You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2771 lines
82KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "mpegaudio.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  34. audio decoder */
  35. #ifdef CONFIG_MPEGAUDIO_HP
  36. #define USE_HIGHPRECISION
  37. #endif
  38. #ifdef USE_HIGHPRECISION
  39. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  40. #define WFRAC_BITS 16 /* fractional bits for window */
  41. #else
  42. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  43. #define WFRAC_BITS 14 /* fractional bits for window */
  44. #endif
  45. #define FRAC_ONE (1 << FRAC_BITS)
  46. #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  47. #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  48. #define FIX(a) ((int)((a) * FRAC_ONE))
  49. /* WARNING: only correct for posititive numbers */
  50. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  51. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  52. #if FRAC_BITS <= 15
  53. typedef int16_t MPA_INT;
  54. #else
  55. typedef int32_t MPA_INT;
  56. #endif
  57. /****************/
  58. #define HEADER_SIZE 4
  59. #define BACKSTEP_SIZE 512
  60. struct GranuleDef;
  61. typedef struct MPADecodeContext {
  62. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  63. int inbuf_index;
  64. uint8_t *inbuf_ptr, *inbuf;
  65. int frame_size;
  66. int free_format_frame_size; /* frame size in case of free format
  67. (zero if currently unknown) */
  68. /* next header (used in free format parsing) */
  69. uint32_t free_format_next_header;
  70. int error_protection;
  71. int layer;
  72. int sample_rate;
  73. int sample_rate_index; /* between 0 and 8 */
  74. int bit_rate;
  75. int old_frame_size;
  76. GetBitContext gb;
  77. int nb_channels;
  78. int mode;
  79. int mode_ext;
  80. int lsf;
  81. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  82. int synth_buf_offset[MPA_MAX_CHANNELS];
  83. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  84. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  85. #ifdef DEBUG
  86. int frame_count;
  87. #endif
  88. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  89. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  90. } MPADecodeContext;
  91. /* layer 3 "granule" */
  92. typedef struct GranuleDef {
  93. uint8_t scfsi;
  94. int part2_3_length;
  95. int big_values;
  96. int global_gain;
  97. int scalefac_compress;
  98. uint8_t block_type;
  99. uint8_t switch_point;
  100. int table_select[3];
  101. int subblock_gain[3];
  102. uint8_t scalefac_scale;
  103. uint8_t count1table_select;
  104. int region_size[3]; /* number of huffman codes in each region */
  105. int preflag;
  106. int short_start, long_end; /* long/short band indexes */
  107. uint8_t scale_factors[40];
  108. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  109. } GranuleDef;
  110. #define MODE_EXT_MS_STEREO 2
  111. #define MODE_EXT_I_STEREO 1
  112. /* layer 3 huffman tables */
  113. typedef struct HuffTable {
  114. int xsize;
  115. const uint8_t *bits;
  116. const uint16_t *codes;
  117. } HuffTable;
  118. #include "mpegaudiodectab.h"
  119. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  120. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  121. /* vlc structure for decoding layer 3 huffman tables */
  122. static VLC huff_vlc[16];
  123. static uint8_t *huff_code_table[16];
  124. static VLC huff_quad_vlc[2];
  125. /* computed from band_size_long */
  126. static uint16_t band_index_long[9][23];
  127. /* XXX: free when all decoders are closed */
  128. #define TABLE_4_3_SIZE (8191 + 16)
  129. static int8_t *table_4_3_exp;
  130. #if FRAC_BITS <= 15
  131. static uint16_t *table_4_3_value;
  132. #else
  133. static uint32_t *table_4_3_value;
  134. #endif
  135. /* intensity stereo coef table */
  136. static int32_t is_table[2][16];
  137. static int32_t is_table_lsf[2][2][16];
  138. static int32_t csa_table[8][4];
  139. static float csa_table_float[8][4];
  140. static int32_t mdct_win[8][36];
  141. /* lower 2 bits: modulo 3, higher bits: shift */
  142. static uint16_t scale_factor_modshift[64];
  143. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  144. static int32_t scale_factor_mult[15][3];
  145. /* mult table for layer 2 group quantization */
  146. #define SCALE_GEN(v) \
  147. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  148. static int32_t scale_factor_mult2[3][3] = {
  149. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  150. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  151. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  152. };
  153. /* 2^(n/4) */
  154. static uint32_t scale_factor_mult3[4] = {
  155. FIXR(1.0),
  156. FIXR(1.18920711500272106671),
  157. FIXR(1.41421356237309504880),
  158. FIXR(1.68179283050742908605),
  159. };
  160. static MPA_INT window[512] __attribute__((aligned(16)));
  161. /* layer 1 unscaling */
  162. /* n = number of bits of the mantissa minus 1 */
  163. static inline int l1_unscale(int n, int mant, int scale_factor)
  164. {
  165. int shift, mod;
  166. int64_t val;
  167. shift = scale_factor_modshift[scale_factor];
  168. mod = shift & 3;
  169. shift >>= 2;
  170. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  171. shift += n;
  172. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  173. return (int)((val + (1LL << (shift - 1))) >> shift);
  174. }
  175. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  176. {
  177. int shift, mod, val;
  178. shift = scale_factor_modshift[scale_factor];
  179. mod = shift & 3;
  180. shift >>= 2;
  181. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  182. /* NOTE: at this point, 0 <= shift <= 21 */
  183. if (shift > 0)
  184. val = (val + (1 << (shift - 1))) >> shift;
  185. return val;
  186. }
  187. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  188. static inline int l3_unscale(int value, int exponent)
  189. {
  190. #if FRAC_BITS <= 15
  191. unsigned int m;
  192. #else
  193. uint64_t m;
  194. #endif
  195. int e;
  196. e = table_4_3_exp[value];
  197. e += (exponent >> 2);
  198. e = FRAC_BITS - e;
  199. #if FRAC_BITS <= 15
  200. if (e > 31)
  201. e = 31;
  202. #endif
  203. m = table_4_3_value[value];
  204. #if FRAC_BITS <= 15
  205. m = (m * scale_factor_mult3[exponent & 3]);
  206. m = (m + (1 << (e-1))) >> e;
  207. return m;
  208. #else
  209. m = MUL64(m, scale_factor_mult3[exponent & 3]);
  210. m = (m + (uint64_t_C(1) << (e-1))) >> e;
  211. return m;
  212. #endif
  213. }
  214. /* all integer n^(4/3) computation code */
  215. #define DEV_ORDER 13
  216. #define POW_FRAC_BITS 24
  217. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  218. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  219. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  220. static int dev_4_3_coefs[DEV_ORDER];
  221. static int pow_mult3[3] = {
  222. POW_FIX(1.0),
  223. POW_FIX(1.25992104989487316476),
  224. POW_FIX(1.58740105196819947474),
  225. };
  226. static void int_pow_init(void)
  227. {
  228. int i, a;
  229. a = POW_FIX(1.0);
  230. for(i=0;i<DEV_ORDER;i++) {
  231. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  232. dev_4_3_coefs[i] = a;
  233. }
  234. }
  235. /* return the mantissa and the binary exponent */
  236. static int int_pow(int i, int *exp_ptr)
  237. {
  238. int e, er, eq, j;
  239. int a, a1;
  240. /* renormalize */
  241. a = i;
  242. e = POW_FRAC_BITS;
  243. while (a < (1 << (POW_FRAC_BITS - 1))) {
  244. a = a << 1;
  245. e--;
  246. }
  247. a -= (1 << POW_FRAC_BITS);
  248. a1 = 0;
  249. for(j = DEV_ORDER - 1; j >= 0; j--)
  250. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  251. a = (1 << POW_FRAC_BITS) + a1;
  252. /* exponent compute (exact) */
  253. e = e * 4;
  254. er = e % 3;
  255. eq = e / 3;
  256. a = POW_MULL(a, pow_mult3[er]);
  257. while (a >= 2 * POW_FRAC_ONE) {
  258. a = a >> 1;
  259. eq++;
  260. }
  261. /* convert to float */
  262. while (a < POW_FRAC_ONE) {
  263. a = a << 1;
  264. eq--;
  265. }
  266. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  267. #if POW_FRAC_BITS > FRAC_BITS
  268. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  269. /* correct overflow */
  270. if (a >= 2 * (1 << FRAC_BITS)) {
  271. a = a >> 1;
  272. eq++;
  273. }
  274. #endif
  275. *exp_ptr = eq;
  276. return a;
  277. }
  278. static int decode_init(AVCodecContext * avctx)
  279. {
  280. MPADecodeContext *s = avctx->priv_data;
  281. static int init=0;
  282. int i, j, k;
  283. if(avctx->antialias_algo == FF_AA_INT)
  284. s->compute_antialias= compute_antialias_integer;
  285. else
  286. s->compute_antialias= compute_antialias_float;
  287. if (!init && !avctx->parse_only) {
  288. /* scale factors table for layer 1/2 */
  289. for(i=0;i<64;i++) {
  290. int shift, mod;
  291. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  292. shift = (i / 3);
  293. mod = i % 3;
  294. scale_factor_modshift[i] = mod | (shift << 2);
  295. }
  296. /* scale factor multiply for layer 1 */
  297. for(i=0;i<15;i++) {
  298. int n, norm;
  299. n = i + 2;
  300. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  301. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  302. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  303. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  304. dprintf("%d: norm=%x s=%x %x %x\n",
  305. i, norm,
  306. scale_factor_mult[i][0],
  307. scale_factor_mult[i][1],
  308. scale_factor_mult[i][2]);
  309. }
  310. /* window */
  311. /* max = 18760, max sum over all 16 coefs : 44736 */
  312. for(i=0;i<257;i++) {
  313. int v;
  314. v = mpa_enwindow[i];
  315. #if WFRAC_BITS < 16
  316. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  317. #endif
  318. window[i] = v;
