You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1076 lines
34KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "cabac.h"
  30. #include "error_resilience.h"
  31. #include "get_bits.h"
  32. #include "h264chroma.h"
  33. #include "h264dsp.h"
  34. #include "h264pred.h"
  35. #include "h264qpel.h"
  36. #include "mpegutils.h"
  37. #include "parser.h"
  38. #include "qpeldsp.h"
  39. #include "rectangle.h"
  40. #include "videodsp.h"
  41. #define H264_MAX_PICTURE_COUNT 32
  42. #define H264_MAX_THREADS 16
  43. #define MAX_SPS_COUNT 32
  44. #define MAX_PPS_COUNT 256
  45. #define MAX_MMCO_COUNT 66
  46. #define MAX_DELAYED_PIC_COUNT 16
  47. /* Compiling in interlaced support reduces the speed
  48. * of progressive decoding by about 2%. */
  49. #define ALLOW_INTERLACE
  50. #define FMO 0
  51. /**
  52. * The maximum number of slices supported by the decoder.
  53. * must be a power of 2
  54. */
  55. #define MAX_SLICES 32
  56. #ifdef ALLOW_INTERLACE
  57. #define MB_MBAFF(h) h->mb_mbaff
  58. #define MB_FIELD(h) h->mb_field_decoding_flag
  59. #define FRAME_MBAFF(h) h->mb_aff_frame
  60. #define FIELD_PICTURE(h) (h->picture_structure != PICT_FRAME)
  61. #define LEFT_MBS 2
  62. #define LTOP 0
  63. #define LBOT 1
  64. #define LEFT(i) (i)
  65. #else
  66. #define MB_MBAFF(h) 0
  67. #define MB_FIELD(h) 0
  68. #define FRAME_MBAFF(h) 0
  69. #define FIELD_PICTURE(h) 0
  70. #undef IS_INTERLACED
  71. #define IS_INTERLACED(mb_type) 0
  72. #define LEFT_MBS 1
  73. #define LTOP 0
  74. #define LBOT 0
  75. #define LEFT(i) 0
  76. #endif
  77. #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
  78. #ifndef CABAC
  79. #define CABAC(h) h->pps.cabac
  80. #endif
  81. #define CHROMA422(h) (h->sps.chroma_format_idc == 2)
  82. #define CHROMA444(h) (h->sps.chroma_format_idc == 3)
  83. #define EXTENDED_SAR 255
  84. #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
  85. #define MB_TYPE_8x8DCT 0x01000000
  86. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  87. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  88. #define QP_MAX_NUM (51 + 2 * 6) // The maximum supported qp
  89. /* NAL unit types */
  90. enum {
  91. NAL_SLICE = 1,
  92. NAL_DPA = 2,
  93. NAL_DPB = 3,
  94. NAL_DPC = 4,
  95. NAL_IDR_SLICE = 5,
  96. NAL_SEI = 6,
  97. NAL_SPS = 7,
  98. NAL_PPS = 8,
  99. NAL_AUD = 9,
  100. NAL_END_SEQUENCE = 10,
  101. NAL_END_STREAM = 11,
  102. NAL_FILLER_DATA = 12,
  103. NAL_SPS_EXT = 13,
  104. NAL_AUXILIARY_SLICE = 19,
  105. NAL_FF_IGNORE = 0xff0f001,
  106. };
  107. /**
  108. * SEI message types
  109. */
  110. typedef enum {
  111. SEI_TYPE_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  112. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  113. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  114. SEI_TYPE_RECOVERY_POINT = 6, ///< recovery point (frame # to decoder sync)
  115. SEI_TYPE_FRAME_PACKING = 45, ///< frame packing arrangement
  116. SEI_TYPE_DISPLAY_ORIENTATION = 47, ///< display orientation
  117. } SEI_Type;
  118. /**
  119. * pic_struct in picture timing SEI message
  120. */
  121. typedef enum {
  122. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  123. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  124. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  125. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  126. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  127. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  128. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  129. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  130. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  131. } SEI_PicStructType;
  132. /**
  133. * Sequence parameter set
  134. */
  135. typedef struct SPS {
  136. unsigned int sps_id;
  137. int profile_idc;
  138. int level_idc;
