|
- /*
- * Copyright (C) 2016 foo86
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- #include "dcadec.h"
- #include "dcadata.h"
- #include "dcamath.h"
- #include "dca_syncwords.h"
- #include "unary.h"
-
- static int get_linear(GetBitContext *gb, int n)
- {
- unsigned int v = get_bits_long(gb, n);
- return (v >> 1) ^ -(v & 1);
- }
-
- static int get_rice_un(GetBitContext *gb, int k)
- {
- unsigned int v = get_unary(gb, 1, get_bits_left(gb));
- return (v << k) | get_bits_long(gb, k);
- }
-
- static int get_rice(GetBitContext *gb, int k)
- {
- unsigned int v = get_rice_un(gb, k);
- return (v >> 1) ^ -(v & 1);
- }
-
- static void get_array(GetBitContext *gb, int32_t *array, int size, int n)
- {
- int i;
-
- for (i = 0; i < size; i++)
- array[i] = get_bits(gb, n);
- }
-
- static void get_linear_array(GetBitContext *gb, int32_t *array, int size, int n)
- {
- int i;
-
- if (n == 0)
- memset(array, 0, sizeof(*array) * size);
- else for (i = 0; i < size; i++)
- array[i] = get_linear(gb, n);
- }
-
- static void get_rice_array(GetBitContext *gb, int32_t *array, int size, int k)
- {
- int i;
-
- for (i = 0; i < size; i++)
- array[i] = get_rice(gb, k);
- }
-
- static int parse_dmix_coeffs(DCAXllDecoder *s, DCAXllChSet *c)
- {
- // Size of downmix coefficient matrix
- int m = c->primary_chset ? ff_dca_dmix_primary_nch[c->dmix_type] : c->hier_ofs;
- int i, j, *coeff_ptr = c->dmix_coeff;
-
- for (i = 0; i < m; i++) {
- int code, sign, coeff, scale, scale_inv = 0;
- unsigned int index;
-
- // Downmix scale (only for non-primary channel sets)
- if (!c->primary_chset) {
- code = get_bits(&s->gb, 9);
- sign = (code >> 8) - 1;
- index = (code & 0xff) - FF_DCA_DMIXTABLE_OFFSET;
- if (index >= FF_DCA_INV_DMIXTABLE_SIZE) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix scale index\n");
- return AVERROR_INVALIDDATA;
- }
- scale = ff_dca_dmixtable[index + FF_DCA_DMIXTABLE_OFFSET];
- scale_inv = ff_dca_inv_dmixtable[index];
- c->dmix_scale[i] = (scale ^ sign) - sign;
- c->dmix_scale_inv[i] = (scale_inv ^ sign) - sign;
- }
-
- // Downmix coefficients
- for (j = 0; j < c->nchannels; j++) {
- code = get_bits(&s->gb, 9);
- sign = (code >> 8) - 1;
- index = code & 0xff;
- if (index >= FF_DCA_DMIXTABLE_SIZE) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix coefficient index\n");
- return AVERROR_INVALIDDATA;
- }
- coeff = ff_dca_dmixtable[index];
- if (!c->primary_chset)
- // Multiply by |InvDmixScale| to get |UndoDmixScale|
- coeff = mul16(scale_inv, coeff);
- *coeff_ptr++ = (coeff ^ sign) - sign;
- }
- }
-
- return 0;
- }
-
- static int chs_parse_header(DCAXllDecoder *s, DCAXllChSet *c, DCAExssAsset *asset)
- {
- int i, j, k, ret, band, header_size, header_pos = get_bits_count(&s->gb);
- DCAXllChSet *p = &s->chset[0];
- DCAXllBand *b;
-
- // Size of channel set sub-header
- header_size = get_bits(&s->gb, 10) + 1;
-
- // Check CRC
- if (ff_dca_check_crc(s->avctx, &s->gb, header_pos, header_pos + header_size * 8)) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL sub-header checksum\n");
- return AVERROR_INVALIDDATA;
- }
-
- // Number of channels in the channel set
- c->nchannels = get_bits(&s->gb, 4) + 1;
- if (c->nchannels > DCA_XLL_CHANNELS_MAX) {
- avpriv_request_sample(s->avctx, "%d XLL channels", c->nchannels);
- return AVERROR_PATCHWELCOME;
- }
-
- // Residual type
- c->residual_encode = get_bits(&s->gb, c->nchannels);
-
- // PCM bit resolution
- c->pcm_bit_res = get_bits(&s->gb, 5) + 1;
-
- // Storage unit width