  319. if ((i & 63) != 0)
  320. v = -v;
  321. if (i != 0)
  322. window[512 - i] = v;
  323. }
  324. /* huffman decode tables */
  325. huff_code_table[0] = NULL;
  326. for(i=1;i<16;i++) {
  327. const HuffTable *h = &mpa_huff_tables[i];
  328. int xsize, x, y;
  329. unsigned int n;
  330. uint8_t *code_table;
  331. xsize = h->xsize;
  332. n = xsize * xsize;
  333. /* XXX: fail test */
  334. init_vlc(&huff_vlc[i], 8, n,
  335. h->bits, 1, 1, h->codes, 2, 2, 1);
  336. code_table = av_mallocz(n);
  337. j = 0;
  338. for(x=0;x<xsize;x++) {
  339. for(y=0;y<xsize;y++)
  340. code_table[j++] = (x << 4) | y;
  341. }
  342. huff_code_table[i] = code_table;
  343. }
  344. for(i=0;i<2;i++) {
  345. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  346. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  347. }
  348. for(i=0;i<9;i++) {
  349. k = 0;
  350. for(j=0;j<22;j++) {
  351. band_index_long[i][j] = k;
  352. k += band_size_long[i][j];
  353. }
  354. band_index_long[i][22] = k;
  355. }
  356. /* compute n ^ (4/3) and store it in mantissa/exp format */
  357. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  358. if(!table_4_3_exp)
  359. return -1;
  360. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  361. if(!table_4_3_value)
  362. return -1;
  363. int_pow_init();
  364. for(i=1;i<TABLE_4_3_SIZE;i++) {
  365. int e, m;
  366. m = int_pow(i, &e);
  367. #if 0
  368. /* test code */
  369. {
  370. double f, fm;
  371. int e1, m1;
  372. f = pow((double)i, 4.0 / 3.0);
  373. fm = frexp(f, &e1);
  374. m1 = FIXR(2 * fm);
  375. #if FRAC_BITS <= 15
  376. if ((unsigned short)m1 != m1) {
  377. m1 = m1 >> 1;
  378. e1++;
  379. }
  380. #endif
  381. e1--;
  382. if (m != m1 || e != e1) {
  383. printf("%4d: m=%x m1=%x e=%d e1=%d\n",
  384. i, m, m1, e, e1);
  385. }
  386. }
  387. #endif
  388. /* normalized to FRAC_BITS */
  389. table_4_3_value[i] = m;
  390. table_4_3_exp[i] = e;
  391. }
  392. for(i=0;i<7;i++) {
  393. float f;
  394. int v;
  395. if (i != 6) {
  396. f = tan((double)i * M_PI / 12.0);
  397. v = FIXR(f / (1.0 + f));
  398. } else {
  399. v = FIXR(1.0);
  400. }
  401. is_table[0][i] = v;
  402. is_table[1][6 - i] = v;
  403. }
  404. /* invalid values */
  405. for(i=7;i<16;i++)
  406. is_table[0][i] = is_table[1][i] = 0.0;
  407. for(i=0;i<16;i++) {
  408. double f;
  409. int e, k;
  410. for(j=0;j<2;j++) {
  411. e = -(j + 1) * ((i + 1) >> 1);
  412. f = pow(2.0, e / 4.0);
  413. k = i & 1;
  414. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  415. is_table_lsf[j][k][i] = FIXR(1.0);
  416. dprintf("is_table_lsf %d %d: %x %x\n",
  417. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  418. }
  419. }
  420. for(i=0;i<8;i++) {
  421. float ci, cs, ca;
  422. ci = ci_table[i];
  423. cs = 1.0 / sqrt(1.0 + ci * ci);
  424. ca = cs * ci;
  425. csa_table[i][0] = FIX(cs);
  426. csa_table[i][1] = FIX(ca);
  427. csa_table[i][2] = FIX(ca) + FIX(cs);
  428. csa_table[i][3] = FIX(ca) - FIX(cs);
  429. csa_table_float[i][0] = cs;
  430. csa_table_float[i][1] = ca;
  431. csa_table_float[i][2] = ca + cs;
  432. csa_table_float[i][3] = ca - cs;
  433. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  434. }
  435. /* compute mdct windows */
  436. for(i=0;i<36;i++) {
  437. int v;
  438. v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
  439. mdct_win[0][i] = v;
  440. mdct_win[1][i] = v;
  441. mdct_win[3][i] = v;
  442. }
  443. for(i=0;i<6;i++) {
  444. mdct_win[1][18 + i] = FIXR(1.0);
  445. mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
  446. mdct_win[1][30 + i] = FIXR(0.0);
  447. mdct_win[3][i] = FIXR(0.0);
  448. mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  449. mdct_win[3][12 + i] = FIXR(1.0);
  450. }
  451. for(i=0;i<12;i++)
  452. mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  453. /* NOTE: we do frequency inversion adter the MDCT by changing
  454. the sign of the right window coefs */
  455. for(j=0;j<4;j++) {
  456. for(i=0;i<36;i+=2) {
  457. mdct_win[j + 4][i] = mdct_win[j][i];
  458. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  459. }
  460. }
  461. #if defined(DEBUG)
  462. for(j=0;j<8;j++) {
  463. printf("win%d=\n", j);
  464. for(i=0;i<36;i++)
  465. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  466. printf("\n");
  467. }
  468. #endif
  469. init = 1;
  470. }
  471. s->inbuf_index = 0;
  472. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  473. s->inbuf_ptr = s->inbuf;
  474. #ifdef DEBUG
  475. s->frame_count = 0;
  476. #endif
  477. if (avctx->codec_id == CODEC_ID_MP3ADU)
  478. s->adu_mode = 1;
  479. return 0;
  480. }
  481. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  482. /* cos(i*pi/64) */
  483. #define COS0_0 FIXR(0.50060299823519630134)
  484. #define COS0_1 FIXR(0.50547095989754365998)
  485. #define COS0_2 FIXR(0.51544730992262454697)
  486. #define COS0_3 FIXR(0.53104259108978417447)
  487. #define COS0_4 FIXR(0.55310389603444452782)
  488. #define COS0_5 FIXR(0.58293496820613387367)
  489. #define COS0_6 FIXR(0.62250412303566481615)
  490. #define COS0_7 FIXR(0.67480834145500574602)
  491. #define COS0_8 FIXR(0.74453627100229844977)
  492. #define COS0_9 FIXR(0.83934964541552703873)
  493. #define COS0_10 FIXR(0.97256823786196069369)
  494. #define COS0_11 FIXR(1.16943993343288495515)
  495. #define COS0_12 FIXR(1.48416461631416627724)
  496. #define COS0_13 FIXR(2.05778100995341155085)
  497. #define COS0_14 FIXR(3.40760841846871878570)
  498. #define COS0_15 FIXR(10.19000812354805681150)
  499. #define COS1_0 FIXR(0.50241928618815570551)
  500. #define COS1_1 FIXR(0.52249861493968888062)
  501. #define COS1_2 FIXR(0.56694403481635770368)
  502. #define COS1_3 FIXR(0.64682178335999012954)
  503. #define COS1_4 FIXR(0.78815462345125022473)
  504. #define COS1_5 FIXR(1.06067768599034747134)
  505. #define COS1_6 FIXR(1.72244709823833392782)
  506. #define COS1_7 FIXR(5.10114861868916385802)
  507. #define COS2_0 FIXR(0.50979557910415916894)
  508. #define COS2_1 FIXR(0.60134488693504528054)
  509. #define COS2_2 FIXR(0.89997622313641570463)
  510. #define COS2_3 FIXR(2.56291544774150617881)
  511. #define COS3_0 FIXR(0.54119610014619698439)
  512. #define COS3_1 FIXR(1.30656296487637652785)
  513. #define COS4_0 FIXR(0.70710678118654752439)
  514. /* butterfly operator */
  515. #define BF(a, b, c)\
  516. {\
  517. tmp0 = tab[a] + tab[b];\
  518. tmp1 = tab[a] - tab[b];\
  519. tab[a] = tmp0;\
  520. tab[b] = MULL(tmp1, c);\
  521. }
  522. #define BF1(a, b, c, d)\
  523. {\
  524. BF(a, b, COS4_0);\
  525. BF(c, d, -COS4_0);\
  526. tab[c] += tab[d];\
  527. }
  528. #define BF2(a, b, c, d)\
  529. {\
  530. BF(a, b, COS4_0);\
  531. BF(c, d, -COS4_0);\
  532. tab[c] += tab[d];\
  533. tab[a] += tab[c];\
  534. tab[c] += tab[b];\
  535. tab[b] += tab[d];\
  536. }
  537. #define ADD(a, b) tab[a] += tab[b]
  538. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  539. static void dct32(int32_t *out, int32_t *tab)
  540. {
  541. int tmp0, tmp1;
  542. /* pass 1 */
  543. BF(0, 31, COS0_0);
  544. BF(1, 30, COS0_1);
  545. BF(2, 29, COS0_2);
  546. BF(3, 28, COS0_3);
  547. BF(4, 27, COS0_4);
  548. BF(5, 26, COS0_5);
  549. BF(6, 25, COS0_6);
  550. BF(7, 24, COS0_7);
  551. BF(8, 23, COS0_8);
  552. BF(9, 22, COS0_9);
  553. BF(10, 21, COS0_10);
  554. BF(11, 20, COS0_11);
  555. BF(12, 19, COS0_12);
  556. BF(13, 18, COS0_13);
  557. BF(14, 17, COS0_14);
  558. BF(15, 16, COS0_15);
  559. /* pass 2 */
  560. BF(0, 15, COS1_0);
  561. BF(1, 14, COS1_1);
  562. BF(2, 13, COS1_2);
  563. BF(3, 12, COS1_3);
  564. BF(4, 11, COS1_4);
  565. BF(5, 10, COS1_5);
  566. BF(6, 9, COS1_6);
  567. BF(7, 8, COS1_7);
  568. BF(16, 31, -COS1_0);
  569. BF(17, 30, -COS1_1);
  570. BF(18, 29, -COS1_2);
  571. BF(19, 28, -COS1_3);
  572. BF(20, 27, -COS1_4);
  573. BF(21, 26, -COS1_5);
  574. BF(22, 25, -COS1_6);
  575. BF(23, 24, -COS1_7);
  576. /* pass 3 */
  577. BF(0, 7, COS2_0);
  578. BF(1, 6, COS2_1);
  579. BF(2, 5, COS2_2);
  580. BF(3, 4, COS2_3);
  581. BF(8, 15, -COS2_0);
  582. BF(9, 14, -COS2_1);
  583. BF(10, 13, -COS2_2);
  584. BF(11, 12, -COS2_3);
  585. BF(16, 23, COS2_0);
  586. BF(17, 22, COS2_1);
  587. BF(18, 21, COS2_2);
  588. BF(19, 20, COS2_3);
  589. BF(24, 31, -COS2_0);
  590. BF(25, 30, -COS2_1);
  591. BF(26, 29, -COS2_2);
  592. BF(27, 28, -COS2_3);
  593. /* pass 4 */
  594. BF(0, 3, COS3_0);
  595. BF(1, 2, COS3_1);
  596. BF(4, 7, -COS3_0);
  597. BF(5, 6, -COS3_1);
  598. BF(8, 11, COS3_0);
  599. BF(9, 10, COS3_1);
  600. BF(12, 15, -COS3_0);
  601. BF(13, 14, -COS3_1);
  602. BF(16, 19, COS3_0);
  603. BF(17, 18, COS3_1);
  604. BF(20, 23, -COS3_0);
  605. BF(21, 22, -COS3_1);
  606. BF(24, 27, COS3_0);
  607. BF(25, 26, COS3_1);
  608. BF(28, 31, -COS3_0);
  609. BF(29, 30, -COS3_1);
  610. /* pass 5 */
  611. BF1(0, 1, 2, 3);
  612. BF2(4, 5, 6, 7);
  613. BF1(8, 9, 10, 11);
  614. BF2(12, 13, 14, 15);
  615. BF1(16, 17, 18, 19);
  616. BF2(20, 21, 22, 23);
  617. BF1(24, 25, 26, 27);
  618. BF2(28, 29, 30, 31);
  619. /* pass 6 */
  620. ADD( 8, 12);
  621. ADD(12, 10);
  622. ADD(10, 14);
  623. ADD(14, 9);
  624. ADD( 9, 13);
  625. ADD(13, 11);
  626. ADD(11, 15);
  627. out[ 0] = tab[0];
  628. out[16] = tab[1];
  629. out[ 8] = tab[2];
  630. out[24] = tab[3];
  631. out[ 4] = tab[4];
  632. out[20] = tab[5];
  633. out[12] = tab[6];
  634. out[28] = tab[7];
  635. out[ 2] = tab[8];
  636. out[18] = tab[9];
  637. out[10] = tab[10];
  638. out[26] = tab[11];
  639. out[ 6] = tab[12];
  640. out[22] = tab[13];
  641. out[14] = tab[14];
  642. out[30] = tab[15];
  643. ADD(24, 28);
  644. ADD(28, 26);
  645. ADD(26, 30);
  646. ADD(30, 25);
  647. ADD(25, 29);
  648. ADD(29, 27);
  649. ADD(27, 31);
  650. out[ 1] = tab[16] + tab[24];
