 0 + stride] = (code >> 3) & 1;
  605. planep[x + 1 + stride] = (code >> 4) & 1;
  606. planep[x + 2 + stride] = (code >> 5) & 1;
  607. }
  608. planep += stride * 2;
  609. }
  610. x = width % 3;
  611. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  612. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  613. }
  614. break;
  615. case IMODE_ROWSKIP:
  616. decode_rowskip(data, width, height, stride, &v->s.gb);
  617. break;
  618. case IMODE_COLSKIP:
  619. decode_colskip(data, width, height, stride, &v->s.gb);
  620. break;
  621. default: break;
  622. }
  623. /* Applying diff operator */
  624. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  625. {
  626. planep = data;
  627. planep[0] ^= invert;
  628. for (x=1; x<width; x++)
  629. planep[x] ^= planep[x-1];
  630. for (y=1; y<height; y++)
  631. {
  632. planep += stride;
  633. planep[0] ^= planep[-stride];
  634. for (x=1; x<width; x++)
  635. {
  636. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  637. else planep[x] ^= planep[x-1];
  638. }
  639. }
  640. }
  641. else if (invert)
  642. {
  643. planep = data;
  644. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  645. }
  646. return (imode<<1) + invert;
  647. }
  648. /** @} */ //Bitplane group
  649. /***********************************************************************/
  650. /** VOP Dquant decoding
  651. * @param v VC-1 Context
  652. */
  653. static int vop_dquant_decoding(VC1Context *v)
  654. {
  655. GetBitContext *gb = &v->s.gb;
  656. int pqdiff;
  657. //variable size
  658. if (v->dquant == 2)
  659. {
  660. pqdiff = get_bits(gb, 3);
  661. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  662. else v->altpq = v->pq + pqdiff + 1;
  663. }
  664. else
  665. {
  666. v->dquantfrm = get_bits(gb, 1);
  667. if ( v->dquantfrm )
  668. {
  669. v->dqprofile = get_bits(gb, 2);
  670. switch (v->dqprofile)
  671. {
  672. case DQPROFILE_SINGLE_EDGE:
  673. case DQPROFILE_DOUBLE_EDGES:
  674. v->dqsbedge = get_bits(gb, 2);
  675. break;
  676. case DQPROFILE_ALL_MBS:
  677. v->dqbilevel = get_bits(gb, 1);
  678. default: break; //Forbidden ?
  679. }
  680. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  681. {
  682. pqdiff = get_bits(gb, 3);
  683. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  684. else v->altpq = v->pq + pqdiff + 1;
  685. }
  686. }
  687. }
  688. return 0;
  689. }
  690. /** Put block onto picture
  691. */
  692. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  693. {
  694. uint8_t *Y;
  695. int ys, us, vs;
  696. DSPContext *dsp = &v->s.dsp;
  697. if(v->rangeredfrm) {
  698. int i, j, k;
  699. for(k = 0; k < 6; k++)
  700. for(j = 0; j < 8; j++)
  701. for(i = 0; i < 8; i++)
  702. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  703. }
  704. ys = v->s.current_picture.linesize[0];
  705. us = v->s.current_picture.linesize[1];
  706. vs = v->s.current_picture.linesize[2];
  707. Y = v->s.dest[0];
  708. dsp->put_pixels_clamped(block[0], Y, ys);
  709. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  710. Y += ys * 8;
  711. dsp->put_pixels_clamped(block[2], Y, ys);
  712. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  713. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  714. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  715. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  716. }
  717. }
  718. /** Do motion compensation over 1 macroblock
  719. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  720. */
  721. static void vc1_mc_1mv(VC1Context *v, int dir)
  722. {
  723. MpegEncContext *s = &v->s;
  724. DSPContext *dsp = &v->s.dsp;
  725. uint8_t *srcY, *srcU, *srcV;
  726. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  727. if(!v->s.last_picture.data[0])return;
  728. mx = s->mv[dir][0][0];
  729. my = s->mv[dir][0][1];
  730. // store motion vectors for further use in B frames
  731. if(s->pict_type == P_TYPE) {
  732. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  733. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  734. }
  735. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  736. uvmy = (my + ((my & 3) == 3)) >> 1;
  737. if(v->fastuvmc) {
  738. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  739. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  740. }
  741. if(!dir) {
  742. srcY = s->last_picture.data[0];
  743. srcU = s->last_picture.data[1];
  744. srcV = s->last_picture.data[2];
  745. } else {
  746. srcY = s->next_picture.data[0];
  747. srcU = s->next_picture.data[1];
  748. srcV = s->next_picture.data[2];
  749. }
  750. src_x = s->mb_x * 16 + (mx >> 2);
  751. src_y = s->mb_y * 16 + (my >> 2);
  752. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  753. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  754. if(v->profile != PROFILE_ADVANCED){
  755. src_x = av_clip( src_x, -16, s->mb_width * 16);
  756. src_y = av_clip( src_y, -16, s->mb_height * 16);
  757. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  758. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  759. }else{
  760. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  761. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  762. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  763. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  764. }
  765. srcY += src_y * s->linesize + src_x;
  766. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  767. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  768. /* for grayscale we should not try to read from unknown area */
  769. if(s->flags & CODEC_FLAG_GRAY) {
  770. srcU = s->edge_emu_buffer + 18 * s->linesize;
  771. srcV = s->edge_emu_buffer + 18 * s->linesize;
  772. }
  773. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  774. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  775. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  776. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  777. srcY -= s->mspel * (1 + s->linesize);
  778. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  779. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  780. srcY = s->edge_emu_buffer;
  781. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  782. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  783. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  784. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  785. srcU = uvbuf;
  786. srcV = uvbuf + 16;
  787. /* if we deal with range reduction we need to scale source blocks */
  788. if(v->rangeredfrm) {
  789. int i, j;
  790. uint8_t *src, *src2;
  791. src = srcY;
  792. for(j = 0; j < 17 + s->mspel*2; j++) {
  793. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  794. src += s->linesize;
  795. }
  796. src = srcU; src2 = srcV;
  797. for(j = 0; j < 9; j++) {
  798. for(i = 0; i < 9; i++) {
  799. src[i] = ((src[i] - 128) >> 1) + 128;
  800. src2[i] = ((src2[i] - 128) >> 1) + 128;
  801. }
  802. src += s->uvlinesize;
  803. src2 += s->uvlinesize;
  804. }
  805. }
  806. /* if we deal with intensity compensation we need to scale source blocks */
  807. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  808. int i, j;
  809. uint8_t *src, *src2;
  810. src = srcY;
  811. for(j = 0; j < 17 + s->mspel*2; j++) {
  812. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  813. src += s->linesize;
  814. }
  815. src = srcU; src2 = srcV;
  816. for(j = 0; j < 9; j++) {
  817. for(i = 0; i < 9; i++) {
  818. src[i] = v->lutuv[src[i]];
  819. src2[i] = v->lutuv[src2[i]];
  820. }
  821. src += s->uvlinesize;
  822. src2 += s->uvlinesize;
  823. }
  824. }
  825. srcY += s->mspel * (1 + s->linesize);
  826. }
  827. if(s->mspel) {
  828. dxy = ((my & 3) << 2) | (mx & 3);
  829. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  830. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  831. srcY += s->linesize * 8;
  832. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  833. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  834. } else { // hpel mc - always used for luma
  835. dxy = (my & 2) | ((mx & 2) >> 1);
  836. if(!v->rnd)
  837. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  838. else
  839. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  840. }
  841. if(s->flags & CODEC_FLAG_GRAY) return;
  842. /* Chroma MC always uses qpel bilinear */
  843. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  844. uvmx = (uvmx&3)<<1;
  845. uvmy = (uvmy&3)<<1;
  846. if(!v->rnd){
  847. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  848. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  849. }else{
  850. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  851. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  852. }
  853. }
  854. /** Do motion compensation for 4-MV macroblock - luminance block
  855. */
  856. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  857. {
  858. MpegEncContext *s = &v->s;
  859. DSPContext *dsp = &v->s.dsp;
  860. uint8_t *srcY;
  861. int dxy, mx, my, src_x, src_y;
  862. int off;
  863. if(!v->s.last_picture.data[0])return;
  864. mx = s->mv[0][n][0];
  865. my = s->mv[0][n][1];
  866. srcY = s->last_picture.data[0];
  867. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  868. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  869. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  870. if(v->profile != PROFILE_ADVANCED){
  871. src_x = av_clip( src_x, -16, s->mb_width * 16);
  872. src_y = av_clip( src_y, -16, s->mb_height * 16);
  873. }else{
  874. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  875. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  876. }
  877. srcY += src_y * s->linesize + src_x;
  878. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  879. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  880. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  881. srcY -= s->mspel * (1 + s->linesize);
  882. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  883. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  884. srcY = s->edge_emu_buffer;
  885. /* if we deal with range reduction we need to scale source blocks */
  886. if(v->rangeredfrm) {
  887. int i, j;
  888. uint8_t *src;
  889. src = srcY;
  890. for(j = 0; j < 9 + s->mspel*2; j++) {
  891. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  892. src += s->linesize;
  893. }
  894. }
  895. /* if we deal with intensity compensation we need to scale source blocks */
  896. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  897. int i, j;
  898. uint8_t *src;
  899. src = srcY;
  900. for(j = 0; j < 9 + s->mspel*2; j++) {
  901. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  902. src += s->linesize;
  903. }
  904. }
  905. srcY += s->mspel * (1 + s->linesize);
  906. }
  907. if(s->mspel) {
  908. dxy = ((my & 3) << 2) | (mx & 3);
  909. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  910. } else { // hpel mc - always used for luma
  911. dxy = (my & 2) | ((mx & 2) >> 1);
  912. if(!v->rnd)
  913. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  914. else
  915. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  916. }
  917. }
  918. static inline int median4(int a, int b, int c, int d)
  919. {
  920. if(a < b) {
  921. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  922. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  923. } else {
  924. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  925. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  926. }
  927. }
  928. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  929. */
  930. static void vc1_mc_4mv_chroma(VC1Context *v)
  931. {
  932. MpegEncContext *s = &v->s;
  933. DSPContext *dsp = &v->s.dsp;
  934. uint8_t *srcU, *srcV;
  935. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  936. int i, idx, tx = 0, ty = 0;
  937. int mvx[4], mvy[4], intra[4];
  938. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  939. if(!v->s.last_picture.data[0])return;
  940. if(s->flags & CODEC_FLAG_GRAY) return;
  941. for(i = 0; i < 4; i++) {
  942. mvx[i] = s->mv[0][i][0];
  943. mvy[i] = s->mv[0][i][1];
  944. intra[i] = v->mb_type[0][s->block_index[i]];
  945. }
  946. /* calculate chroma MV vector from four luma MVs */
  947. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  948. if(!idx) { // all blocks are inter
  949. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  950. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  951. } else if(count[idx] == 1) { // 3 inter blocks
  952. switch(idx) {
  953. case 0x1:
  954. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  955. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  956. break;
  957. case 0x2:
  958. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  959. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  960. break;
  961. case 0x4:
  962. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  963. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  964. break;
  965. case 0x8:
  966. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  967. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  968. break;
  969. }
  970. } else if(count[idx] == 2) {
  971. int t1 = 0, t2 = 0;
  972. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  973. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  974. tx = (mvx[t1] + mvx[t2]) / 2;
  975. ty = (mvy[t1] + mvy[t2]) / 2;
  976. } else
  977. return; //no need to do MC for inter blocks
  978. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  979. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  980. uvmx = (tx + ((tx&3) == 3)) >> 1;
  981. uvmy = (ty + ((ty&3) == 3)) >> 1;
  982. if(v->fastuvmc) {
  983. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  984. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  985. }
  986. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  987. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  988. if(v->profile != PROFILE_ADVANCED){
  989. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  990. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  991. }else{
  992. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  993. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  994. }
  995. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  996. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  997. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  998. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  999. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  1000. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  1001. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1002. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1003. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1004. srcU = s->edge_emu_buffer;
  1005. srcV = s->edge_emu_buffer + 16;
  1006. /* if we deal with range reduction we need to scale source blocks */
  1007. if(v->rangeredfrm) {
  1008. int i, j;
  1009. uint8_t *src, *src2;
  1010. src = srcU; src2 = srcV;
  1011. for(j = 0; j < 9; j++) {
  1012. for(i = 0; i < 9; i++) {
  1013. src[i] = ((src[i] - 128) >> 1) + 128;
  1014. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1015. }
  1016. src += s->uvlinesize;
  1017. src2 += s->uvlinesize;
  1018. }
  1019. }
  1020. /* if we deal with intensity compensation we need to scale source blocks */
  1021. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1022. int i, j;
  1023. uint8_t *src, *src2;
  1024. src = srcU; src2 = srcV;
  1025. for(j = 0; j < 9; j++) {
  1026. for(i = 0; i < 9; i++) {
  1027. src[i] = v->lutuv[src[i]];
  1028. src2[i] = v->lutuv[src2[i]];
  1029. }
  1030. src += s->uvlinesize;
  1031. src2 += s->uvlinesize;
  1032. }
  1033. }
  1034. }
  1035. /* Chroma MC always uses qpel bilinear */
  1036. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1037. uvmx = (uvmx&3)<<1;
  1038. uvmy = (uvmy&3)<<1;
  1039. if(!v->rnd){
  1040. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1041. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1042. }else{
  1043. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1044. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1045. }
  1046. }
  1047. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1048. /**
  1049. * Decode Simple/Main Profiles sequence header
  1050. * @see Figure 7-8, p16-17
  1051. * @param avctx Codec context
  1052. * @param gb GetBit context initialized from Codec context extra_data
  1053. * @return Status
  1054. */
  1055. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1056. {
  1057. VC1Context *v = avctx->priv_data;
