You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1963 lines
71KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/internal.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/opt.h"
  34. #include "libavutil/samplefmt.h"
  35. #include "avcodec.h"
  36. #include "dca.h"
  37. #include "dcadata.h"
  38. #include "dcadsp.h"
  39. #include "dcahuff.h"
  40. #include "dca_exss.h"
  41. #include "fft.h"
  42. #include "fmtconvert.h"
  43. #include "get_bits.h"
  44. #include "internal.h"
  45. #include "mathops.h"
  46. #include "synth_filter.h"
  47. #if ARCH_ARM
  48. # include "arm/dca.h"
  49. #endif
  50. enum DCAMode {
  51. DCA_MONO = 0,
  52. DCA_CHANNEL,
  53. DCA_STEREO,
  54. DCA_STEREO_SUMDIFF,
  55. DCA_STEREO_TOTAL,
  56. DCA_3F,
  57. DCA_2F1R,
  58. DCA_3F1R,
  59. DCA_2F2R,
  60. DCA_3F2R,
  61. DCA_4F2R
  62. };
  63. enum DCAXxchSpeakerMask {
  64. DCA_XXCH_FRONT_CENTER = 0x0000001,
  65. DCA_XXCH_FRONT_LEFT = 0x0000002,
  66. DCA_XXCH_FRONT_RIGHT = 0x0000004,
  67. DCA_XXCH_SIDE_REAR_LEFT = 0x0000008,
  68. DCA_XXCH_SIDE_REAR_RIGHT = 0x0000010,
  69. DCA_XXCH_LFE1 = 0x0000020,
  70. DCA_XXCH_REAR_CENTER = 0x0000040,
  71. DCA_XXCH_SURROUND_REAR_LEFT = 0x0000080,
  72. DCA_XXCH_SURROUND_REAR_RIGHT = 0x0000100,
  73. DCA_XXCH_SIDE_SURROUND_LEFT = 0x0000200,
  74. DCA_XXCH_SIDE_SURROUND_RIGHT = 0x0000400,
  75. DCA_XXCH_FRONT_CENTER_LEFT = 0x0000800,
  76. DCA_XXCH_FRONT_CENTER_RIGHT = 0x0001000,
  77. DCA_XXCH_FRONT_HIGH_LEFT = 0x0002000,
  78. DCA_XXCH_FRONT_HIGH_CENTER = 0x0004000,
  79. DCA_XXCH_FRONT_HIGH_RIGHT = 0x0008000,
  80. DCA_XXCH_LFE2 = 0x0010000,
  81. DCA_XXCH_SIDE_FRONT_LEFT = 0x0020000,
  82. DCA_XXCH_SIDE_FRONT_RIGHT = 0x0040000,
  83. DCA_XXCH_OVERHEAD = 0x0080000,
  84. DCA_XXCH_SIDE_HIGH_LEFT = 0x0100000,
  85. DCA_XXCH_SIDE_HIGH_RIGHT = 0x0200000,
  86. DCA_XXCH_REAR_HIGH_CENTER = 0x0400000,
  87. DCA_XXCH_REAR_HIGH_LEFT = 0x0800000,
  88. DCA_XXCH_REAR_HIGH_RIGHT = 0x1000000,
  89. DCA_XXCH_REAR_LOW_CENTER = 0x2000000,
  90. DCA_XXCH_REAR_LOW_LEFT = 0x4000000,
  91. DCA_XXCH_REAR_LOW_RIGHT = 0x8000000,
  92. };
  93. static const uint32_t map_xxch_to_native[28] = {
  94. AV_CH_FRONT_CENTER,
  95. AV_CH_FRONT_LEFT,
  96. AV_CH_FRONT_RIGHT,
  97. AV_CH_SIDE_LEFT,
  98. AV_CH_SIDE_RIGHT,
  99. AV_CH_LOW_FREQUENCY,
  100. AV_CH_BACK_CENTER,
  101. AV_CH_BACK_LEFT,
  102. AV_CH_BACK_RIGHT,
  103. AV_CH_SIDE_LEFT, /* side surround left -- dup sur side L */
  104. AV_CH_SIDE_RIGHT, /* side surround right -- dup sur side R */
  105. AV_CH_FRONT_LEFT_OF_CENTER,
  106. AV_CH_FRONT_RIGHT_OF_CENTER,
  107. AV_CH_TOP_FRONT_LEFT,
  108. AV_CH_TOP_FRONT_CENTER,
  109. AV_CH_TOP_FRONT_RIGHT,
  110. AV_CH_LOW_FREQUENCY, /* lfe2 -- duplicate lfe1 position */
  111. AV_CH_FRONT_LEFT_OF_CENTER, /* side front left -- dup front cntr L */
  112. AV_CH_FRONT_RIGHT_OF_CENTER,/* side front right -- dup front cntr R */
  113. AV_CH_TOP_CENTER, /* overhead */
  114. AV_CH_TOP_FRONT_LEFT, /* side high left -- dup */
  115. AV_CH_TOP_FRONT_RIGHT, /* side high right -- dup */
  116. AV_CH_TOP_BACK_CENTER,
  117. AV_CH_TOP_BACK_LEFT,
  118. AV_CH_TOP_BACK_RIGHT,
  119. AV_CH_BACK_CENTER, /* rear low center -- dup */
  120. AV_CH_BACK_LEFT, /* rear low left -- dup */
  121. AV_CH_BACK_RIGHT /* read low right -- dup */
  122. };
  123. /* -1 are reserved or unknown */
  124. static const int dca_ext_audio_descr_mask[] = {
  125. DCA_EXT_XCH,
  126. -1,
  127. DCA_EXT_X96,
  128. DCA_EXT_XCH | DCA_EXT_X96,
  129. -1,
  130. -1,
  131. DCA_EXT_XXCH,
  132. -1,
  133. };
  134. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  135. * Some compromises have been made for special configurations. Most configurations
  136. * are never used so complete accuracy is not needed.