  139. int chroma_format_idc;
  140. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  141. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  142. int poc_type; ///< pic_order_cnt_type
  143. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  144. int delta_pic_order_always_zero_flag;
  145. int offset_for_non_ref_pic;
  146. int offset_for_top_to_bottom_field;
  147. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  148. int ref_frame_count; ///< num_ref_frames
  149. int gaps_in_frame_num_allowed_flag;
  150. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  151. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  152. int frame_mbs_only_flag;
  153. int mb_aff; ///< mb_adaptive_frame_field_flag
  154. int direct_8x8_inference_flag;
  155. int crop; ///< frame_cropping_flag
  156. /* those 4 are already in luma samples */
  157. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  158. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  159. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  160. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  161. int vui_parameters_present_flag;
  162. AVRational sar;
  163. int video_signal_type_present_flag;
  164. int full_range;
  165. int colour_description_present_flag;
  166. enum AVColorPrimaries color_primaries;
  167. enum AVColorTransferCharacteristic color_trc;
  168. enum AVColorSpace colorspace;
  169. int timing_info_present_flag;
  170. uint32_t num_units_in_tick;
  171. uint32_t time_scale;
  172. int fixed_frame_rate_flag;
  173. short offset_for_ref_frame[256]; // FIXME dyn aloc?
  174. int bitstream_restriction_flag;
  175. int num_reorder_frames;
  176. int scaling_matrix_present;
  177. uint8_t scaling_matrix4[6][16];
  178. uint8_t scaling_matrix8[6][64];
  179. int nal_hrd_parameters_present_flag;
  180. int vcl_hrd_parameters_present_flag;
  181. int pic_struct_present_flag;
  182. int time_offset_length;
  183. int cpb_cnt; ///< See H.264 E.1.2
  184. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
  185. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  186. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  187. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  188. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  189. int residual_color_transform_flag; ///< residual_colour_transform_flag
  190. int constraint_set_flags; ///< constraint_set[0-3]_flag
  191. int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
  192. } SPS;
  193. /**
  194. * Picture parameter set
  195. */
  196. typedef struct PPS {
  197. unsigned int sps_id;
  198. int cabac; ///< entropy_coding_mode_flag
  199. int pic_order_present; ///< pic_order_present_flag
  200. int slice_group_count; ///< num_slice_groups_minus1 + 1
  201. int mb_slice_group_map_type;
  202. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  203. int weighted_pred; ///< weighted_pred_flag
  204. int weighted_bipred_idc;
  205. int init_qp; ///< pic_init_qp_minus26 + 26
  206. int init_qs; ///< pic_init_qs_minus26 + 26
  207. int chroma_qp_index_offset[2];
  208. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  209. int constrained_intra_pred; ///< constrained_intra_pred_flag
  210. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  211. int transform_8x8_mode; ///< transform_8x8_mode_flag
  212. uint8_t scaling_matrix4[6][16];
  213. uint8_t scaling_matrix8[6][64];
  214. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  215. int chroma_qp_diff;
  216. } PPS;
  217. /**
  218. * Memory management control operation opcode.
  219. */
  220. typedef enum MMCOOpcode {
  221. MMCO_END = 0,
  222. MMCO_SHORT2UNUSED,
  223. MMCO_LONG2UNUSED,
  224. MMCO_SHORT2LONG,
  225. MMCO_SET_MAX_LONG,
  226. MMCO_RESET,
  227. MMCO_LONG,
  228. } MMCOOpcode;
  229. /**
  230. * Memory management control operation.