  1058. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1059. v->profile = get_bits(gb, 2);
  1060. if (v->profile == PROFILE_COMPLEX)
  1061. {
  1062. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  1063. }
  1064. if (v->profile == PROFILE_ADVANCED)
  1065. {
  1066. return decode_sequence_header_adv(v, gb);
  1067. }
  1068. else
  1069. {
  1070. v->res_sm = get_bits(gb, 2); //reserved
  1071. if (v->res_sm)
  1072. {
  1073. av_log(avctx, AV_LOG_ERROR,
  1074. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1075. return -1;
  1076. }
  1077. }
  1078. // (fps-2)/4 (->30)
  1079. v->frmrtq_postproc = get_bits(gb, 3); //common
  1080. // (bitrate-32kbps)/64kbps
  1081. v->bitrtq_postproc = get_bits(gb, 5); //common
  1082. v->s.loop_filter = get_bits(gb, 1); //common
  1083. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1084. {
  1085. av_log(avctx, AV_LOG_ERROR,
  1086. "LOOPFILTER shell not be enabled in simple profile\n");
  1087. }
  1088. v->res_x8 = get_bits(gb, 1); //reserved
  1089. if (v->res_x8)
  1090. {
  1091. av_log(avctx, AV_LOG_ERROR,
  1092. "1 for reserved RES_X8 is forbidden\n");
  1093. //return -1;
  1094. }
  1095. v->multires = get_bits(gb, 1);
  1096. v->res_fasttx = get_bits(gb, 1);
  1097. if (!v->res_fasttx)
  1098. {
  1099. av_log(avctx, AV_LOG_ERROR,
  1100. "0 for reserved RES_FASTTX is forbidden\n");
  1101. //return -1;
  1102. }
  1103. v->fastuvmc = get_bits(gb, 1); //common
  1104. if (!v->profile && !v->fastuvmc)
  1105. {
  1106. av_log(avctx, AV_LOG_ERROR,
  1107. "FASTUVMC unavailable in Simple Profile\n");
  1108. return -1;
  1109. }
  1110. v->extended_mv = get_bits(gb, 1); //common
  1111. if (!v->profile && v->extended_mv)
  1112. {
  1113. av_log(avctx, AV_LOG_ERROR,
  1114. "Extended MVs unavailable in Simple Profile\n");
  1115. return -1;
  1116. }
  1117. v->dquant = get_bits(gb, 2); //common
  1118. v->vstransform = get_bits(gb, 1); //common
  1119. v->res_transtab = get_bits(gb, 1);
  1120. if (v->res_transtab)
  1121. {
  1122. av_log(avctx, AV_LOG_ERROR,
  1123. "1 for reserved RES_TRANSTAB is forbidden\n");
  1124. return -1;
  1125. }
  1126. v->overlap = get_bits(gb, 1); //common
  1127. v->s.resync_marker = get_bits(gb, 1);
  1128. v->rangered = get_bits(gb, 1);
  1129. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1130. {
  1131. av_log(avctx, AV_LOG_INFO,
  1132. "RANGERED should be set to 0 in simple profile\n");
  1133. }
  1134. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1135. v->quantizer_mode = get_bits(gb, 2); //common
  1136. v->finterpflag = get_bits(gb, 1); //common
  1137. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1138. if (!v->res_rtm_flag)
  1139. {
  1140. // av_log(avctx, AV_LOG_ERROR,
  1141. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1142. av_log(avctx, AV_LOG_ERROR,
  1143. "Old WMV3 version detected, only I-frames will be decoded\n");
  1144. //return -1;
  1145. }
  1146. av_log(avctx, AV_LOG_DEBUG,
  1147. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1148. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1149. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1150. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1151. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1152. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1153. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1154. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1155. );
  1156. return 0;
  1157. }
  1158. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1159. {
  1160. v->res_rtm_flag = 1;
  1161. v->level = get_bits(gb, 3);
  1162. if(v->level >= 5)
  1163. {
  1164. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1165. }
  1166. v->chromaformat = get_bits(gb, 2);
  1167. if (v->chromaformat != 1)
  1168. {
  1169. av_log(v->s.avctx, AV_LOG_ERROR,
  1170. "Only 4:2:0 chroma format supported\n");
  1171. return -1;
  1172. }
  1173. // (fps-2)/4 (->30)
  1174. v->frmrtq_postproc = get_bits(gb, 3); //common
  1175. // (bitrate-32kbps)/64kbps
  1176. v->bitrtq_postproc = get_bits(gb, 5); //common
  1177. v->postprocflag = get_bits(gb, 1); //common
  1178. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1179. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1180. v->s.avctx->width = v->s.avctx->coded_width;
  1181. v->s.avctx->height = v->s.avctx->coded_height;
  1182. v->broadcast = get_bits1(gb);
  1183. v->interlace = get_bits1(gb);
  1184. v->tfcntrflag = get_bits1(gb);
  1185. v->finterpflag = get_bits1(gb);
  1186. get_bits1(gb); // reserved
  1187. v->s.h_edge_pos = v->s.avctx->coded_width;
  1188. v->s.v_edge_pos = v->s.avctx->coded_height;
  1189. av_log(v->s.avctx, AV_LOG_DEBUG,
  1190. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1191. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  1192. "TFCTRflag=%i, FINTERPflag=%i\n",
  1193. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  1194. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  1195. v->tfcntrflag, v->finterpflag
  1196. );
  1197. v->psf = get_bits1(gb);
  1198. if(v->psf) { //PsF, 6.1.13
  1199. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1200. return -1;
  1201. }
  1202. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  1203. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1204. int w, h, ar = 0;
  1205. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  1206. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  1207. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  1208. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  1209. if(get_bits1(gb))
  1210. ar = get_bits(gb, 4);
  1211. if(ar && ar < 14){
  1212. v->s.avctx->sample_aspect_ratio = vc1_pixel_aspect[ar];
  1213. }else if(ar == 15){
  1214. w = get_bits(gb, 8);
  1215. h = get_bits(gb, 8);
  1216. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  1217. }
  1218. if(get_bits1(gb)){ //framerate stuff
  1219. if(get_bits1(gb)) {
  1220. v->s.avctx->time_base.num = 32;
  1221. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  1222. } else {
  1223. int nr, dr;
  1224. nr = get_bits(gb, 8);
  1225. dr = get_bits(gb, 4);
  1226. if(nr && nr < 8 && dr && dr < 3){
  1227. v->s.avctx->time_base.num = fps_dr[dr - 1];
  1228. v->s.avctx->time_base.den = fps_nr[nr - 1] * 1000;
  1229. }
  1230. }
  1231. }
  1232. if(get_bits1(gb)){
  1233. v->color_prim = get_bits(gb, 8);
  1234. v->transfer_char = get_bits(gb, 8);
  1235. v->matrix_coef = get_bits(gb, 8);
  1236. }
  1237. }
  1238. v->hrd_param_flag = get_bits1(gb);
  1239. if(v->hrd_param_flag) {
  1240. int i;
  1241. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1242. get_bits(gb, 4); //bitrate exponent
  1243. get_bits(gb, 4); //buffer size exponent
  1244. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1245. get_bits(gb, 16); //hrd_rate[n]
  1246. get_bits(gb, 16); //hrd_buffer[n]
  1247. }
  1248. }
  1249. return 0;
  1250. }
  1251. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1252. {
  1253. VC1Context *v = avctx->priv_data;
  1254. int i, blink, clentry, refdist;
  1255. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1256. blink = get_bits1(gb); // broken link
  1257. clentry = get_bits1(gb); // closed entry
  1258. v->panscanflag = get_bits1(gb);
  1259. refdist = get_bits1(gb); // refdist flag
  1260. v->s.loop_filter = get_bits1(gb);
  1261. v->fastuvmc = get_bits1(gb);
  1262. v->extended_mv = get_bits1(gb);
  1263. v->dquant = get_bits(gb, 2);
  1264. v->vstransform = get_bits1(gb);
  1265. v->overlap = get_bits1(gb);
  1266. v->quantizer_mode = get_bits(gb, 2);
  1267. if(v->hrd_param_flag){
  1268. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1269. get_bits(gb, 8); //hrd_full[n]
  1270. }
  1271. }
  1272. if(get_bits1(gb)){
  1273. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1274. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1275. }
  1276. if(v->extended_mv)
  1277. v->extended_dmv = get_bits1(gb);
  1278. if(get_bits1(gb)) {
  1279. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1280. skip_bits(gb, 3); // Y range, ignored for now
  1281. }
  1282. if(get_bits1(gb)) {
  1283. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1284. skip_bits(gb, 3); // UV range, ignored for now
  1285. }
  1286. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1287. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1288. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1289. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1290. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  1291. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1292. return 0;
  1293. }
  1294. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1295. {
  1296. int pqindex, lowquant, status;
  1297. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1298. skip_bits(gb, 2); //framecnt unused
  1299. v->rangeredfrm = 0;
  1300. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1301. v->s.pict_type = get_bits(gb, 1);
  1302. if (v->s.avctx->max_b_frames) {
  1303. if (!v->s.pict_type) {
  1304. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1305. else v->s.pict_type = B_TYPE;
  1306. } else v->s.pict_type = P_TYPE;
  1307. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1308. v->bi_type = 0;
  1309. if(v->s.pict_type == B_TYPE) {
  1310. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1311. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1312. if(v->bfraction == 0) {
  1313. v->s.pict_type = BI_TYPE;
  1314. }
  1315. }
  1316. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1317. get_bits(gb, 7); // skip buffer fullness
  1318. /* calculate RND */
  1319. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1320. v->rnd = 1;
  1321. if(v->s.pict_type == P_TYPE)
  1322. v->rnd ^= 1;
  1323. /* Quantizer stuff */
  1324. pqindex = get_bits(gb, 5);
  1325. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1326. v->pq = pquant_table[0][pqindex];
  1327. else
  1328. v->pq = pquant_table[1][pqindex];
  1329. v->pquantizer = 1;
  1330. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1331. v->pquantizer = pqindex < 9;
  1332. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1333. v->pquantizer = 0;
  1334. v->pqindex = pqindex;
  1335. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1336. else v->halfpq = 0;
  1337. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1338. v->pquantizer = get_bits(gb, 1);
  1339. v->dquantfrm = 0;
  1340. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1341. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1342. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1343. v->range_x = 1 << (v->k_x - 1);
  1344. v->range_y = 1 << (v->k_y - 1);
  1345. if (v->profile == PROFILE_ADVANCED)
  1346. {
  1347. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1348. }
  1349. else
  1350. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1351. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1352. if(get_bits1(gb))return -1;
  1353. }
  1354. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1355. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1356. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1357. switch(v->s.pict_type) {
  1358. case P_TYPE:
  1359. if (v->pq < 5) v->tt_index = 0;
  1360. else if(v->pq < 13) v->tt_index = 1;
  1361. else v->tt_index = 2;
  1362. lowquant = (v->pq > 12) ? 0 : 1;
  1363. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1364. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1365. {
  1366. int scale, shift, i;
  1367. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1368. v->lumscale = get_bits(gb, 6);
  1369. v->lumshift = get_bits(gb, 6);
  1370. v->use_ic = 1;
  1371. /* fill lookup tables for intensity compensation */
  1372. if(!v->lumscale) {
  1373. scale = -64;
  1374. shift = (255 - v->lumshift * 2) << 6;
  1375. if(v->lumshift > 31)
  1376. shift += 128 << 6;
  1377. } else {
  1378. scale = v->lumscale + 32;
  1379. if(v->lumshift > 31)
  1380. shift = (v->lumshift - 64) << 6;
  1381. else
  1382. shift = v->lumshift << 6;
  1383. }
  1384. for(i = 0; i < 256; i++) {
  1385. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1386. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1387. }
  1388. }
  1389. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1390. v->s.quarter_sample = 0;
  1391. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1392. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1393. v->s.quarter_sample = 0;
  1394. else
  1395. v->s.quarter_sample = 1;
  1396. } else
  1397. v->s.quarter_sample = 1;
  1398. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1399. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1400. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1401. || v->mv_mode == MV_PMODE_MIXED_MV)
  1402. {
  1403. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1404. if (status < 0) return -1;
  1405. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1406. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1407. } else {
  1408. v->mv_type_is_raw = 0;
  1409. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1410. }
  1411. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1412. if (status < 0) return -1;
  1413. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1414. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1415. /* Hopefully this is correct for P frames */
  1416. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1417. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1418. if (v->dquant)
  1419. {
  1420. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1421. vop_dquant_decoding(v);
  1422. }
  1423. v->ttfrm = 0; //FIXME Is that so ?
  1424. if (v->vstransform)
  1425. {
  1426. v->ttmbf = get_bits(gb, 1);
  1427. if (v->ttmbf)
  1428. {
  1429. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1430. }
  1431. } else {
  1432. v->ttmbf = 1;
  1433. v->ttfrm = TT_8X8;
  1434. }
  1435. break;
  1436. case B_TYPE:
  1437. if (v->pq < 5) v->tt_index = 0;
  1438. else if(v->pq < 13) v->tt_index = 1;
  1439. else v->tt_index = 2;
  1440. lowquant = (v->pq > 12) ? 0 : 1;
  1441. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1442. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1443. v->s.mspel = v->s.quarter_sample;
  1444. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1445. if (status < 0) return -1;
  1446. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1447. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1448. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1449. if (status < 0) return -1;
  1450. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1451. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1452. v->s.mv_table_index = get_bits(gb, 2);
  1453. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1454. if (v->dquant)
  1455. {
  1456. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1457. vop_dquant_decoding(v);
  1458. }
  1459. v->ttfrm = 0;
  1460. if (v->vstransform)
  1461. {
  1462. v->ttmbf = get_bits(gb, 1);
  1463. if (v->ttmbf)
  1464. {
  1465. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1466. }
  1467. } else {
  1468. v->ttmbf = 1;
  1469. v->ttfrm = TT_8X8;
  1470. }
  1471. break;
  1472. }
  1473. /* AC Syntax */
  1474. v->c_ac_table_index = decode012(gb);
  1475. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1476. {
  1477. v->y_ac_table_index = decode012(gb);
  1478. }
  1479. /* DC Syntax */
  1480. v->s.dc_table_index = get_bits(gb, 1);
  1481. if(v->s.pict_type == BI_TYPE) {
  1482. v->s.pict_type = B_TYPE;
  1483. v->bi_type = 1;
  1484. }
  1485. return 0;
  1486. }
  1487. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1488. {
  1489. int pqindex, lowquant;
  1490. int status;
  1491. v->p_frame_skipped = 0;
  1492. if(v->interlace){
  1493. v->fcm = decode012(gb);
  1494. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1495. }
  1496. switch(get_prefix(gb, 0, 4)) {
  1497. case 0:
  1498. v->s.pict_type = P_TYPE;
  1499. break;
  1500. case 1:
  1501. v->s.pict_type = B_TYPE;
  1502. break;
  1503. case 2:
  1504. v->s.pict_type = I_TYPE;
  1505. break;
  1506. case 3:
  1507. v->s.pict_type = BI_TYPE;
  1508. break;
  1509. case 4:
  1510. v->s.pict_type = P_TYPE; // skipped pic
  1511. v->p_frame_skipped = 1;
  1512. return 0;
  1513. }
  1514. if(v->tfcntrflag)
  1515. get_bits(gb, 8);
  1516. if(v->broadcast) {
  1517. if(!v->interlace || v->psf) {
  1518. v->rptfrm = get_bits(gb, 2);
  1519. } else {
  1520. v->tff = get_bits1(gb);
  1521. v->rptfrm = get_bits1(gb);
  1522. }
  1523. }
  1524. if(v->panscanflag) {
  1525. //...