  137. *
  138. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  139. * S -> side, when both rear and back are configured move one of them to the side channel
  140. * OV -> center back
  141. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  142. */
  143. static const uint64_t dca_core_channel_layout[] = {
  144. AV_CH_FRONT_CENTER, ///< 1, A
  145. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  146. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  147. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  148. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  149. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  150. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  151. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  152. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  153. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  154. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  155. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  156. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  157. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  158. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  159. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  160. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  161. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  162. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  163. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  164. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  165. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  166. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  167. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  168. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  169. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  170. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  171. };
  172. #define DCA_DOLBY 101 /* FIXME */
  173. #define DCA_CHANNEL_BITS 6
  174. #define DCA_CHANNEL_MASK 0x3F
  175. #define DCA_LFE 0x80
  176. #define HEADER_SIZE 14
  177. #define DCA_NSYNCAUX 0x9A1105A0
  178. /** Bit allocation */
  179. typedef struct BitAlloc {
  180. int offset; ///< code values offset
  181. int maxbits[8]; ///< max bits in VLC
  182. int wrap; ///< wrap for get_vlc2()
  183. VLC vlc[8]; ///< actual codes
  184. } BitAlloc;
  185. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  186. static BitAlloc dca_tmode; ///< transition mode VLCs
  187. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  188. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  189. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  190. int idx)
  191. {
  192. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  193. ba->offset;
  194. }
  195. static float dca_dmix_code(unsigned code);
  196. static av_cold void dca_init_vlcs(void)
  197. {
  198. static int vlcs_initialized = 0;
  199. int i, j, c = 14;
  200. static VLC_TYPE dca_table[23622][2];
  201. if (vlcs_initialized)
  202. return;
  203. dca_bitalloc_index.offset = 1;
  204. dca_bitalloc_index.wrap = 2;
  205. for (i = 0; i < 5; i++) {
  206. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  207. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  208. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  209. bitalloc_12_bits[i], 1, 1,
  210. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  211. }
  212. dca_scalefactor.offset = -64;
  213. dca_scalefactor.wrap = 2;
  214. for (i = 0; i < 5; i++) {
  215. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  216. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  217. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  218. scales_bits[i], 1, 1,
  219. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  220. }
  221. dca_tmode.offset = 0;
  222. dca_tmode.wrap = 1;
  223. for (i = 0; i < 4; i++) {
  224. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  225. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  226. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  227. tmode_bits[i], 1, 1,
  228. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  229. }
  230. for (i = 0; i < 10; i++)
  231. for (j = 0; j < 7; j++) {
  232. if (!bitalloc_codes[i][j])
  233. break;
  234. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  235. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  236. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  237. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  238. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  239. bitalloc_sizes[i],
  240. bitalloc_bits[i][j], 1, 1,
  241. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  242. c++;
  243. }
  244. vlcs_initialized = 1;
  245. }
  246. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  247. {
  248. while (len--)
  249. *dst++ = get_bits(gb, bits);
  250. }
  251. static inline int dca_xxch2index(DCAContext *s, int xxch_ch)
  252. {
  253. int i, base, mask;
  254. /* locate channel set containing the channel */
  255. for (i = -1, base = 0, mask = (s->xxch_core_spkmask & ~DCA_XXCH_LFE1);
  256. i <= s->xxch_chset && !(mask & xxch_ch); mask = s->xxch_spk_masks[++i])
  257. base += av_popcount(mask);
  258. return base + av_popcount(mask & (xxch_ch - 1));
  259. }
  260. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel,
  261. int xxch)
  262. {
  263. int i, j;
  264. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  265. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  266. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  267. int hdr_pos = 0, hdr_size = 0;
  268. float scale_factor;
  269. int this_chans, acc_mask;
  270. int embedded_downmix;
  271. int nchans, mask[8];
  272. int coeff, ichan;
  273. /* xxch has arbitrary sized audio coding headers */
  274. if (xxch) {
  275. hdr_pos = get_bits_count(&s->gb);
  276. hdr_size = get_bits(&s->gb, 7) + 1;
  277. }
  278. nchans = get_bits(&s->gb, 3) + 1;
  279. s->total_channels = nchans + base_channel;
  280. s->prim_channels = s->total_channels;
  281. /* obtain speaker layout mask & downmix coefficients for XXCH */
  282. if (xxch) {
  283. acc_mask = s->xxch_core_spkmask;
  284. this_chans = get_bits(&s->gb, s->xxch_nbits_spk_mask - 6) << 6;
  285. s->xxch_spk_masks[s->xxch_chset] = this_chans;
  286. s->xxch_chset_nch[s->xxch_chset] = nchans;
  287. for (i = 0; i <= s->xxch_chset; i++)
  288. acc_mask |= s->xxch_spk_masks[i];
  289. /* check for downmixing information */
  290. if (get_bits1(&s->gb)) {
  291. embedded_downmix = get_bits1(&s->gb);
  292. coeff = get_bits(&s->gb, 6);
  293. if (coeff<1 || coeff>61) {
  294. av_log(s->avctx, AV_LOG_ERROR, "6bit coeff %d is out of range\n", coeff);
  295. return AVERROR_INVALIDDATA;
  296. }
  297. scale_factor = -1.0f / dca_dmix_code((coeff<<2)-3);
  298. s->xxch_dmix_sf[s->xxch_chset] = scale_factor;
  299. for (i = base_channel; i < s->prim_channels; i++) {
  300. mask[i] = get_bits(&s->gb, s->xxch_nbits_spk_mask);
  301. }
  302. for (j = base_channel; j < s->prim_channels; j++) {
  303. memset(s->xxch_dmix_coeff[j], 0, sizeof(s->xxch_dmix_coeff[0]));
  304. s->xxch_dmix_embedded |= (embedded_downmix << j);
  305. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  306. if (mask[j] & (1 << i)) {
  307. if ((1 << i) == DCA_XXCH_LFE1) {
  308. av_log(s->avctx, AV_LOG_WARNING,
  309. "DCA-XXCH: dmix to LFE1 not supported.\n");
  310. continue;
  311. }
  312. coeff = get_bits(&s->gb, 7);
  313. ichan = dca_xxch2index(s, 1 << i);
  314. if ((coeff&63)<1 || (coeff&63)>61) {
  315. av_log(s->avctx, AV_LOG_ERROR, "7bit coeff %d is out of range\n", coeff);
  316. return AVERROR_INVALIDDATA;
  317. }
  318. s->xxch_dmix_coeff[j][ichan] = dca_dmix_code((coeff<<2)-3);
  319. }
  320. }
  321. }
  322. }
  323. }
  324. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  325. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  326. for (i = base_channel; i < s->prim_channels; i++) {
  327. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  328. if (s->subband_activity[i] > DCA_SUBBANDS)
  329. s->subband_activity[i] = DCA_SUBBANDS;
  330. }
  331. for (i = base_channel; i < s->prim_channels; i++) {
  332. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  333. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  334. s->vq_start_subband[i] = DCA_SUBBANDS;
  335. }
  336. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  337. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  338. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  339. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  340. /* Get codebooks quantization indexes */
  341. if (!base_channel)
  342. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  343. for (j = 1; j < 11; j++)
  344. for (i = base_channel; i < s->prim_channels; i++)
  345. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  346. /* Get scale factor adjustment */
  347. for (j = 0; j < 11; j++)
  348. for (i = base_channel; i < s->prim_channels; i++)
  349. s->scalefactor_adj[i][j] = 1;
  350. for (j = 1; j < 11; j++)
  351. for (i = base_channel; i < s->prim_channels; i++)
  352. if (s->quant_index_huffman[i][j] < thr[j])
  353. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  354. if (!xxch) {
  355. if (s->crc_present) {
  356. /* Audio header CRC check */
  357. get_bits(&s->gb, 16);
  358. }
  359. } else {
  360. /* Skip to the end of the header, also ignore CRC if present */
  361. i = get_bits_count(&s->gb);
  362. if (hdr_pos + 8 * hdr_size > i)
  363. skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