  231. */
  232. typedef struct MMCO {
  233. MMCOOpcode opcode;
  234. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  235. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  236. } MMCO;
  237. typedef struct H264Picture {
  238. struct AVFrame f;
  239. ThreadFrame tf;
  240. AVBufferRef *qscale_table_buf;
  241. int8_t *qscale_table;
  242. AVBufferRef *motion_val_buf[2];
  243. int16_t (*motion_val[2])[2];
  244. AVBufferRef *mb_type_buf;
  245. uint32_t *mb_type;
  246. AVBufferRef *hwaccel_priv_buf;
  247. void *hwaccel_picture_private; ///< hardware accelerator private data
  248. AVBufferRef *ref_index_buf[2];
  249. int8_t *ref_index[2];
  250. int field_poc[2]; ///< top/bottom POC
  251. int poc; ///< frame POC
  252. int frame_num; ///< frame_num (raw frame_num from slice header)
  253. int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
  254. not mix pictures before and after MMCO_RESET. */
  255. int pic_id; /**< pic_num (short -> no wrap version of pic_num,
  256. pic_num & max_pic_num; long -> long_pic_num) */
  257. int long_ref; ///< 1->long term reference 0->short term reference
  258. int ref_poc[2][2][32]; ///< POCs of the frames used as reference (FIXME need per slice)
  259. int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
  260. int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
  261. int field_picture; ///< whether or not picture was encoded in separate fields
  262. int needs_realloc; ///< picture needs to be reallocated (eg due to a frame size change)
  263. int reference;
  264. int recovered; ///< picture at IDR or recovery point + recovery count
  265. } H264Picture;
  266. typedef struct H264SliceContext {
  267. struct H264Context *h264;
  268. GetBitContext gb;
  269. int slice_num;
  270. int slice_type;
  271. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  272. int slice_type_fixed;
  273. int qscale;
  274. int chroma_qp[2]; // QPc
  275. int qp_thresh; ///< QP threshold to skip loopfilter
  276. int last_qscale_diff;
  277. // deblock
  278. int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
  279. int slice_alpha_c0_offset;
  280. int slice_beta_offset;
  281. // Weighted pred stuff
  282. int use_weight;
  283. int use_weight_chroma;
  284. int luma_log2_weight_denom;
  285. int chroma_log2_weight_denom;
  286. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  287. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  288. // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
  289. int luma_weight[48][2][2];
  290. int chroma_weight[48][2][2][2];
  291. int implicit_weight[48][48][2];
  292. int prev_mb_skipped;
  293. int next_mb_skipped;
  294. int chroma_pred_mode;
  295. int intra16x16_pred_mode;
  296. int8_t intra4x4_pred_mode_cache[5 * 8];
  297. int8_t(*intra4x4_pred_mode);
  298. int topleft_mb_xy;
  299. int top_mb_xy;
  300. int topright_mb_xy;
  301. int left_mb_xy[LEFT_MBS];
  302. int topleft_type;
  303. int top_type;
  304. int topright_type;
  305. int left_type[LEFT_MBS];
  306. const uint8_t *left_block;
  307. int topleft_partition;
  308. unsigned int topleft_samples_available;
  309. unsigned int top_samples_available;
  310. unsigned int topright_samples_available;
  311. unsigned int left_samples_available;
  312. ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
  313. ptrdiff_t mb_uvlinesize;
  314. int mb_x, mb_y;
  315. int mb_xy;
  316. int resync_mb_x;
  317. int resync_mb_y;
  318. int mb_skip_run;
  319. int is_complex;
  320. int redundant_pic_count;
  321. /**
  322. * number of neighbors (top and/or left) that used 8x8 dct
  323. */
  324. int neighbor_transform_size;
  325. int direct_spatial_mv_pred;
  326. int col_parity;
  327. int col_fieldoff;
  328. int cbp;
  329. int top_cbp;
  330. int left_cbp;
  331. int dist_scale_factor[32];
  332. int dist_scale_factor_field[2][32];
  333. int map_col_to_list0[2][16 + 32];
  334. int map_col_to_list0_field[2][2][16 + 32];
  335. /**
  336. * num_ref_idx_l0/1_active_minus1 + 1
  337. */
  338. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  339. unsigned int list_count;
  340. H264Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  341. * Reordered version of default_ref_list
  342. * according to picture reordering in slice header */
  343. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  344. const uint8_t *intra_pcm_ptr;
  345. /**
  346. * non zero coeff count cache.