  1526. }
  1527. v->rnd = get_bits1(gb);
  1528. if(v->interlace)
  1529. v->uvsamp = get_bits1(gb);
  1530. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1531. if(v->s.pict_type == B_TYPE) {
  1532. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1533. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1534. if(v->bfraction == 0) {
  1535. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1536. }
  1537. }
  1538. pqindex = get_bits(gb, 5);
  1539. v->pqindex = pqindex;
  1540. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1541. v->pq = pquant_table[0][pqindex];
  1542. else
  1543. v->pq = pquant_table[1][pqindex];
  1544. v->pquantizer = 1;
  1545. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1546. v->pquantizer = pqindex < 9;
  1547. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1548. v->pquantizer = 0;
  1549. v->pqindex = pqindex;
  1550. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1551. else v->halfpq = 0;
  1552. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1553. v->pquantizer = get_bits(gb, 1);
  1554. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1555. switch(v->s.pict_type) {
  1556. case I_TYPE:
  1557. case BI_TYPE:
  1558. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1559. if (status < 0) return -1;
  1560. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1561. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1562. v->condover = CONDOVER_NONE;
  1563. if(v->overlap && v->pq <= 8) {
  1564. v->condover = decode012(gb);
  1565. if(v->condover == CONDOVER_SELECT) {
  1566. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1567. if (status < 0) return -1;
  1568. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1569. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1570. }
  1571. }
  1572. break;
  1573. case P_TYPE:
  1574. if(v->postprocflag)
  1575. v->postproc = get_bits1(gb);
  1576. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1577. else v->mvrange = 0;
  1578. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1579. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1580. v->range_x = 1 << (v->k_x - 1);
  1581. v->range_y = 1 << (v->k_y - 1);
  1582. if (v->pq < 5) v->tt_index = 0;
  1583. else if(v->pq < 13) v->tt_index = 1;
  1584. else v->tt_index = 2;
  1585. lowquant = (v->pq > 12) ? 0 : 1;
  1586. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1587. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1588. {
  1589. int scale, shift, i;
  1590. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1591. v->lumscale = get_bits(gb, 6);
  1592. v->lumshift = get_bits(gb, 6);
  1593. /* fill lookup tables for intensity compensation */
  1594. if(!v->lumscale) {
  1595. scale = -64;
  1596. shift = (255 - v->lumshift * 2) << 6;
  1597. if(v->lumshift > 31)
  1598. shift += 128 << 6;
  1599. } else {
  1600. scale = v->lumscale + 32;
  1601. if(v->lumshift > 31)
  1602. shift = (v->lumshift - 64) << 6;
  1603. else
  1604. shift = v->lumshift << 6;
  1605. }
  1606. for(i = 0; i < 256; i++) {
  1607. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1608. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1609. }
  1610. v->use_ic = 1;
  1611. }
  1612. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1613. v->s.quarter_sample = 0;
  1614. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1615. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1616. v->s.quarter_sample = 0;
  1617. else
  1618. v->s.quarter_sample = 1;
  1619. } else
  1620. v->s.quarter_sample = 1;
  1621. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1622. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1623. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1624. || v->mv_mode == MV_PMODE_MIXED_MV)
  1625. {
  1626. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1627. if (status < 0) return -1;
  1628. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1629. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1630. } else {
  1631. v->mv_type_is_raw = 0;
  1632. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1633. }
  1634. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1635. if (status < 0) return -1;
  1636. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1637. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1638. /* Hopefully this is correct for P frames */
  1639. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1640. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1641. if (v->dquant)
  1642. {
  1643. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1644. vop_dquant_decoding(v);
  1645. }
  1646. v->ttfrm = 0; //FIXME Is that so ?
  1647. if (v->vstransform)
  1648. {
  1649. v->ttmbf = get_bits(gb, 1);
  1650. if (v->ttmbf)
  1651. {
  1652. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1653. }
  1654. } else {
  1655. v->ttmbf = 1;
  1656. v->ttfrm = TT_8X8;
  1657. }
  1658. break;
  1659. case B_TYPE:
  1660. if(v->postprocflag)
  1661. v->postproc = get_bits1(gb);
  1662. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1663. else v->mvrange = 0;
  1664. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1665. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1666. v->range_x = 1 << (v->k_x - 1);
  1667. v->range_y = 1 << (v->k_y - 1);
  1668. if (v->pq < 5) v->tt_index = 0;
  1669. else if(v->pq < 13) v->tt_index = 1;
  1670. else v->tt_index = 2;
  1671. lowquant = (v->pq > 12) ? 0 : 1;
  1672. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1673. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1674. v->s.mspel = v->s.quarter_sample;
  1675. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1676. if (status < 0) return -1;
  1677. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1678. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1679. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1680. if (status < 0) return -1;
  1681. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1682. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1683. v->s.mv_table_index = get_bits(gb, 2);
  1684. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1685. if (v->dquant)
  1686. {
  1687. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1688. vop_dquant_decoding(v);
  1689. }
  1690. v->ttfrm = 0;
  1691. if (v->vstransform)
  1692. {
  1693. v->ttmbf = get_bits(gb, 1);
  1694. if (v->ttmbf)
  1695. {
  1696. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1697. }
  1698. } else {
  1699. v->ttmbf = 1;
  1700. v->ttfrm = TT_8X8;
  1701. }
  1702. break;
  1703. }
  1704. /* AC Syntax */
  1705. v->c_ac_table_index = decode012(gb);
  1706. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1707. {
  1708. v->y_ac_table_index = decode012(gb);
  1709. }
  1710. /* DC Syntax */
  1711. v->s.dc_table_index = get_bits(gb, 1);
  1712. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1713. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1714. vop_dquant_decoding(v);
  1715. }
  1716. v->bi_type = 0;
  1717. if(v->s.pict_type == BI_TYPE) {
  1718. v->s.pict_type = B_TYPE;
  1719. v->bi_type = 1;
  1720. }
  1721. return 0;
  1722. }
  1723. /***********************************************************************/
  1724. /**
  1725. * @defgroup block VC-1 Block-level functions
  1726. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1727. * @{
  1728. */
  1729. /**
  1730. * @def GET_MQUANT
  1731. * @brief Get macroblock-level quantizer scale
  1732. */
  1733. #define GET_MQUANT() \
  1734. if (v->dquantfrm) \
  1735. { \
  1736. int edges = 0; \
  1737. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1738. { \
  1739. if (v->dqbilevel) \
  1740. { \
  1741. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1742. } \
  1743. else \
  1744. { \
  1745. mqdiff = get_bits(gb, 3); \
  1746. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1747. else mquant = get_bits(gb, 5); \
  1748. } \
  1749. } \
  1750. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1751. edges = 1 << v->dqsbedge; \
  1752. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1753. edges = (3 << v->dqsbedge) % 15; \
  1754. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1755. edges = 15; \
  1756. if((edges&1) && !s->mb_x) \
  1757. mquant = v->altpq; \
  1758. if((edges&2) && s->first_slice_line) \
  1759. mquant = v->altpq; \
  1760. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1761. mquant = v->altpq; \
  1762. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1763. mquant = v->altpq; \
  1764. }
  1765. /**
  1766. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1767. * @brief Get MV differentials
  1768. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1769. * @param _dmv_x Horizontal differential for decoded MV
  1770. * @param _dmv_y Vertical differential for decoded MV
  1771. */
  1772. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1773. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1774. VC1_MV_DIFF_VLC_BITS, 2); \
  1775. if (index > 36) \
  1776. { \
  1777. mb_has_coeffs = 1; \
  1778. index -= 37; \
  1779. } \
  1780. else mb_has_coeffs = 0; \
  1781. s->mb_intra = 0; \
  1782. if (!index) { _dmv_x = _dmv_y = 0; } \
  1783. else if (index == 35) \
  1784. { \
  1785. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1786. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1787. } \
  1788. else if (index == 36) \
  1789. { \
  1790. _dmv_x = 0; \
  1791. _dmv_y = 0; \
  1792. s->mb_intra = 1; \
  1793. } \
  1794. else \
  1795. { \
  1796. index1 = index%6; \
  1797. if (!s->quarter_sample && index1 == 5) val = 1; \
  1798. else val = 0; \
  1799. if(size_table[index1] - val > 0) \
  1800. val = get_bits(gb, size_table[index1] - val); \
  1801. else val = 0; \
  1802. sign = 0 - (val&1); \
  1803. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1804. \
  1805. index1 = index/6; \
  1806. if (!s->quarter_sample && index1 == 5) val = 1; \
  1807. else val = 0; \
  1808. if(size_table[index1] - val > 0) \
  1809. val = get_bits(gb, size_table[index1] - val); \
  1810. else val = 0; \
  1811. sign = 0 - (val&1); \
  1812. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1813. }
  1814. /** Predict and set motion vector
  1815. */
  1816. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1817. {
  1818. int xy, wrap, off = 0;
  1819. int16_t *A, *B, *C;
  1820. int px, py;
  1821. int sum;
  1822. /* scale MV difference to be quad-pel */
  1823. dmv_x <<= 1 - s->quarter_sample;
  1824. dmv_y <<= 1 - s->quarter_sample;
  1825. wrap = s->b8_stride;
  1826. xy = s->block_index[n];
  1827. if(s->mb_intra){
  1828. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1829. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1830. if(mv1) { /* duplicate motion data for 1-MV block */
  1831. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1832. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1833. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1834. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1835. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1836. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1837. }
  1838. return;
  1839. }
  1840. C = s->current_picture.motion_val[0][xy - 1];
  1841. A = s->current_picture.motion_val[0][xy - wrap];
  1842. if(mv1)
  1843. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1844. else {
  1845. //in 4-MV mode different blocks have different B predictor position
  1846. switch(n){
  1847. case 0:
  1848. off = (s->mb_x > 0) ? -1 : 1;
  1849. break;
  1850. case 1:
  1851. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1852. break;
  1853. case 2:
  1854. off = 1;
  1855. break;
  1856. case 3:
  1857. off = -1;
  1858. }
  1859. }
  1860. B = s->current_picture.motion_val[0][xy - wrap + off];
  1861. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1862. if(s->mb_width == 1) {
  1863. px = A[0];
  1864. py = A[1];
  1865. } else {
  1866. px = mid_pred(A[0], B[0], C[0]);
  1867. py = mid_pred(A[1], B[1], C[1]);
  1868. }
  1869. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1870. px = C[0];
  1871. py = C[1];
  1872. } else {
  1873. px = py = 0;
  1874. }
  1875. /* Pullback MV as specified in 8.3.5.3.4 */
  1876. {
  1877. int qx, qy, X, Y;
  1878. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1879. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1880. X = (s->mb_width << 6) - 4;
  1881. Y = (s->mb_height << 6) - 4;
  1882. if(mv1) {
  1883. if(qx + px < -60) px = -60 - qx;
  1884. if(qy + py < -60) py = -60 - qy;
  1885. } else {
  1886. if(qx + px < -28) px = -28 - qx;
  1887. if(qy + py < -28) py = -28 - qy;
  1888. }
  1889. if(qx + px > X) px = X - qx;
  1890. if(qy + py > Y) py = Y - qy;
  1891. }
  1892. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1893. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1894. if(is_intra[xy - wrap])
  1895. sum = FFABS(px) + FFABS(py);
  1896. else
  1897. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1898. if(sum > 32) {
  1899. if(get_bits1(&s->gb)) {
  1900. px = A[0];
  1901. py = A[1];
  1902. } else {
  1903. px = C[0];
  1904. py = C[1];
  1905. }
  1906. } else {
  1907. if(is_intra[xy - 1])
  1908. sum = FFABS(px) + FFABS(py);
  1909. else
  1910. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1911. if(sum > 32) {
  1912. if(get_bits1(&s->gb)) {
  1913. px = A[0];
  1914. py = A[1];
  1915. } else {
  1916. px = C[0];
  1917. py = C[1];
  1918. }
  1919. }
  1920. }
  1921. }
  1922. /* store MV using signed modulus of MV range defined in 4.11 */
  1923. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1924. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1925. if(mv1) { /* duplicate motion data for 1-MV block */
  1926. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1927. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1928. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1929. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1930. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1931. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1932. }
  1933. }
  1934. /** Motion compensation for direct or interpolated blocks in B-frames
  1935. */
  1936. static void vc1_interp_mc(VC1Context *v)
  1937. {
  1938. MpegEncContext *s = &v->s;
  1939. DSPContext *dsp = &v->s.dsp;
  1940. uint8_t *srcY, *srcU, *srcV;
  1941. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1942. if(!v->s.next_picture.data[0])return;
  1943. mx = s->mv[1][0][0];
  1944. my = s->mv[1][0][1];
  1945. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1946. uvmy = (my + ((my & 3) == 3)) >> 1;
  1947. if(v->fastuvmc) {
  1948. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1949. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1950. }
  1951. srcY = s->next_picture.data[0];
  1952. srcU = s->next_picture.data[1];
  1953. srcV = s->next_picture.data[2];
  1954. src_x = s->mb_x * 16 + (mx >> 2);
  1955. src_y = s->mb_y * 16 + (my >> 2);