  364. }
  365. s->current_subframe = 0;
  366. s->current_subsubframe = 0;
  367. return 0;
  368. }
  369. static int dca_parse_frame_header(DCAContext *s)
  370. {
  371. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  372. /* Sync code */
  373. skip_bits_long(&s->gb, 32);
  374. /* Frame header */
  375. s->frame_type = get_bits(&s->gb, 1);
  376. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  377. s->crc_present = get_bits(&s->gb, 1);
  378. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  379. s->frame_size = get_bits(&s->gb, 14) + 1;
  380. if (s->frame_size < 95)
  381. return AVERROR_INVALIDDATA;
  382. s->amode = get_bits(&s->gb, 6);
  383. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  384. if (!s->sample_rate)
  385. return AVERROR_INVALIDDATA;
  386. s->bit_rate_index = get_bits(&s->gb, 5);
  387. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  388. if (!s->bit_rate)
  389. return AVERROR_INVALIDDATA;
  390. skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
  391. s->dynrange = get_bits(&s->gb, 1);
  392. s->timestamp = get_bits(&s->gb, 1);
  393. s->aux_data = get_bits(&s->gb, 1);
  394. s->hdcd = get_bits(&s->gb, 1);
  395. s->ext_descr = get_bits(&s->gb, 3);
  396. s->ext_coding = get_bits(&s->gb, 1);
  397. s->aspf = get_bits(&s->gb, 1);
  398. s->lfe = get_bits(&s->gb, 2);
  399. s->predictor_history = get_bits(&s->gb, 1);
  400. if (s->lfe > 2) {
  401. s->lfe = 0;
  402. av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
  403. return AVERROR_INVALIDDATA;
  404. }
  405. /* TODO: check CRC */
  406. if (s->crc_present)
  407. s->header_crc = get_bits(&s->gb, 16);
  408. s->multirate_inter = get_bits(&s->gb, 1);
  409. s->version = get_bits(&s->gb, 4);
  410. s->copy_history = get_bits(&s->gb, 2);
  411. s->source_pcm_res = get_bits(&s->gb, 3);
  412. s->front_sum = get_bits(&s->gb, 1);
  413. s->surround_sum = get_bits(&s->gb, 1);
  414. s->dialog_norm = get_bits(&s->gb, 4);
  415. /* FIXME: channels mixing levels */
  416. s->output = s->amode;
  417. if (s->lfe)
  418. s->output |= DCA_LFE;
  419. /* Primary audio coding header */
  420. s->subframes = get_bits(&s->gb, 4) + 1;
  421. return dca_parse_audio_coding_header(s, 0, 0);
  422. }
  423. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  424. {
  425. if (level < 5) {
  426. /* huffman encoded */
  427. value += get_bitalloc(gb, &dca_scalefactor, level);
  428. value = av_clip(value, 0, (1 << log2range) - 1);
  429. } else if (level < 8) {
  430. if (level + 1 > log2range) {
  431. skip_bits(gb, level + 1 - log2range);
  432. value = get_bits(gb, log2range);
  433. } else {
  434. value = get_bits(gb, level + 1);
  435. }
  436. }
  437. return value;
  438. }
  439. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  440. {
  441. /* Primary audio coding side information */
  442. int j, k;
  443. if (get_bits_left(&s->gb) < 0)
  444. return AVERROR_INVALIDDATA;
  445. if (!base_channel) {
  446. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  447. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  448. }
  449. for (j = base_channel; j < s->prim_channels; j++) {
  450. for (k = 0; k < s->subband_activity[j]; k++)
  451. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  452. }
  453. /* Get prediction codebook */
  454. for (j = base_channel; j < s->prim_channels; j++) {
  455. for (k = 0; k < s->subband_activity[j]; k++) {
  456. if (s->prediction_mode[j][k] > 0) {
  457. /* (Prediction coefficient VQ address) */
  458. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  459. }
  460. }
  461. }
  462. /* Bit allocation index */
  463. for (j = base_channel; j < s->prim_channels; j++) {
  464. for (k = 0; k < s->vq_start_subband[j]; k++) {
  465. if (s->bitalloc_huffman[j] == 6)
  466. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  467. else if (s->bitalloc_huffman[j] == 5)
  468. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  469. else if (s->bitalloc_huffman[j] == 7) {
  470. av_log(s->avctx, AV_LOG_ERROR,
  471. "Invalid bit allocation index\n");
  472. return AVERROR_INVALIDDATA;
  473. } else {
  474. s->bitalloc[j][k] =
  475. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  476. }
  477. if (s->bitalloc[j][k] > 26) {
  478. av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  479. j, k, s->bitalloc[j][k]);
  480. return AVERROR_INVALIDDATA;
  481. }
  482. }
  483. }
  484. /* Transition mode */
  485. for (j = base_channel; j < s->prim_channels; j++) {
  486. for (k = 0; k < s->subband_activity[j]; k++) {
  487. s->transition_mode[j][k] = 0;
  488. if (s->subsubframes[s->current_subframe] > 1 &&
  489. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  490. s->transition_mode[j][k] =
  491. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  492. }
  493. }
  494. }
  495. if (get_bits_left(&s->gb) < 0)
  496. return AVERROR_INVALIDDATA;
  497. for (j = base_channel; j < s->prim_channels; j++) {
  498. const uint32_t *scale_table;
  499. int scale_sum, log_size;
  500. memset(s->scale_factor[j], 0,
  501. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  502. if (s->scalefactor_huffman[j] == 6) {
  503. scale_table = scale_factor_quant7;
  504. log_size = 7;
  505. } else {
  506. scale_table = scale_factor_quant6;
  507. log_size = 6;
  508. }
  509. /* When huffman coded, only the difference is encoded */
  510. scale_sum = 0;
  511. for (k = 0; k < s->subband_activity[j]; k++) {
  512. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  513. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  514. s->scale_factor[j][k][0] = scale_table[scale_sum];
  515. }
  516. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  517. /* Get second scale factor */
  518. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  519. s->scale_factor[j][k][1] = scale_table[scale_sum];
  520. }
  521. }
  522. }
  523. /* Joint subband scale factor codebook select */
  524. for (j = base_channel; j < s->prim_channels; j++) {
  525. /* Transmitted only if joint subband coding enabled */
  526. if (s->joint_intensity[j] > 0)
  527. s->joint_huff[j] = get_bits(&s->gb, 3);
  528. }
  529. if (get_bits_left(&s->gb) < 0)
  530. return AVERROR_INVALIDDATA;
  531. /* Scale factors for joint subband coding */
  532. for (j = base_channel; j < s->prim_channels; j++) {
  533. int source_channel;
  534. /* Transmitted only if joint subband coding enabled */
  535. if (s->joint_intensity[j] > 0) {
  536. int scale = 0;
  537. source_channel = s->joint_intensity[j] - 1;
  538. /* When huffman coded, only the difference is encoded
  539. * (is this valid as well for joint scales ???) */
  540. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  541. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  542. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  543. }
  544. if (!(s->debug_flag & 0x02)) {
  545. av_log(s->avctx, AV_LOG_DEBUG,
  546. "Joint stereo coding not supported\n");
  547. s->debug_flag |= 0x02;
  548. }
  549. }
  550. }
  551. /* Dynamic range coefficient */
  552. if (!base_channel && s->dynrange)
  553. s->dynrange_coef = get_bits(&s->gb, 8);
  554. /* Side information CRC check word */
  555. if (s->crc_present) {
  556. get_bits(&s->gb, 16);
  557. }
  558. /*
  559. * Primary audio data arrays
  560. */
  561. /* VQ encoded high frequency subbands */
  562. for (j = base_channel; j < s->prim_channels; j++)
  563. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  564. /* 1 vector -> 32 samples */
  565. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  566. /* Low frequency effect data */
  567. if (!base_channel && s->lfe) {
  568. int quant7;
  569. /* LFE samples */
  570. int lfe_samples = 2 * s->lfe * (4 + block_index);
  571. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  572. float lfe_scale;
  573. for (j = lfe_samples; j < lfe_end_sample; j++) {
  574. /* Signed 8 bits int */
  575. s->lfe_data[j] = get_sbits(&s->gb, 8);
  576. }
  577. /* Scale factor index */
  578. quant7 = get_bits(&s->gb, 8);
  579. if (quant7 > 127) {
  580. avpriv_request_sample(s->avctx, "LFEScaleIndex larger than 127");
  581. return AVERROR_INVALIDDATA;
  582. }
  583. s->lfe_scale_factor = scale_factor_quant7[quant7];
  584. /* Quantization step size * scale factor */
  585. lfe_scale = 0.035 * s->lfe_scale_factor;
  586. for (j = lfe_samples; j < lfe_end_sample; j++)
  587. s->lfe_data[j] *= lfe_scale;
  588. }
  589. return 0;
  590. }
  591. static void qmf_32_subbands(DCAContext *s, int chans,
  592. float samples_in[32][8], float *samples_out,
  593. float scale)
  594. {
  595. const float *prCoeff;
  596. int sb_act = s->subband_activity[chans];
  597. scale *= sqrt(1 / 8.0);
  598. /* Select filter */
  599. if (!s->multirate_inter) /* Non-perfect reconstruction */
  600. prCoeff = fir_32bands_nonperfect;
  601. else /* Perfect reconstruction */
  602. prCoeff = fir_32bands_perfect;
  603. s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
  604. s->subband_fir_hist[chans],
  605. &s->hist_index[chans],
  606. s->subband_fir_noidea[chans], prCoeff,
  607. samples_out, s->raXin, scale);
  608. }
  609. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  610. int num_deci_sample, float *samples_in,
  611. float *samples_out)
  612. {
  613. /* samples_in: An array holding decimated samples.
  614. * Samples in current subframe starts from samples_in[0],
  615. * while samples_in[-1], samples_in[-2], ..., stores samples
  616. * from last subframe as history.