  347. * is 64 if not available.
  348. */
  349. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
  350. /**
  351. * Motion vector cache.
  352. */
  353. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
  354. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
  355. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
  356. uint8_t direct_cache[5 * 8];
  357. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  358. ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
  359. DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
  360. DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
  361. ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
  362. ///< check that i is not too large or ensure that there is some unused stuff after mb
  363. int16_t mb_padding[256 * 2];
  364. uint8_t (*mvd_table[2])[2];
  365. /**
  366. * Cabac
  367. */
  368. CABACContext cabac;
  369. uint8_t cabac_state[1024];
  370. int cabac_init_idc;
  371. } H264SliceContext;
  372. /**
  373. * H264Context
  374. */
  375. typedef struct H264Context {
  376. AVCodecContext *avctx;
  377. VideoDSPContext vdsp;
  378. H264DSPContext h264dsp;
  379. H264ChromaContext h264chroma;
  380. H264QpelContext h264qpel;
  381. GetBitContext gb;
  382. ERContext er;
  383. H264Picture *DPB;
  384. H264Picture *cur_pic_ptr;
  385. H264Picture cur_pic;
  386. H264SliceContext *slice_ctx;
  387. int nb_slice_ctx;
  388. int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
  389. /* coded dimensions -- 16 * mb w/h */
  390. int width, height;
  391. ptrdiff_t linesize, uvlinesize;
  392. int chroma_x_shift, chroma_y_shift;
  393. int droppable;
  394. int coded_picture_number;
  395. int low_delay;
  396. int context_initialized;
  397. int flags;
  398. int workaround_bugs;
  399. int8_t(*intra4x4_pred_mode);
  400. H264PredContext hpc;
  401. uint8_t (*top_borders[2])[(16 * 3) * 2];
  402. uint8_t (*non_zero_count)[48];
  403. #define LIST_NOT_USED -1 // FIXME rename?
  404. #define PART_NOT_AVAILABLE -2
  405. /**
  406. * block_offset[ 0..23] for frame macroblocks
  407. * block_offset[24..47] for field macroblocks
  408. */
  409. int block_offset[2 * (16 * 3)];
  410. uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
  411. uint32_t *mb2br_xy;
  412. int b_stride; // FIXME use s->b4_stride
  413. SPS sps; ///< current sps
  414. PPS pps; ///< current pps
  415. uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
  416. uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
  417. uint32_t(*dequant4_coeff[6])[16];
  418. uint32_t(*dequant8_coeff[6])[64];
  419. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  420. // interlacing specific flags
  421. int mb_aff_frame;
  422. int mb_field_decoding_flag;
  423. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  424. int picture_structure;
  425. int first_field;
  426. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  427. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
  428. uint16_t *cbp_table;
  429. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  430. uint8_t *chroma_pred_mode_table;
  431. uint8_t (*mvd_table[2])[2];
  432. uint8_t *direct_table;
  433. uint8_t zigzag_scan[16];
  434. uint8_t zigzag_scan8x8[64];
  435. uint8_t zigzag_scan8x8_cavlc[64];
  436. uint8_t field_scan[16];
  437. uint8_t field_scan8x8[64];
  438. uint8_t field_scan8x8_cavlc[64];
  439. const uint8_t *zigzag_scan_q0;
  440. const uint8_t *zigzag_scan8x8_q0;
  441. const uint8_t *zigzag_scan8x8_cavlc_q0;
  442. const uint8_t *field_scan_q0;
  443. const uint8_t *field_scan8x8_q0;
  444. const uint8_t *field_scan8x8_cavlc_q0;
  445. int x264_build;
  446. int mb_y;
  447. int mb_height, mb_width;
  448. int mb_stride;
  449. int mb_num;
  450. // =============================================================
  451. // Things below are not used in the MB or more inner code
  452. int nal_ref_idc;
  453. int nal_unit_type;
  454. uint8_t *rbsp_buffer;
  455. unsigned int rbsp_buffer_size;
  456. /**
  457. * Used to parse AVC variant of h264
  458. */
  459. int is_avc; ///< this flag is != 0 if codec is avc1
  460. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  461. int bit_depth_luma; ///< luma bit depth from sps to detect changes
  462. int chroma_format_idc; ///< chroma format from sps to detect changes
  463. SPS *sps_buffers[MAX_SPS_COUNT];
  464. PPS *pps_buffers[MAX_PPS_COUNT];
  465. int dequant_coeff_pps; ///< reinit tables when pps changes
  466. uint16_t *slice_table_base;
  467. // POC stuff
  468. int poc_lsb;
  469. int poc_msb;
  470. int delta_poc_bottom;
  471. int delta_poc[2];
  472. int frame_num;
  473. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  474. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  475. int frame_num_offset; ///< for POC type 2
  476. int prev_frame_num_offset; ///< for POC type 2
  477. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  478. /**
  479. * frame_num for frames or 2 * frame_num + 1 for field pics.