  1956. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1957. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1958. if(v->profile != PROFILE_ADVANCED){
  1959. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1960. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1961. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1962. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1963. }else{
  1964. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1965. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1966. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1967. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1968. }
  1969. srcY += src_y * s->linesize + src_x;
  1970. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1971. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1972. /* for grayscale we should not try to read from unknown area */
  1973. if(s->flags & CODEC_FLAG_GRAY) {
  1974. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1975. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1976. }
  1977. if(v->rangeredfrm
  1978. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1979. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1980. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1981. srcY -= s->mspel * (1 + s->linesize);
  1982. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1983. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1984. srcY = s->edge_emu_buffer;
  1985. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1986. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1987. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1988. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1989. srcU = uvbuf;
  1990. srcV = uvbuf + 16;
  1991. /* if we deal with range reduction we need to scale source blocks */
  1992. if(v->rangeredfrm) {
  1993. int i, j;
  1994. uint8_t *src, *src2;
  1995. src = srcY;
  1996. for(j = 0; j < 17 + s->mspel*2; j++) {
  1997. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1998. src += s->linesize;
  1999. }
  2000. src = srcU; src2 = srcV;
  2001. for(j = 0; j < 9; j++) {
  2002. for(i = 0; i < 9; i++) {
  2003. src[i] = ((src[i] - 128) >> 1) + 128;
  2004. src2[i] = ((src2[i] - 128) >> 1) + 128;
  2005. }
  2006. src += s->uvlinesize;
  2007. src2 += s->uvlinesize;
  2008. }
  2009. }
  2010. srcY += s->mspel * (1 + s->linesize);
  2011. }
  2012. mx >>= 1;
  2013. my >>= 1;
  2014. dxy = ((my & 1) << 1) | (mx & 1);
  2015. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  2016. if(s->flags & CODEC_FLAG_GRAY) return;
  2017. /* Chroma MC always uses qpel blilinear */
  2018. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  2019. uvmx = (uvmx&3)<<1;
  2020. uvmy = (uvmy&3)<<1;
  2021. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  2022. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  2023. }
  2024. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  2025. {
  2026. int n = bfrac;
  2027. #if B_FRACTION_DEN==256
  2028. if(inv)
  2029. n -= 256;
  2030. if(!qs)
  2031. return 2 * ((value * n + 255) >> 9);
  2032. return (value * n + 128) >> 8;
  2033. #else
  2034. if(inv)
  2035. n -= B_FRACTION_DEN;
  2036. if(!qs)
  2037. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  2038. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  2039. #endif
  2040. }
  2041. /** Reconstruct motion vector for B-frame and do motion compensation
  2042. */
  2043. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  2044. {
  2045. if(v->use_ic) {
  2046. v->mv_mode2 = v->mv_mode;
  2047. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  2048. }
  2049. if(direct) {
  2050. vc1_mc_1mv(v, 0);
  2051. vc1_interp_mc(v);
  2052. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2053. return;
  2054. }
  2055. if(mode == BMV_TYPE_INTERPOLATED) {
  2056. vc1_mc_1mv(v, 0);
  2057. vc1_interp_mc(v);
  2058. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2059. return;
  2060. }
  2061. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  2062. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  2063. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2064. }
  2065. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  2066. {
  2067. MpegEncContext *s = &v->s;
  2068. int xy, wrap, off = 0;
  2069. int16_t *A, *B, *C;
  2070. int px, py;
  2071. int sum;
  2072. int r_x, r_y;
  2073. const uint8_t *is_intra = v->mb_type[0];
  2074. r_x = v->range_x;
  2075. r_y = v->range_y;
  2076. /* scale MV difference to be quad-pel */
  2077. dmv_x[0] <<= 1 - s->quarter_sample;
  2078. dmv_y[0] <<= 1 - s->quarter_sample;
  2079. dmv_x[1] <<= 1 - s->quarter_sample;
  2080. dmv_y[1] <<= 1 - s->quarter_sample;
  2081. wrap = s->b8_stride;
  2082. xy = s->block_index[0];
  2083. if(s->mb_intra) {
  2084. s->current_picture.motion_val[0][xy][0] =
  2085. s->current_picture.motion_val[0][xy][1] =
  2086. s->current_picture.motion_val[1][xy][0] =
  2087. s->current_picture.motion_val[1][xy][1] = 0;
  2088. return;
  2089. }
  2090. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  2091. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  2092. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  2093. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  2094. if(direct) {
  2095. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2096. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2097. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2098. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2099. return;
  2100. }
  2101. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2102. C = s->current_picture.motion_val[0][xy - 2];
  2103. A = s->current_picture.motion_val[0][xy - wrap*2];
  2104. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2105. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  2106. if(!s->first_slice_line) { // predictor A is not out of bounds
  2107. if(s->mb_width == 1) {
  2108. px = A[0];
  2109. py = A[1];
  2110. } else {
  2111. px = mid_pred(A[0], B[0], C[0]);
  2112. py = mid_pred(A[1], B[1], C[1]);
  2113. }
  2114. } else if(s->mb_x) { // predictor C is not out of bounds
  2115. px = C[0];
  2116. py = C[1];
  2117. } else {
  2118. px = py = 0;
  2119. }
  2120. /* Pullback MV as specified in 8.3.5.3.4 */
  2121. {
  2122. int qx, qy, X, Y;
  2123. if(v->profile < PROFILE_ADVANCED) {
  2124. qx = (s->mb_x << 5);
  2125. qy = (s->mb_y << 5);
  2126. X = (s->mb_width << 5) - 4;
  2127. Y = (s->mb_height << 5) - 4;
  2128. if(qx + px < -28) px = -28 - qx;
  2129. if(qy + py < -28) py = -28 - qy;
  2130. if(qx + px > X) px = X - qx;
  2131. if(qy + py > Y) py = Y - qy;
  2132. } else {
  2133. qx = (s->mb_x << 6);
  2134. qy = (s->mb_y << 6);
  2135. X = (s->mb_width << 6) - 4;
  2136. Y = (s->mb_height << 6) - 4;
  2137. if(qx + px < -60) px = -60 - qx;
  2138. if(qy + py < -60) py = -60 - qy;
  2139. if(qx + px > X) px = X - qx;
  2140. if(qy + py > Y) py = Y - qy;
  2141. }
  2142. }
  2143. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2144. if(0 && !s->first_slice_line && s->mb_x) {
  2145. if(is_intra[xy - wrap])
  2146. sum = FFABS(px) + FFABS(py);
  2147. else
  2148. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2149. if(sum > 32) {
  2150. if(get_bits1(&s->gb)) {
  2151. px = A[0];
  2152. py = A[1];
  2153. } else {
  2154. px = C[0];
  2155. py = C[1];
  2156. }
  2157. } else {
  2158. if(is_intra[xy - 2])
  2159. sum = FFABS(px) + FFABS(py);
  2160. else
  2161. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2162. if(sum > 32) {
  2163. if(get_bits1(&s->gb)) {
  2164. px = A[0];
  2165. py = A[1];
  2166. } else {
  2167. px = C[0];
  2168. py = C[1];
  2169. }
  2170. }
  2171. }
  2172. }
  2173. /* store MV using signed modulus of MV range defined in 4.11 */
  2174. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2175. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2176. }
  2177. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2178. C = s->current_picture.motion_val[1][xy - 2];
  2179. A = s->current_picture.motion_val[1][xy - wrap*2];
  2180. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2181. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2182. if(!s->first_slice_line) { // predictor A is not out of bounds
  2183. if(s->mb_width == 1) {
  2184. px = A[0];
  2185. py = A[1];
  2186. } else {
  2187. px = mid_pred(A[0], B[0], C[0]);
  2188. py = mid_pred(A[1], B[1], C[1]);
  2189. }
  2190. } else if(s->mb_x) { // predictor C is not out of bounds
  2191. px = C[0];
  2192. py = C[1];
  2193. } else {
  2194. px = py = 0;
  2195. }
  2196. /* Pullback MV as specified in 8.3.5.3.4 */
  2197. {
  2198. int qx, qy, X, Y;
  2199. if(v->profile < PROFILE_ADVANCED) {
  2200. qx = (s->mb_x << 5);
  2201. qy = (s->mb_y << 5);
  2202. X = (s->mb_width << 5) - 4;
  2203. Y = (s->mb_height << 5) - 4;
  2204. if(qx + px < -28) px = -28 - qx;
  2205. if(qy + py < -28) py = -28 - qy;
  2206. if(qx + px > X) px = X - qx;
  2207. if(qy + py > Y) py = Y - qy;
  2208. } else {
  2209. qx = (s->mb_x << 6);
  2210. qy = (s->mb_y << 6);
  2211. X = (s->mb_width << 6) - 4;
  2212. Y = (s->mb_height << 6) - 4;
  2213. if(qx + px < -60) px = -60 - qx;
  2214. if(qy + py < -60) py = -60 - qy;
  2215. if(qx + px > X) px = X - qx;
  2216. if(qy + py > Y) py = Y - qy;
  2217. }
  2218. }
  2219. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2220. if(0 && !s->first_slice_line && s->mb_x) {
  2221. if(is_intra[xy - wrap])
  2222. sum = FFABS(px) + FFABS(py);
  2223. else
  2224. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2225. if(sum > 32) {
  2226. if(get_bits1(&s->gb)) {
  2227. px = A[0];
  2228. py = A[1];
  2229. } else {
  2230. px = C[0];
  2231. py = C[1];
  2232. }
  2233. } else {
  2234. if(is_intra[xy - 2])
  2235. sum = FFABS(px) + FFABS(py);
  2236. else
  2237. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2238. if(sum > 32) {
  2239. if(get_bits1(&s->gb)) {
  2240. px = A[0];
  2241. py = A[1];
  2242. } else {
  2243. px = C[0];
  2244. py = C[1];
  2245. }
  2246. }
  2247. }
  2248. }
  2249. /* store MV using signed modulus of MV range defined in 4.11 */
  2250. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2251. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2252. }
  2253. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2254. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2255. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2256. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2257. }
  2258. /** Get predicted DC value for I-frames only
  2259. * prediction dir: left=0, top=1
  2260. * @param s MpegEncContext
  2261. * @param[in] n block index in the current MB
  2262. * @param dc_val_ptr Pointer to DC predictor
  2263. * @param dir_ptr Prediction direction for use in AC prediction
  2264. */
  2265. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2266. int16_t **dc_val_ptr, int *dir_ptr)
  2267. {
  2268. int a, b, c, wrap, pred, scale;
  2269. int16_t *dc_val;
  2270. static const uint16_t dcpred[32] = {
  2271. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2272. 114, 102, 93, 85, 79, 73, 68, 64,
  2273. 60, 57, 54, 51, 49, 47, 45, 43,
  2274. 41, 39, 38, 37, 35, 34, 33
  2275. };
  2276. /* find prediction - wmv3_dc_scale always used here in fact */
  2277. if (n < 4) scale = s->y_dc_scale;
  2278. else scale = s->c_dc_scale;
  2279. wrap = s->block_wrap[n];
  2280. dc_val= s->dc_val[0] + s->block_index[n];
  2281. /* B A
  2282. * C X
  2283. */
  2284. c = dc_val[ - 1];
  2285. b = dc_val[ - 1 - wrap];
  2286. a = dc_val[ - wrap];
  2287. if (pq < 9 || !overlap)
  2288. {
  2289. /* Set outer values */
  2290. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2291. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2292. }
  2293. else
  2294. {
  2295. /* Set outer values */
  2296. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2297. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2298. }
  2299. if (abs(a - b) <= abs(b - c)) {
  2300. pred = c;
  2301. *dir_ptr = 1;//left
  2302. } else {
  2303. pred = a;
  2304. *dir_ptr = 0;//top
  2305. }
  2306. /* update predictor */
  2307. *dc_val_ptr = &dc_val[0];
  2308. return pred;
  2309. }
  2310. /** Get predicted DC value
  2311. * prediction dir: left=0, top=1
  2312. * @param s MpegEncContext
  2313. * @param[in] n block index in the current MB
  2314. * @param dc_val_ptr Pointer to DC predictor
  2315. * @param dir_ptr Prediction direction for use in AC prediction
  2316. */
  2317. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2318. int a_avail, int c_avail,
  2319. int16_t **dc_val_ptr, int *dir_ptr)
  2320. {
  2321. int a, b, c, wrap, pred, scale;
  2322. int16_t *dc_val;
  2323. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2324. int q1, q2 = 0;
  2325. /* find prediction - wmv3_dc_scale always used here in fact */
  2326. if (n < 4) scale = s->y_dc_scale;
  2327. else scale = s->c_dc_scale;
  2328. wrap = s->block_wrap[n];
  2329. dc_val= s->dc_val[0] + s->block_index[n];
  2330. /* B A
  2331. * C X
  2332. */
  2333. c = dc_val[ - 1];
  2334. b = dc_val[ - 1 - wrap];
  2335. a = dc_val[ - wrap];
  2336. /* scale predictors if needed */
  2337. q1 = s->current_picture.qscale_table[mb_pos];
  2338. if(c_avail && (n!= 1 && n!=3)) {
  2339. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2340. if(q2 && q2 != q1)
  2341. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2342. }
  2343. if(a_avail && (n!= 2 && n!=3)) {
  2344. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2345. if(q2 && q2 != q1)
  2346. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2347. }
  2348. if(a_avail && c_avail && (n!=3)) {
  2349. int off = mb_pos;
  2350. if(n != 1) off--;
  2351. if(n != 2) off -= s->mb_stride;
  2352. q2 = s->current_picture.qscale_table[off];
  2353. if(q2 && q2 != q1)
  2354. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2355. }
  2356. if(a_avail && c_avail) {
  2357. if(abs(a - b) <= abs(b - c)) {
  2358. pred = c;
  2359. *dir_ptr = 1;//left
  2360. } else {
  2361. pred = a;
  2362. *dir_ptr = 0;//top
  2363. }
  2364. } else if(a_avail) {
  2365. pred = a;
  2366. *dir_ptr = 0;//top
  2367. } else if(c_avail) {
  2368. pred = c;
  2369. *dir_ptr = 1;//left
  2370. } else {
  2371. pred = 0;
  2372. *dir_ptr = 1;//left
  2373. }
  2374. /* update predictor */
  2375. *dc_val_ptr = &dc_val[0];
  2376. return pred;
  2377. }
  2378. /**
  2379. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2380. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2381. * @{
  2382. */
  2383. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2384. {
  2385. int xy, wrap, pred, a, b, c;
  2386. xy = s->block_index[n];
  2387. wrap = s->b8_stride;
  2388. /* B C
  2389. * A X
  2390. */
  2391. a = s->coded_block[xy - 1 ];
  2392. b = s->coded_block[xy - 1 - wrap];
  2393. c = s->coded_block[xy - wrap];
  2394. if (b == c) {
  2395. pred = a;
  2396. } else {
  2397. pred = c;
  2398. }
  2399. /* store value */
  2400. *coded_block_ptr = &s->coded_block[xy];
  2401. return pred;
  2402. }
