You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1407 lines
44KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  23. * the algorithm used
  24. */
  25. /**
  26. * @file huffyuv.c
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "bitstream.h"
  31. #include "dsputil.h"
  32. #define VLC_BITS 11
  33. #ifdef WORDS_BIGENDIAN
  34. #define B 3
  35. #define G 2
  36. #define R 1
  37. #else
  38. #define B 0
  39. #define G 1
  40. #define R 2
  41. #endif
  42. typedef enum Predictor{
  43. LEFT= 0,
  44. PLANE,
  45. MEDIAN,
  46. } Predictor;
  47. typedef struct HYuvContext{
  48. AVCodecContext *avctx;
  49. Predictor predictor;
  50. GetBitContext gb;
  51. PutBitContext pb;
  52. int interlaced;
  53. int decorrelate;
  54. int bitstream_bpp;
  55. int version;
  56. int yuy2; //use yuy2 instead of 422P
  57. int bgr32; //use bgr32 instead of bgr24
  58. int width, height;
  59. int flags;
  60. int context;
  61. int picture_number;
  62. int last_slice_end;
  63. uint8_t *temp[3];
  64. uint64_t stats[3][256];
  65. uint8_t len[3][256];
  66. uint32_t bits[3][256];
  67. VLC vlc[3];
  68. AVFrame picture;
  69. uint8_t *bitstream_buffer;
  70. unsigned int bitstream_buffer_size;
  71. DSPContext dsp;
  72. }HYuvContext;
  73. static const unsigned char classic_shift_luma[] = {
  74. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  75. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  76. 69,68, 0
  77. };
  78. static const unsigned char classic_shift_chroma[] = {
  79. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  80. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  81. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  82. };
  83. static const unsigned char classic_add_luma[256] = {
  84. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  85. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  86. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  87. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  88. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  89. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  90. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  91. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  92. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  93. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  94. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  95. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  96. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  97. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  98. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  99. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  100. };
  101. static const unsigned char classic_add_chroma[256] = {
  102. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  103. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  104. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  105. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  106. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  107. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  108. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  109. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  110. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  111. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  112. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  113. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  114. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  115. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  116. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  117. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  118. };
  119. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  120. int i;
  121. for(i=0; i<w-1; i++){
  122. acc+= src[i];
  123. dst[i]= acc;
  124. i++;
  125. acc+= src[i];
  126. dst[i]= acc;
  127. }
  128. for(; i<w; i++){
  129. acc+= src[i];
  130. dst[i]= acc;
  131. }
  132. return acc;
  133. }
  134. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  135. int i;
  136. uint8_t l, lt;
  137. l= *left;
  138. lt= *left_top;
  139. for(i=0; i<w; i++){
  140. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  141. lt= src1[i];
  142. dst[i]= l;
  143. }
  144. *left= l;
  145. *left_top= lt;
  146. }
  147. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  148. int i;
  149. int r,g,b;
  150. r= *red;
  151. g= *green;
  152. b= *blue;
  153. for(i=0; i<w; i++){
  154. b+= src[4*i+B];
  155. g+= src[4*i+G];
  156. r+= src[4*i+R];
  157. dst[4*i+B]= b;
  158. dst[4*i+G]= g;
  159. dst[4*i+R]= r;
  160. }
  161. *red= r;
  162. *green= g;
  163. *blue= b;
  164. }
  165. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  166. int i;
  167. if(w<32){
  168. for(i=0; i<w; i++){
  169. const int temp= src[i];
  170. dst[i]= temp - left;
  171. left= temp;
  172. }
  173. return left;
  174. }else{
  175. for(i=0; i<16; i++){
  176. const int temp= src[i];
  177. dst[i]= temp - left;
  178. left= temp;
  179. }
  180. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  181. return src[w-1];
  182. }
  183. }
  184. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  185. int i;
  186. int r,g,b;
  187. r= *red;
  188. g= *green;
  189. b= *blue;