  651. out[17] = tab[17] + tab[25];
  652. out[ 9] = tab[18] + tab[26];
  653. out[25] = tab[19] + tab[27];
  654. out[ 5] = tab[20] + tab[28];
  655. out[21] = tab[21] + tab[29];
  656. out[13] = tab[22] + tab[30];
  657. out[29] = tab[23] + tab[31];
  658. out[ 3] = tab[24] + tab[20];
  659. out[19] = tab[25] + tab[21];
  660. out[11] = tab[26] + tab[22];
  661. out[27] = tab[27] + tab[23];
  662. out[ 7] = tab[28] + tab[18];
  663. out[23] = tab[29] + tab[19];
  664. out[15] = tab[30] + tab[17];
  665. out[31] = tab[31];
  666. }
  667. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  668. #if FRAC_BITS <= 15
  669. static inline int round_sample(int sum)
  670. {
  671. int sum1;
  672. sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;
  673. if (sum1 < -32768)
  674. sum1 = -32768;
  675. else if (sum1 > 32767)
  676. sum1 = 32767;
  677. return sum1;
  678. }
  679. #if defined(ARCH_POWERPC_405)
  680. /* signed 16x16 -> 32 multiply add accumulate */
  681. #define MACS(rt, ra, rb) \
  682. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  683. /* signed 16x16 -> 32 multiply */
  684. #define MULS(ra, rb) \
  685. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  686. #else
  687. /* signed 16x16 -> 32 multiply add accumulate */
  688. #define MACS(rt, ra, rb) rt += (ra) * (rb)
  689. /* signed 16x16 -> 32 multiply */
  690. #define MULS(ra, rb) ((ra) * (rb))
  691. #endif
  692. #else
  693. static inline int round_sample(int64_t sum)
  694. {
  695. int sum1;
  696. sum1 = (int)((sum + (int64_t_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);
  697. if (sum1 < -32768)
  698. sum1 = -32768;
  699. else if (sum1 > 32767)
  700. sum1 = 32767;
  701. return sum1;
  702. }
  703. #define MULS(ra, rb) MUL64(ra, rb)
  704. #endif
  705. #define SUM8(sum, op, w, p) \
  706. { \
  707. sum op MULS((w)[0 * 64], p[0 * 64]);\
  708. sum op MULS((w)[1 * 64], p[1 * 64]);\
  709. sum op MULS((w)[2 * 64], p[2 * 64]);\
  710. sum op MULS((w)[3 * 64], p[3 * 64]);\
  711. sum op MULS((w)[4 * 64], p[4 * 64]);\
  712. sum op MULS((w)[5 * 64], p[5 * 64]);\
  713. sum op MULS((w)[6 * 64], p[6 * 64]);\
  714. sum op MULS((w)[7 * 64], p[7 * 64]);\
  715. }
  716. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  717. { \
  718. int tmp;\
  719. tmp = p[0 * 64];\
  720. sum1 op1 MULS((w1)[0 * 64], tmp);\
  721. sum2 op2 MULS((w2)[0 * 64], tmp);\
  722. tmp = p[1 * 64];\
  723. sum1 op1 MULS((w1)[1 * 64], tmp);\
  724. sum2 op2 MULS((w2)[1 * 64], tmp);\
  725. tmp = p[2 * 64];\
  726. sum1 op1 MULS((w1)[2 * 64], tmp);\
  727. sum2 op2 MULS((w2)[2 * 64], tmp);\
  728. tmp = p[3 * 64];\
  729. sum1 op1 MULS((w1)[3 * 64], tmp);\
  730. sum2 op2 MULS((w2)[3 * 64], tmp);\
  731. tmp = p[4 * 64];\
  732. sum1 op1 MULS((w1)[4 * 64], tmp);\
  733. sum2 op2 MULS((w2)[4 * 64], tmp);\
  734. tmp = p[5 * 64];\
  735. sum1 op1 MULS((w1)[5 * 64], tmp);\
  736. sum2 op2 MULS((w2)[5 * 64], tmp);\
  737. tmp = p[6 * 64];\
  738. sum1 op1 MULS((w1)[6 * 64], tmp);\
  739. sum2 op2 MULS((w2)[6 * 64], tmp);\
  740. tmp = p[7 * 64];\
  741. sum1 op1 MULS((w1)[7 * 64], tmp);\
  742. sum2 op2 MULS((w2)[7 * 64], tmp);\
  743. }
  744. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  745. 32 samples. */
  746. /* XXX: optimize by avoiding ring buffer usage */
  747. static void synth_filter(MPADecodeContext *s1,
  748. int ch, int16_t *samples, int incr,
  749. int32_t sb_samples[SBLIMIT])
  750. {
  751. int32_t tmp[32];
  752. register MPA_INT *synth_buf;
  753. register const MPA_INT *w, *w2, *p;
  754. int j, offset, v;
  755. int16_t *samples2;
  756. #if FRAC_BITS <= 15
  757. int sum, sum2;
  758. #else
  759. int64_t sum, sum2;
  760. #endif
  761. dct32(tmp, sb_samples);
  762. offset = s1->synth_buf_offset[ch];
  763. synth_buf = s1->synth_buf[ch] + offset;
  764. for(j=0;j<32;j++) {
  765. v = tmp[j];
  766. #if FRAC_BITS <= 15
  767. /* NOTE: can cause a loss in precision if very high amplitude
  768. sound */
  769. if (v > 32767)
  770. v = 32767;
  771. else if (v < -32768)
  772. v = -32768;
  773. #endif
  774. synth_buf[j] = v;
  775. }
  776. /* copy to avoid wrap */
  777. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  778. samples2 = samples + 31 * incr;
  779. w = window;
  780. w2 = window + 31;
  781. sum = 0;
  782. p = synth_buf + 16;
  783. SUM8(sum, +=, w, p);
  784. p = synth_buf + 48;
  785. SUM8(sum, -=, w + 32, p);
  786. *samples = round_sample(sum);
  787. samples += incr;
  788. w++;
  789. /* we calculate two samples at the same time to avoid one memory
  790. access per two sample */
  791. for(j=1;j<16;j++) {
  792. sum = 0;
  793. sum2 = 0;
  794. p = synth_buf + 16 + j;
  795. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  796. p = synth_buf + 48 - j;
  797. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  798. *samples = round_sample(sum);
  799. samples += incr;
  800. *samples2 = round_sample(sum2);
  801. samples2 -= incr;
  802. w++;
  803. w2--;
  804. }
  805. p = synth_buf + 32;
  806. sum = 0;
  807. SUM8(sum, -=, w + 32, p);
  808. *samples = round_sample(sum);
  809. offset = (offset - 32) & 511;
  810. s1->synth_buf_offset[ch] = offset;
  811. }
  812. /* cos(pi*i/24) */
  813. #define C1 FIXR(0.99144486137381041114)
  814. #define C3 FIXR(0.92387953251128675612)
  815. #define C5 FIXR(0.79335334029123516458)
  816. #define C7 FIXR(0.60876142900872063941)
  817. #define C9 FIXR(0.38268343236508977173)
  818. #define C11 FIXR(0.13052619222005159154)
  819. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  820. cases. */
  821. static void imdct12(int *out, int *in)
  822. {
  823. int tmp;
  824. int64_t in1_3, in1_9, in4_3, in4_9;
  825. in1_3 = MUL64(in[1], C3);
  826. in1_9 = MUL64(in[1], C9);
  827. in4_3 = MUL64(in[4], C3);
  828. in4_9 = MUL64(in[4], C9);
  829. tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) +
  830. MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
  831. out[0] = tmp;
  832. out[5] = -tmp;
  833. tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 +
  834. MUL64(in[2] + in[5], C3) - in4_9);
  835. out[1] = tmp;
  836. out[4] = -tmp;
  837. tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
  838. MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
  839. out[2] = tmp;
  840. out[3] = -tmp;
  841. tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) +
  842. MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
  843. out[6] = tmp;
  844. out[11] = tmp;
  845. tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 +
  846. MUL64(in[2] + in[5], C9) + in4_3);
  847. out[7] = tmp;
  848. out[10] = tmp;
  849. tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
  850. MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
  851. out[8] = tmp;
  852. out[9] = tmp;
  853. }
  854. #undef C1
  855. #undef C3
  856. #undef C5
  857. #undef C7
  858. #undef C9
  859. #undef C11
  860. /* cos(pi*i/18) */
  861. #define C1 FIXR(0.98480775301220805936)
  862. #define C2 FIXR(0.93969262078590838405)
  863. #define C3 FIXR(0.86602540378443864676)
  864. #define C4 FIXR(0.76604444311897803520)
  865. #define C5 FIXR(0.64278760968653932632)
  866. #define C6 FIXR(0.5)
  867. #define C7 FIXR(0.34202014332566873304)
  868. #define C8 FIXR(0.17364817766693034885)
  869. /* 0.5 / cos(pi*(2*i+1)/36) */
  870. static const int icos36[9] = {
  871. FIXR(0.50190991877167369479),
  872. FIXR(0.51763809020504152469),
  873. FIXR(0.55168895948124587824),
  874. FIXR(0.61038729438072803416),
  875. FIXR(0.70710678118654752439),
  876. FIXR(0.87172339781054900991),
  877. FIXR(1.18310079157624925896),
  878. FIXR(1.93185165257813657349),
  879. FIXR(5.73685662283492756461),
  880. };
  881. static const int icos72[18] = {
  882. /* 0.5 / cos(pi*(2*i+19)/72) */
  883. FIXR(0.74009361646113053152),
  884. FIXR(0.82133981585229078570),
  885. FIXR(0.93057949835178895673),
  886. FIXR(1.08284028510010010928),
  887. FIXR(1.30656296487637652785),
  888. FIXR(1.66275476171152078719),
  889. FIXR(2.31011315767264929558),
  890. FIXR(3.83064878777019433457),
  891. FIXR(11.46279281302667383546),
  892. /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
  893. FIXR(-0.67817085245462840086),
  894. FIXR(-0.63023620700513223342),
  895. FIXR(-0.59284452371708034528),
  896. FIXR(-0.56369097343317117734),
  897. FIXR(-0.54119610014619698439),
  898. FIXR(-0.52426456257040533932),
  899. FIXR(-0.51213975715725461845),
  900. FIXR(-0.50431448029007636036),
  901. FIXR(-0.50047634258165998492),
  902. };
  903. /* using Lee like decomposition followed by hand coded 9 points DCT */
  904. static void imdct36(int *out, int *in)
  905. {
  906. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  907. int tmp[18], *tmp1, *in1;
  908. int64_t in3_3, in6_6;
  909. for(i=17;i>=1;i--)
  910. in[i] += in[i-1];
  911. for(i=17;i>=3;i-=2)
  912. in[i] += in[i-2];
  913. for(j=0;j<2;j++) {
  914. tmp1 = tmp + j;
  915. in1 = in + j;
  916. in3_3 = MUL64(in1[2*3], C3);
  917. in6_6 = MUL64(in1[2*6], C6);
  918. tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 +
  919. MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
  920. tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) +
  921. MUL64(in1[2*4], C4) + in6_6 +
  922. MUL64(in1[2*8], C8));
  923. tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
  924. tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) -
  925. in1[2*6] + in1[2*0];
  926. tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 -
  927. MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
  928. tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) -
  929. MUL64(in1[2*4], C2) + in6_6 +
  930. MUL64(in1[2*8], C4));
  931. tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 +