  2403. /**
  2404. * Decode one AC coefficient
  2405. * @param v The VC1 context
  2406. * @param last Last coefficient
  2407. * @param skip How much zero coefficients to skip
  2408. * @param value Decoded AC coefficient value
  2409. * @see 8.1.3.4
  2410. */
  2411. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2412. {
  2413. GetBitContext *gb = &v->s.gb;
  2414. int index, escape, run = 0, level = 0, lst = 0;
  2415. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2416. if (index != vc1_ac_sizes[codingset] - 1) {
  2417. run = vc1_index_decode_table[codingset][index][0];
  2418. level = vc1_index_decode_table[codingset][index][1];
  2419. lst = index >= vc1_last_decode_table[codingset];
  2420. if(get_bits(gb, 1))
  2421. level = -level;
  2422. } else {
  2423. escape = decode210(gb);
  2424. if (escape != 2) {
  2425. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2426. run = vc1_index_decode_table[codingset][index][0];
  2427. level = vc1_index_decode_table[codingset][index][1];
  2428. lst = index >= vc1_last_decode_table[codingset];
  2429. if(escape == 0) {
  2430. if(lst)
  2431. level += vc1_last_delta_level_table[codingset][run];
  2432. else
  2433. level += vc1_delta_level_table[codingset][run];
  2434. } else {
  2435. if(lst)
  2436. run += vc1_last_delta_run_table[codingset][level] + 1;
  2437. else
  2438. run += vc1_delta_run_table[codingset][level] + 1;
  2439. }
  2440. if(get_bits(gb, 1))
  2441. level = -level;
  2442. } else {
  2443. int sign;
  2444. lst = get_bits(gb, 1);
  2445. if(v->s.esc3_level_length == 0) {
  2446. if(v->pq < 8 || v->dquantfrm) { // table 59
  2447. v->s.esc3_level_length = get_bits(gb, 3);
  2448. if(!v->s.esc3_level_length)
  2449. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2450. } else { //table 60
  2451. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2452. }
  2453. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2454. }
  2455. run = get_bits(gb, v->s.esc3_run_length);
  2456. sign = get_bits(gb, 1);
  2457. level = get_bits(gb, v->s.esc3_level_length);
  2458. if(sign)
  2459. level = -level;
  2460. }
  2461. }
  2462. *last = lst;
  2463. *skip = run;
  2464. *value = level;
  2465. }
  2466. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2467. * @param v VC1Context
  2468. * @param block block to decode
  2469. * @param coded are AC coeffs present or not
  2470. * @param codingset set of VLC to decode data
  2471. */
  2472. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2473. {
  2474. GetBitContext *gb = &v->s.gb;
  2475. MpegEncContext *s = &v->s;
  2476. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2477. int run_diff, i;
  2478. int16_t *dc_val;
  2479. int16_t *ac_val, *ac_val2;
  2480. int dcdiff;
  2481. /* Get DC differential */
  2482. if (n < 4) {
  2483. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2484. } else {
  2485. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2486. }
  2487. if (dcdiff < 0){
  2488. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2489. return -1;
  2490. }
  2491. if (dcdiff)
  2492. {
  2493. if (dcdiff == 119 /* ESC index value */)
  2494. {
  2495. /* TODO: Optimize */
  2496. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2497. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2498. else dcdiff = get_bits(gb, 8);
  2499. }
  2500. else
  2501. {
  2502. if (v->pq == 1)
  2503. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2504. else if (v->pq == 2)
  2505. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2506. }
  2507. if (get_bits(gb, 1))
  2508. dcdiff = -dcdiff;
  2509. }
  2510. /* Prediction */
  2511. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2512. *dc_val = dcdiff;
  2513. /* Store the quantized DC coeff, used for prediction */
  2514. if (n < 4) {
  2515. block[0] = dcdiff * s->y_dc_scale;
  2516. } else {
  2517. block[0] = dcdiff * s->c_dc_scale;
  2518. }
  2519. /* Skip ? */
  2520. run_diff = 0;
  2521. i = 0;
  2522. if (!coded) {
  2523. goto not_coded;
  2524. }
  2525. //AC Decoding
  2526. i = 1;
  2527. {
  2528. int last = 0, skip, value;
  2529. const int8_t *zz_table;
  2530. int scale;
  2531. int k;
  2532. scale = v->pq * 2 + v->halfpq;
  2533. if(v->s.ac_pred) {
  2534. if(!dc_pred_dir)
  2535. zz_table = vc1_horizontal_zz;
  2536. else
  2537. zz_table = vc1_vertical_zz;
  2538. } else
  2539. zz_table = vc1_normal_zz;
  2540. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2541. ac_val2 = ac_val;
  2542. if(dc_pred_dir) //left
  2543. ac_val -= 16;
  2544. else //top
  2545. ac_val -= 16 * s->block_wrap[n];
  2546. while (!last) {
  2547. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2548. i += skip;
  2549. if(i > 63)
  2550. break;
  2551. block[zz_table[i++]] = value;
  2552. }
  2553. /* apply AC prediction if needed */
  2554. if(s->ac_pred) {
  2555. if(dc_pred_dir) { //left
  2556. for(k = 1; k < 8; k++)
  2557. block[k << 3] += ac_val[k];
  2558. } else { //top
  2559. for(k = 1; k < 8; k++)
  2560. block[k] += ac_val[k + 8];
  2561. }
  2562. }
  2563. /* save AC coeffs for further prediction */
  2564. for(k = 1; k < 8; k++) {
  2565. ac_val2[k] = block[k << 3];
  2566. ac_val2[k + 8] = block[k];
  2567. }
  2568. /* scale AC coeffs */
  2569. for(k = 1; k < 64; k++)
  2570. if(block[k]) {
  2571. block[k] *= scale;
  2572. if(!v->pquantizer)
  2573. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2574. }
  2575. if(s->ac_pred) i = 63;
  2576. }
  2577. not_coded:
  2578. if(!coded) {
  2579. int k, scale;
  2580. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2581. ac_val2 = ac_val;
  2582. scale = v->pq * 2 + v->halfpq;
  2583. memset(ac_val2, 0, 16 * 2);
  2584. if(dc_pred_dir) {//left
  2585. ac_val -= 16;
  2586. if(s->ac_pred)
  2587. memcpy(ac_val2, ac_val, 8 * 2);
  2588. } else {//top
  2589. ac_val -= 16 * s->block_wrap[n];
  2590. if(s->ac_pred)
  2591. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2592. }
  2593. /* apply AC prediction if needed */
  2594. if(s->ac_pred) {
  2595. if(dc_pred_dir) { //left
  2596. for(k = 1; k < 8; k++) {
  2597. block[k << 3] = ac_val[k] * scale;
  2598. if(!v->pquantizer && block[k << 3])
  2599. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2600. }
  2601. } else { //top
  2602. for(k = 1; k < 8; k++) {
  2603. block[k] = ac_val[k + 8] * scale;
  2604. if(!v->pquantizer && block[k])
  2605. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2606. }
  2607. }
  2608. i = 63;
  2609. }
  2610. }
  2611. s->block_last_index[n] = i;
  2612. return 0;
  2613. }
  2614. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2615. * @param v VC1Context
  2616. * @param block block to decode
  2617. * @param coded are AC coeffs present or not
  2618. * @param codingset set of VLC to decode data
  2619. */
  2620. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2621. {
  2622. GetBitContext *gb = &v->s.gb;
  2623. MpegEncContext *s = &v->s;
  2624. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2625. int run_diff, i;
  2626. int16_t *dc_val;
  2627. int16_t *ac_val, *ac_val2;
  2628. int dcdiff;
  2629. int a_avail = v->a_avail, c_avail = v->c_avail;
  2630. int use_pred = s->ac_pred;
  2631. int scale;
  2632. int q1, q2 = 0;
  2633. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2634. /* Get DC differential */
  2635. if (n < 4) {
  2636. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2637. } else {
  2638. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2639. }
  2640. if (dcdiff < 0){
  2641. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2642. return -1;
  2643. }
  2644. if (dcdiff)
  2645. {
  2646. if (dcdiff == 119 /* ESC index value */)
  2647. {
  2648. /* TODO: Optimize */
  2649. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2650. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2651. else dcdiff = get_bits(gb, 8);
  2652. }
  2653. else
  2654. {
  2655. if (mquant == 1)
  2656. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2657. else if (mquant == 2)
  2658. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2659. }
  2660. if (get_bits(gb, 1))
  2661. dcdiff = -dcdiff;
  2662. }
  2663. /* Prediction */
  2664. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2665. *dc_val = dcdiff;
  2666. /* Store the quantized DC coeff, used for prediction */
  2667. if (n < 4) {
  2668. block[0] = dcdiff * s->y_dc_scale;
  2669. } else {
  2670. block[0] = dcdiff * s->c_dc_scale;
  2671. }
  2672. /* Skip ? */
  2673. run_diff = 0;
  2674. i = 0;
  2675. //AC Decoding
  2676. i = 1;
  2677. /* check if AC is needed at all and adjust direction if needed */
  2678. if(!a_avail) dc_pred_dir = 1;
  2679. if(!c_avail) dc_pred_dir = 0;
  2680. if(!a_avail && !c_avail) use_pred = 0;
  2681. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2682. ac_val2 = ac_val;
  2683. scale = mquant * 2 + v->halfpq;
  2684. if(dc_pred_dir) //left
  2685. ac_val -= 16;
  2686. else //top
  2687. ac_val -= 16 * s->block_wrap[n];
  2688. q1 = s->current_picture.qscale_table[mb_pos];
  2689. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2690. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2691. if(n && n<4) q2 = q1;
  2692. if(coded) {
  2693. int last = 0, skip, value;
  2694. const int8_t *zz_table;
  2695. int k;
  2696. if(v->s.ac_pred) {
  2697. if(!dc_pred_dir)
  2698. zz_table = vc1_horizontal_zz;
  2699. else
  2700. zz_table = vc1_vertical_zz;
  2701. } else
  2702. zz_table = vc1_normal_zz;
  2703. while (!last) {
  2704. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2705. i += skip;
  2706. if(i > 63)
  2707. break;
  2708. block[zz_table[i++]] = value;
  2709. }
  2710. /* apply AC prediction if needed */
  2711. if(use_pred) {
  2712. /* scale predictors if needed*/
  2713. if(q2 && q1!=q2) {
  2714. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2715. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2716. if(dc_pred_dir) { //left
  2717. for(k = 1; k < 8; k++)
  2718. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2719. } else { //top
  2720. for(k = 1; k < 8; k++)
  2721. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2722. }
  2723. } else {
  2724. if(dc_pred_dir) { //left
  2725. for(k = 1; k < 8; k++)
  2726. block[k << 3] += ac_val[k];
  2727. } else { //top
  2728. for(k = 1; k < 8; k++)
  2729. block[k] += ac_val[k + 8];
  2730. }
  2731. }
  2732. }
  2733. /* save AC coeffs for further prediction */
  2734. for(k = 1; k < 8; k++) {
  2735. ac_val2[k] = block[k << 3];
  2736. ac_val2[k + 8] = block[k];
  2737. }
  2738. /* scale AC coeffs */
  2739. for(k = 1; k < 64; k++)
  2740. if(block[k]) {
  2741. block[k] *= scale;
  2742. if(!v->pquantizer)
  2743. block[k] += (block[k] < 0) ? -mquant : mquant;
  2744. }
  2745. if(use_pred) i = 63;
  2746. } else { // no AC coeffs
  2747. int k;
  2748. memset(ac_val2, 0, 16 * 2);
  2749. if(dc_pred_dir) {//left
  2750. if(use_pred) {
  2751. memcpy(ac_val2, ac_val, 8 * 2);
  2752. if(q2 && q1!=q2) {
  2753. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2754. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2755. for(k = 1; k < 8; k++)
  2756. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2757. }
  2758. }
  2759. } else {//top
  2760. if(use_pred) {
  2761. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2762. if(q2 && q1!=q2) {
  2763. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2764. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2765. for(k = 1; k < 8; k++)
  2766. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2767. }
  2768. }
  2769. }
  2770. /* apply AC prediction if needed */
  2771. if(use_pred) {
  2772. if(dc_pred_dir) { //left
  2773. for(k = 1; k < 8; k++) {
  2774. block[k << 3] = ac_val2[k] * scale;
  2775. if(!v->pquantizer && block[k << 3])
  2776. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2777. }
  2778. } else { //top
  2779. for(k = 1; k < 8; k++) {
  2780. block[k] = ac_val2[k + 8] * scale;
  2781. if(!v->pquantizer && block[k])
  2782. block[k] += (block[k] < 0) ? -mquant : mquant;
  2783. }
  2784. }
  2785. i = 63;
  2786. }
  2787. }
  2788. s->block_last_index[n] = i;
  2789. return 0;
  2790. }
  2791. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2792. * @param v VC1Context
  2793. * @param block block to decode
  2794. * @param coded are AC coeffs present or not
  2795. * @param mquant block quantizer
  2796. * @param codingset set of VLC to decode data
  2797. */
  2798. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2799. {
  2800. GetBitContext *gb = &v->s.gb;
  2801. MpegEncContext *s = &v->s;
  2802. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2803. int run_diff, i;
  2804. int16_t *dc_val;
  2805. int16_t *ac_val, *ac_val2;
  2806. int dcdiff;
  2807. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2808. int a_avail = v->a_avail, c_avail = v->c_avail;
  2809. int use_pred = s->ac_pred;
  2810. int scale;
  2811. int q1, q2 = 0;
  2812. /* XXX: Guard against dumb values of mquant */
  2813. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2814. /* Set DC scale - y and c use the same */
  2815. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2816. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2817. /* Get DC differential */
  2818. if (n < 4) {
  2819. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2820. } else {
  2821. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2822. }
  2823. if (dcdiff < 0){
  2824. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2825. return -1;
  2826. }
  2827. if (dcdiff)
  2828. {
  2829. if (dcdiff == 119 /* ESC index value */)
  2830. {
  2831. /* TODO: Optimize */
  2832. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2833. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2834. else dcdiff = get_bits(gb, 8);
  2835. }
  2836. else
  2837. {
  2838. if (mquant == 1)
  2839. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2840. else if (mquant == 2)
  2841. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2842. }
  2843. if (get_bits(gb, 1))
  2844. dcdiff = -dcdiff;
  2845. }
  2846. /* Prediction */
  2847. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2848. *dc_val = dcdiff;
  2849. /* Store the quantized DC coeff, used for prediction */
  2850. if (n < 4) {
  2851. block[0] = dcdiff * s->y_dc_scale;
  2852. } else {
  2853. block[0] = dcdiff * s->c_dc_scale;
  2854. }
  2855. /* Skip ? */
  2856. run_diff = 0;
  2857. i = 0;
  2858. //AC Decoding
  2859. i = 1;
  2860. /* check if AC is needed at all and adjust direction if needed */
  2861. if(!a_avail) dc_pred_dir = 1;
  2862. if(!c_avail) dc_pred_dir = 0;
  2863. if(!a_avail && !c_avail) use_pred = 0;
  2864. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2865. ac_val2 = ac_val;
  2866. scale = mquant * 2 + v->halfpq;
  2867. if(dc_pred_dir) //left
  2868. ac_val -= 16;
  2869. else //top
  2870. ac_val -= 16 * s->block_wrap[n];
  2871. q1 = s->current_picture.qscale_table[mb_pos];