  190. for(i=0; i<FFMIN(w,4); i++){
  191. const int rt= src[i*4+R];
  192. const int gt= src[i*4+G];
  193. const int bt= src[i*4+B];
  194. dst[i*4+R]= rt - r;
  195. dst[i*4+G]= gt - g;
  196. dst[i*4+B]= bt - b;
  197. r = rt;
  198. g = gt;
  199. b = bt;
  200. }
  201. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  202. *red= src[(w-1)*4+R];
  203. *green= src[(w-1)*4+G];
  204. *blue= src[(w-1)*4+B];
  205. }
  206. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  207. int i, val, repeat;
  208. for(i=0; i<256;){
  209. repeat= get_bits(gb, 3);
  210. val = get_bits(gb, 5);
  211. if(repeat==0)
  212. repeat= get_bits(gb, 8);
  213. //printf("%d %d\n", val, repeat);
  214. while (repeat--)
  215. dst[i++] = val;
  216. }
  217. }
  218. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  219. int len, index;
  220. uint32_t bits=0;
  221. for(len=32; len>0; len--){
  222. for(index=0; index<256; index++){
  223. if(len_table[index]==len)
  224. dst[index]= bits++;
  225. }
  226. if(bits & 1){
  227. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  228. return -1;
  229. }
  230. bits >>= 1;
  231. }
  232. return 0;
  233. }
  234. #ifdef CONFIG_ENCODERS
  235. typedef struct {
  236. uint64_t val;
  237. int name;
  238. } heap_elem_t;
  239. static void heap_sift(heap_elem_t *h, int root, int size)
  240. {
  241. while(root*2+1 < size) {
  242. int child = root*2+1;
  243. if(child < size-1 && h[child].val > h[child+1].val)
  244. child++;
  245. if(h[root].val > h[child].val) {
  246. FFSWAP(heap_elem_t, h[root], h[child]);
  247. root = child;
  248. } else
  249. break;
  250. }
  251. }
  252. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  253. heap_elem_t h[size];
  254. int up[2*size];
  255. int len[2*size];
  256. int offset, i, next;
  257. for(offset=1; ; offset<<=1){
  258. for(i=0; i<size; i++){
  259. h[i].name = i;
  260. h[i].val = (stats[i] << 8) + offset;
  261. }
  262. for(i=size/2-1; i>=0; i--)
  263. heap_sift(h, i, size);
  264. for(next=size; next<size*2-1; next++){
  265. // merge the two smallest entries, and put it back in the heap
  266. uint64_t min1v = h[0].val;
  267. up[h[0].name] = next;
  268. h[0].val = INT64_MAX;
  269. heap_sift(h, 0, size);
  270. up[h[0].name] = next;
  271. h[0].name = next;
  272. h[0].val += min1v;
  273. heap_sift(h, 0, size);
  274. }
  275. len[2*size-2] = 0;
  276. for(i=2*size-3; i>=size; i--)
  277. len[i] = len[up[i]] + 1;
  278. for(i=0; i<size; i++) {
  279. dst[i] = len[up[i]] + 1;
  280. if(dst[i] > 32) break;
  281. }
  282. if(i==size) break;
  283. }
  284. }
  285. #endif /* CONFIG_ENCODERS */
  286. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  287. GetBitContext gb;
  288. int i;
  289. init_get_bits(&gb, src, length*8);
  290. for(i=0; i<3; i++){
  291. read_len_table(s->len[i], &gb);
  292. if(generate_bits_table(s->bits[i], s->len[i])<0){
  293. return -1;
  294. }
  295. #if 0
  296. for(j=0; j<256; j++){
  297. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  298. }
  299. #endif
  300. free_vlc(&s->vlc[i]);
  301. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  302. }
  303. return (get_bits_count(&gb)+7)/8;
  304. }
  305. static int read_old_huffman_tables(HYuvContext *s){
  306. #if 1
  307. GetBitContext gb;
  308. int i;
  309. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  310. read_len_table(s->len[0], &gb);
  311. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  312. read_len_table(s->len[1], &gb);
  313. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  314. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  315. if(s->bitstream_bpp >= 24){
  316. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  317. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  318. }
  319. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  320. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  321. for(i=0; i<3; i++){
  322. free_vlc(&s->vlc[i]);
  323. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  324. }
  325. return 0;
  326. #else
  327. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  328. return -1;
  329. #endif
  330. }
  331. static void alloc_temp(HYuvContext *s){
  332. int i;
  333. if(s->bitstream_bpp<24){
  334. for(i=0; i<3; i++){
  335. s->temp[i]= av_malloc(s->width + 16);
  336. }
  337. }else{
  338. for(i=0; i<2; i++){
  339. s->temp[i]= av_malloc(4*s->width + 16);
  340. }
  341. }
  342. }
  343. static int common_init(AVCodecContext *avctx){
  344. HYuvContext *s = avctx->priv_data;
  345. s->avctx= avctx;
  346. s->flags= avctx->flags;
  347. dsputil_init(&s->dsp, avctx);
  348. s->width= avctx->width;
  349. s->height= avctx->height;
  350. assert(s->width>0 && s->height>0);
  351. return 0;
  352. }
  353. #ifdef CONFIG_DECODERS
  354. static int decode_init(AVCodecContext *avctx)
  355. {
  356. HYuvContext *s = avctx->priv_data;
  357. common_init(avctx);
  358. memset(s->vlc, 0, 3*sizeof(VLC));
  359. avctx->coded_frame= &s->picture;
  360. s->interlaced= s->height > 288;
  361. s->bgr32=1;
  362. //if(avctx->extradata)
  363. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  364. if(avctx->extradata_size){
  365. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  366. s->version=1; // do such files exist at all?