  932. MUL64(in1[2*5], C1) -
  933. MUL64(in1[2*7], C5));
  934. tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) +
  935. MUL64(in1[2*4], C8) + in6_6 -
  936. MUL64(in1[2*8], C2));
  937. tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
  938. }
  939. i = 0;
  940. for(j=0;j<4;j++) {
  941. t0 = tmp[i];
  942. t1 = tmp[i + 2];
  943. s0 = t1 + t0;
  944. s2 = t1 - t0;
  945. t2 = tmp[i + 1];
  946. t3 = tmp[i + 3];
  947. s1 = MULL(t3 + t2, icos36[j]);
  948. s3 = MULL(t3 - t2, icos36[8 - j]);
  949. t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
  950. t1 = MULL(s0 - s1, icos72[8 - j]);
  951. out[18 + 9 + j] = t0;
  952. out[18 + 8 - j] = t0;
  953. out[9 + j] = -t1;
  954. out[8 - j] = t1;
  955. t0 = MULL(s2 + s3, icos72[9+j]);
  956. t1 = MULL(s2 - s3, icos72[j]);
  957. out[18 + 9 + (8 - j)] = t0;
  958. out[18 + j] = t0;
  959. out[9 + (8 - j)] = -t1;
  960. out[j] = t1;
  961. i += 4;
  962. }
  963. s0 = tmp[16];
  964. s1 = MULL(tmp[17], icos36[4]);
  965. t0 = MULL(s0 + s1, icos72[9 + 4]);
  966. t1 = MULL(s0 - s1, icos72[4]);
  967. out[18 + 9 + 4] = t0;
  968. out[18 + 8 - 4] = t0;
  969. out[9 + 4] = -t1;
  970. out[8 - 4] = t1;
  971. }
  972. /* fast header check for resync */
  973. static int check_header(uint32_t header)
  974. {
  975. /* header */
  976. if ((header & 0xffe00000) != 0xffe00000)
  977. return -1;
  978. /* layer check */
  979. if (((header >> 17) & 3) == 0)
  980. return -1;
  981. /* bit rate */
  982. if (((header >> 12) & 0xf) == 0xf)
  983. return -1;
  984. /* frequency */
  985. if (((header >> 10) & 3) == 3)
  986. return -1;
  987. return 0;
  988. }
  989. /* header + layer + bitrate + freq + lsf/mpeg25 */
  990. #define SAME_HEADER_MASK \
  991. (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))
  992. /* header decoding. MUST check the header before because no
  993. consistency check is done there. Return 1 if free format found and
  994. that the frame size must be computed externally */
  995. static int decode_header(MPADecodeContext *s, uint32_t header)
  996. {
  997. int sample_rate, frame_size, mpeg25, padding;
  998. int sample_rate_index, bitrate_index;
  999. if (header & (1<<20)) {
  1000. s->lsf = (header & (1<<19)) ? 0 : 1;
  1001. mpeg25 = 0;
  1002. } else {
  1003. s->lsf = 1;
  1004. mpeg25 = 1;
  1005. }
  1006. s->layer = 4 - ((header >> 17) & 3);
  1007. /* extract frequency */
  1008. sample_rate_index = (header >> 10) & 3;
  1009. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  1010. sample_rate_index += 3 * (s->lsf + mpeg25);
  1011. s->sample_rate_index = sample_rate_index;
  1012. s->error_protection = ((header >> 16) & 1) ^ 1;
  1013. s->sample_rate = sample_rate;
  1014. bitrate_index = (header >> 12) & 0xf;
  1015. padding = (header >> 9) & 1;
  1016. //extension = (header >> 8) & 1;
  1017. s->mode = (header >> 6) & 3;
  1018. s->mode_ext = (header >> 4) & 3;
  1019. //copyright = (header >> 3) & 1;
  1020. //original = (header >> 2) & 1;
  1021. //emphasis = header & 3;
  1022. if (s->mode == MPA_MONO)
  1023. s->nb_channels = 1;
  1024. else
  1025. s->nb_channels = 2;
  1026. if (bitrate_index != 0) {
  1027. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1028. s->bit_rate = frame_size * 1000;
  1029. switch(s->layer) {
  1030. case 1:
  1031. frame_size = (frame_size * 12000) / sample_rate;
  1032. frame_size = (frame_size + padding) * 4;
  1033. break;
  1034. case 2:
  1035. frame_size = (frame_size * 144000) / sample_rate;
  1036. frame_size += padding;
  1037. break;
  1038. default:
  1039. case 3:
  1040. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1041. frame_size += padding;
  1042. break;
  1043. }
  1044. s->frame_size = frame_size;
  1045. } else {
  1046. /* if no frame size computed, signal it */
  1047. if (!s->free_format_frame_size)
  1048. return 1;
  1049. /* free format: compute bitrate and real frame size from the
  1050. frame size we extracted by reading the bitstream */
  1051. s->frame_size = s->free_format_frame_size;
  1052. switch(s->layer) {
  1053. case 1:
  1054. s->frame_size += padding * 4;
  1055. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1056. break;
  1057. case 2:
  1058. s->frame_size += padding;
  1059. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1060. break;
  1061. default:
  1062. case 3:
  1063. s->frame_size += padding;
  1064. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1065. break;
  1066. }
  1067. }
  1068. #if defined(DEBUG)
  1069. printf("layer%d, %d Hz, %d kbits/s, ",
  1070. s->layer, s->sample_rate, s->bit_rate);
  1071. if (s->nb_channels == 2) {
  1072. if (s->layer == 3) {
  1073. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1074. printf("ms-");
  1075. if (s->mode_ext & MODE_EXT_I_STEREO)
  1076. printf("i-");
  1077. }
  1078. printf("stereo");
  1079. } else {
  1080. printf("mono");
  1081. }
  1082. printf("\n");
  1083. #endif
  1084. return 0;
  1085. }
  1086. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1087. header, otherwise the coded frame size in bytes */
  1088. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1089. {
  1090. MPADecodeContext s1, *s = &s1;
  1091. memset( s, 0, sizeof(MPADecodeContext) );
  1092. if (check_header(head) != 0)
  1093. return -1;
  1094. if (decode_header(s, head) != 0) {
  1095. return -1;
  1096. }
  1097. switch(s->layer) {
  1098. case 1:
  1099. avctx->frame_size = 384;
  1100. break;
  1101. case 2:
  1102. avctx->frame_size = 1152;
  1103. break;
  1104. default:
  1105. case 3:
  1106. if (s->lsf)
  1107. avctx->frame_size = 576;
  1108. else
  1109. avctx->frame_size = 1152;
  1110. break;
  1111. }
  1112. avctx->sample_rate = s->sample_rate;
  1113. avctx->channels = s->nb_channels;
  1114. avctx->bit_rate = s->bit_rate;
  1115. avctx->sub_id = s->layer;
  1116. return s->frame_size;
  1117. }
  1118. /* return the number of decoded frames */
  1119. static int mp_decode_layer1(MPADecodeContext *s)
  1120. {
  1121. int bound, i, v, n, ch, j, mant;
  1122. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1123. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1124. if (s->mode == MPA_JSTEREO)
  1125. bound = (s->mode_ext + 1) * 4;
  1126. else
  1127. bound = SBLIMIT;
  1128. /* allocation bits */
  1129. for(i=0;i<bound;i++) {
  1130. for(ch=0;ch<s->nb_channels;ch++) {
  1131. allocation[ch][i] = get_bits(&s->gb, 4);
  1132. }
  1133. }
  1134. for(i=bound;i<SBLIMIT;i++) {
  1135. allocation[0][i] = get_bits(&s->gb, 4);
  1136. }
  1137. /* scale factors */
  1138. for(i=0;i<bound;i++) {
  1139. for(ch=0;ch<s->nb_channels;ch++) {
  1140. if (allocation[ch][i])
  1141. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1142. }
  1143. }
  1144. for(i=bound;i<SBLIMIT;i++) {
  1145. if (allocation[0][i]) {
  1146. scale_factors[0][i] = get_bits(&s->gb, 6);
  1147. scale_factors[1][i] = get_bits(&s->gb, 6);
  1148. }
  1149. }
  1150. /* compute samples */
  1151. for(j=0;j<12;j++) {
  1152. for(i=0;i<bound;i++) {
  1153. for(ch=0;ch<s->nb_channels;ch++) {
  1154. n = allocation[ch][i];
  1155. if (n) {
  1156. mant = get_bits(&s->gb, n + 1);
  1157. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1158. } else {
  1159. v = 0;
  1160. }
  1161. s->sb_samples[ch][j][i] = v;
  1162. }
  1163. }
  1164. for(i=bound;i<SBLIMIT;i++) {
  1165. n = allocation[0][i];
  1166. if (n) {
  1167. mant = get_bits(&s->gb, n + 1);
  1168. v = l1_unscale(n, mant, scale_factors[0][i]);
  1169. s->sb_samples[0][j][i] = v;
  1170. v = l1_unscale(n, mant, scale_factors[1][i]);
  1171. s->sb_samples[1][j][i] = v;
  1172. } else {
  1173. s->sb_samples[0][j][i] = 0;
  1174. s->sb_samples[1][j][i] = 0;
  1175. }
  1176. }
  1177. }
  1178. return 12;
  1179. }
  1180. /* bitrate is in kb/s */
  1181. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1182. {
  1183. int ch_bitrate, table;
  1184. ch_bitrate = bitrate / nb_channels;
  1185. if (!lsf) {
  1186. if ((freq == 48000 && ch_bitrate >= 56) ||
  1187. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1188. table = 0;
  1189. else if (freq != 48000 && ch_bitrate >= 96)
  1190. table = 1;
  1191. else if (freq != 32000 && ch_bitrate <= 48)
  1192. table = 2;
  1193. else
  1194. table = 3;
  1195. } else {
  1196. table = 4;
  1197. }
  1198. return table;
  1199. }
  1200. static int mp_decode_layer2(MPADecodeContext *s)
  1201. {
  1202. int sblimit; /* number of used subbands */
  1203. const unsigned char *alloc_table;
  1204. int table, bit_alloc_bits, i, j, ch, bound, v;
  1205. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1206. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1207. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1208. int scale, qindex, bits, steps, k, l, m, b;
  1209. /* select decoding table */
  1210. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1211. s->sample_rate, s->lsf);
  1212. sblimit = sblimit_table[table];
  1213. alloc_table = alloc_tables[table];
  1214. if (s->mode == MPA_JSTEREO)
  1215. bound = (s->mode_ext + 1) * 4;
  1216. else
  1217. bound = sblimit;
  1218. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1219. /* sanity check */
  1220. if( bound > sblimit ) bound = sblimit;
  1221. /* parse bit allocation */
  1222. j = 0;
  1223. for(i=0;i<bound;i++) {
  1224. bit_alloc_bits = alloc_table[j];
  1225. for(ch=0;ch<s->nb_channels;ch++) {
  1226. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1227. }
  1228. j += 1 << bit_alloc_bits;
  1229. }
  1230. for(i=bound;i<sblimit;i++) {
  1231. bit_alloc_bits = alloc_table[j];
  1232. v = get_bits(&s->gb, bit_alloc_bits);
  1233. bit_alloc[0][i] = v;
  1234. bit_alloc[1][i] = v;
  1235. j += 1 << bit_alloc_bits;
  1236. }
  1237. #ifdef DEBUG
  1238. {
  1239. for(ch=0;ch<s->nb_channels;ch++) {