  2872. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2873. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2874. if(n && n<4) q2 = q1;
  2875. if(coded) {
  2876. int last = 0, skip, value;
  2877. const int8_t *zz_table;
  2878. int k;
  2879. zz_table = vc1_simple_progressive_8x8_zz;
  2880. while (!last) {
  2881. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2882. i += skip;
  2883. if(i > 63)
  2884. break;
  2885. block[zz_table[i++]] = value;
  2886. }
  2887. /* apply AC prediction if needed */
  2888. if(use_pred) {
  2889. /* scale predictors if needed*/
  2890. if(q2 && q1!=q2) {
  2891. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2892. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2893. if(dc_pred_dir) { //left
  2894. for(k = 1; k < 8; k++)
  2895. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2896. } else { //top
  2897. for(k = 1; k < 8; k++)
  2898. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2899. }
  2900. } else {
  2901. if(dc_pred_dir) { //left
  2902. for(k = 1; k < 8; k++)
  2903. block[k << 3] += ac_val[k];
  2904. } else { //top
  2905. for(k = 1; k < 8; k++)
  2906. block[k] += ac_val[k + 8];
  2907. }
  2908. }
  2909. }
  2910. /* save AC coeffs for further prediction */
  2911. for(k = 1; k < 8; k++) {
  2912. ac_val2[k] = block[k << 3];
  2913. ac_val2[k + 8] = block[k];
  2914. }
  2915. /* scale AC coeffs */
  2916. for(k = 1; k < 64; k++)
  2917. if(block[k]) {
  2918. block[k] *= scale;
  2919. if(!v->pquantizer)
  2920. block[k] += (block[k] < 0) ? -mquant : mquant;
  2921. }
  2922. if(use_pred) i = 63;
  2923. } else { // no AC coeffs
  2924. int k;
  2925. memset(ac_val2, 0, 16 * 2);
  2926. if(dc_pred_dir) {//left
  2927. if(use_pred) {
  2928. memcpy(ac_val2, ac_val, 8 * 2);
  2929. if(q2 && q1!=q2) {
  2930. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2931. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2932. for(k = 1; k < 8; k++)
  2933. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2934. }
  2935. }
  2936. } else {//top
  2937. if(use_pred) {
  2938. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2939. if(q2 && q1!=q2) {
  2940. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2941. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2942. for(k = 1; k < 8; k++)
  2943. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2944. }
  2945. }
  2946. }
  2947. /* apply AC prediction if needed */
  2948. if(use_pred) {
  2949. if(dc_pred_dir) { //left
  2950. for(k = 1; k < 8; k++) {
  2951. block[k << 3] = ac_val2[k] * scale;
  2952. if(!v->pquantizer && block[k << 3])
  2953. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2954. }
  2955. } else { //top
  2956. for(k = 1; k < 8; k++) {
  2957. block[k] = ac_val2[k + 8] * scale;
  2958. if(!v->pquantizer && block[k])
  2959. block[k] += (block[k] < 0) ? -mquant : mquant;
  2960. }
  2961. }
  2962. i = 63;
  2963. }
  2964. }
  2965. s->block_last_index[n] = i;
  2966. return 0;
  2967. }
  2968. /** Decode P block
  2969. */
  2970. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2971. {
  2972. MpegEncContext *s = &v->s;
  2973. GetBitContext *gb = &s->gb;
  2974. int i, j;
  2975. int subblkpat = 0;
  2976. int scale, off, idx, last, skip, value;
  2977. int ttblk = ttmb & 7;
  2978. if(ttmb == -1) {
  2979. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2980. }
  2981. if(ttblk == TT_4X4) {
  2982. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2983. }
  2984. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2985. subblkpat = decode012(gb);
  2986. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2987. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2988. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2989. }
  2990. scale = 2 * mquant + v->halfpq;
  2991. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2992. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2993. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2994. ttblk = TT_8X4;
  2995. }
  2996. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2997. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2998. ttblk = TT_4X8;
  2999. }
  3000. switch(ttblk) {
  3001. case TT_8X8:
  3002. i = 0;
  3003. last = 0;
  3004. while (!last) {
  3005. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3006. i += skip;
  3007. if(i > 63)
  3008. break;
  3009. idx = vc1_simple_progressive_8x8_zz[i++];
  3010. block[idx] = value * scale;
  3011. if(!v->pquantizer)
  3012. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3013. }
  3014. s->dsp.vc1_inv_trans_8x8(block);
  3015. break;
  3016. case TT_4X4:
  3017. for(j = 0; j < 4; j++) {
  3018. last = subblkpat & (1 << (3 - j));
  3019. i = 0;
  3020. off = (j & 1) * 4 + (j & 2) * 16;
  3021. while (!last) {
  3022. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3023. i += skip;
  3024. if(i > 15)
  3025. break;
  3026. idx = vc1_simple_progressive_4x4_zz[i++];
  3027. block[idx + off] = value * scale;
  3028. if(!v->pquantizer)
  3029. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3030. }
  3031. if(!(subblkpat & (1 << (3 - j))))
  3032. s->dsp.vc1_inv_trans_4x4(block, j);
  3033. }
  3034. break;
  3035. case TT_8X4:
  3036. for(j = 0; j < 2; j++) {
  3037. last = subblkpat & (1 << (1 - j));
  3038. i = 0;
  3039. off = j * 32;
  3040. while (!last) {
  3041. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3042. i += skip;
  3043. if(i > 31)
  3044. break;
  3045. if(v->profile < PROFILE_ADVANCED)
  3046. idx = vc1_simple_progressive_8x4_zz[i++];
  3047. else
  3048. idx = vc1_adv_progressive_8x4_zz[i++];
  3049. block[idx + off] = value * scale;
  3050. if(!v->pquantizer)
  3051. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3052. }
  3053. if(!(subblkpat & (1 << (1 - j))))
  3054. s->dsp.vc1_inv_trans_8x4(block, j);
  3055. }
  3056. break;
  3057. case TT_4X8:
  3058. for(j = 0; j < 2; j++) {
  3059. last = subblkpat & (1 << (1 - j));
  3060. i = 0;
  3061. off = j * 4;
  3062. while (!last) {
  3063. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3064. i += skip;
  3065. if(i > 31)
  3066. break;
  3067. if(v->profile < PROFILE_ADVANCED)
  3068. idx = vc1_simple_progressive_4x8_zz[i++];
  3069. else
  3070. idx = vc1_adv_progressive_4x8_zz[i++];
  3071. block[idx + off] = value * scale;
  3072. if(!v->pquantizer)
  3073. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3074. }
  3075. if(!(subblkpat & (1 << (1 - j))))
  3076. s->dsp.vc1_inv_trans_4x8(block, j);
  3077. }
  3078. break;
  3079. }
  3080. return 0;
  3081. }
  3082. /** Decode one P-frame MB (in Simple/Main profile)
  3083. */
  3084. static int vc1_decode_p_mb(VC1Context *v)
  3085. {
  3086. MpegEncContext *s = &v->s;
  3087. GetBitContext *gb = &s->gb;
  3088. int i, j;
  3089. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3090. int cbp; /* cbp decoding stuff */
  3091. int mqdiff, mquant; /* MB quantization */
  3092. int ttmb = v->ttfrm; /* MB Transform type */
  3093. int status;
  3094. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3095. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3096. int mb_has_coeffs = 1; /* last_flag */
  3097. int dmv_x, dmv_y; /* Differential MV components */
  3098. int index, index1; /* LUT indices */
  3099. int val, sign; /* temp values */
  3100. int first_block = 1;
  3101. int dst_idx, off;
  3102. int skipped, fourmv;
  3103. mquant = v->pq; /* Loosy initialization */
  3104. if (v->mv_type_is_raw)
  3105. fourmv = get_bits1(gb);
  3106. else
  3107. fourmv = v->mv_type_mb_plane[mb_pos];
  3108. if (v->skip_is_raw)
  3109. skipped = get_bits1(gb);
  3110. else
  3111. skipped = v->s.mbskip_table[mb_pos];
  3112. s->dsp.clear_blocks(s->block[0]);
  3113. if (!fourmv) /* 1MV mode */
  3114. {
  3115. if (!skipped)
  3116. {
  3117. GET_MVDATA(dmv_x, dmv_y);
  3118. if (s->mb_intra) {
  3119. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3120. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3121. }
  3122. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3123. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3124. /* FIXME Set DC val for inter block ? */
  3125. if (s->mb_intra && !mb_has_coeffs)
  3126. {
  3127. GET_MQUANT();
  3128. s->ac_pred = get_bits(gb, 1);
  3129. cbp = 0;
  3130. }
  3131. else if (mb_has_coeffs)
  3132. {
  3133. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3134. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3135. GET_MQUANT();
  3136. }
  3137. else
  3138. {
  3139. mquant = v->pq;
  3140. cbp = 0;
  3141. }
  3142. s->current_picture.qscale_table[mb_pos] = mquant;
  3143. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3144. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3145. VC1_TTMB_VLC_BITS, 2);
  3146. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3147. dst_idx = 0;
  3148. for (i=0; i<6; i++)
  3149. {
  3150. s->dc_val[0][s->block_index[i]] = 0;
  3151. dst_idx += i >> 2;
  3152. val = ((cbp >> (5 - i)) & 1);
  3153. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3154. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3155. if(s->mb_intra) {
  3156. /* check if prediction blocks A and C are available */
  3157. v->a_avail = v->c_avail = 0;
  3158. if(i == 2 || i == 3 || !s->first_slice_line)
  3159. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3160. if(i == 1 || i == 3 || s->mb_x)
  3161. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3162. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3163. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3164. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3165. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3166. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3167. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  3168. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3169. if(v->pq >= 9 && v->overlap) {
  3170. if(v->c_avail)
  3171. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3172. if(v->a_avail)
  3173. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3174. }
  3175. } else if(val) {
  3176. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3177. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3178. first_block = 0;
  3179. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3180. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3181. }
  3182. }
  3183. }
  3184. else //Skipped
  3185. {
  3186. s->mb_intra = 0;
  3187. for(i = 0; i < 6; i++) {
  3188. v->mb_type[0][s->block_index[i]] = 0;
  3189. s->dc_val[0][s->block_index[i]] = 0;
  3190. }
  3191. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3192. s->current_picture.qscale_table[mb_pos] = 0;
  3193. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3194. vc1_mc_1mv(v, 0);
  3195. return 0;
  3196. }
  3197. } //1MV mode
  3198. else //4MV mode
  3199. {
  3200. if (!skipped /* unskipped MB */)
  3201. {
  3202. int intra_count = 0, coded_inter = 0;
  3203. int is_intra[6], is_coded[6];
  3204. /* Get CBPCY */
  3205. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3206. for (i=0; i<6; i++)
  3207. {
  3208. val = ((cbp >> (5 - i)) & 1);
  3209. s->dc_val[0][s->block_index[i]] = 0;
  3210. s->mb_intra = 0;
  3211. if(i < 4) {
  3212. dmv_x = dmv_y = 0;
  3213. s->mb_intra = 0;
  3214. mb_has_coeffs = 0;
  3215. if(val) {
  3216. GET_MVDATA(dmv_x, dmv_y);
  3217. }
  3218. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3219. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3220. intra_count += s->mb_intra;
  3221. is_intra[i] = s->mb_intra;
  3222. is_coded[i] = mb_has_coeffs;
  3223. }
  3224. if(i&4){
  3225. is_intra[i] = (intra_count >= 3);
  3226. is_coded[i] = val;
  3227. }
  3228. if(i == 4) vc1_mc_4mv_chroma(v);
  3229. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3230. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3231. }
  3232. // if there are no coded blocks then don't do anything more
  3233. if(!intra_count && !coded_inter) return 0;
  3234. dst_idx = 0;
  3235. GET_MQUANT();
  3236. s->current_picture.qscale_table[mb_pos] = mquant;
  3237. /* test if block is intra and has pred */
  3238. {
  3239. int intrapred = 0;
  3240. for(i=0; i<6; i++)
  3241. if(is_intra[i]) {
  3242. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3243. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3244. intrapred = 1;
  3245. break;
  3246. }
  3247. }
  3248. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3249. else s->ac_pred = 0;
  3250. }
  3251. if (!v->ttmbf && coded_inter)
  3252. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3253. for (i=0; i<6; i++)
  3254. {
  3255. dst_idx += i >> 2;
  3256. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3257. s->mb_intra = is_intra[i];
  3258. if (is_intra[i]) {
  3259. /* check if prediction blocks A and C are available */
  3260. v->a_avail = v->c_avail = 0;
  3261. if(i == 2 || i == 3 || !s->first_slice_line)
  3262. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3263. if(i == 1 || i == 3 || s->mb_x)
  3264. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3265. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3266. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3267. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3268. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3269. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3270. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  3271. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3272. if(v->pq >= 9 && v->overlap) {
  3273. if(v->c_avail)
  3274. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3275. if(v->a_avail)
  3276. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3277. }
  3278. } else if(is_coded[i]) {
  3279. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3280. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3281. first_block = 0;
  3282. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3283. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3284. }
  3285. }
  3286. return status;
  3287. }
  3288. else //Skipped MB
  3289. {
  3290. s->mb_intra = 0;
  3291. s->current_picture.qscale_table[mb_pos] = 0;
  3292. for (i=0; i<6; i++) {
  3293. v->mb_type[0][s->block_index[i]] = 0;
  3294. s->dc_val[0][s->block_index[i]] = 0;
  3295. }
  3296. for (i=0; i<4; i++)
  3297. {
  3298. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3299. vc1_mc_4mv_luma(v, i);
  3300. }
  3301. vc1_mc_4mv_chroma(v);
  3302. s->current_picture.qscale_table[mb_pos] = 0;
  3303. return 0;
  3304. }
  3305. }
  3306. /* Should never happen */
  3307. return -1;
  3308. }
  3309. /** Decode one B-frame MB (in Main profile)
  3310. */
  3311. static void vc1_decode_b_mb(VC1Context *v)
  3312. {
  3313. MpegEncContext *s = &v->s;
  3314. GetBitContext *gb = &s->gb;
  3315. int i, j;
  3316. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3317. int cbp = 0; /* cbp decoding stuff */
  3318. int mqdiff, mquant; /* MB quantization */
  3319. int ttmb = v->ttfrm; /* MB Transform type */