  367. else
  368. s->version=2;
  369. }else
  370. s->version=0;
  371. if(s->version==2){
  372. int method, interlace;
  373. method= ((uint8_t*)avctx->extradata)[0];
  374. s->decorrelate= method&64 ? 1 : 0;
  375. s->predictor= method&63;
  376. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  377. if(s->bitstream_bpp==0)
  378. s->bitstream_bpp= avctx->bits_per_sample&~7;
  379. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  380. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  381. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  382. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  383. return -1;
  384. }else{
  385. switch(avctx->bits_per_sample&7){
  386. case 1:
  387. s->predictor= LEFT;
  388. s->decorrelate= 0;
  389. break;
  390. case 2:
  391. s->predictor= LEFT;
  392. s->decorrelate= 1;
  393. break;
  394. case 3:
  395. s->predictor= PLANE;
  396. s->decorrelate= avctx->bits_per_sample >= 24;
  397. break;
  398. case 4:
  399. s->predictor= MEDIAN;
  400. s->decorrelate= 0;
  401. break;
  402. default:
  403. s->predictor= LEFT; //OLD
  404. s->decorrelate= 0;
  405. break;
  406. }
  407. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  408. s->context= 0;
  409. if(read_old_huffman_tables(s) < 0)
  410. return -1;
  411. }
  412. switch(s->bitstream_bpp){
  413. case 12:
  414. avctx->pix_fmt = PIX_FMT_YUV420P;
  415. break;
  416. case 16:
  417. if(s->yuy2){
  418. avctx->pix_fmt = PIX_FMT_YUYV422;
  419. }else{
  420. avctx->pix_fmt = PIX_FMT_YUV422P;
  421. }
  422. break;
  423. case 24:
  424. case 32:
  425. if(s->bgr32){
  426. avctx->pix_fmt = PIX_FMT_RGB32;
  427. }else{
  428. avctx->pix_fmt = PIX_FMT_BGR24;
  429. }
  430. break;
  431. default:
  432. assert(0);
  433. }
  434. alloc_temp(s);
  435. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  436. return 0;
  437. }
  438. #endif
  439. #ifdef CONFIG_ENCODERS
  440. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  441. int i;
  442. int index= 0;
  443. for(i=0; i<256;){
  444. int val= len[i];
  445. int repeat=0;
  446. for(; i<256 && len[i]==val && repeat<255; i++)
  447. repeat++;
  448. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  449. if(repeat>7){
  450. buf[index++]= val;
  451. buf[index++]= repeat;
  452. }else{
  453. buf[index++]= val | (repeat<<5);
  454. }
  455. }
  456. return index;
  457. }
  458. static int encode_init(AVCodecContext *avctx)
  459. {
  460. HYuvContext *s = avctx->priv_data;
  461. int i, j;
  462. common_init(avctx);
  463. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  464. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  465. s->version=2;
  466. avctx->coded_frame= &s->picture;
  467. switch(avctx->pix_fmt){
  468. case PIX_FMT_YUV420P:
  469. s->bitstream_bpp= 12;
  470. break;
  471. case PIX_FMT_YUV422P:
  472. s->bitstream_bpp= 16;
  473. break;
  474. case PIX_FMT_RGB32:
  475. s->bitstream_bpp= 24;
  476. break;
  477. default:
  478. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  479. return -1;
  480. }
  481. avctx->bits_per_sample= s->bitstream_bpp;
  482. s->decorrelate= s->bitstream_bpp >= 24;
  483. s->predictor= avctx->prediction_method;
  484. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  485. if(avctx->context_model==1){
  486. s->context= avctx->context_model;
  487. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  488. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  489. return -1;
  490. }
  491. }else s->context= 0;
  492. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  493. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  494. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  495. return -1;
  496. }
  497. if(avctx->context_model){
  498. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  499. return -1;
  500. }
  501. if(s->interlaced != ( s->height > 288 ))
  502. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  503. }
  504. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  505. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  506. return -1;
  507. }
  508. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  509. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  510. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  511. if(s->context)
  512. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  513. ((uint8_t*)avctx->extradata)[3]= 0;
  514. s->avctx->extradata_size= 4;
  515. if(avctx->stats_in){
  516. char *p= avctx->stats_in;
  517. for(i=0; i<3; i++)
  518. for(j=0; j<256; j++)