  1240. for(i=0;i<sblimit;i++)
  1241. printf(" %d", bit_alloc[ch][i]);
  1242. printf("\n");
  1243. }
  1244. }
  1245. #endif
  1246. /* scale codes */
  1247. for(i=0;i<sblimit;i++) {
  1248. for(ch=0;ch<s->nb_channels;ch++) {
  1249. if (bit_alloc[ch][i])
  1250. scale_code[ch][i] = get_bits(&s->gb, 2);
  1251. }
  1252. }
  1253. /* scale factors */
  1254. for(i=0;i<sblimit;i++) {
  1255. for(ch=0;ch<s->nb_channels;ch++) {
  1256. if (bit_alloc[ch][i]) {
  1257. sf = scale_factors[ch][i];
  1258. switch(scale_code[ch][i]) {
  1259. default:
  1260. case 0:
  1261. sf[0] = get_bits(&s->gb, 6);
  1262. sf[1] = get_bits(&s->gb, 6);
  1263. sf[2] = get_bits(&s->gb, 6);
  1264. break;
  1265. case 2:
  1266. sf[0] = get_bits(&s->gb, 6);
  1267. sf[1] = sf[0];
  1268. sf[2] = sf[0];
  1269. break;
  1270. case 1:
  1271. sf[0] = get_bits(&s->gb, 6);
  1272. sf[2] = get_bits(&s->gb, 6);
  1273. sf[1] = sf[0];
  1274. break;
  1275. case 3:
  1276. sf[0] = get_bits(&s->gb, 6);
  1277. sf[2] = get_bits(&s->gb, 6);
  1278. sf[1] = sf[2];
  1279. break;
  1280. }
  1281. }
  1282. }
  1283. }
  1284. #ifdef DEBUG
  1285. for(ch=0;ch<s->nb_channels;ch++) {
  1286. for(i=0;i<sblimit;i++) {
  1287. if (bit_alloc[ch][i]) {
  1288. sf = scale_factors[ch][i];
  1289. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1290. } else {
  1291. printf(" -");
  1292. }
  1293. }
  1294. printf("\n");
  1295. }
  1296. #endif
  1297. /* samples */
  1298. for(k=0;k<3;k++) {
  1299. for(l=0;l<12;l+=3) {
  1300. j = 0;
  1301. for(i=0;i<bound;i++) {
  1302. bit_alloc_bits = alloc_table[j];
  1303. for(ch=0;ch<s->nb_channels;ch++) {
  1304. b = bit_alloc[ch][i];
  1305. if (b) {
  1306. scale = scale_factors[ch][i][k];
  1307. qindex = alloc_table[j+b];
  1308. bits = quant_bits[qindex];
  1309. if (bits < 0) {
  1310. /* 3 values at the same time */
  1311. v = get_bits(&s->gb, -bits);
  1312. steps = quant_steps[qindex];
  1313. s->sb_samples[ch][k * 12 + l + 0][i] =
  1314. l2_unscale_group(steps, v % steps, scale);
  1315. v = v / steps;
  1316. s->sb_samples[ch][k * 12 + l + 1][i] =
  1317. l2_unscale_group(steps, v % steps, scale);
  1318. v = v / steps;
  1319. s->sb_samples[ch][k * 12 + l + 2][i] =
  1320. l2_unscale_group(steps, v, scale);
  1321. } else {
  1322. for(m=0;m<3;m++) {
  1323. v = get_bits(&s->gb, bits);
  1324. v = l1_unscale(bits - 1, v, scale);
  1325. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1326. }
  1327. }
  1328. } else {
  1329. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1330. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1331. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1332. }
  1333. }
  1334. /* next subband in alloc table */
  1335. j += 1 << bit_alloc_bits;
  1336. }
  1337. /* XXX: find a way to avoid this duplication of code */
  1338. for(i=bound;i<sblimit;i++) {
  1339. bit_alloc_bits = alloc_table[j];
  1340. b = bit_alloc[0][i];
  1341. if (b) {
  1342. int mant, scale0, scale1;
  1343. scale0 = scale_factors[0][i][k];
  1344. scale1 = scale_factors[1][i][k];
  1345. qindex = alloc_table[j+b];
  1346. bits = quant_bits[qindex];
  1347. if (bits < 0) {
  1348. /* 3 values at the same time */
  1349. v = get_bits(&s->gb, -bits);
  1350. steps = quant_steps[qindex];
  1351. mant = v % steps;
  1352. v = v / steps;
  1353. s->sb_samples[0][k * 12 + l + 0][i] =
  1354. l2_unscale_group(steps, mant, scale0);
  1355. s->sb_samples[1][k * 12 + l + 0][i] =
  1356. l2_unscale_group(steps, mant, scale1);
  1357. mant = v % steps;
  1358. v = v / steps;
  1359. s->sb_samples[0][k * 12 + l + 1][i] =
  1360. l2_unscale_group(steps, mant, scale0);
  1361. s->sb_samples[1][k * 12 + l + 1][i] =
  1362. l2_unscale_group(steps, mant, scale1);
  1363. s->sb_samples[0][k * 12 + l + 2][i] =
  1364. l2_unscale_group(steps, v, scale0);
  1365. s->sb_samples[1][k * 12 + l + 2][i] =
  1366. l2_unscale_group(steps, v, scale1);
  1367. } else {
  1368. for(m=0;m<3;m++) {
  1369. mant = get_bits(&s->gb, bits);
  1370. s->sb_samples[0][k * 12 + l + m][i] =
  1371. l1_unscale(bits - 1, mant, scale0);
  1372. s->sb_samples[1][k * 12 + l + m][i] =
  1373. l1_unscale(bits - 1, mant, scale1);
  1374. }
  1375. }
  1376. } else {
  1377. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1378. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1379. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1380. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1381. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1382. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1383. }
  1384. /* next subband in alloc table */
  1385. j += 1 << bit_alloc_bits;
  1386. }
  1387. /* fill remaining samples to zero */
  1388. for(i=sblimit;i<SBLIMIT;i++) {
  1389. for(ch=0;ch<s->nb_channels;ch++) {
  1390. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1391. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1392. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1393. }
  1394. }
  1395. }
  1396. }
  1397. return 3 * 12;
  1398. }
  1399. /*
  1400. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1401. */
  1402. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1403. {
  1404. uint8_t *ptr;
  1405. /* compute current position in stream */
  1406. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1407. /* copy old data before current one */
  1408. ptr -= backstep;
  1409. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1410. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1411. /* init get bits again */
  1412. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1413. /* prepare next buffer */
  1414. s->inbuf_index ^= 1;
  1415. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1416. s->old_frame_size = s->frame_size;
  1417. }
  1418. static inline void lsf_sf_expand(int *slen,
  1419. int sf, int n1, int n2, int n3)
  1420. {
  1421. if (n3) {
  1422. slen[3] = sf % n3;
  1423. sf /= n3;
  1424. } else {
  1425. slen[3] = 0;
  1426. }
  1427. if (n2) {
  1428. slen[2] = sf % n2;
  1429. sf /= n2;
  1430. } else {
  1431. slen[2] = 0;
  1432. }
  1433. slen[1] = sf % n1;
  1434. sf /= n1;
  1435. slen[0] = sf;
  1436. }
  1437. static void exponents_from_scale_factors(MPADecodeContext *s,
  1438. GranuleDef *g,
  1439. int16_t *exponents)
  1440. {
  1441. const uint8_t *bstab, *pretab;
  1442. int len, i, j, k, l, v0, shift, gain, gains[3];
  1443. int16_t *exp_ptr;
  1444. exp_ptr = exponents;
  1445. gain = g->global_gain - 210;
  1446. shift = g->scalefac_scale + 1;
  1447. bstab = band_size_long[s->sample_rate_index];
  1448. pretab = mpa_pretab[g->preflag];
  1449. for(i=0;i<g->long_end;i++) {
  1450. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1451. len = bstab[i];
  1452. for(j=len;j>0;j--)
  1453. *exp_ptr++ = v0;
  1454. }
  1455. if (g->short_start < 13) {
  1456. bstab = band_size_short[s->sample_rate_index];
  1457. gains[0] = gain - (g->subblock_gain[0] << 3);
  1458. gains[1] = gain - (g->subblock_gain[1] << 3);
  1459. gains[2] = gain - (g->subblock_gain[2] << 3);
  1460. k = g->long_end;
  1461. for(i=g->short_start;i<13;i++) {
  1462. len = bstab[i];
  1463. for(l=0;l<3;l++) {
  1464. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1465. for(j=len;j>0;j--)
  1466. *exp_ptr++ = v0;
  1467. }
  1468. }
  1469. }
  1470. }
  1471. /* handle n = 0 too */
  1472. static inline int get_bitsz(GetBitContext *s, int n)
  1473. {
  1474. if (n == 0)
  1475. return 0;
  1476. else
  1477. return get_bits(s, n);
  1478. }
  1479. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1480. int16_t *exponents, int end_pos)
  1481. {
  1482. int s_index;
  1483. int linbits, code, x, y, l, v, i, j, k, pos;
  1484. GetBitContext last_gb;
  1485. VLC *vlc;
  1486. uint8_t *code_table;
  1487. /* low frequencies (called big values) */
  1488. s_index = 0;
  1489. for(i=0;i<3;i++) {
  1490. j = g->region_size[i];
  1491. if (j == 0)
  1492. continue;
  1493. /* select vlc table */
  1494. k = g->table_select[i];
  1495. l = mpa_huff_data[k][0];
  1496. linbits = mpa_huff_data[k][1];
  1497. vlc = &huff_vlc[l];
  1498. code_table = huff_code_table[l];
  1499. /* read huffcode and compute each couple */
  1500. for(;j>0;j--) {
  1501. if (get_bits_count(&s->gb) >= end_pos)
  1502. break;
  1503. if (code_table) {
  1504. code = get_vlc(&s->gb, vlc);
  1505. if (code < 0)
  1506. return -1;
  1507. y = code_table[code];
  1508. x = y >> 4;
  1509. y = y & 0x0f;
  1510. } else {
  1511. x = 0;
  1512. y = 0;
  1513. }
  1514. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1515. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1516. if (x) {
  1517. if (x == 15)
  1518. x += get_bitsz(&s->gb, linbits);
  1519. v = l3_unscale(x, exponents[s_index]);
  1520. if (get_bits1(&s->gb))
  1521. v = -v;
  1522. } else {
  1523. v = 0;
  1524. }
  1525. g->sb_hybrid[s_index++] = v;
  1526. if (y) {
  1527. if (y == 15)
  1528. y += get_bitsz(&s->gb, linbits);
  1529. v = l3_unscale(y, exponents[s_index]);
  1530. if (get_bits1(&s->gb))
  1531. v = -v;
  1532. } else {
  1533. v = 0;
  1534. }
  1535. g->sb_hybrid[s_index++] = v;
  1536. }
  1537. }
  1538. /* high frequencies */
  1539. vlc = &huff_quad_vlc[g->count1table_select];
  1540. last_gb.buffer = NULL;
  1541. while (s_index <= 572) {
  1542. pos = get_bits_count(&s->gb);
  1543. if (pos >= end_pos) {
  1544. if (pos > end_pos && last_gb.buffer != NULL) {
  1545. /* some encoders generate an incorrect size for this
  1546. part. We must go back into the data */
  1547. s_index -= 4;
  1548. s->gb = last_gb;
  1549. }
  1550. break;
  1551. }
  1552. last_gb= s->gb;
  1553. code = get_vlc(&s->gb, vlc);
  1554. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1555. if (code < 0)
  1556. return -1;
  1557. for(i=0;i<4;i++) {