  3320. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3321. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3322. int mb_has_coeffs = 0; /* last_flag */
  3323. int index, index1; /* LUT indices */
  3324. int val, sign; /* temp values */
  3325. int first_block = 1;
  3326. int dst_idx, off;
  3327. int skipped, direct;
  3328. int dmv_x[2], dmv_y[2];
  3329. int bmvtype = BMV_TYPE_BACKWARD;
  3330. mquant = v->pq; /* Loosy initialization */
  3331. s->mb_intra = 0;
  3332. if (v->dmb_is_raw)
  3333. direct = get_bits1(gb);
  3334. else
  3335. direct = v->direct_mb_plane[mb_pos];
  3336. if (v->skip_is_raw)
  3337. skipped = get_bits1(gb);
  3338. else
  3339. skipped = v->s.mbskip_table[mb_pos];
  3340. s->dsp.clear_blocks(s->block[0]);
  3341. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3342. for(i = 0; i < 6; i++) {
  3343. v->mb_type[0][s->block_index[i]] = 0;
  3344. s->dc_val[0][s->block_index[i]] = 0;
  3345. }
  3346. s->current_picture.qscale_table[mb_pos] = 0;
  3347. if (!direct) {
  3348. if (!skipped) {
  3349. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3350. dmv_x[1] = dmv_x[0];
  3351. dmv_y[1] = dmv_y[0];
  3352. }
  3353. if(skipped || !s->mb_intra) {
  3354. bmvtype = decode012(gb);
  3355. switch(bmvtype) {
  3356. case 0:
  3357. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3358. break;
  3359. case 1:
  3360. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3361. break;
  3362. case 2:
  3363. bmvtype = BMV_TYPE_INTERPOLATED;
  3364. dmv_x[0] = dmv_y[0] = 0;
  3365. }
  3366. }
  3367. }
  3368. for(i = 0; i < 6; i++)
  3369. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3370. if (skipped) {
  3371. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3372. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3373. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3374. return;
  3375. }
  3376. if (direct) {
  3377. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3378. GET_MQUANT();
  3379. s->mb_intra = 0;
  3380. mb_has_coeffs = 0;
  3381. s->current_picture.qscale_table[mb_pos] = mquant;
  3382. if(!v->ttmbf)
  3383. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3384. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3385. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3386. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3387. } else {
  3388. if(!mb_has_coeffs && !s->mb_intra) {
  3389. /* no coded blocks - effectively skipped */
  3390. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3391. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3392. return;
  3393. }
  3394. if(s->mb_intra && !mb_has_coeffs) {
  3395. GET_MQUANT();
  3396. s->current_picture.qscale_table[mb_pos] = mquant;
  3397. s->ac_pred = get_bits1(gb);
  3398. cbp = 0;
  3399. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3400. } else {
  3401. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3402. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3403. if(!mb_has_coeffs) {
  3404. /* interpolated skipped block */
  3405. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3406. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3407. return;
  3408. }
  3409. }
  3410. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3411. if(!s->mb_intra) {
  3412. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3413. }
  3414. if(s->mb_intra)
  3415. s->ac_pred = get_bits1(gb);
  3416. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3417. GET_MQUANT();
  3418. s->current_picture.qscale_table[mb_pos] = mquant;
  3419. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3420. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3421. }
  3422. }
  3423. dst_idx = 0;
  3424. for (i=0; i<6; i++)
  3425. {
  3426. s->dc_val[0][s->block_index[i]] = 0;
  3427. dst_idx += i >> 2;
  3428. val = ((cbp >> (5 - i)) & 1);
  3429. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3430. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3431. if(s->mb_intra) {
  3432. /* check if prediction blocks A and C are available */
  3433. v->a_avail = v->c_avail = 0;
  3434. if(i == 2 || i == 3 || !s->first_slice_line)
  3435. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3436. if(i == 1 || i == 3 || s->mb_x)
  3437. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3438. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3439. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3440. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3441. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3442. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3443. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3444. } else if(val) {
  3445. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3446. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3447. first_block = 0;
  3448. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3449. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3450. }
  3451. }
  3452. }
  3453. /** Decode blocks of I-frame
  3454. */
  3455. static void vc1_decode_i_blocks(VC1Context *v)
  3456. {
  3457. int k, j;
  3458. MpegEncContext *s = &v->s;
  3459. int cbp, val;
  3460. uint8_t *coded_val;
  3461. int mb_pos;
  3462. /* select codingmode used for VLC tables selection */
  3463. switch(v->y_ac_table_index){
  3464. case 0:
  3465. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3466. break;
  3467. case 1:
  3468. v->codingset = CS_HIGH_MOT_INTRA;
  3469. break;
  3470. case 2:
  3471. v->codingset = CS_MID_RATE_INTRA;
  3472. break;
  3473. }
  3474. switch(v->c_ac_table_index){
  3475. case 0:
  3476. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3477. break;
  3478. case 1:
  3479. v->codingset2 = CS_HIGH_MOT_INTER;
  3480. break;
  3481. case 2:
  3482. v->codingset2 = CS_MID_RATE_INTER;
  3483. break;
  3484. }
  3485. /* Set DC scale - y and c use the same */
  3486. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3487. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3488. //do frame decode
  3489. s->mb_x = s->mb_y = 0;
  3490. s->mb_intra = 1;
  3491. s->first_slice_line = 1;
  3492. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3493. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3494. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3495. ff_init_block_index(s);
  3496. ff_update_block_index(s);
  3497. s->dsp.clear_blocks(s->block[0]);
  3498. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3499. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3500. s->current_picture.qscale_table[mb_pos] = v->pq;
  3501. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3502. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3503. // do actual MB decoding and displaying
  3504. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3505. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3506. for(k = 0; k < 6; k++) {
  3507. val = ((cbp >> (5 - k)) & 1);
  3508. if (k < 4) {
  3509. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3510. val = val ^ pred;
  3511. *coded_val = val;
  3512. }
  3513. cbp |= val << (5 - k);
  3514. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3515. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3516. if(v->pq >= 9 && v->overlap) {
  3517. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3518. }
  3519. }
  3520. vc1_put_block(v, s->block);
  3521. if(v->pq >= 9 && v->overlap) {
  3522. if(s->mb_x) {
  3523. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3524. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3525. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3526. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3527. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3528. }
  3529. }
  3530. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3531. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3532. if(!s->first_slice_line) {
  3533. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3534. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3535. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3536. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3537. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3538. }
  3539. }
  3540. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3541. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3542. }
  3543. if(get_bits_count(&s->gb) > v->bits) {
  3544. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3545. return;
  3546. }
  3547. }
  3548. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3549. s->first_slice_line = 0;
  3550. }
  3551. }
  3552. /** Decode blocks of I-frame for advanced profile
  3553. */
  3554. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3555. {
  3556. int k, j;
  3557. MpegEncContext *s = &v->s;
  3558. int cbp, val;
  3559. uint8_t *coded_val;
  3560. int mb_pos;
  3561. int mquant = v->pq;
  3562. int mqdiff;
  3563. int overlap;
  3564. GetBitContext *gb = &s->gb;
  3565. /* select codingmode used for VLC tables selection */
  3566. switch(v->y_ac_table_index){
  3567. case 0:
  3568. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3569. break;
  3570. case 1:
  3571. v->codingset = CS_HIGH_MOT_INTRA;
  3572. break;
  3573. case 2:
  3574. v->codingset = CS_MID_RATE_INTRA;
  3575. break;
  3576. }
  3577. switch(v->c_ac_table_index){
  3578. case 0:
  3579. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3580. break;
  3581. case 1:
  3582. v->codingset2 = CS_HIGH_MOT_INTER;
  3583. break;
  3584. case 2:
  3585. v->codingset2 = CS_MID_RATE_INTER;
  3586. break;
  3587. }
  3588. //do frame decode
  3589. s->mb_x = s->mb_y = 0;
  3590. s->mb_intra = 1;
  3591. s->first_slice_line = 1;
  3592. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3593. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3594. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3595. ff_init_block_index(s);
  3596. ff_update_block_index(s);
  3597. s->dsp.clear_blocks(s->block[0]);
  3598. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3599. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3600. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3601. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3602. // do actual MB decoding and displaying
  3603. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3604. if(v->acpred_is_raw)
  3605. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3606. else
  3607. v->s.ac_pred = v->acpred_plane[mb_pos];
  3608. if(v->condover == CONDOVER_SELECT) {
  3609. if(v->overflg_is_raw)
  3610. overlap = get_bits(&v->s.gb, 1);
  3611. else
  3612. overlap = v->over_flags_plane[mb_pos];
  3613. } else
  3614. overlap = (v->condover == CONDOVER_ALL);
  3615. GET_MQUANT();
  3616. s->current_picture.qscale_table[mb_pos] = mquant;
  3617. /* Set DC scale - y and c use the same */
  3618. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3619. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3620. for(k = 0; k < 6; k++) {
  3621. val = ((cbp >> (5 - k)) & 1);
  3622. if (k < 4) {
  3623. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3624. val = val ^ pred;
  3625. *coded_val = val;
  3626. }
  3627. cbp |= val << (5 - k);
  3628. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3629. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3630. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3631. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3632. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3633. }
  3634. vc1_put_block(v, s->block);
  3635. if(overlap) {
  3636. if(s->mb_x) {
  3637. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3638. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3639. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3640. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3641. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3642. }
  3643. }
  3644. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3645. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3646. if(!s->first_slice_line) {
  3647. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3648. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3649. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3650. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3651. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3652. }
  3653. }
  3654. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3655. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3656. }
  3657. if(get_bits_count(&s->gb) > v->bits) {
  3658. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3659. return;
  3660. }
  3661. }
  3662. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3663. s->first_slice_line = 0;
  3664. }
  3665. }
  3666. static void vc1_decode_p_blocks(VC1Context *v)
  3667. {
  3668. MpegEncContext *s = &v->s;
  3669. /* select codingmode used for VLC tables selection */
  3670. switch(v->c_ac_table_index){
  3671. case 0:
  3672. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3673. break;
  3674. case 1:
  3675. v->codingset = CS_HIGH_MOT_INTRA;
  3676. break;
  3677. case 2:
  3678. v->codingset = CS_MID_RATE_INTRA;
  3679. break;
  3680. }
  3681. switch(v->c_ac_table_index){
  3682. case 0:
  3683. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3684. break;
  3685. case 1:
  3686. v->codingset2 = CS_HIGH_MOT_INTER;
  3687. break;
  3688. case 2:
  3689. v->codingset2 = CS_MID_RATE_INTER;
  3690. break;
  3691. }
  3692. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3693. s->first_slice_line = 1;
  3694. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3695. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3696. ff_init_block_index(s);
  3697. ff_update_block_index(s);
  3698. s->dsp.clear_blocks(s->block[0]);
  3699. vc1_decode_p_mb(v);
  3700. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3701. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3702. return;
  3703. }
  3704. }
  3705. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3706. s->first_slice_line = 0;
  3707. }
  3708. }
  3709. static void vc1_decode_b_blocks(VC1Context *v)
  3710. {
  3711. MpegEncContext *s = &v->s;
  3712. /* select codingmode used for VLC tables selection */
  3713. switch(v->c_ac_table_index){
  3714. case 0:
  3715. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3716. break;
  3717. case 1:
  3718. v->codingset = CS_HIGH_MOT_INTRA;
  3719. break;
  3720. case 2:
  3721. v->codingset = CS_MID_RATE_INTRA;
  3722. break;
  3723. }
  3724. switch(v->c_ac_table_index){
  3725. case 0:
  3726. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3727. break;
  3728. case 1:
  3729. v->codingset2 = CS_HIGH_MOT_INTER;
  3730. break;
  3731. case 2:
  3732. v->codingset2 = CS_MID_RATE_INTER;
  3733. break;
  3734. }
  3735. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3736. s->first_slice_line = 1;
  3737. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3738. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3739. ff_init_block_index(s);
  3740. ff_update_block_index(s);
  3741. s->dsp.clear_blocks(s->block[0]);
  3742. vc1_decode_b_mb(v);