  519. s->stats[i][j]= 1;
  520. for(;;){
  521. for(i=0; i<3; i++){
  522. char *next;
  523. for(j=0; j<256; j++){
  524. s->stats[i][j]+= strtol(p, &next, 0);
  525. if(next==p) return -1;
  526. p=next;
  527. }
  528. }
  529. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  530. }
  531. }else{
  532. for(i=0; i<3; i++)
  533. for(j=0; j<256; j++){
  534. int d= FFMIN(j, 256-j);
  535. s->stats[i][j]= 100000000/(d+1);
  536. }
  537. }
  538. for(i=0; i<3; i++){
  539. generate_len_table(s->len[i], s->stats[i], 256);
  540. if(generate_bits_table(s->bits[i], s->len[i])<0){
  541. return -1;
  542. }
  543. s->avctx->extradata_size+=
  544. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  545. }
  546. if(s->context){
  547. for(i=0; i<3; i++){
  548. int pels = s->width*s->height / (i?40:10);
  549. for(j=0; j<256; j++){
  550. int d= FFMIN(j, 256-j);
  551. s->stats[i][j]= pels/(d+1);
  552. }
  553. }
  554. }else{
  555. for(i=0; i<3; i++)
  556. for(j=0; j<256; j++)
  557. s->stats[i][j]= 0;
  558. }
  559. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  560. alloc_temp(s);
  561. s->picture_number=0;
  562. return 0;
  563. }
  564. #endif /* CONFIG_ENCODERS */
  565. static void decode_422_bitstream(HYuvContext *s, int count){
  566. int i;
  567. count/=2;
  568. for(i=0; i<count; i++){
  569. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  570. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  571. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  572. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  573. }
  574. }
  575. static void decode_gray_bitstream(HYuvContext *s, int count){
  576. int i;
  577. count/=2;
  578. for(i=0; i<count; i++){
  579. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  580. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  581. }
  582. }
  583. #ifdef CONFIG_ENCODERS
  584. static int encode_422_bitstream(HYuvContext *s, int count){
  585. int i;
  586. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  587. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  588. return -1;
  589. }
  590. #define LOAD4\
  591. int y0 = s->temp[0][2*i];\
  592. int y1 = s->temp[0][2*i+1];\
  593. int u0 = s->temp[1][i];\
  594. int v0 = s->temp[2][i];
  595. count/=2;
  596. if(s->flags&CODEC_FLAG_PASS1){
  597. for(i=0; i<count; i++){
  598. LOAD4;
  599. s->stats[0][y0]++;
  600. s->stats[1][u0]++;
  601. s->stats[0][y1]++;
  602. s->stats[2][v0]++;
  603. }
  604. }
  605. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  606. return 0;
  607. if(s->context){
  608. for(i=0; i<count; i++){
  609. LOAD4;
  610. s->stats[0][y0]++;
  611. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  612. s->stats[1][u0]++;
  613. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  614. s->stats[0][y1]++;
  615. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  616. s->stats[2][v0]++;
  617. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  618. }
  619. }else{
  620. for(i=0; i<count; i++){
  621. LOAD4;
  622. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  623. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  624. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  625. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  626. }
  627. }
  628. return 0;
  629. }
  630. static int encode_gray_bitstream(HYuvContext *s, int count){
  631. int i;
  632. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  633. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  634. return -1;
  635. }
  636. #define LOAD2\
  637. int y0 = s->temp[0][2*i];\
  638. int y1 = s->temp[0][2*i+1];
  639. #define STAT2\
  640. s->stats[0][y0]++;\
  641. s->stats[0][y1]++;
  642. #define WRITE2\
  643. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  644. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  645. count/=2;
  646. if(s->flags&CODEC_FLAG_PASS1){
  647. for(i=0; i<count; i++){
  648. LOAD2;
  649. STAT2;
  650. }
  651. }
  652. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  653. return 0;
  654. if(s->context){
  655. for(i=0; i<count; i++){
  656. LOAD2;
  657. STAT2;
  658. WRITE2;
  659. }
  660. }else{
  661. for(i=0; i<count; i++){
  662. LOAD2;
  663. WRITE2;
  664. }
  665. }
  666. return 0;
  667. }
  668. #endif /* CONFIG_ENCODERS */
  669. static void decode_bgr_bitstream(HYuvContext *s, int count){
  670. int i;
  671. if(s->decorrelate){
  672. if(s->bitstream_bpp==24){
  673. for(i=0; i<count; i++){