  617. *
  618. * samples_out: An array holding interpolated samples
  619. */
  620. int idx;
  621. const float *prCoeff;
  622. int deciindex;
  623. /* Select decimation filter */
  624. if (decimation_select == 1) {
  625. idx = 1;
  626. prCoeff = lfe_fir_128;
  627. } else {
  628. idx = 0;
  629. prCoeff = lfe_fir_64;
  630. }
  631. /* Interpolation */
  632. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  633. s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff);
  634. samples_in++;
  635. samples_out += 2 * 32 * (1 + idx);
  636. }
  637. }
  638. /* downmixing routines */
  639. #define MIX_REAR1(samples, s1, rs, coef) \
  640. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  641. samples[1][i] += samples[s1][i] * coef[rs][1];
  642. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  643. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  644. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  645. #define MIX_FRONT3(samples, coef) \
  646. t = samples[c][i]; \
  647. u = samples[l][i]; \
  648. v = samples[r][i]; \
  649. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  650. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  651. #define DOWNMIX_TO_STEREO(op1, op2) \
  652. for (i = 0; i < 256; i++) { \
  653. op1 \
  654. op2 \
  655. }
  656. static void dca_downmix(float **samples, int srcfmt, int lfe_present,
  657. float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
  658. const int8_t *channel_mapping)
  659. {
  660. int c, l, r, sl, sr, s;
  661. int i;
  662. float t, u, v;
  663. switch (srcfmt) {
  664. case DCA_MONO:
  665. case DCA_4F2R:
  666. av_log(NULL, AV_LOG_ERROR, "Not implemented!\n");
  667. break;
  668. case DCA_CHANNEL:
  669. case DCA_STEREO:
  670. case DCA_STEREO_TOTAL:
  671. case DCA_STEREO_SUMDIFF:
  672. break;
  673. case DCA_3F:
  674. c = channel_mapping[0];
  675. l = channel_mapping[1];
  676. r = channel_mapping[2];
  677. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  678. break;
  679. case DCA_2F1R:
  680. s = channel_mapping[2];
  681. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  682. break;
  683. case DCA_3F1R:
  684. c = channel_mapping[0];
  685. l = channel_mapping[1];
  686. r = channel_mapping[2];
  687. s = channel_mapping[3];
  688. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  689. MIX_REAR1(samples, s, 3, coef));
  690. break;
  691. case DCA_2F2R:
  692. sl = channel_mapping[2];
  693. sr = channel_mapping[3];
  694. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  695. break;
  696. case DCA_3F2R:
  697. c = channel_mapping[0];
  698. l = channel_mapping[1];
  699. r = channel_mapping[2];
  700. sl = channel_mapping[3];
  701. sr = channel_mapping[4];
  702. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  703. MIX_REAR2(samples, sl, sr, 3, coef));
  704. break;
  705. }
  706. if (lfe_present) {
  707. int lf_buf = dca_lfe_index[srcfmt];
  708. int lf_idx = dca_channels[srcfmt];
  709. for (i = 0; i < 256; i++) {
  710. samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
  711. samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
  712. }
  713. }
  714. }
  715. #ifndef decode_blockcodes
  716. /* Very compact version of the block code decoder that does not use table
  717. * look-up but is slightly slower */
  718. static int decode_blockcode(int code, int levels, int32_t *values)
  719. {
  720. int i;
  721. int offset = (levels - 1) >> 1;
  722. for (i = 0; i < 4; i++) {
  723. int div = FASTDIV(code, levels);
  724. values[i] = code - offset - div * levels;
  725. code = div;
  726. }
  727. return code;
  728. }
  729. static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
  730. {
  731. return decode_blockcode(code1, levels, values) |
  732. decode_blockcode(code2, levels, values + 4);
  733. }
  734. #endif
  735. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  736. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  737. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  738. {
  739. int k, l;
  740. int subsubframe = s->current_subsubframe;
  741. const float *quant_step_table;
  742. /* FIXME */
  743. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  744. LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);
  745. /*
  746. * Audio data
  747. */
  748. /* Select quantization step size table */
  749. if (s->bit_rate_index == 0x1f)
  750. quant_step_table = lossless_quant_d;
  751. else
  752. quant_step_table = lossy_quant_d;
  753. for (k = base_channel; k < s->prim_channels; k++) {
  754. float rscale[DCA_SUBBANDS];
  755. if (get_bits_left(&s->gb) < 0)
  756. return AVERROR_INVALIDDATA;
  757. for (l = 0; l < s->vq_start_subband[k]; l++) {
  758. int m;
  759. /* Select the mid-tread linear quantizer */
  760. int abits = s->bitalloc[k][l];
  761. float quant_step_size = quant_step_table[abits];
  762. /*
  763. * Determine quantization index code book and its type
  764. */
  765. /* Select quantization index code book */
  766. int sel = s->quant_index_huffman[k][abits];
  767. /*
  768. * Extract bits from the bit stream
  769. */
  770. if (!abits) {
  771. rscale[l] = 0;
  772. memset(block + 8 * l, 0, 8 * sizeof(block[0]));
  773. } else {
  774. /* Deal with transients */
  775. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  776. rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
  777. s->scalefactor_adj[k][sel];
  778. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  779. if (abits <= 7) {
  780. /* Block code */
  781. int block_code1, block_code2, size, levels, err;
  782. size = abits_sizes[abits - 1];
  783. levels = abits_levels[abits - 1];
  784. block_code1 = get_bits(&s->gb, size);
  785. block_code2 = get_bits(&s->gb, size);
  786. err = decode_blockcodes(block_code1, block_code2,
  787. levels, block + 8 * l);
  788. if (err) {
  789. av_log(s->avctx, AV_LOG_ERROR,
  790. "ERROR: block code look-up failed\n");
  791. return AVERROR_INVALIDDATA;
  792. }
  793. } else {
  794. /* no coding */
  795. for (m = 0; m < 8; m++)
  796. block[8 * l + m] = get_sbits(&s->gb, abits - 3);
  797. }
  798. } else {
  799. /* Huffman coded */
  800. for (m = 0; m < 8; m++)
  801. block[8 * l + m] = get_bitalloc(&s->gb,
  802. &dca_smpl_bitalloc[abits], sel);
  803. }
  804. }
  805. }
  806. s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
  807. block, rscale, 8 * s->vq_start_subband[k]);
  808. for (l = 0; l < s->vq_start_subband[k]; l++) {
  809. int m;
  810. /*
  811. * Inverse ADPCM if in prediction mode
  812. */
  813. if (s->prediction_mode[k][l]) {
  814. int n;
  815. if (s->predictor_history)
  816. subband_samples[k][l][0] += (adpcm_vb[s->prediction_vq[k][l]][0] *
  817. s->subband_samples_hist[k][l][3] +
  818. adpcm_vb[s->prediction_vq[k][l]][1] *
  819. s->subband_samples_hist[k][l][2] +
  820. adpcm_vb[s->prediction_vq[k][l]][2] *
  821. s->subband_samples_hist[k][l][1] +
  822. adpcm_vb[s->prediction_vq[k][l]][3] *
  823. s->subband_samples_hist[k][l][0]) *
  824. (1.0f / 8192);
  825. for (m = 1; m < 8; m++) {
  826. float sum = adpcm_vb[s->prediction_vq[k][l]][0] *
  827. subband_samples[k][l][m - 1];
  828. for (n = 2; n <= 4; n++)
  829. if (m >= n)
  830. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  831. subband_samples[k][l][m - n];
  832. else if (s->predictor_history)
  833. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  834. s->subband_samples_hist[k][l][m - n + 4];
  835. subband_samples[k][l][m] += sum * (1.0f / 8192);
  836. }
  837. }
  838. }
  839. /*
  840. * Decode VQ encoded high frequencies
  841. */
  842. if (s->subband_activity[k] > s->vq_start_subband[k]) {