  480. */
  481. int curr_pic_num;
  482. /**
  483. * max_frame_num or 2 * max_frame_num for field pics.
  484. */
  485. int max_pic_num;
  486. H264Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  487. H264Picture *short_ref[32];
  488. H264Picture *long_ref[32];
  489. H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
  490. int last_pocs[MAX_DELAYED_PIC_COUNT];
  491. H264Picture *next_output_pic;
  492. int outputed_poc;
  493. int next_outputed_poc;
  494. /**
  495. * memory management control operations buffer.
  496. */
  497. MMCO mmco[MAX_MMCO_COUNT];
  498. int mmco_index;
  499. int mmco_reset;
  500. int long_ref_count; ///< number of actual long term references
  501. int short_ref_count; ///< number of actual short term references
  502. /**
  503. * @name Members for slice based multithreading
  504. * @{
  505. */
  506. struct H264Context *thread_context[H264_MAX_THREADS];
  507. /**
  508. * current slice number, used to initalize slice_num of each thread/context
  509. */
  510. int current_slice;
  511. /**
  512. * Max number of threads / contexts.
  513. * This is equal to AVCodecContext.thread_count unless
  514. * multithreaded decoding is impossible, in which case it is
  515. * reduced to 1.
  516. */
  517. int max_contexts;
  518. int slice_context_count;
  519. /**
  520. * 1 if the single thread fallback warning has already been
  521. * displayed, 0 otherwise.
  522. */
  523. int single_decode_warning;
  524. enum AVPictureType pict_type;
  525. int last_slice_type;
  526. /** @} */
  527. /**
  528. * pic_struct in picture timing SEI message
  529. */
  530. SEI_PicStructType sei_pic_struct;
  531. /**
  532. * Complement sei_pic_struct
  533. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  534. * However, soft telecined frames may have these values.
  535. * This is used in an attempt to flag soft telecine progressive.
  536. */
  537. int prev_interlaced_frame;
  538. /**
  539. * frame_packing_arrangment SEI message
  540. */
  541. int sei_frame_packing_present;
  542. int frame_packing_arrangement_type;
  543. int content_interpretation_type;
  544. int quincunx_subsampling;
  545. /**
  546. * display orientation SEI message
  547. */
  548. int sei_display_orientation_present;
  549. int sei_anticlockwise_rotation;
  550. int sei_hflip, sei_vflip;
  551. /**
  552. * Bit set of clock types for fields/frames in picture timing SEI message.
  553. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  554. * interlaced).
  555. */
  556. int sei_ct_type;
  557. /**
  558. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  559. */
  560. int sei_dpb_output_delay;
  561. /**
  562. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  563. */
  564. int sei_cpb_removal_delay;
  565. /**
  566. * recovery_frame_cnt from SEI message
  567. *
  568. * Set to -1 if no recovery point SEI message found or to number of frames
  569. * before playback synchronizes. Frames having recovery point are key
  570. * frames.
  571. */
  572. int sei_recovery_frame_cnt;
  573. /**
  574. * recovery_frame is the frame_num at which the next frame should
  575. * be fully constructed.