  674. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  675. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  676. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  677. }
  678. }else{
  679. for(i=0; i<count; i++){
  680. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  681. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  682. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  683. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  684. }
  685. }
  686. }else{
  687. if(s->bitstream_bpp==24){
  688. for(i=0; i<count; i++){
  689. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  690. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  691. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  692. }
  693. }else{
  694. for(i=0; i<count; i++){
  695. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  696. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  697. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  698. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  699. }
  700. }
  701. }
  702. }
  703. static int encode_bgr_bitstream(HYuvContext *s, int count){
  704. int i;
  705. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  706. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  707. return -1;
  708. }
  709. #define LOAD3\
  710. int g= s->temp[0][4*i+G];\
  711. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  712. int r= (s->temp[0][4*i+R] - g) & 0xff;
  713. #define STAT3\
  714. s->stats[0][b]++;\
  715. s->stats[1][g]++;\
  716. s->stats[2][r]++;
  717. #define WRITE3\
  718. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  719. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  720. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  721. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  722. for(i=0; i<count; i++){
  723. LOAD3;
  724. STAT3;
  725. }
  726. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  727. for(i=0; i<count; i++){
  728. LOAD3;
  729. STAT3;
  730. WRITE3;
  731. }
  732. }else{
  733. for(i=0; i<count; i++){
  734. LOAD3;
  735. WRITE3;
  736. }
  737. }
  738. return 0;
  739. }
  740. #ifdef CONFIG_DECODERS
  741. static void draw_slice(HYuvContext *s, int y){
  742. int h, cy;
  743. int offset[4];
  744. if(s->avctx->draw_horiz_band==NULL)
  745. return;
  746. h= y - s->last_slice_end;
  747. y -= h;
  748. if(s->bitstream_bpp==12){
  749. cy= y>>1;
  750. }else{
  751. cy= y;
  752. }
  753. offset[0] = s->picture.linesize[0]*y;
  754. offset[1] = s->picture.linesize[1]*cy;
  755. offset[2] = s->picture.linesize[2]*cy;
  756. offset[3] = 0;
  757. emms_c();
  758. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  759. s->last_slice_end= y + h;
  760. }
  761. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  762. HYuvContext *s = avctx->priv_data;
  763. const int width= s->width;
  764. const int width2= s->width>>1;
  765. const int height= s->height;
  766. int fake_ystride, fake_ustride, fake_vstride;
  767. AVFrame * const p= &s->picture;
  768. int table_size= 0;
  769. AVFrame *picture = data;
  770. s->bitstream_buffer= av_fast_realloc(s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  771. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  772. if(p->data[0])
  773. avctx->release_buffer(avctx, p);
  774. p->reference= 0;
  775. if(avctx->get_buffer(avctx, p) < 0){
  776. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  777. return -1;
  778. }
  779. if(s->context){
  780. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  781. if(table_size < 0)
  782. return -1;
  783. }
  784. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  785. return -1;
  786. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  787. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  788. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  789. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  790. s->last_slice_end= 0;
  791. if(s->bitstream_bpp<24){
  792. int y, cy;
  793. int lefty, leftu, leftv;
  794. int lefttopy, lefttopu, lefttopv;
  795. if(s->yuy2){
  796. p->data[0][3]= get_bits(&s->gb, 8);
  797. p->data[0][2]= get_bits(&s->gb, 8);
  798. p->data[0][1]= get_bits(&s->gb, 8);
  799. p->data[0][0]= get_bits(&s->gb, 8);
  800. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  801. return -1;
  802. }else{
  803. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  804. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  805. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  806. p->data[0][0]= get_bits(&s->gb, 8);
  807. switch(s->predictor){