  843. if (!(s->debug_flag & 0x01)) {
  844. av_log(s->avctx, AV_LOG_DEBUG,
  845. "Stream with high frequencies VQ coding\n");
  846. s->debug_flag |= 0x01;
  847. }
  848. s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
  849. high_freq_vq, subsubframe * 8,
  850. s->scale_factor[k], s->vq_start_subband[k],
  851. s->subband_activity[k]);
  852. }
  853. }
  854. /* Check for DSYNC after subsubframe */
  855. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  856. if (get_bits(&s->gb, 16) != 0xFFFF) {
  857. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  858. return AVERROR_INVALIDDATA;
  859. }
  860. }
  861. /* Backup predictor history for adpcm */
  862. for (k = base_channel; k < s->prim_channels; k++)
  863. for (l = 0; l < s->vq_start_subband[k]; l++)
  864. AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
  865. return 0;
  866. }
  867. static int dca_filter_channels(DCAContext *s, int block_index)
  868. {
  869. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  870. int k;
  871. /* 32 subbands QMF */
  872. for (k = 0; k < s->prim_channels; k++) {
  873. if (s->channel_order_tab[k] >= 0)
  874. qmf_32_subbands(s, k, subband_samples[k],
  875. s->samples_chanptr[s->channel_order_tab[k]],
  876. M_SQRT1_2 / 32768.0);
  877. }
  878. /* Generate LFE samples for this subsubframe FIXME!!! */
  879. if (s->lfe) {
  880. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  881. s->lfe_data + 2 * s->lfe * (block_index + 4),
  882. s->samples_chanptr[s->lfe_index]);
  883. /* Outputs 20bits pcm samples */
  884. }
  885. /* Downmixing to Stereo */
  886. if (s->prim_channels + !!s->lfe > 2 &&
  887. s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  888. dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
  889. s->channel_order_tab);
  890. }
  891. return 0;
  892. }
  893. static int dca_subframe_footer(DCAContext *s, int base_channel)
  894. {
  895. int in, out, aux_data_count, aux_data_end, reserved;
  896. uint32_t nsyncaux;
  897. /*
  898. * Unpack optional information
  899. */
  900. /* presumably optional information only appears in the core? */
  901. if (!base_channel) {
  902. if (s->timestamp)
  903. skip_bits_long(&s->gb, 32);
  904. if (s->aux_data) {
  905. aux_data_count = get_bits(&s->gb, 6);
  906. // align (32-bit)
  907. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  908. aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
  909. if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
  910. av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
  911. nsyncaux);
  912. return AVERROR_INVALIDDATA;
  913. }
  914. if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
  915. avpriv_request_sample(s->avctx,
  916. "Auxiliary Decode Time Stamp Flag");
  917. // align (4-bit)
  918. skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
  919. // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
  920. skip_bits_long(&s->gb, 44);
  921. }
  922. if ((s->core_downmix = get_bits1(&s->gb))) {
  923. int am = get_bits(&s->gb, 3);
  924. switch (am) {
  925. case 0:
  926. s->core_downmix_amode = DCA_MONO;
  927. break;
  928. case 1:
  929. s->core_downmix_amode = DCA_STEREO;
  930. break;
  931. case 2:
  932. s->core_downmix_amode = DCA_STEREO_TOTAL;
  933. break;
  934. case 3:
  935. s->core_downmix_amode = DCA_3F;
  936. break;
  937. case 4:
  938. s->core_downmix_amode = DCA_2F1R;
  939. break;
  940. case 5:
  941. s->core_downmix_amode = DCA_2F2R;
  942. break;
  943. case 6:
  944. s->core_downmix_amode = DCA_3F1R;
  945. break;
  946. default:
  947. av_log(s->avctx, AV_LOG_ERROR,
  948. "Invalid mode %d for embedded downmix coefficients\n",
  949. am);
  950. return AVERROR_INVALIDDATA;
  951. }
  952. for (out = 0; out < dca_channels[s->core_downmix_amode]; out++) {
  953. for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
  954. uint16_t tmp = get_bits(&s->gb, 9);
  955. if ((tmp & 0xFF) > 241) {
  956. av_log(s->avctx, AV_LOG_ERROR,
  957. "Invalid downmix coefficient code %"PRIu16"\n",
  958. tmp);
  959. return AVERROR_INVALIDDATA;
  960. }
  961. s->core_downmix_codes[in][out] = tmp;
  962. }
  963. }
  964. }
  965. align_get_bits(&s->gb); // byte align
  966. skip_bits(&s->gb, 16); // nAUXCRC16
  967. // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
  968. if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
  969. av_log(s->avctx, AV_LOG_ERROR,
  970. "Overread auxiliary data by %d bits\n", -reserved);
  971. return AVERROR_INVALIDDATA;
  972. } else if (reserved) {
  973. avpriv_request_sample(s->avctx,
  974. "Core auxiliary data reserved content");
  975. skip_bits_long(&s->gb, reserved);
  976. }
  977. }
  978. if (s->crc_present && s->dynrange)
  979. get_bits(&s->gb, 16);
  980. }
  981. return 0;
  982. }
  983. /**
  984. * Decode a dca frame block
  985. *
  986. * @param s pointer to the DCAContext
  987. */
  988. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  989. {
  990. int ret;
  991. /* Sanity check */
  992. if (s->current_subframe >= s->subframes) {
  993. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  994. s->current_subframe, s->subframes);
  995. return AVERROR_INVALIDDATA;
  996. }
  997. if (!s->current_subsubframe) {
  998. /* Read subframe header */
  999. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1000. return ret;
  1001. }
  1002. /* Read subsubframe */
  1003. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1004. return ret;
  1005. /* Update state */
  1006. s->current_subsubframe++;
  1007. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1008. s->current_subsubframe = 0;
  1009. s->current_subframe++;
  1010. }
  1011. if (s->current_subframe >= s->subframes) {
  1012. /* Read subframe footer */
  1013. if ((ret = dca_subframe_footer(s, base_channel)))
  1014. return ret;
  1015. }
  1016. return 0;
  1017. }
  1018. int ff_dca_xbr_parse_frame(DCAContext *s)
  1019. {
  1020. int scale_table_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS][2];
  1021. int active_bands[DCA_CHSETS_MAX][DCA_CHSET_CHANS_MAX];
  1022. int abits_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS];
  1023. int anctemp[DCA_CHSET_CHANS_MAX];
  1024. int chset_fsize[DCA_CHSETS_MAX];
  1025. int n_xbr_ch[DCA_CHSETS_MAX];
  1026. int hdr_size, num_chsets, xbr_tmode, hdr_pos;
  1027. int i, j, k, l, chset, chan_base;
  1028. av_log(s->avctx, AV_LOG_DEBUG, "DTS-XBR: decoding XBR extension\n");
  1029. /* get bit position of sync header */
  1030. hdr_pos = get_bits_count(&s->gb) - 32;
  1031. hdr_size = get_bits(&s->gb, 6) + 1;
  1032. num_chsets = get_bits(&s->gb, 2) + 1;
  1033. for(i = 0; i < num_chsets; i++)
  1034. chset_fsize[i] = get_bits(&s->gb, 14) + 1;
  1035. xbr_tmode = get_bits1(&s->gb);
  1036. for(i = 0; i < num_chsets; i++) {
  1037. n_xbr_ch[i] = get_bits(&s->gb, 3) + 1;
  1038. k = get_bits(&s->gb, 2) + 5;
  1039. for(j = 0; j < n_xbr_ch[i]; j++)
  1040. active_bands[i][j] = get_bits(&s->gb, k) + 1;
  1041. }
  1042. /* skip to the end of the header */
  1043. i = get_bits_count(&s->gb);
  1044. if(hdr_pos + hdr_size * 8 > i)
  1045. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1046. /* loop over the channel data sets */
  1047. /* only decode as many channels as we've decoded base data for */
  1048. for(chset = 0, chan_base = 0;
  1049. chset < num_chsets && chan_base + n_xbr_ch[chset] <= s->prim_channels;
  1050. chan_base += n_xbr_ch[chset++]) {
  1051. int start_posn = get_bits_count(&s->gb);
  1052. int subsubframe = 0;
  1053. int subframe = 0;
  1054. /* loop over subframes */
  1055. for (k = 0; k < (s->sample_blocks / 8); k++) {
  1056. /* parse header if we're on first subsubframe of a block */