  1558. if (code & (8 >> i)) {
  1559. /* non zero value. Could use a hand coded function for
  1560. 'one' value */
  1561. v = l3_unscale(1, exponents[s_index]);
  1562. if(get_bits1(&s->gb))
  1563. v = -v;
  1564. } else {
  1565. v = 0;
  1566. }
  1567. g->sb_hybrid[s_index++] = v;
  1568. }
  1569. }
  1570. while (s_index < 576)
  1571. g->sb_hybrid[s_index++] = 0;
  1572. return 0;
  1573. }
  1574. /* Reorder short blocks from bitstream order to interleaved order. It
  1575. would be faster to do it in parsing, but the code would be far more
  1576. complicated */
  1577. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1578. {
  1579. int i, j, k, len;
  1580. int32_t *ptr, *dst, *ptr1;
  1581. int32_t tmp[576];
  1582. if (g->block_type != 2)
  1583. return;
  1584. if (g->switch_point) {
  1585. if (s->sample_rate_index != 8) {
  1586. ptr = g->sb_hybrid + 36;
  1587. } else {
  1588. ptr = g->sb_hybrid + 48;
  1589. }
  1590. } else {
  1591. ptr = g->sb_hybrid;
  1592. }
  1593. for(i=g->short_start;i<13;i++) {
  1594. len = band_size_short[s->sample_rate_index][i];
  1595. ptr1 = ptr;
  1596. for(k=0;k<3;k++) {
  1597. dst = tmp + k;
  1598. for(j=len;j>0;j--) {
  1599. *dst = *ptr++;
  1600. dst += 3;
  1601. }
  1602. }
  1603. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1604. }
  1605. }
  1606. #define ISQRT2 FIXR(0.70710678118654752440)
  1607. static void compute_stereo(MPADecodeContext *s,
  1608. GranuleDef *g0, GranuleDef *g1)
  1609. {
  1610. int i, j, k, l;
  1611. int32_t v1, v2;
  1612. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1613. int32_t (*is_tab)[16];
  1614. int32_t *tab0, *tab1;
  1615. int non_zero_found_short[3];
  1616. /* intensity stereo */
  1617. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1618. if (!s->lsf) {
  1619. is_tab = is_table;
  1620. sf_max = 7;
  1621. } else {
  1622. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1623. sf_max = 16;
  1624. }
  1625. tab0 = g0->sb_hybrid + 576;
  1626. tab1 = g1->sb_hybrid + 576;
  1627. non_zero_found_short[0] = 0;
  1628. non_zero_found_short[1] = 0;
  1629. non_zero_found_short[2] = 0;
  1630. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1631. for(i = 12;i >= g1->short_start;i--) {
  1632. /* for last band, use previous scale factor */
  1633. if (i != 11)
  1634. k -= 3;
  1635. len = band_size_short[s->sample_rate_index][i];
  1636. for(l=2;l>=0;l--) {
  1637. tab0 -= len;
  1638. tab1 -= len;
  1639. if (!non_zero_found_short[l]) {
  1640. /* test if non zero band. if so, stop doing i-stereo */
  1641. for(j=0;j<len;j++) {
  1642. if (tab1[j] != 0) {
  1643. non_zero_found_short[l] = 1;
  1644. goto found1;
  1645. }
  1646. }
  1647. sf = g1->scale_factors[k + l];
  1648. if (sf >= sf_max)
  1649. goto found1;
  1650. v1 = is_tab[0][sf];
  1651. v2 = is_tab[1][sf];
  1652. for(j=0;j<len;j++) {
  1653. tmp0 = tab0[j];
  1654. tab0[j] = MULL(tmp0, v1);
  1655. tab1[j] = MULL(tmp0, v2);
  1656. }
  1657. } else {
  1658. found1:
  1659. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1660. /* lower part of the spectrum : do ms stereo
  1661. if enabled */
  1662. for(j=0;j<len;j++) {
  1663. tmp0 = tab0[j];
  1664. tmp1 = tab1[j];
  1665. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1666. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1667. }
  1668. }
  1669. }
  1670. }
  1671. }
  1672. non_zero_found = non_zero_found_short[0] |
  1673. non_zero_found_short[1] |
  1674. non_zero_found_short[2];
  1675. for(i = g1->long_end - 1;i >= 0;i--) {
  1676. len = band_size_long[s->sample_rate_index][i];
  1677. tab0 -= len;
  1678. tab1 -= len;
  1679. /* test if non zero band. if so, stop doing i-stereo */
  1680. if (!non_zero_found) {
  1681. for(j=0;j<len;j++) {
  1682. if (tab1[j] != 0) {
  1683. non_zero_found = 1;
  1684. goto found2;
  1685. }
  1686. }
  1687. /* for last band, use previous scale factor */
  1688. k = (i == 21) ? 20 : i;
  1689. sf = g1->scale_factors[k];
  1690. if (sf >= sf_max)
  1691. goto found2;
  1692. v1 = is_tab[0][sf];
  1693. v2 = is_tab[1][sf];
  1694. for(j=0;j<len;j++) {
  1695. tmp0 = tab0[j];
  1696. tab0[j] = MULL(tmp0, v1);
  1697. tab1[j] = MULL(tmp0, v2);
  1698. }
  1699. } else {
  1700. found2:
  1701. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1702. /* lower part of the spectrum : do ms stereo
  1703. if enabled */
  1704. for(j=0;j<len;j++) {
  1705. tmp0 = tab0[j];
  1706. tmp1 = tab1[j];
  1707. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1708. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1709. }
  1710. }
  1711. }
  1712. }
  1713. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1714. /* ms stereo ONLY */
  1715. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1716. global gain */
  1717. tab0 = g0->sb_hybrid;
  1718. tab1 = g1->sb_hybrid;
  1719. for(i=0;i<576;i++) {
  1720. tmp0 = tab0[i];
  1721. tmp1 = tab1[i];
  1722. tab0[i] = tmp0 + tmp1;
  1723. tab1[i] = tmp0 - tmp1;
  1724. }
  1725. }
  1726. }
  1727. static void compute_antialias_integer(MPADecodeContext *s,
  1728. GranuleDef *g)
  1729. {
  1730. int32_t *ptr, *p0, *p1, *csa;
  1731. int n, i, j;
  1732. /* we antialias only "long" bands */
  1733. if (g->block_type == 2) {
  1734. if (!g->switch_point)
  1735. return;
  1736. /* XXX: check this for 8000Hz case */
  1737. n = 1;
  1738. } else {
  1739. n = SBLIMIT - 1;
  1740. }
  1741. ptr = g->sb_hybrid + 18;
  1742. for(i = n;i > 0;i--) {
  1743. p0 = ptr - 1;
  1744. p1 = ptr;
  1745. csa = &csa_table[0][0];
  1746. for(j=0;j<4;j++) {
  1747. int tmp0 = *p0;
  1748. int tmp1 = *p1;
  1749. #if 0
  1750. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1751. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1752. #else
  1753. int64_t tmp2= MUL64(tmp0 + tmp1, csa[0]);
  1754. *p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2]));
  1755. *p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3]));
  1756. #endif
  1757. p0--; p1++;
  1758. csa += 4;
  1759. tmp0 = *p0;
  1760. tmp1 = *p1;
  1761. #if 0
  1762. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1763. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1764. #else
  1765. tmp2= MUL64(tmp0 + tmp1, csa[0]);
  1766. *p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2]));
  1767. *p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3]));
  1768. #endif
  1769. p0--; p1++;
  1770. csa += 4;
  1771. }
  1772. ptr += 18;
  1773. }
  1774. }
  1775. static void compute_antialias_float(MPADecodeContext *s,
  1776. GranuleDef *g)
  1777. {
  1778. int32_t *ptr, *p0, *p1;
  1779. int n, i, j;
  1780. /* we antialias only "long" bands */
  1781. if (g->block_type == 2) {
  1782. if (!g->switch_point)
  1783. return;
  1784. /* XXX: check this for 8000Hz case */
  1785. n = 1;
  1786. } else {
  1787. n = SBLIMIT - 1;
  1788. }
  1789. ptr = g->sb_hybrid + 18;
  1790. for(i = n;i > 0;i--) {
  1791. float *csa = &csa_table_float[0][0];
  1792. p0 = ptr - 1;
  1793. p1 = ptr;
  1794. for(j=0;j<4;j++) {
  1795. float tmp0 = *p0;
  1796. float tmp1 = *p1;
  1797. #if 1
  1798. *p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]);
  1799. *p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]);
  1800. #else
  1801. float tmp2= (tmp0 + tmp1) * csa[0];
  1802. *p0 = lrintf(tmp2 - tmp1 * csa[2]);
  1803. *p1 = lrintf(tmp2 + tmp0 * csa[3]);
  1804. #endif
  1805. p0--; p1++;
  1806. csa += 4;
  1807. tmp0 = *p0;
  1808. tmp1 = *p1;
  1809. #if 1
  1810. *p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]);
  1811. *p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]);
  1812. #else
  1813. tmp2= (tmp0 + tmp1) * csa[0];
  1814. *p0 = lrintf(tmp2 - tmp1 * csa[2]);
  1815. *p1 = lrintf(tmp2 + tmp0 * csa[3]);
  1816. #endif
  1817. p0--; p1++;
  1818. csa += 4;
  1819. }
  1820. ptr += 18;
  1821. }
  1822. }
  1823. static void compute_imdct(MPADecodeContext *s,
  1824. GranuleDef *g,
  1825. int32_t *sb_samples,
  1826. int32_t *mdct_buf)
  1827. {
  1828. int32_t *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
  1829. int32_t in[6];
  1830. int32_t out[36];
  1831. int32_t out2[12];
  1832. int i, j, k, mdct_long_end, v, sblimit;
  1833. /* find last non zero block */
  1834. ptr = g->sb_hybrid + 576;
  1835. ptr1 = g->sb_hybrid + 2 * 18;
  1836. while (ptr >= ptr1) {
  1837. ptr -= 6;
  1838. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1839. if (v != 0)
  1840. break;
  1841. }
  1842. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1843. if (g->block_type == 2) {
  1844. /* XXX: check for 8000 Hz */
  1845. if (g->switch_point)
  1846. mdct_long_end = 2;
  1847. else
  1848. mdct_long_end = 0;
  1849. } else {
  1850. mdct_long_end = sblimit;
  1851. }
  1852. buf = mdct_buf;
  1853. ptr = g->sb_hybrid;
  1854. for(j=0;j<mdct_long_end;j++) {
  1855. imdct36(out, ptr);
  1856. /* apply window & overlap with previous buffer */
  1857. out_ptr = sb_samples + j;
  1858. /* select window */
  1859. if (g->switch_point && j < 2)
  1860. win1 = mdct_win[0];
  1861. else
  1862. win1 = mdct_win[g->block_type];
  1863. /* select frequency inversion */
  1864. win = win1 + ((4 * 36) & -(j & 1));
  1865. for(i=0;i<18;i++) {
  1866. *out_ptr = MULL(out[i], win[i]) + buf[i];
  1867. buf[i] = MULL(out[i + 18], win[i + 18]);
  1868. out_ptr += SBLIMIT;
  1869. }
  1870. ptr += 18;
  1871. buf += 18;
  1872. }
  1873. for(j=mdct_long_end;j<sblimit;j++) {
  1874. for(i=0;i<6;i++) {
  1875. out[i] = 0;
  1876. out[6 + i] = 0;
  1877. out[30+i] = 0;
  1878. }
  1879. /* select frequency inversion */
  1880. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1881. buf2 = out + 6;
  1882. for(k=0;k<3;k++) {
  1883. /* reorder input for short mdct */
  1884. ptr1 = ptr + k;