  808. case LEFT:
  809. case PLANE:
  810. decode_422_bitstream(s, width-2);
  811. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  812. if(!(s->flags&CODEC_FLAG_GRAY)){
  813. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  814. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  815. }
  816. for(cy=y=1; y<s->height; y++,cy++){
  817. uint8_t *ydst, *udst, *vdst;
  818. if(s->bitstream_bpp==12){
  819. decode_gray_bitstream(s, width);
  820. ydst= p->data[0] + p->linesize[0]*y;
  821. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  822. if(s->predictor == PLANE){
  823. if(y>s->interlaced)
  824. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  825. }
  826. y++;
  827. if(y>=s->height) break;
  828. }
  829. draw_slice(s, y);
  830. ydst= p->data[0] + p->linesize[0]*y;
  831. udst= p->data[1] + p->linesize[1]*cy;
  832. vdst= p->data[2] + p->linesize[2]*cy;
  833. decode_422_bitstream(s, width);
  834. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  835. if(!(s->flags&CODEC_FLAG_GRAY)){
  836. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  837. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  838. }
  839. if(s->predictor == PLANE){
  840. if(cy>s->interlaced){
  841. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  842. if(!(s->flags&CODEC_FLAG_GRAY)){
  843. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  844. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  845. }
  846. }
  847. }
  848. }
  849. draw_slice(s, height);
  850. break;
  851. case MEDIAN:
  852. /* first line except first 2 pixels is left predicted */
  853. decode_422_bitstream(s, width-2);
  854. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  855. if(!(s->flags&CODEC_FLAG_GRAY)){
  856. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  857. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  858. }
  859. cy=y=1;
  860. /* second line is left predicted for interlaced case */
  861. if(s->interlaced){
  862. decode_422_bitstream(s, width);
  863. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  864. if(!(s->flags&CODEC_FLAG_GRAY)){
  865. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  866. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  867. }
  868. y++; cy++;
  869. }
  870. /* next 4 pixels are left predicted too */
  871. decode_422_bitstream(s, 4);
  872. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  873. if(!(s->flags&CODEC_FLAG_GRAY)){
  874. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  875. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  876. }
  877. /* next line except the first 4 pixels is median predicted */
  878. lefttopy= p->data[0][3];
  879. decode_422_bitstream(s, width-4);
  880. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  881. if(!(s->flags&CODEC_FLAG_GRAY)){
  882. lefttopu= p->data[1][1];
  883. lefttopv= p->data[2][1];
  884. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  885. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  886. }
  887. y++; cy++;
  888. for(; y<height; y++,cy++){
  889. uint8_t *ydst, *udst, *vdst;
  890. if(s->bitstream_bpp==12){
  891. while(2*cy > y){
  892. decode_gray_bitstream(s, width);
  893. ydst= p->data[0] + p->linesize[0]*y;
  894. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  895. y++;
  896. }
  897. if(y>=height) break;
  898. }
  899. draw_slice(s, y);
  900. decode_422_bitstream(s, width);
  901. ydst= p->data[0] + p->linesize[0]*y;
  902. udst= p->data[1] + p->linesize[1]*cy;
  903. vdst= p->data[2] + p->linesize[2]*cy;
  904. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  905. if(!(s->flags&CODEC_FLAG_GRAY)){
  906. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  907. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  908. }
  909. }
  910. draw_slice(s, height);
  911. break;
  912. }
  913. }
  914. }else{
  915. int y;
  916. int leftr, leftg, leftb;
  917. const int last_line= (height-1)*p->linesize[0];
  918. if(s->bitstream_bpp==32){
  919. skip_bits(&s->gb, 8);
  920. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  921. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  922. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  923. }else{
  924. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  925. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  926. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  927. skip_bits(&s->gb, 8);
  928. }
  929. if(s->bgr32){
  930. switch(s->predictor){
  931. case LEFT:
  932. case PLANE:
  933. decode_bgr_bitstream(s, width-1);
  934. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  935. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  936. decode_bgr_bitstream(s, width);
  937. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  938. if(s->predictor == PLANE){
  939. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  940. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  941. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  942. }
  943. }
  944. }
  945. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  946. break;
  947. default:
  948. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  949. }
  950. }else{
  951. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  952. return -1;
  953. }
  954. }
  955. emms_c();
  956. *picture= *p;
  957. *data_size = sizeof(AVFrame);
  958. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  959. }
  960. #endif
  961. static int common_end(HYuvContext *s){
  962. int i;
  963. for(i=0; i<3; i++){
  964. av_freep(&s->temp[i]);
  965. }
  966. return 0;
  967. }
  968. #ifdef CONFIG_DECODERS
  969. static int decode_end(AVCodecContext *avctx)
  970. {
  971. HYuvContext *s = avctx->priv_data;
  972. int i;
  973. common_end(s);
  974. av_freep(&s->bitstream_buffer);
  975. for(i=0; i<3; i++){
  976. free_vlc(&s->vlc[i]);
  977. }
  978. return 0;
  979. }
  980. #endif
  981. #ifdef CONFIG_ENCODERS
  982. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  983. HYuvContext *s = avctx->priv_data;
  984. AVFrame *pict = data;
  985. const int width= s->width;
  986. const int width2= s->width>>1;
  987. const int height= s->height;
  988. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  989. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  990. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  991. AVFrame * const p= &s->picture;
  992. int i, j, size=0;
  993. *p = *pict;
  994. p->pict_type= FF_I_TYPE;
  995. p->key_frame= 1;
  996. if(s->context){
  997. for(i=0; i<3; i++){
  998. generate_len_table(s->len[i], s->stats[i], 256);
  999. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1000. return -1;
  1001. size+= store_table(s, s->len[i], &buf[size]);
  1002. }
  1003. for(i=0; i<3; i++)
  1004. for(j=0; j<256; j++)
  1005. s->stats[i][j] >>= 1;
  1006. }
  1007. init_put_bits(&s->pb, buf+size, buf_size-size);
  1008. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1009. int lefty, leftu, leftv, y, cy;
  1010. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1011. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1012. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1013. put_bits(&s->pb, 8, p->data[0][0]);
  1014. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  1015. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  1016. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  1017. encode_422_bitstream(s, width-2);
  1018. if(s->predictor==MEDIAN){
  1019. int lefttopy, lefttopu, lefttopv;
  1020. cy=y=1;
  1021. if(s->interlaced){
  1022. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1023. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1024. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1025. encode_422_bitstream(s, width);
  1026. y++; cy++;
  1027. }
  1028. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1029. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1030. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1031. encode_422_bitstream(s, 4);
  1032. lefttopy= p->data[0][3];
  1033. lefttopu= p->data[1][1];
  1034. lefttopv= p->data[2][1];
  1035. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1036. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1037. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1038. encode_422_bitstream(s, width-4);
  1039. y++; cy++;
  1040. for(; y<height; y++,cy++){
  1041. uint8_t *ydst, *udst, *vdst;
  1042. if(s->bitstream_bpp==12){
  1043. while(2*cy > y){
  1044. ydst= p->data[0] + p->linesize[0]*y;
  1045. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1046. encode_gray_bitstream(s, width);
  1047. y++;
  1048. }
  1049. if(y>=height) break;
  1050. }
  1051. ydst= p->data[0] + p->linesize[0]*y;
  1052. udst= p->data[1] + p->linesize[1]*cy;
  1053. vdst= p->data[2] + p->linesize[2]*cy;
  1054. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1055. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1056. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1057. encode_422_bitstream(s, width);
  1058. }
  1059. }else{
  1060. for(cy=y=1; y<height; y++,cy++){