  1057. if(subsubframe == 0) {
  1058. /* Parse subframe header */
  1059. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1060. anctemp[i] = get_bits(&s->gb, 2) + 2;
  1061. }
  1062. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1063. get_array(&s->gb, abits_high[i], active_bands[chset][i], anctemp[i]);
  1064. }
  1065. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1066. anctemp[i] = get_bits(&s->gb, 3);
  1067. if(anctemp[i] < 1) {
  1068. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: SYNC ERROR\n");
  1069. return AVERROR_INVALIDDATA;
  1070. }
  1071. }
  1072. /* generate scale factors */
  1073. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1074. const uint32_t *scale_table;
  1075. int nbits;
  1076. if (s->scalefactor_huffman[chan_base+i] == 6) {
  1077. scale_table = scale_factor_quant7;
  1078. } else {
  1079. scale_table = scale_factor_quant6;
  1080. }
  1081. nbits = anctemp[i];
  1082. for(j = 0; j < active_bands[chset][i]; j++) {
  1083. if(abits_high[i][j] > 0) {
  1084. scale_table_high[i][j][0] =
  1085. scale_table[get_bits(&s->gb, nbits)];
  1086. if(xbr_tmode && s->transition_mode[i][j]) {
  1087. scale_table_high[i][j][1] =
  1088. scale_table[get_bits(&s->gb, nbits)];
  1089. }
  1090. }
  1091. }
  1092. }
  1093. }
  1094. /* decode audio array for this block */
  1095. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1096. for(j = 0; j < active_bands[chset][i]; j++) {
  1097. const int xbr_abits = abits_high[i][j];
  1098. const float quant_step_size = lossless_quant_d[xbr_abits];
  1099. const int sfi = xbr_tmode && s->transition_mode[i][j] && subsubframe >= s->transition_mode[i][j];
  1100. const float rscale = quant_step_size * scale_table_high[i][j][sfi];
  1101. float *subband_samples = s->subband_samples[k][chan_base+i][j];
  1102. int block[8];
  1103. if(xbr_abits <= 0)
  1104. continue;
  1105. if(xbr_abits > 7) {
  1106. get_array(&s->gb, block, 8, xbr_abits - 3);
  1107. } else {
  1108. int block_code1, block_code2, size, levels, err;
  1109. size = abits_sizes[xbr_abits - 1];
  1110. levels = abits_levels[xbr_abits - 1];
  1111. block_code1 = get_bits(&s->gb, size);
  1112. block_code2 = get_bits(&s->gb, size);
  1113. err = decode_blockcodes(block_code1, block_code2,
  1114. levels, block);
  1115. if (err) {
  1116. av_log(s->avctx, AV_LOG_ERROR,
  1117. "ERROR: DTS-XBR: block code look-up failed\n");
  1118. return AVERROR_INVALIDDATA;
  1119. }
  1120. }
  1121. /* scale & sum into subband */
  1122. for(l = 0; l < 8; l++)
  1123. subband_samples[l] += (float)block[l] * rscale;
  1124. }
  1125. }
  1126. /* check DSYNC marker */
  1127. if(s->aspf || subsubframe == s->subsubframes[subframe] - 1) {
  1128. if(get_bits(&s->gb, 16) != 0xffff) {
  1129. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: Didn't get subframe DSYNC\n");
  1130. return AVERROR_INVALIDDATA;
  1131. }
  1132. }
  1133. /* advance sub-sub-frame index */
  1134. if(++subsubframe >= s->subsubframes[subframe]) {
  1135. subsubframe = 0;
  1136. subframe++;
  1137. }
  1138. }
  1139. /* skip to next channel set */
  1140. i = get_bits_count(&s->gb);
  1141. if(start_posn + chset_fsize[chset] * 8 != i) {
  1142. j = start_posn + chset_fsize[chset] * 8 - i;
  1143. if(j < 0 || j >= 8)
  1144. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: end of channel set,"
  1145. " skipping further than expected (%d bits)\n", j);
  1146. skip_bits_long(&s->gb, j);
  1147. }
  1148. }
  1149. return 0;
  1150. }
  1151. /* parse initial header for XXCH and dump details */
  1152. int ff_dca_xxch_decode_frame(DCAContext *s)
  1153. {
  1154. int hdr_size, spkmsk_bits, num_chsets, core_spk, hdr_pos;
  1155. int i, chset, base_channel, chstart, fsize[8];
  1156. /* assume header word has already been parsed */
  1157. hdr_pos = get_bits_count(&s->gb) - 32;
  1158. hdr_size = get_bits(&s->gb, 6) + 1;
  1159. /*chhdr_crc =*/ skip_bits1(&s->gb);
  1160. spkmsk_bits = get_bits(&s->gb, 5) + 1;
  1161. num_chsets = get_bits(&s->gb, 2) + 1;
  1162. for (i = 0; i < num_chsets; i++)
  1163. fsize[i] = get_bits(&s->gb, 14) + 1;
  1164. core_spk = get_bits(&s->gb, spkmsk_bits);
  1165. s->xxch_core_spkmask = core_spk;
  1166. s->xxch_nbits_spk_mask = spkmsk_bits;
  1167. s->xxch_dmix_embedded = 0;
  1168. /* skip to the end of the header */
  1169. i = get_bits_count(&s->gb);
  1170. if (hdr_pos + hdr_size * 8 > i)
  1171. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1172. for (chset = 0; chset < num_chsets; chset++) {
  1173. chstart = get_bits_count(&s->gb);
  1174. base_channel = s->prim_channels;
  1175. s->xxch_chset = chset;
  1176. /* XXCH and Core headers differ, see 6.4.2 "XXCH Channel Set Header" vs.
  1177. 5.3.2 "Primary Audio Coding Header", DTS Spec 1.3.1 */
  1178. dca_parse_audio_coding_header(s, base_channel, 1);
  1179. /* decode channel data */
  1180. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1181. if (dca_decode_block(s, base_channel, i)) {
  1182. av_log(s->avctx, AV_LOG_ERROR,
  1183. "Error decoding DTS-XXCH extension\n");
  1184. continue;
  1185. }
  1186. }
  1187. /* skip to end of this section */
  1188. i = get_bits_count(&s->gb);
  1189. if (chstart + fsize[chset] * 8 > i)
  1190. skip_bits_long(&s->gb, chstart + fsize[chset] * 8 - i);
  1191. }
  1192. s->xxch_chset = num_chsets;
  1193. return 0;
  1194. }
  1195. static float dca_dmix_code(unsigned code)
  1196. {
  1197. int sign = (code >> 8) - 1;
  1198. code &= 0xff;
  1199. return ((dca_dmixtable[code] ^ sign) - sign) * (1.0 / (1 << 15));
  1200. }
  1201. /**
  1202. * Main frame decoding function
  1203. * FIXME add arguments
  1204. */
  1205. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1206. int *got_frame_ptr, AVPacket *avpkt)
  1207. {
  1208. AVFrame *frame = data;
  1209. const uint8_t *buf = avpkt->data;
  1210. int buf_size = avpkt->size;
  1211. int channel_mask;
  1212. int channel_layout;
  1213. int lfe_samples;
  1214. int num_core_channels = 0;
  1215. int i, ret;
  1216. float **samples_flt;
  1217. float *src_chan;
  1218. float *dst_chan;
  1219. DCAContext *s = avctx->priv_data;
  1220. int core_ss_end;
  1221. int channels, full_channels;
  1222. float scale;
  1223. int achan;
  1224. int chset;
  1225. int mask;
  1226. int lavc;
  1227. int posn;
  1228. int j, k;
  1229. int endch;
  1230. s->xch_present = 0;
  1231. s->dca_buffer_size = avpriv_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1232. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1233. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1234. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1235. return AVERROR_INVALIDDATA;
  1236. }
  1237. if ((ret = dca_parse_frame_header(s)) < 0) {
  1238. // seems like the frame is corrupt, try with the next one
  1239. return ret;
  1240. }
  1241. // set AVCodec values with parsed data
  1242. avctx->sample_rate = s->sample_rate;
  1243. avctx->bit_rate = s->bit_rate;
  1244. s->profile = FF_PROFILE_DTS;
  1245. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1246. if ((ret = dca_decode_block(s, 0, i))) {
  1247. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1248. return ret;
  1249. }
  1250. }
  1251. /* record number of core channels incase less than max channels are requested */
  1252. num_core_channels = s->prim_channels;
  1253. if (s->prim_channels + !!s->lfe > 2 &&
  1254. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1255. /* Stereo downmix coefficients
  1256. *
  1257. * The decoder can only downmix to 2-channel, so we need to ensure
  1258. * embedded downmix coefficients are actually targeting 2-channel.