  1885. for(i=0;i<6;i++) {
  1886. in[i] = *ptr1;
  1887. ptr1 += 3;
  1888. }
  1889. imdct12(out2, in);
  1890. /* apply 12 point window and do small overlap */
  1891. for(i=0;i<6;i++) {
  1892. buf2[i] = MULL(out2[i], win[i]) + buf2[i];
  1893. buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
  1894. }
  1895. buf2 += 6;
  1896. }
  1897. /* overlap */
  1898. out_ptr = sb_samples + j;
  1899. for(i=0;i<18;i++) {
  1900. *out_ptr = out[i] + buf[i];
  1901. buf[i] = out[i + 18];
  1902. out_ptr += SBLIMIT;
  1903. }
  1904. ptr += 18;
  1905. buf += 18;
  1906. }
  1907. /* zero bands */
  1908. for(j=sblimit;j<SBLIMIT;j++) {
  1909. /* overlap */
  1910. out_ptr = sb_samples + j;
  1911. for(i=0;i<18;i++) {
  1912. *out_ptr = buf[i];
  1913. buf[i] = 0;
  1914. out_ptr += SBLIMIT;
  1915. }
  1916. buf += 18;
  1917. }
  1918. }
  1919. #if defined(DEBUG)
  1920. void sample_dump(int fnum, int32_t *tab, int n)
  1921. {
  1922. static FILE *files[16], *f;
  1923. char buf[512];
  1924. int i;
  1925. int32_t v;
  1926. f = files[fnum];
  1927. if (!f) {
  1928. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1929. fnum,
  1930. #ifdef USE_HIGHPRECISION
  1931. "hp"
  1932. #else
  1933. "lp"
  1934. #endif
  1935. );
  1936. f = fopen(buf, "w");
  1937. if (!f)
  1938. return;
  1939. files[fnum] = f;
  1940. }
  1941. if (fnum == 0) {
  1942. static int pos = 0;
  1943. printf("pos=%d\n", pos);
  1944. for(i=0;i<n;i++) {
  1945. printf(" %0.4f", (double)tab[i] / FRAC_ONE);
  1946. if ((i % 18) == 17)
  1947. printf("\n");
  1948. }
  1949. pos += n;
  1950. }
  1951. for(i=0;i<n;i++) {
  1952. /* normalize to 23 frac bits */
  1953. v = tab[i] << (23 - FRAC_BITS);
  1954. fwrite(&v, 1, sizeof(int32_t), f);
  1955. }
  1956. }
  1957. #endif
  1958. /* main layer3 decoding function */
  1959. static int mp_decode_layer3(MPADecodeContext *s)
  1960. {
  1961. int nb_granules, main_data_begin, private_bits;
  1962. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1963. GranuleDef granules[2][2], *g;
  1964. int16_t exponents[576];
  1965. /* read side info */
  1966. if (s->lsf) {
  1967. main_data_begin = get_bits(&s->gb, 8);
  1968. if (s->nb_channels == 2)
  1969. private_bits = get_bits(&s->gb, 2);
  1970. else
  1971. private_bits = get_bits(&s->gb, 1);
  1972. nb_granules = 1;
  1973. } else {
  1974. main_data_begin = get_bits(&s->gb, 9);
  1975. if (s->nb_channels == 2)
  1976. private_bits = get_bits(&s->gb, 3);
  1977. else
  1978. private_bits = get_bits(&s->gb, 5);
  1979. nb_granules = 2;
  1980. for(ch=0;ch<s->nb_channels;ch++) {
  1981. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1982. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1983. }
  1984. }
  1985. for(gr=0;gr<nb_granules;gr++) {
  1986. for(ch=0;ch<s->nb_channels;ch++) {
  1987. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1988. g = &granules[ch][gr];
  1989. g->part2_3_length = get_bits(&s->gb, 12);
  1990. g->big_values = get_bits(&s->gb, 9);
  1991. g->global_gain = get_bits(&s->gb, 8);
  1992. /* if MS stereo only is selected, we precompute the
  1993. 1/sqrt(2) renormalization factor */
  1994. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1995. MODE_EXT_MS_STEREO)
  1996. g->global_gain -= 2;
  1997. if (s->lsf)
  1998. g->scalefac_compress = get_bits(&s->gb, 9);
  1999. else
  2000. g->scalefac_compress = get_bits(&s->gb, 4);
  2001. blocksplit_flag = get_bits(&s->gb, 1);
  2002. if (blocksplit_flag) {
  2003. g->block_type = get_bits(&s->gb, 2);
  2004. if (g->block_type == 0)
  2005. return -1;
  2006. g->switch_point = get_bits(&s->gb, 1);
  2007. for(i=0;i<2;i++)
  2008. g->table_select[i] = get_bits(&s->gb, 5);
  2009. for(i=0;i<3;i++)
  2010. g->subblock_gain[i] = get_bits(&s->gb, 3);
  2011. /* compute huffman coded region sizes */
  2012. if (g->block_type == 2)
  2013. g->region_size[0] = (36 / 2);
  2014. else {
  2015. if (s->sample_rate_index <= 2)
  2016. g->region_size[0] = (36 / 2);
  2017. else if (s->sample_rate_index != 8)
  2018. g->region_size[0] = (54 / 2);
  2019. else
  2020. g->region_size[0] = (108 / 2);
  2021. }
  2022. g->region_size[1] = (576 / 2);
  2023. } else {
  2024. int region_address1, region_address2, l;
  2025. g->block_type = 0;
  2026. g->switch_point = 0;
  2027. for(i=0;i<3;i++)
  2028. g->table_select[i] = get_bits(&s->gb, 5);
  2029. /* compute huffman coded region sizes */
  2030. region_address1 = get_bits(&s->gb, 4);
  2031. region_address2 = get_bits(&s->gb, 3);
  2032. dprintf("region1=%d region2=%d\n",
  2033. region_address1, region_address2);
  2034. g->region_size[0] =
  2035. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  2036. l = region_address1 + region_address2 + 2;
  2037. /* should not overflow */
  2038. if (l > 22)
  2039. l = 22;
  2040. g->region_size[1] =
  2041. band_index_long[s->sample_rate_index][l] >> 1;
  2042. }
  2043. /* convert region offsets to region sizes and truncate
  2044. size to big_values */
  2045. g->region_size[2] = (576 / 2);
  2046. j = 0;
  2047. for(i=0;i<3;i++) {
  2048. k = g->region_size[i];
  2049. if (k > g->big_values)
  2050. k = g->big_values;
  2051. g->region_size[i] = k - j;
  2052. j = k;
  2053. }
  2054. /* compute band indexes */
  2055. if (g->block_type == 2) {
  2056. if (g->switch_point) {
  2057. /* if switched mode, we handle the 36 first samples as
  2058. long blocks. For 8000Hz, we handle the 48 first
  2059. exponents as long blocks (XXX: check this!) */
  2060. if (s->sample_rate_index <= 2)
  2061. g->long_end = 8;
  2062. else if (s->sample_rate_index != 8)
  2063. g->long_end = 6;
  2064. else
  2065. g->long_end = 4; /* 8000 Hz */
  2066. if (s->sample_rate_index != 8)
  2067. g->short_start = 3;
  2068. else
  2069. g->short_start = 2;
  2070. } else {
  2071. g->long_end = 0;
  2072. g->short_start = 0;
  2073. }
  2074. } else {
  2075. g->short_start = 13;
  2076. g->long_end = 22;
  2077. }
  2078. g->preflag = 0;
  2079. if (!s->lsf)
  2080. g->preflag = get_bits(&s->gb, 1);
  2081. g->scalefac_scale = get_bits(&s->gb, 1);
  2082. g->count1table_select = get_bits(&s->gb, 1);
  2083. dprintf("block_type=%d switch_point=%d\n",
  2084. g->block_type, g->switch_point);
  2085. }
  2086. }
  2087. if (!s->adu_mode) {
  2088. /* now we get bits from the main_data_begin offset */
  2089. dprintf("seekback: %d\n", main_data_begin);
  2090. seek_to_maindata(s, main_data_begin);
  2091. }
  2092. for(gr=0;gr<nb_granules;gr++) {
  2093. for(ch=0;ch<s->nb_channels;ch++) {
  2094. g = &granules[ch][gr];
  2095. bits_pos = get_bits_count(&s->gb);
  2096. if (!s->lsf) {
  2097. uint8_t *sc;
  2098. int slen, slen1, slen2;
  2099. /* MPEG1 scale factors */
  2100. slen1 = slen_table[0][g->scalefac_compress];
  2101. slen2 = slen_table[1][g->scalefac_compress];
  2102. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2103. if (g->block_type == 2) {
  2104. n = g->switch_point ? 17 : 18;
  2105. j = 0;
  2106. for(i=0;i<n;i++)
  2107. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  2108. for(i=0;i<18;i++)
  2109. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  2110. for(i=0;i<3;i++)
  2111. g->scale_factors[j++] = 0;
  2112. } else {
  2113. sc = granules[ch][0].scale_factors;
  2114. j = 0;
  2115. for(k=0;k<4;k++) {
  2116. n = (k == 0 ? 6 : 5);
  2117. if ((g->scfsi & (0x8 >> k)) == 0) {
  2118. slen = (k < 2) ? slen1 : slen2;
  2119. for(i=0;i<n;i++)
  2120. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  2121. } else {
  2122. /* simply copy from last granule */
  2123. for(i=0;i<n;i++) {
  2124. g->scale_factors[j] = sc[j];
  2125. j++;
  2126. }
  2127. }
  2128. }
  2129. g->scale_factors[j++] = 0;
  2130. }
  2131. #if defined(DEBUG)
  2132. {
  2133. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2134. g->scfsi, gr, ch);
  2135. for(i=0;i<j;i++)
  2136. printf(" %d", g->scale_factors[i]);
  2137. printf("\n");
  2138. }
  2139. #endif
  2140. } else {
  2141. int tindex, tindex2, slen[4], sl, sf;
  2142. /* LSF scale factors */
  2143. if (g->block_type == 2) {
  2144. tindex = g->switch_point ? 2 : 1;
  2145. } else {
  2146. tindex = 0;
  2147. }
  2148. sf = g->scalefac_compress;
  2149. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2150. /* intensity stereo case */
  2151. sf >>= 1;
  2152. if (sf < 180) {
  2153. lsf_sf_expand(slen, sf, 6, 6, 0);
  2154. tindex2 = 3;
  2155. } else if (sf < 244) {
  2156. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2157. tindex2 = 4;
  2158. } else {
  2159. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2160. tindex2 = 5;
  2161. }
  2162. } else {
  2163. /* normal case */
  2164. if (sf < 400) {
  2165. lsf_sf_expand(slen, sf, 5, 4, 4);
  2166. tindex2 = 0;
  2167. } else if (sf < 500) {
  2168. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2169. tindex2 = 1;
  2170. } else {
  2171. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2172. tindex2 = 2;
  2173. g->preflag = 1;
  2174. }
  2175. }
  2176. j = 0;
  2177. for(k=0;k<4;k++) {
  2178. n = lsf_nsf_table[tindex2][tindex][k];
  2179. sl = slen[k];
  2180. for(i=0;i<n;i++)
  2181. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2182. }
  2183. /* XXX: should compute exact size */
  2184. for(;j<40;j++)
  2185. g->scale_factors[j] = 0;
  2186. #if defined(DEBUG)
  2187. {
  2188. printf("gr=%d ch=%d scale_factors:\n",
  2189. gr, ch);
  2190. for(i=0;i<40;i++)
  2191. printf(" %d", g->scale_factors[i]);
  2192. printf("\n");
  2193. }
  2194. #endif
  2195. }
  2196. exponents_from_scale_factors(s, g, exponents);
  2197. /* read Huffman coded residue */
  2198. if (huffman_decode(s, g, exponents,
  2199. bits_pos + g->part2_3_length) < 0)
  2200. return -1;
  2201. #if defined(DEBUG)
  2202. sample_dump(0, g->sb_hybrid, 576);