  576. *
  577. * Set to -1 when not expecting a recovery point.
  578. */
  579. int recovery_frame;
  580. /**
  581. * We have seen an IDR, so all the following frames in coded order are correctly
  582. * decodable.
  583. */
  584. #define FRAME_RECOVERED_IDR (1 << 0)
  585. /**
  586. * Sufficient number of frames have been decoded since a SEI recovery point,
  587. * so all the following frames in presentation order are correct.
  588. */
  589. #define FRAME_RECOVERED_SEI (1 << 1)
  590. int frame_recovered; ///< Initial frame has been completely recovered
  591. // Timestamp stuff
  592. int sei_buffering_period_present; ///< Buffering period SEI flag
  593. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  594. int cur_chroma_format_idc;
  595. uint8_t *bipred_scratchpad;
  596. uint8_t *edge_emu_buffer;
  597. int16_t *dc_val_base;
  598. AVBufferPool *qscale_table_pool;
  599. AVBufferPool *mb_type_pool;
  600. AVBufferPool *motion_val_pool;
  601. AVBufferPool *ref_index_pool;
  602. /* Motion Estimation */
  603. qpel_mc_func (*qpel_put)[16];
  604. qpel_mc_func (*qpel_avg)[16];
  605. } H264Context;
  606. extern const uint8_t ff_h264_chroma_qp[3][QP_MAX_NUM + 1]; ///< One chroma qp table for each supported bit depth (8, 9, 10).
  607. extern const uint16_t ff_h264_mb_sizes[4];
  608. /**
  609. * Decode SEI
  610. */
  611. int ff_h264_decode_sei(H264Context *h);
  612. /**
  613. * Decode SPS
  614. */
  615. int ff_h264_decode_seq_parameter_set(H264Context *h);
  616. /**
  617. * compute profile from sps
  618. */
  619. int ff_h264_get_profile(SPS *sps);
  620. /**
  621. * Decode PPS
  622. */
  623. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  624. /**
  625. * Decode a network abstraction layer unit.
  626. * @param consumed is the number of bytes used as input
  627. * @param length is the length of the array
  628. * @param dst_length is the number of decoded bytes FIXME here
  629. * or a decode rbsp tailing?
  630. * @return decoded bytes, might be src+1 if no escapes
  631. */
  632. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
  633. int *dst_length, int *consumed, int length);
  634. /**
  635. * Free any data that may have been allocated in the H264 context
  636. * like SPS, PPS etc.
  637. */
  638. void ff_h264_free_context(H264Context *h);
  639. /**
  640. * Reconstruct bitstream slice_type.
  641. */
  642. int ff_h264_get_slice_type(const H264SliceContext *sl);
  643. /**
  644. * Allocate tables.
  645. * needs width/height
  646. */
  647. int ff_h264_alloc_tables(H264Context *h);
  648. /**
  649. * Fill the default_ref_list.
  650. */
  651. int ff_h264_fill_default_ref_list(H264Context *h, H264SliceContext *sl);
  652. int ff_h264_decode_ref_pic_list_reordering(H264Context *h, H264SliceContext *sl);
  653. void ff_h264_fill_mbaff_ref_list(H264Context *h, H264SliceContext *sl);
  654. void ff_h264_remove_all_refs(H264Context *h);
  655. /**
  656. * Execute the reference picture marking (memory management control operations).
  657. */
  658. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  659. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb,
  660. int first_slice);
  661. int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
  662. /**
  663. * Check if the top & left blocks are available if needed & change the
  664. * dc mode so it only uses the available blocks.
  665. */
  666. int ff_h264_check_intra4x4_pred_mode(H264Context *h, H264SliceContext *sl);
  667. /**
  668. * Check if the top & left blocks are available if needed & change the
  669. * dc mode so it only uses the available blocks.