- c->storage_bit_res = get_bits(&s->gb, 5) + 1;
- if (c->storage_bit_res != 16 && c->storage_bit_res != 24) {
- avpriv_request_sample(s->avctx, "%d-bit XLL storage resolution", c->storage_bit_res);
- return AVERROR_PATCHWELCOME;
- }
-
- if (c->pcm_bit_res > c->storage_bit_res) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid PCM bit resolution for XLL channel set (%d > %d)\n", c->pcm_bit_res, c->storage_bit_res);
- return AVERROR_INVALIDDATA;
- }
-
- // Original sampling frequency
- c->freq = ff_dca_sampling_freqs[get_bits(&s->gb, 4)];
- if (c->freq > 192000) {
- avpriv_request_sample(s->avctx, "%d Hz XLL sampling frequency", c->freq);
- return AVERROR_PATCHWELCOME;
- }
-
- // Sampling frequency modifier
- if (get_bits(&s->gb, 2)) {
- avpriv_request_sample(s->avctx, "XLL sampling frequency modifier");
- return AVERROR_PATCHWELCOME;
- }
-
- // Which replacement set this channel set is member of
- if (get_bits(&s->gb, 2)) {
- avpriv_request_sample(s->avctx, "XLL replacement set");
- return AVERROR_PATCHWELCOME;
- }
-
- if (asset->one_to_one_map_ch_to_spkr) {
- // Primary channel set flag
- c->primary_chset = get_bits1(&s->gb);
- if (c->primary_chset != (c == p)) {
- av_log(s->avctx, AV_LOG_ERROR, "The first (and only) XLL channel set must be primary\n");
- return AVERROR_INVALIDDATA;
- }
-
- // Downmix coefficients present in stream
- c->dmix_coeffs_present = get_bits1(&s->gb);
-
- // Downmix already performed by encoder
- c->dmix_embedded = c->dmix_coeffs_present && get_bits1(&s->gb);
-
- // Downmix type
- if (c->dmix_coeffs_present && c->primary_chset) {
- c->dmix_type = get_bits(&s->gb, 3);
- if (c->dmix_type >= DCA_DMIX_TYPE_COUNT) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL primary channel set downmix type\n");
- return AVERROR_INVALIDDATA;
- }
- }
-
- // Whether the channel set is part of a hierarchy
- c->hier_chset = get_bits1(&s->gb);
- if (!c->hier_chset && s->nchsets != 1) {
- avpriv_request_sample(s->avctx, "XLL channel set outside of hierarchy");
- return AVERROR_PATCHWELCOME;
- }
-
- // Downmix coefficients
- if (c->dmix_coeffs_present && (ret = parse_dmix_coeffs(s, c)) < 0)
- return ret;
-
- // Channel mask enabled
- if (!get_bits1(&s->gb)) {
- avpriv_request_sample(s->avctx, "Disabled XLL channel mask");
- return AVERROR_PATCHWELCOME;
- }
-
- // Channel mask for set
- c->ch_mask = get_bits_long(&s->gb, s->ch_mask_nbits);
- if (av_popcount(c->ch_mask) != c->nchannels) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL channel mask\n");
- return AVERROR_INVALIDDATA;
- }
-
- // Build the channel to speaker map
- for (i = 0, j = 0; i < s->ch_mask_nbits; i++)
- if (c->ch_mask & (1U << i))
- c->ch_remap[j++] = i;
- } else {
- // Mapping coeffs present flag
- if (c->nchannels != 2 || s->nchsets != 1 || get_bits1(&s->gb)) {
- avpriv_request_sample(s->avctx, "Custom XLL channel to speaker mapping");
- return AVERROR_PATCHWELCOME;
- }
-
- // Setup for LtRt decoding
- c->primary_chset = 1;
- c->dmix_coeffs_present = 0;
- c->dmix_embedded = 0;
- c->hier_chset = 0;
- c->ch_mask = DCA_SPEAKER_LAYOUT_STEREO;
- c->ch_remap[0] = DCA_SPEAKER_L;
- c->ch_remap[1] = DCA_SPEAKER_R;
- }
-
- if (c->freq > 96000) {
- // Extra frequency bands flag
- if (get_bits1(&s->gb)) {
- avpriv_request_sample(s->avctx, "Extra XLL frequency bands");
- return AVERROR_PATCHWELCOME;
- }
- c->nfreqbands = 2;
- } else {
- c->nfreqbands = 1;
- }
-
- // Set the sampling frequency to that of the first frequency band.