  1259. */
  1260. if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
  1261. s->core_downmix_amode == DCA_STEREO_TOTAL)) {
  1262. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1263. /* Range checked earlier */
  1264. s->downmix_coef[i][0] = dca_dmix_code(s->core_downmix_codes[i][0]);
  1265. s->downmix_coef[i][1] = dca_dmix_code(s->core_downmix_codes[i][1]);
  1266. }
  1267. s->output = s->core_downmix_amode;
  1268. } else {
  1269. int am = s->amode & DCA_CHANNEL_MASK;
  1270. if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
  1271. av_log(s->avctx, AV_LOG_ERROR,
  1272. "Invalid channel mode %d\n", am);
  1273. return AVERROR_INVALIDDATA;
  1274. }
  1275. if (num_core_channels + !!s->lfe >
  1276. FF_ARRAY_ELEMS(dca_default_coeffs[0])) {
  1277. avpriv_request_sample(s->avctx, "Downmixing %d channels",
  1278. s->prim_channels + !!s->lfe);
  1279. return AVERROR_PATCHWELCOME;
  1280. }
  1281. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1282. s->downmix_coef[i][0] = dca_default_coeffs[am][i][0];
  1283. s->downmix_coef[i][1] = dca_default_coeffs[am][i][1];
  1284. }
  1285. }
  1286. av_dlog(s->avctx, "Stereo downmix coeffs:\n");
  1287. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1288. av_dlog(s->avctx, "L, input channel %d = %f\n", i,
  1289. s->downmix_coef[i][0]);
  1290. av_dlog(s->avctx, "R, input channel %d = %f\n", i,
  1291. s->downmix_coef[i][1]);
  1292. }
  1293. av_dlog(s->avctx, "\n");
  1294. }
  1295. if (s->ext_coding)
  1296. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1297. else
  1298. s->core_ext_mask = 0;
  1299. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1300. /* only scan for extensions if ext_descr was unknown or indicated a
  1301. * supported XCh extension */
  1302. if (s->core_ext_mask < 0 || s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) {
  1303. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1304. * extensions scan can fill it up */
  1305. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1306. /* extensions start at 32-bit boundaries into bitstream */
  1307. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1308. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1309. uint32_t bits = get_bits_long(&s->gb, 32);
  1310. switch (bits) {
  1311. case 0x5a5a5a5a: {
  1312. int ext_amode, xch_fsize;
  1313. s->xch_base_channel = s->prim_channels;
  1314. /* validate sync word using XCHFSIZE field */
  1315. xch_fsize = show_bits(&s->gb, 10);
  1316. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1317. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1318. continue;
  1319. /* skip length-to-end-of-frame field for the moment */
  1320. skip_bits(&s->gb, 10);
  1321. s->core_ext_mask |= DCA_EXT_XCH;
  1322. /* extension amode(number of channels in extension) should be 1 */
  1323. /* AFAIK XCh is not used for more channels */
  1324. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1325. av_log(avctx, AV_LOG_ERROR,
  1326. "XCh extension amode %d not supported!\n",
  1327. ext_amode);
  1328. continue;
  1329. }
  1330. if (s->xch_base_channel < 2) {
  1331. avpriv_request_sample(avctx, "XCh with fewer than 2 base channels");
  1332. continue;
  1333. }
  1334. /* much like core primary audio coding header */
  1335. dca_parse_audio_coding_header(s, s->xch_base_channel, 0);
  1336. for (i = 0; i < (s->sample_blocks / 8); i++)
  1337. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1338. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1339. continue;
  1340. }
  1341. s->xch_present = 1;
  1342. break;
  1343. }
  1344. case 0x47004a03:
  1345. /* XXCh: extended channels */
  1346. /* usually found either in core or HD part in DTS-HD HRA streams,
  1347. * but not in DTS-ES which contains XCh extensions instead */
  1348. s->core_ext_mask |= DCA_EXT_XXCH;
  1349. ff_dca_xxch_decode_frame(s);
  1350. break;
  1351. case 0x1d95f262: {
  1352. int fsize96 = show_bits(&s->gb, 12) + 1;
  1353. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1354. continue;
  1355. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1356. get_bits_count(&s->gb));
  1357. skip_bits(&s->gb, 12);
  1358. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1359. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1360. s->core_ext_mask |= DCA_EXT_X96;
  1361. break;
  1362. }
  1363. }
  1364. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1365. }
  1366. } else {
  1367. /* no supported extensions, skip the rest of the core substream */
  1368. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1369. }
  1370. if (s->core_ext_mask & DCA_EXT_X96)
  1371. s->profile = FF_PROFILE_DTS_96_24;
  1372. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1373. s->profile = FF_PROFILE_DTS_ES;
  1374. /* check for ExSS (HD part) */
  1375. if (s->dca_buffer_size - s->frame_size > 32 &&
  1376. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1377. ff_dca_exss_parse_header(s);
  1378. avctx->profile = s->profile;
  1379. full_channels = channels = s->prim_channels + !!s->lfe;
  1380. /* If we have XXCH then the channel layout is managed differently */
  1381. /* note that XLL will also have another way to do things */
  1382. if (!(s->core_ext_mask & DCA_EXT_XXCH)
  1383. || (s->core_ext_mask & DCA_EXT_XXCH && avctx->request_channels > 0
  1384. && avctx->request_channels
  1385. < num_core_channels + !!s->lfe + s->xxch_chset_nch[0]))
  1386. { /* xxx should also do MA extensions */
  1387. if (s->amode < 16) {
  1388. avctx->channel_layout = dca_core_channel_layout[s->amode];
  1389. if (s->prim_channels + !!s->lfe > 2 &&
  1390. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1391. /*
  1392. * Neither the core's auxiliary data nor our default tables contain
  1393. * downmix coefficients for the additional channel coded in the XCh
  1394. * extension, so when we're doing a Stereo downmix, don't decode it.
  1395. */
  1396. s->xch_disable = 1;
  1397. }
  1398. #if FF_API_REQUEST_CHANNELS
  1399. FF_DISABLE_DEPRECATION_WARNINGS
  1400. if (s->xch_present && !s->xch_disable &&
  1401. (!avctx->request_channels ||
  1402. avctx->request_channels > num_core_channels + !!s->lfe)) {
  1403. FF_ENABLE_DEPRECATION_WARNINGS
  1404. #else
  1405. if (s->xch_present && !s->xch_disable) {
  1406. #endif
  1407. if (avctx->channel_layout & AV_CH_BACK_CENTER) {
  1408. avpriv_request_sample(avctx, "XCh with Back center channel");
  1409. return AVERROR_INVALIDDATA;
  1410. }
  1411. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1412. if (s->lfe) {
  1413. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1414. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  1415. } else {
  1416. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  1417. }
  1418. if (s->channel_order_tab[s->xch_base_channel] < 0)
  1419. return AVERROR_INVALIDDATA;
  1420. } else {
  1421. channels = num_core_channels + !!s->lfe;
  1422. s->xch_present = 0; /* disable further xch processing */
  1423. if (s->lfe) {
  1424. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1425. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  1426. } else
  1427. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  1428. }
  1429. if (channels > !!s->lfe &&
  1430. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1431. return AVERROR_INVALIDDATA;
  1432. if (av_get_channel_layout_nb_channels(avctx->channel_layout) != channels) {
  1433. av_log(avctx, AV_LOG_ERROR, "Number of channels %d mismatches layout %d\n", channels, av_get_channel_layout_nb_channels(avctx->channel_layout));
  1434. return AVERROR_INVALIDDATA;
  1435. }
  1436. if (num_core_channels + !!s->lfe > 2 &&
  1437. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1438. channels = 2;
  1439. s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
  1440. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1441. }
  1442. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  1443. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  1444. s->channel_order_tab = dca_channel_order_native;
  1445. }
  1446. s->lfe_index = dca_lfe_index[s->amode];
  1447. } else {
  1448. av_log(avctx, AV_LOG_ERROR,
  1449. "Non standard configuration %d !\n", s->amode);
  1450. return AVERROR_INVALIDDATA;
  1451. }
  1452. s->xxch_dmix_embedded = 0;
  1453. } else {
  1454. /* we only get here if an XXCH channel set can be added to the mix */
  1455. channel_mask = s->xxch_core_spkmask;
  1456. if (avctx->request_channels > 0
  1457. && avctx->request_channels < s->prim_channels) {
  1458. channels = num_core_channels + !!s->lfe;