  670. */
  671. int ff_h264_check_intra_pred_mode(H264Context *h, H264SliceContext *sl,
  672. int mode, int is_chroma);
  673. void ff_h264_hl_decode_mb(H264Context *h, H264SliceContext *sl);
  674. int ff_h264_decode_extradata(H264Context *h);
  675. int ff_h264_decode_init(AVCodecContext *avctx);
  676. void ff_h264_decode_init_vlc(void);
  677. /**
  678. * Decode a macroblock
  679. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  680. */
  681. int ff_h264_decode_mb_cavlc(H264Context *h, H264SliceContext *sl);
  682. /**
  683. * Decode a CABAC coded macroblock
  684. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  685. */
  686. int ff_h264_decode_mb_cabac(H264Context *h, H264SliceContext *sl);
  687. void ff_h264_init_cabac_states(H264Context *h, H264SliceContext *sl);
  688. void h264_init_dequant_tables(H264Context *h);
  689. void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
  690. void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
  691. void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
  692. int *mb_type);
  693. void ff_h264_filter_mb_fast(H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  694. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  695. unsigned int linesize, unsigned int uvlinesize);
  696. void ff_h264_filter_mb(H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  697. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  698. unsigned int linesize, unsigned int uvlinesize);
  699. /**
  700. * Reset SEI values at the beginning of the frame.
  701. *
  702. * @param h H.264 context.
  703. */
  704. void ff_h264_reset_sei(H264Context *h);
  705. /*
  706. * o-o o-o
  707. * / / /
  708. * o-o o-o
  709. * ,---'
  710. * o-o o-o
  711. * / / /
  712. * o-o o-o
  713. */
  714. /* Scan8 organization:
  715. * 0 1 2 3 4 5 6 7
  716. * 0 DY y y y y y
  717. * 1 y Y Y Y Y
  718. * 2 y Y Y Y Y
  719. * 3 y Y Y Y Y
  720. * 4 y Y Y Y Y
  721. * 5 DU u u u u u
  722. * 6 u U U U U
  723. * 7 u U U U U
  724. * 8 u U U U U
  725. * 9 u U U U U
  726. * 10 DV v v v v v
  727. * 11 v V V V V
  728. * 12 v V V V V
  729. * 13 v V V V V
  730. * 14 v V V V V
  731. * DY/DU/DV are for luma/chroma DC.
  732. */
  733. #define LUMA_DC_BLOCK_INDEX 48
  734. #define CHROMA_DC_BLOCK_INDEX 49
  735. // This table must be here because scan8[constant] must be known at compiletime
  736. static const uint8_t scan8[16 * 3 + 3] = {
  737. 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
  738. 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
  739. 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
  740. 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
  741. 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
  742. 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
  743. 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
  744. 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
  745. 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
  746. 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
  747. 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
  748. 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
  749. 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
  750. };
  751. static av_always_inline uint32_t pack16to32(int a, int b)
  752. {
  753. #if HAVE_BIGENDIAN
  754. return (b & 0xFFFF) + (a << 16);
  755. #else
  756. return (a & 0xFFFF) + (b << 16);
  757. #endif
  758. }
  759. static av_always_inline uint16_t pack8to16(int a, int b)
  760. {
  761. #if HAVE_BIGENDIAN
  762. return (b & 0xFF) + (a << 8);
  763. #else
  764. return (a & 0xFF) + (b << 8);
  765. #endif
  766. }
  767. /**
  768. * Get the chroma qp.
  769. */
  770. static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale)
  771. {
  772. return h->pps.chroma_qp_table[t][qscale];
  773. }
  774. /**
  775. * Get the predicted intra4x4 prediction mode.