  2203. #endif
  2204. /* skip extension bits */
  2205. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2206. if (bits_left < 0) {
  2207. dprintf("bits_left=%d\n", bits_left);
  2208. return -1;
  2209. }
  2210. while (bits_left >= 16) {
  2211. skip_bits(&s->gb, 16);
  2212. bits_left -= 16;
  2213. }
  2214. if (bits_left > 0)
  2215. skip_bits(&s->gb, bits_left);
  2216. } /* ch */
  2217. if (s->nb_channels == 2)
  2218. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2219. for(ch=0;ch<s->nb_channels;ch++) {
  2220. g = &granules[ch][gr];
  2221. reorder_block(s, g);
  2222. #if defined(DEBUG)
  2223. sample_dump(0, g->sb_hybrid, 576);
  2224. #endif
  2225. s->compute_antialias(s, g);
  2226. #if defined(DEBUG)
  2227. sample_dump(1, g->sb_hybrid, 576);
  2228. #endif
  2229. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2230. #if defined(DEBUG)
  2231. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2232. #endif
  2233. }
  2234. } /* gr */
  2235. return nb_granules * 18;
  2236. }
  2237. static int mp_decode_frame(MPADecodeContext *s,
  2238. short *samples)
  2239. {
  2240. int i, nb_frames, ch;
  2241. short *samples_ptr;
  2242. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2243. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2244. /* skip error protection field */
  2245. if (s->error_protection)
  2246. get_bits(&s->gb, 16);
  2247. dprintf("frame %d:\n", s->frame_count);
  2248. switch(s->layer) {
  2249. case 1:
  2250. nb_frames = mp_decode_layer1(s);
  2251. break;
  2252. case 2:
  2253. nb_frames = mp_decode_layer2(s);
  2254. break;
  2255. case 3:
  2256. default:
  2257. nb_frames = mp_decode_layer3(s);
  2258. break;
  2259. }
  2260. #if defined(DEBUG)
  2261. for(i=0;i<nb_frames;i++) {
  2262. for(ch=0;ch<s->nb_channels;ch++) {
  2263. int j;
  2264. printf("%d-%d:", i, ch);
  2265. for(j=0;j<SBLIMIT;j++)
  2266. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2267. printf("\n");
  2268. }
  2269. }
  2270. #endif
  2271. /* apply the synthesis filter */
  2272. for(ch=0;ch<s->nb_channels;ch++) {
  2273. samples_ptr = samples + ch;
  2274. for(i=0;i<nb_frames;i++) {
  2275. synth_filter(s, ch, samples_ptr, s->nb_channels,
  2276. s->sb_samples[ch][i]);
  2277. samples_ptr += 32 * s->nb_channels;
  2278. }
  2279. }
  2280. #ifdef DEBUG
  2281. s->frame_count++;
  2282. #endif
  2283. return nb_frames * 32 * sizeof(short) * s->nb_channels;
  2284. }
  2285. static int decode_frame(AVCodecContext * avctx,
  2286. void *data, int *data_size,
  2287. uint8_t * buf, int buf_size)
  2288. {
  2289. MPADecodeContext *s = avctx->priv_data;
  2290. uint32_t header;
  2291. uint8_t *buf_ptr;
  2292. int len, out_size;
  2293. short *out_samples = data;
  2294. buf_ptr = buf;
  2295. while (buf_size > 0) {
  2296. len = s->inbuf_ptr - s->inbuf;
  2297. if (s->frame_size == 0) {
  2298. /* special case for next header for first frame in free
  2299. format case (XXX: find a simpler method) */
  2300. if (s->free_format_next_header != 0) {
  2301. s->inbuf[0] = s->free_format_next_header >> 24;
  2302. s->inbuf[1] = s->free_format_next_header >> 16;
  2303. s->inbuf[2] = s->free_format_next_header >> 8;
  2304. s->inbuf[3] = s->free_format_next_header;
  2305. s->inbuf_ptr = s->inbuf + 4;
  2306. s->free_format_next_header = 0;
  2307. goto got_header;
  2308. }
  2309. /* no header seen : find one. We need at least HEADER_SIZE
  2310. bytes to parse it */
  2311. len = HEADER_SIZE - len;
  2312. if (len > buf_size)
  2313. len = buf_size;
  2314. if (len > 0) {
  2315. memcpy(s->inbuf_ptr, buf_ptr, len);
  2316. buf_ptr += len;
  2317. buf_size -= len;
  2318. s->inbuf_ptr += len;
  2319. }
  2320. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2321. got_header:
  2322. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2323. (s->inbuf[2] << 8) | s->inbuf[3];
  2324. if (check_header(header) < 0) {
  2325. /* no sync found : move by one byte (inefficient, but simple!) */
  2326. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2327. s->inbuf_ptr--;
  2328. dprintf("skip %x\n", header);
  2329. /* reset free format frame size to give a chance
  2330. to get a new bitrate */
  2331. s->free_format_frame_size = 0;
  2332. } else {
  2333. if (decode_header(s, header) == 1) {
  2334. /* free format: prepare to compute frame size */
  2335. s->frame_size = -1;
  2336. }
  2337. /* update codec info */
  2338. avctx->sample_rate = s->sample_rate;
  2339. avctx->channels = s->nb_channels;
  2340. avctx->bit_rate = s->bit_rate;
  2341. avctx->sub_id = s->layer;
  2342. switch(s->layer) {
  2343. case 1:
  2344. avctx->frame_size = 384;
  2345. break;
  2346. case 2:
  2347. avctx->frame_size = 1152;
  2348. break;
  2349. case 3:
  2350. if (s->lsf)
  2351. avctx->frame_size = 576;
  2352. else
  2353. avctx->frame_size = 1152;
  2354. break;
  2355. }
  2356. }
  2357. }
  2358. } else if (s->frame_size == -1) {
  2359. /* free format : find next sync to compute frame size */
  2360. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2361. if (len > buf_size)
  2362. len = buf_size;
  2363. if (len == 0) {
  2364. /* frame too long: resync */
  2365. s->frame_size = 0;
  2366. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2367. s->inbuf_ptr--;
  2368. } else {
  2369. uint8_t *p, *pend;
  2370. uint32_t header1;
  2371. int padding;
  2372. memcpy(s->inbuf_ptr, buf_ptr, len);
  2373. /* check for header */
  2374. p = s->inbuf_ptr - 3;
  2375. pend = s->inbuf_ptr + len - 4;
  2376. while (p <= pend) {
  2377. header = (p[0] << 24) | (p[1] << 16) |
  2378. (p[2] << 8) | p[3];
  2379. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2380. (s->inbuf[2] << 8) | s->inbuf[3];
  2381. /* check with high probability that we have a
  2382. valid header */
  2383. if ((header & SAME_HEADER_MASK) ==
  2384. (header1 & SAME_HEADER_MASK)) {
  2385. /* header found: update pointers */
  2386. len = (p + 4) - s->inbuf_ptr;
  2387. buf_ptr += len;
  2388. buf_size -= len;
  2389. s->inbuf_ptr = p;
  2390. /* compute frame size */
  2391. s->free_format_next_header = header;
  2392. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2393. padding = (header1 >> 9) & 1;
  2394. if (s->layer == 1)
  2395. s->free_format_frame_size -= padding * 4;
  2396. else
  2397. s->free_format_frame_size -= padding;
  2398. dprintf("free frame size=%d padding=%d\n",
  2399. s->free_format_frame_size, padding);
  2400. decode_header(s, header1);
  2401. goto next_data;
  2402. }
  2403. p++;
  2404. }
  2405. /* not found: simply increase pointers */
  2406. buf_ptr += len;
  2407. s->inbuf_ptr += len;
  2408. buf_size -= len;
  2409. }
  2410. } else if (len < s->frame_size) {
  2411. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2412. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2413. len = s->frame_size - len;
  2414. if (len > buf_size)
  2415. len = buf_size;
  2416. memcpy(s->inbuf_ptr, buf_ptr, len);
  2417. buf_ptr += len;
  2418. s->inbuf_ptr += len;
  2419. buf_size -= len;
  2420. }
  2421. next_data:
  2422. if (s->frame_size > 0 &&
  2423. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2424. if (avctx->parse_only) {
  2425. /* simply return the frame data */
  2426. *(uint8_t **)data = s->inbuf;
  2427. out_size = s->inbuf_ptr - s->inbuf;
  2428. } else {
  2429. out_size = mp_decode_frame(s, out_samples);
  2430. }
  2431. s->inbuf_ptr = s->inbuf;
  2432. s->frame_size = 0;
  2433. *data_size = out_size;
  2434. break;
  2435. }
  2436. }
  2437. return buf_ptr - buf;
  2438. }
  2439. static int decode_frame_adu(AVCodecContext * avctx,
  2440. void *data, int *data_size,
  2441. uint8_t * buf, int buf_size)
  2442. {
  2443. MPADecodeContext *s = avctx->priv_data;
  2444. uint32_t header;
  2445. int len, out_size;
  2446. short *out_samples = data;
  2447. len = buf_size;
  2448. // Discard too short frames
  2449. if (buf_size < HEADER_SIZE) {
  2450. *data_size = 0;
  2451. return buf_size;
  2452. }
  2453. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2454. len = MPA_MAX_CODED_FRAME_SIZE;
  2455. memcpy(s->inbuf, buf, len);
  2456. s->inbuf_ptr = s->inbuf + len;
  2457. // Get header and restore sync word
  2458. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2459. (s->inbuf[2] << 8) | s->inbuf[3] | 0xffe00000;
  2460. if (check_header(header) < 0) { // Bad header, discard frame
  2461. *data_size = 0;
  2462. return buf_size;
  2463. }
  2464. decode_header(s, header);
  2465. /* update codec info */
  2466. avctx->sample_rate = s->sample_rate;
  2467. avctx->channels = s->nb_channels;
  2468. avctx->bit_rate = s->bit_rate;
  2469. avctx->sub_id = s->layer;
  2470. avctx->frame_size=s->frame_size = len;
  2471. if (avctx->parse_only) {
  2472. /* simply return the frame data */
  2473. *(uint8_t **)data = s->inbuf;
  2474. out_size = s->inbuf_ptr - s->inbuf;
  2475. } else {
  2476. out_size = mp_decode_frame(s, out_samples);
  2477. }
  2478. *data_size = out_size;
  2479. return buf_size;
  2480. }
  2481. AVCodec mp2_decoder =
  2482. {
  2483. "mp2",
  2484. CODEC_TYPE_AUDIO,
  2485. CODEC_ID_MP2,
  2486. sizeof(MPADecodeContext),
  2487. decode_init,
  2488. NULL,
  2489. NULL,
  2490. decode_frame,
  2491. CODEC_CAP_PARSE_ONLY,
  2492. };
  2493. AVCodec mp3_decoder =
  2494. {
  2495. "mp3",
  2496. CODEC_TYPE_AUDIO,
  2497. CODEC_ID_MP3,
  2498. sizeof(MPADecodeContext),
  2499. decode_init,
  2500. NULL,
  2501. NULL,
  2502. decode_frame,
  2503. CODEC_CAP_PARSE_ONLY,
  2504. };
  2505. AVCodec mp3adu_decoder =
  2506. {
  2507. "mp3adu",
  2508. CODEC_TYPE_AUDIO,
  2509. CODEC_ID_MP3ADU,
  2510. sizeof(MPADecodeContext),
  2511. decode_init,
  2512. NULL,
  2513. NULL,
  2514. decode_frame_adu,
  2515. CODEC_CAP_PARSE_ONLY,
  2516. };