  1459. for (i = 0; i < s->xxch_chset && channels + s->xxch_chset_nch[i]
  1460. <= avctx->request_channels; i++) {
  1461. channels += s->xxch_chset_nch[i];
  1462. channel_mask |= s->xxch_spk_masks[i];
  1463. }
  1464. } else {
  1465. channels = s->prim_channels + !!s->lfe;
  1466. for (i = 0; i < s->xxch_chset; i++) {
  1467. channel_mask |= s->xxch_spk_masks[i];
  1468. }
  1469. }
  1470. /* Given the DTS spec'ed channel mask, generate an avcodec version */
  1471. channel_layout = 0;
  1472. for (i = 0; i < s->xxch_nbits_spk_mask; ++i) {
  1473. if (channel_mask & (1 << i)) {
  1474. channel_layout |= map_xxch_to_native[i];
  1475. }
  1476. }
  1477. /* make sure that we have managed to get equivalent dts/avcodec channel
  1478. * masks in some sense -- unfortunately some channels could overlap */
  1479. if (av_popcount(channel_mask) != av_popcount(channel_layout)) {
  1480. av_log(avctx, AV_LOG_DEBUG,
  1481. "DTS-XXCH: Inconsistent avcodec/dts channel layouts\n");
  1482. return AVERROR_INVALIDDATA;
  1483. }
  1484. avctx->channel_layout = channel_layout;
  1485. if (!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) {
  1486. /* Estimate DTS --> avcodec ordering table */
  1487. for (chset = -1, j = 0; chset < s->xxch_chset; ++chset) {
  1488. mask = chset >= 0 ? s->xxch_spk_masks[chset]
  1489. : s->xxch_core_spkmask;
  1490. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  1491. if (mask & ~(DCA_XXCH_LFE1 | DCA_XXCH_LFE2) & (1 << i)) {
  1492. lavc = map_xxch_to_native[i];
  1493. posn = av_popcount(channel_layout & (lavc - 1));
  1494. s->xxch_order_tab[j++] = posn;
  1495. }
  1496. }
  1497. }
  1498. s->lfe_index = av_popcount(channel_layout & (AV_CH_LOW_FREQUENCY-1));
  1499. } else { /* native ordering */
  1500. for (i = 0; i < channels; i++)
  1501. s->xxch_order_tab[i] = i;
  1502. s->lfe_index = channels - 1;
  1503. }
  1504. s->channel_order_tab = s->xxch_order_tab;
  1505. }
  1506. if (avctx->channels != channels) {
  1507. if (avctx->channels)
  1508. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  1509. avctx->channels = channels;
  1510. }
  1511. /* get output buffer */
  1512. frame->nb_samples = 256 * (s->sample_blocks / 8);
  1513. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  1514. return ret;
  1515. samples_flt = (float **) frame->extended_data;
  1516. /* allocate buffer for extra channels if downmixing */
  1517. if (avctx->channels < full_channels) {
  1518. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  1519. frame->nb_samples,
  1520. avctx->sample_fmt, 0);
  1521. if (ret < 0)
  1522. return ret;
  1523. av_fast_malloc(&s->extra_channels_buffer,
  1524. &s->extra_channels_buffer_size, ret);
  1525. if (!s->extra_channels_buffer)
  1526. return AVERROR(ENOMEM);
  1527. ret = av_samples_fill_arrays((uint8_t **) s->extra_channels, NULL,
  1528. s->extra_channels_buffer,
  1529. full_channels - channels,
  1530. frame->nb_samples, avctx->sample_fmt, 0);
  1531. if (ret < 0)
  1532. return ret;
  1533. }
  1534. /* filter to get final output */
  1535. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1536. int ch;
  1537. for (ch = 0; ch < channels; ch++)
  1538. s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
  1539. for (; ch < full_channels; ch++)
  1540. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
  1541. dca_filter_channels(s, i);
  1542. /* If this was marked as a DTS-ES stream we need to subtract back- */
  1543. /* channel from SL & SR to remove matrixed back-channel signal */
  1544. if ((s->source_pcm_res & 1) && s->xch_present) {
  1545. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  1546. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  1547. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  1548. s->fdsp->vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  1549. s->fdsp->vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  1550. }
  1551. /* If stream contains XXCH, we might need to undo an embedded downmix */
  1552. if (s->xxch_dmix_embedded) {
  1553. /* Loop over channel sets in turn */
  1554. ch = num_core_channels;
  1555. for (chset = 0; chset < s->xxch_chset; chset++) {
  1556. endch = ch + s->xxch_chset_nch[chset];
  1557. mask = s->xxch_dmix_embedded;
  1558. /* undo downmix */
  1559. for (j = ch; j < endch; j++) {
  1560. if (mask & (1 << j)) { /* this channel has been mixed-out */
  1561. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  1562. for (k = 0; k < endch; k++) {
  1563. achan = s->channel_order_tab[k];
  1564. scale = s->xxch_dmix_coeff[j][k];
  1565. if (scale != 0.0) {
  1566. dst_chan = s->samples_chanptr[achan];
  1567. s->fdsp->vector_fmac_scalar(dst_chan, src_chan,
  1568. -scale, 256);
  1569. }
  1570. }
  1571. }
  1572. }
  1573. /* if a downmix has been embedded then undo the pre-scaling */
  1574. if ((mask & (1 << ch)) && s->xxch_dmix_sf[chset] != 1.0f) {
  1575. scale = s->xxch_dmix_sf[chset];
  1576. for (j = 0; j < ch; j++) {
  1577. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  1578. for (k = 0; k < 256; k++)
  1579. src_chan[k] *= scale;
  1580. }
  1581. /* LFE channel is always part of core, scale if it exists */
  1582. if (s->lfe) {
  1583. src_chan = s->samples_chanptr[s->lfe_index];
  1584. for (k = 0; k < 256; k++)
  1585. src_chan[k] *= scale;
  1586. }
  1587. }
  1588. ch = endch;
  1589. }
  1590. }
  1591. }
  1592. /* update lfe history */
  1593. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  1594. for (i = 0; i < 2 * s->lfe * 4; i++)
  1595. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  1596. /* AVMatrixEncoding
  1597. *
  1598. * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
  1599. ret = ff_side_data_update_matrix_encoding(frame,
  1600. (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
  1601. AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
  1602. if (ret < 0)
  1603. return ret;
  1604. *got_frame_ptr = 1;
  1605. return buf_size;
  1606. }
  1607. /**
  1608. * DCA initialization
  1609. *
  1610. * @param avctx pointer to the AVCodecContext
  1611. */
  1612. static av_cold int dca_decode_init(AVCodecContext *avctx)
  1613. {
  1614. DCAContext *s = avctx->priv_data;
  1615. s->avctx = avctx;
  1616. dca_init_vlcs();
  1617. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & CODEC_FLAG_BITEXACT);
  1618. if (!s->fdsp)
  1619. return AVERROR(ENOMEM);
  1620. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  1621. ff_synth_filter_init(&s->synth);
  1622. ff_dcadsp_init(&s->dcadsp);
  1623. ff_fmt_convert_init(&s->fmt_conv, avctx);
  1624. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  1625. /* allow downmixing to stereo */
  1626. #if FF_API_REQUEST_CHANNELS
  1627. FF_DISABLE_DEPRECATION_WARNINGS
  1628. if (avctx->request_channels == 2)
  1629. avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
  1630. FF_ENABLE_DEPRECATION_WARNINGS
  1631. #endif
  1632. if (avctx->channels > 2 &&
  1633. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
  1634. avctx->channels = 2;
  1635. return 0;
  1636. }
  1637. static av_cold int dca_decode_end(AVCodecContext *avctx)
  1638. {
  1639. DCAContext *s = avctx->priv_data;
  1640. ff_mdct_end(&s->imdct);
  1641. av_freep(&s->extra_channels_buffer);
  1642. av_freep(&s->fdsp);
  1643. return 0;
  1644. }
  1645. static const AVProfile profiles[] = {
  1646. { FF_PROFILE_DTS, "DTS" },
  1647. { FF_PROFILE_DTS_ES, "DTS-ES" },
  1648. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  1649. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  1650. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  1651. { FF_PROFILE_UNKNOWN },
  1652. };
  1653. static const AVOption options[] = {
  1654. { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM },
  1655. { NULL },
  1656. };
  1657. static const AVClass dca_decoder_class = {
  1658. .class_name = "DCA decoder",
  1659. .item_name = av_default_item_name,
  1660. .option = options,
  1661. .version = LIBAVUTIL_VERSION_INT,
  1662. .category = AV_CLASS_CATEGORY_DECODER,
  1663. };
  1664. AVCodec ff_dca_decoder = {
  1665. .name = "dca",
  1666. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  1667. .type = AVMEDIA_TYPE_AUDIO,
  1668. .id = AV_CODEC_ID_DTS,
  1669. .priv_data_size = sizeof(DCAContext),
  1670. .init = dca_decode_init,
  1671. .decode = dca_decode_frame,
  1672. .close = dca_decode_end,
  1673. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  1674. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  1675. AV_SAMPLE_FMT_NONE },
  1676. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  1677. .priv_class = &dca_decoder_class,
  1678. };