  776. */
  777. static av_always_inline int pred_intra_mode(H264Context *h,
  778. H264SliceContext *sl, int n)
  779. {
  780. const int index8 = scan8[n];
  781. const int left = sl->intra4x4_pred_mode_cache[index8 - 1];
  782. const int top = sl->intra4x4_pred_mode_cache[index8 - 8];
  783. const int min = FFMIN(left, top);
  784. tprintf(h->avctx, "mode:%d %d min:%d\n", left, top, min);
  785. if (min < 0)
  786. return DC_PRED;
  787. else
  788. return min;
  789. }
  790. static av_always_inline void write_back_intra_pred_mode(H264Context *h,
  791. H264SliceContext *sl)
  792. {
  793. int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
  794. int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
  795. AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
  796. i4x4[4] = i4x4_cache[7 + 8 * 3];
  797. i4x4[5] = i4x4_cache[7 + 8 * 2];
  798. i4x4[6] = i4x4_cache[7 + 8 * 1];
  799. }
  800. static av_always_inline void write_back_non_zero_count(H264Context *h,
  801. H264SliceContext *sl)
  802. {
  803. const int mb_xy = sl->mb_xy;
  804. uint8_t *nnz = h->non_zero_count[mb_xy];
  805. uint8_t *nnz_cache = sl->non_zero_count_cache;
  806. AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
  807. AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
  808. AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
  809. AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
  810. AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
  811. AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
  812. AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
  813. AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
  814. if (!h->chroma_y_shift) {
  815. AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
  816. AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
  817. AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
  818. AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
  819. }
  820. }
  821. static av_always_inline void write_back_motion_list(H264Context *h,
  822. H264SliceContext *sl,
  823. int b_stride,
  824. int b_xy, int b8_xy,
  825. int mb_type, int list)
  826. {
  827. int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
  828. int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
  829. AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
  830. AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
  831. AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
  832. AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
  833. if (CABAC(h)) {
  834. uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
  835. : h->mb2br_xy[sl->mb_xy]];
  836. uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]];
  837. if (IS_SKIP(mb_type)) {
  838. AV_ZERO128(mvd_dst);
  839. } else {
  840. AV_COPY64(mvd_dst, mvd_src + 8 * 3);
  841. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
  842. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
  843. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
  844. }
  845. }
  846. {
  847. int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
  848. int8_t *ref_cache = sl->ref_cache[list];
  849. ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
  850. ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
  851. ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
  852. ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
  853. }
  854. }
  855. static av_always_inline void write_back_motion(H264Context *h,
  856. H264SliceContext *sl,
  857. int mb_type)
  858. {
  859. const int b_stride = h->b_stride;
  860. const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
  861. const int b8_xy = 4 * sl->mb_xy;
  862. if (USES_LIST(mb_type, 0)) {
  863. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
  864. } else {
  865. fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
  866. 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  867. }
  868. if (USES_LIST(mb_type, 1))
  869. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
  870. if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
  871. if (IS_8X8(mb_type)) {
  872. uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
  873. direct_table[1] = sl->sub_mb_type[1] >> 1;
  874. direct_table[2] = sl->sub_mb_type[2] >> 1;
  875. direct_table[3] = sl->sub_mb_type[3] >> 1;
  876. }
  877. }
  878. }
  879. static av_always_inline int get_dct8x8_allowed(H264Context *h, H264SliceContext *sl)
  880. {
  881. if (h->sps.direct_8x8_inference_flag)
  882. return !(AV_RN64A(sl->sub_mb_type) &
  883. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
  884. 0x0001000100010001ULL));
  885. else
  886. return !(AV_RN64A(sl->sub_mb_type) &
  887. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
  888. 0x0001000100010001ULL));
  889. }
  890. int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
  891. int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
  892. void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
  893. int ff_h264_context_init(H264Context *h);
  894. int ff_h264_set_parameter_from_sps(H264Context *h);
  895. void ff_h264_draw_horiz_band(H264Context *h, H264SliceContext *sl, int y, int height);
  896. int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc);
  897. int ff_pred_weight_table(H264Context *h, H264SliceContext *sl);
  898. int ff_set_ref_count(H264Context *h, H264SliceContext *sl);
  899. int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl, H264Context *h0);
  900. int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count);
  901. int ff_h264_update_thread_context(AVCodecContext *dst,
  902. const AVCodecContext *src);
  903. void ff_h264_flush_change(H264Context *h);
  904. void ff_h264_free_tables(H264Context *h, int free_rbsp);
  905. #endif /* AVCODEC_H264_H */