  3743. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3744. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3745. return;
  3746. }
  3747. }
  3748. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3749. s->first_slice_line = 0;
  3750. }
  3751. }
  3752. static void vc1_decode_skip_blocks(VC1Context *v)
  3753. {
  3754. MpegEncContext *s = &v->s;
  3755. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3756. s->first_slice_line = 1;
  3757. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3758. s->mb_x = 0;
  3759. ff_init_block_index(s);
  3760. ff_update_block_index(s);
  3761. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3762. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3763. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3764. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3765. s->first_slice_line = 0;
  3766. }
  3767. s->pict_type = P_TYPE;
  3768. }
  3769. static void vc1_decode_blocks(VC1Context *v)
  3770. {
  3771. v->s.esc3_level_length = 0;
  3772. switch(v->s.pict_type) {
  3773. case I_TYPE:
  3774. if(v->profile == PROFILE_ADVANCED)
  3775. vc1_decode_i_blocks_adv(v);
  3776. else
  3777. vc1_decode_i_blocks(v);
  3778. break;
  3779. case P_TYPE:
  3780. if(v->p_frame_skipped)
  3781. vc1_decode_skip_blocks(v);
  3782. else
  3783. vc1_decode_p_blocks(v);
  3784. break;
  3785. case B_TYPE:
  3786. if(v->bi_type){
  3787. if(v->profile == PROFILE_ADVANCED)
  3788. vc1_decode_i_blocks_adv(v);
  3789. else
  3790. vc1_decode_i_blocks(v);
  3791. }else
  3792. vc1_decode_b_blocks(v);
  3793. break;
  3794. }
  3795. }
  3796. #define IS_MARKER(x) (((x) & ~0xFF) == VC1_CODE_RES0)
  3797. /** Find VC-1 marker in buffer
  3798. * @return position where next marker starts or end of buffer if no marker found
  3799. */
  3800. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3801. {
  3802. uint32_t mrk = 0xFFFFFFFF;
  3803. if(end-src < 4) return end;
  3804. while(src < end){
  3805. mrk = (mrk << 8) | *src++;
  3806. if(IS_MARKER(mrk))
  3807. return src-4;
  3808. }
  3809. return end;
  3810. }
  3811. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3812. {
  3813. int dsize = 0, i;
  3814. if(size < 4){
  3815. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3816. return size;
  3817. }
  3818. for(i = 0; i < size; i++, src++) {
  3819. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3820. dst[dsize++] = src[1];
  3821. src++;
  3822. i++;
  3823. } else
  3824. dst[dsize++] = *src;
  3825. }
  3826. return dsize;
  3827. }
  3828. /** Initialize a VC1/WMV3 decoder
  3829. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3830. * @todo TODO: Decypher remaining bits in extra_data
  3831. */
  3832. static int vc1_decode_init(AVCodecContext *avctx)
  3833. {
  3834. VC1Context *v = avctx->priv_data;
  3835. MpegEncContext *s = &v->s;
  3836. GetBitContext gb;
  3837. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3838. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3839. avctx->pix_fmt = PIX_FMT_YUV420P;
  3840. else
  3841. avctx->pix_fmt = PIX_FMT_GRAY8;
  3842. v->s.avctx = avctx;
  3843. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3844. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3845. if(ff_h263_decode_init(avctx) < 0)
  3846. return -1;
  3847. if (vc1_init_common(v) < 0) return -1;
  3848. avctx->coded_width = avctx->width;
  3849. avctx->coded_height = avctx->height;
  3850. if (avctx->codec_id == CODEC_ID_WMV3)
  3851. {
  3852. int count = 0;
  3853. // looks like WMV3 has a sequence header stored in the extradata
  3854. // advanced sequence header may be before the first frame
  3855. // the last byte of the extradata is a version number, 1 for the
  3856. // samples we can decode
  3857. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3858. if (decode_sequence_header(avctx, &gb) < 0)
  3859. return -1;
  3860. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3861. if (count>0)
  3862. {
  3863. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3864. count, get_bits(&gb, count));
  3865. }
  3866. else if (count < 0)
  3867. {
  3868. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3869. }
  3870. } else { // VC1/WVC1
  3871. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3872. uint8_t *next; int size, buf2_size;
  3873. uint8_t *buf2 = NULL;
  3874. int seq_inited = 0, ep_inited = 0;
  3875. if(avctx->extradata_size < 16) {
  3876. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3877. return -1;
  3878. }
  3879. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3880. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3881. next = start;
  3882. for(; next < end; start = next){
  3883. next = find_next_marker(start + 4, end);
  3884. size = next - start - 4;
  3885. if(size <= 0) continue;
  3886. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3887. init_get_bits(&gb, buf2, buf2_size * 8);
  3888. switch(AV_RB32(start)){
  3889. case VC1_CODE_SEQHDR:
  3890. if(decode_sequence_header(avctx, &gb) < 0){
  3891. av_free(buf2);
  3892. return -1;
  3893. }
  3894. seq_inited = 1;
  3895. break;
  3896. case VC1_CODE_ENTRYPOINT:
  3897. if(decode_entry_point(avctx, &gb) < 0){
  3898. av_free(buf2);
  3899. return -1;
  3900. }
  3901. ep_inited = 1;
  3902. break;
  3903. }
  3904. }
  3905. av_free(buf2);
  3906. if(!seq_inited || !ep_inited){
  3907. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3908. return -1;
  3909. }
  3910. }
  3911. avctx->has_b_frames= !!(avctx->max_b_frames);
  3912. s->low_delay = !avctx->has_b_frames;
  3913. s->mb_width = (avctx->coded_width+15)>>4;
  3914. s->mb_height = (avctx->coded_height+15)>>4;
  3915. /* Allocate mb bitplanes */
  3916. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3917. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3918. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3919. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3920. /* allocate block type info in that way so it could be used with s->block_index[] */
  3921. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3922. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3923. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3924. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3925. /* Init coded blocks info */
  3926. if (v->profile == PROFILE_ADVANCED)
  3927. {
  3928. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3929. // return -1;
  3930. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3931. // return -1;
  3932. }
  3933. return 0;
  3934. }
  3935. /** Decode a VC1/WMV3 frame
  3936. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3937. */
  3938. static int vc1_decode_frame(AVCodecContext *avctx,
  3939. void *data, int *data_size,
  3940. uint8_t *buf, int buf_size)
  3941. {
  3942. VC1Context *v = avctx->priv_data;
  3943. MpegEncContext *s = &v->s;
  3944. AVFrame *pict = data;
  3945. uint8_t *buf2 = NULL;
  3946. /* no supplementary picture */
  3947. if (buf_size == 0) {
  3948. /* special case for last picture */
  3949. if (s->low_delay==0 && s->next_picture_ptr) {
  3950. *pict= *(AVFrame*)s->next_picture_ptr;
  3951. s->next_picture_ptr= NULL;
  3952. *data_size = sizeof(AVFrame);
  3953. }
  3954. return 0;
  3955. }
  3956. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3957. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3958. int i= ff_find_unused_picture(s, 0);
  3959. s->current_picture_ptr= &s->picture[i];
  3960. }
  3961. //for advanced profile we may need to parse and unescape data
  3962. if (avctx->codec_id == CODEC_ID_VC1) {
  3963. int buf_size2 = 0;
  3964. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3965. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3966. uint8_t *dst = buf2, *start, *end, *next;
  3967. int size;
  3968. next = buf;
  3969. for(start = buf, end = buf + buf_size; next < end; start = next){
  3970. next = find_next_marker(start + 4, end);
  3971. size = next - start - 4;
  3972. if(size <= 0) continue;
  3973. switch(AV_RB32(start)){
  3974. case VC1_CODE_FRAME:
  3975. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3976. break;
  3977. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3978. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3979. init_get_bits(&s->gb, buf2, buf_size2*8);
  3980. decode_entry_point(avctx, &s->gb);
  3981. break;
  3982. case VC1_CODE_SLICE:
  3983. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3984. av_free(buf2);
  3985. return -1;
  3986. }
  3987. }
  3988. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3989. uint8_t *divider;
  3990. divider = find_next_marker(buf, buf + buf_size);
  3991. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3992. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3993. return -1;
  3994. }
  3995. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3996. // TODO
  3997. av_free(buf2);return -1;
  3998. }else{
  3999. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  4000. }
  4001. init_get_bits(&s->gb, buf2, buf_size2*8);
  4002. } else
  4003. init_get_bits(&s->gb, buf, buf_size*8);
  4004. // do parse frame header
  4005. if(v->profile < PROFILE_ADVANCED) {
  4006. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  4007. av_free(buf2);
  4008. return -1;
  4009. }
  4010. } else {
  4011. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  4012. av_free(buf2);
  4013. return -1;
  4014. }
  4015. }
  4016. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  4017. av_free(buf2);
  4018. return -1;
  4019. }
  4020. // for hurry_up==5
  4021. s->current_picture.pict_type= s->pict_type;
  4022. s->current_picture.key_frame= s->pict_type == I_TYPE;
  4023. /* skip B-frames if we don't have reference frames */
  4024. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  4025. av_free(buf2);
  4026. return -1;//buf_size;
  4027. }
  4028. /* skip b frames if we are in a hurry */
  4029. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  4030. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  4031. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  4032. || avctx->skip_frame >= AVDISCARD_ALL) {
  4033. av_free(buf2);
  4034. return buf_size;
  4035. }
  4036. /* skip everything if we are in a hurry>=5 */
  4037. if(avctx->hurry_up>=5) {
  4038. av_free(buf2);
  4039. return -1;//buf_size;
  4040. }
  4041. if(s->next_p_frame_damaged){
  4042. if(s->pict_type==B_TYPE)
  4043. return buf_size;
  4044. else
  4045. s->next_p_frame_damaged=0;
  4046. }
  4047. if(MPV_frame_start(s, avctx) < 0) {
  4048. av_free(buf2);
  4049. return -1;
  4050. }
  4051. ff_er_frame_start(s);
  4052. v->bits = buf_size * 8;
  4053. vc1_decode_blocks(v);
  4054. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  4055. // if(get_bits_count(&s->gb) > buf_size * 8)
  4056. // return -1;
  4057. ff_er_frame_end(s);
  4058. MPV_frame_end(s);
  4059. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  4060. assert(s->current_picture.pict_type == s->pict_type);
  4061. if (s->pict_type == B_TYPE || s->low_delay) {
  4062. *pict= *(AVFrame*)s->current_picture_ptr;
  4063. } else if (s->last_picture_ptr != NULL) {
  4064. *pict= *(AVFrame*)s->last_picture_ptr;
  4065. }
  4066. if(s->last_picture_ptr || s->low_delay){
  4067. *data_size = sizeof(AVFrame);
  4068. ff_print_debug_info(s, pict);
  4069. }
  4070. /* Return the Picture timestamp as the frame number */
  4071. /* we substract 1 because it is added on utils.c */
  4072. avctx->frame_number = s->picture_number - 1;
  4073. av_free(buf2);
  4074. return buf_size;
  4075. }
  4076. /** Close a VC1/WMV3 decoder
  4077. * @warning Initial try at using MpegEncContext stuff
  4078. */
  4079. static int vc1_decode_end(AVCodecContext *avctx)
  4080. {
  4081. VC1Context *v = avctx->priv_data;
  4082. av_freep(&v->hrd_rate);
  4083. av_freep(&v->hrd_buffer);
  4084. MPV_common_end(&v->s);
  4085. av_freep(&v->mv_type_mb_plane);
  4086. av_freep(&v->direct_mb_plane);
  4087. av_freep(&v->acpred_plane);
  4088. av_freep(&v->over_flags_plane);
  4089. av_freep(&v->mb_type_base);
  4090. return 0;
  4091. }
  4092. AVCodec vc1_decoder = {
  4093. "vc1",
  4094. CODEC_TYPE_VIDEO,
  4095. CODEC_ID_VC1,
  4096. sizeof(VC1Context),
  4097. vc1_decode_init,
  4098. NULL,
  4099. vc1_decode_end,
  4100. vc1_decode_frame,
  4101. CODEC_CAP_DELAY,
  4102. NULL
  4103. };
  4104. AVCodec wmv3_decoder = {
  4105. "wmv3",
  4106. CODEC_TYPE_VIDEO,
  4107. CODEC_ID_WMV3,
  4108. sizeof(VC1Context),
  4109. vc1_decode_init,
  4110. NULL,
  4111. vc1_decode_end,
  4112. vc1_decode_frame,
  4113. CODEC_CAP_DELAY,
  4114. NULL
  4115. };
  4116. #ifdef CONFIG_VC1_PARSER
  4117. /**
  4118. * finds the end of the current frame in the bitstream.
  4119. * @return the position of the first byte of the next frame, or -1
  4120. */
  4121. static int vc1_find_frame_end(ParseContext *pc, const uint8_t *buf,
  4122. int buf_size) {
  4123. int pic_found, i;
  4124. uint32_t state;
  4125. pic_found= pc->frame_start_found;
  4126. state= pc->state;
  4127. i=0;
  4128. if(!pic_found){
  4129. for(i=0; i<buf_size; i++){
  4130. state= (state<<8) | buf[i];
  4131. if(state == VC1_CODE_FRAME || state == VC1_CODE_FIELD){
  4132. i++;
  4133. pic_found=1;
  4134. break;
  4135. }
  4136. }
  4137. }
  4138. if(pic_found){
  4139. /* EOF considered as end of frame */
  4140. if (buf_size == 0)
  4141. return 0;
  4142. for(; i<buf_size; i++){
  4143. state= (state<<8) | buf[i];
  4144. if(IS_MARKER(state) && state != VC1_CODE_FIELD && state != VC1_CODE_SLICE){
  4145. pc->frame_start_found=0;
  4146. pc->state=-1;
  4147. return i-3;
  4148. }
  4149. }
  4150. }
  4151. pc->frame_start_found= pic_found;
  4152. pc->state= state;
  4153. return END_NOT_FOUND;
  4154. }
  4155. static int vc1_parse(AVCodecParserContext *s,
  4156. AVCodecContext *avctx,
  4157. uint8_t **poutbuf, int *poutbuf_size,
  4158. const uint8_t *buf, int buf_size)
  4159. {
  4160. ParseContext *pc = s->priv_data;
  4161. int next;
  4162. if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){
  4163. next= buf_size;
  4164. }else{
  4165. next= vc1_find_frame_end(pc, buf, buf_size);
  4166. if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) {
  4167. *poutbuf = NULL;
  4168. *poutbuf_size = 0;
  4169. return buf_size;
  4170. }
  4171. }
  4172. *poutbuf = (uint8_t *)buf;
  4173. *poutbuf_size = buf_size;
  4174. return next;
  4175. }
  4176. int vc1_split(AVCodecContext *avctx,
  4177. const uint8_t *buf, int buf_size)
  4178. {
  4179. int i;
  4180. uint32_t state= -1;
  4181. for(i=0; i<buf_size; i++){
  4182. state= (state<<8) | buf[i];
  4183. if(IS_MARKER(state) && state != VC1_CODE_SEQHDR && state != VC1_CODE_ENTRYPOINT)
  4184. return i-3;
  4185. }
  4186. return 0;
  4187. }
  4188. AVCodecParser vc1_parser = {
  4189. { CODEC_ID_VC1 },
  4190. sizeof(ParseContext1),
  4191. NULL,
  4192. vc1_parse,
  4193. ff_parse1_close,
  4194. vc1_split,
  4195. };
  4196. #endif /* CONFIG_VC1_PARSER */