  1061. uint8_t *ydst, *udst, *vdst;
  1062. /* encode a luma only line & y++ */
  1063. if(s->bitstream_bpp==12){
  1064. ydst= p->data[0] + p->linesize[0]*y;
  1065. if(s->predictor == PLANE && s->interlaced < y){
  1066. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1067. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1068. }else{
  1069. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1070. }
  1071. encode_gray_bitstream(s, width);
  1072. y++;
  1073. if(y>=height) break;
  1074. }
  1075. ydst= p->data[0] + p->linesize[0]*y;
  1076. udst= p->data[1] + p->linesize[1]*cy;
  1077. vdst= p->data[2] + p->linesize[2]*cy;
  1078. if(s->predictor == PLANE && s->interlaced < cy){
  1079. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1080. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1081. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1082. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1083. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1084. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1085. }else{
  1086. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1087. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1088. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1089. }
  1090. encode_422_bitstream(s, width);
  1091. }
  1092. }
  1093. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1094. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1095. const int stride = -p->linesize[0];
  1096. const int fake_stride = -fake_ystride;
  1097. int y;
  1098. int leftr, leftg, leftb;
  1099. put_bits(&s->pb, 8, leftr= data[R]);
  1100. put_bits(&s->pb, 8, leftg= data[G]);
  1101. put_bits(&s->pb, 8, leftb= data[B]);
  1102. put_bits(&s->pb, 8, 0);
  1103. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1104. encode_bgr_bitstream(s, width-1);
  1105. for(y=1; y<s->height; y++){
  1106. uint8_t *dst = data + y*stride;
  1107. if(s->predictor == PLANE && s->interlaced < y){
  1108. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1109. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1110. }else{
  1111. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1112. }
  1113. encode_bgr_bitstream(s, width);
  1114. }
  1115. }else{
  1116. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1117. }
  1118. emms_c();
  1119. size+= (put_bits_count(&s->pb)+31)/8;
  1120. size/= 4;
  1121. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1122. int j;
  1123. char *p= avctx->stats_out;
  1124. char *end= p + 1024*30;
  1125. for(i=0; i<3; i++){
  1126. for(j=0; j<256; j++){
  1127. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1128. p+= strlen(p);
  1129. s->stats[i][j]= 0;
  1130. }
  1131. snprintf(p, end-p, "\n");
  1132. p++;
  1133. }
  1134. } else
  1135. avctx->stats_out[0] = '\0';
  1136. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1137. flush_put_bits(&s->pb);
  1138. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1139. }
  1140. s->picture_number++;
  1141. return size*4;
  1142. }
  1143. static int encode_end(AVCodecContext *avctx)
  1144. {
  1145. HYuvContext *s = avctx->priv_data;
  1146. common_end(s);
  1147. av_freep(&avctx->extradata);
  1148. av_freep(&avctx->stats_out);
  1149. return 0;
  1150. }
  1151. #endif /* CONFIG_ENCODERS */
  1152. #ifdef CONFIG_DECODERS
  1153. AVCodec huffyuv_decoder = {
  1154. "huffyuv",
  1155. CODEC_TYPE_VIDEO,
  1156. CODEC_ID_HUFFYUV,
  1157. sizeof(HYuvContext),
  1158. decode_init,
  1159. NULL,
  1160. decode_end,
  1161. decode_frame,
  1162. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1163. NULL
  1164. };
  1165. AVCodec ffvhuff_decoder = {
  1166. "ffvhuff",
  1167. CODEC_TYPE_VIDEO,
  1168. CODEC_ID_FFVHUFF,
  1169. sizeof(HYuvContext),
  1170. decode_init,
  1171. NULL,
  1172. decode_end,
  1173. decode_frame,
  1174. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1175. NULL
  1176. };
  1177. #endif
  1178. #ifdef CONFIG_ENCODERS
  1179. AVCodec huffyuv_encoder = {
  1180. "huffyuv",
  1181. CODEC_TYPE_VIDEO,
  1182. CODEC_ID_HUFFYUV,
  1183. sizeof(HYuvContext),
  1184. encode_init,
  1185. encode_frame,
  1186. encode_end,
  1187. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, -1},
  1188. };
  1189. AVCodec ffvhuff_encoder = {
  1190. "ffvhuff",
  1191. CODEC_TYPE_VIDEO,
  1192. CODEC_ID_FFVHUFF,
  1193. sizeof(HYuvContext),
  1194. encode_init,
  1195. encode_frame,
  1196. encode_end,
  1197. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, -1},
  1198. };
  1199. #endif //CONFIG_ENCODERS