- // Frequency will be doubled again after bands assembly.
- c->freq >>= c->nfreqbands - 1;
-
- // Verify that all channel sets have the same audio characteristics
- if (c != p && (c->nfreqbands != p->nfreqbands || c->freq != p->freq
- || c->pcm_bit_res != p->pcm_bit_res
- || c->storage_bit_res != p->storage_bit_res)) {
- avpriv_request_sample(s->avctx, "Different XLL audio characteristics");
- return AVERROR_PATCHWELCOME;
- }
-
- // Determine number of bits to read bit allocation coding parameter
- if (c->storage_bit_res > 16)
- c->nabits = 5;
- else if (c->storage_bit_res > 8)
- c->nabits = 4;
- else
- c->nabits = 3;
-
- // Account for embedded downmix and decimator saturation
- if ((s->nchsets > 1 || c->nfreqbands > 1) && c->nabits < 5)
- c->nabits++;
-
- for (band = 0, b = c->bands; band < c->nfreqbands; band++, b++) {
- // Pairwise channel decorrelation
- if ((b->decor_enabled = get_bits1(&s->gb)) && c->nchannels > 1) {
- int ch_nbits = av_ceil_log2(c->nchannels);
-
- // Original channel order
- for (i = 0; i < c->nchannels; i++) {
- b->orig_order[i] = get_bits(&s->gb, ch_nbits);
- if (b->orig_order[i] >= c->nchannels) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL original channel order\n");
- return AVERROR_INVALIDDATA;
- }
- }
-
- // Pairwise channel coefficients
- for (i = 0; i < c->nchannels / 2; i++)
- b->decor_coeff[i] = get_bits1(&s->gb) ? get_linear(&s->gb, 7) : 0;
- } else {
- for (i = 0; i < c->nchannels; i++)
- b->orig_order[i] = i;
- for (i = 0; i < c->nchannels / 2; i++)
- b->decor_coeff[i] = 0;
- }
-
- // Adaptive predictor order
- b->highest_pred_order = 0;
- for (i = 0; i < c->nchannels; i++) {
- b->adapt_pred_order[i] = get_bits(&s->gb, 4);
- if (b->adapt_pred_order[i] > b->highest_pred_order)
- b->highest_pred_order = b->adapt_pred_order[i];
- }
- if (b->highest_pred_order > s->nsegsamples) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL adaptive predicition order\n");
- return AVERROR_INVALIDDATA;
- }
-
- // Fixed predictor order
- for (i = 0; i < c->nchannels; i++)
- b->fixed_pred_order[i] = b->adapt_pred_order[i] ? 0 : get_bits(&s->gb, 2);
-
- // Adaptive predictor quantized reflection coefficients
- for (i = 0; i < c->nchannels; i++) {
- for (j = 0; j < b->adapt_pred_order[i]; j++) {
- k = get_linear(&s->gb, 8);
- if (k == -128) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL reflection coefficient index\n");
- return AVERROR_INVALIDDATA;
- }
- if (k < 0)
- b->adapt_refl_coeff[i][j] = -(int)ff_dca_xll_refl_coeff[-k];
- else
- b->adapt_refl_coeff[i][j] = (int)ff_dca_xll_refl_coeff[ k];
- }
- }
-
- // Downmix performed by encoder in extension frequency band
- b->dmix_embedded = c->dmix_embedded && (band == 0 || get_bits1(&s->gb));
-
- // MSB/LSB split flag in extension frequency band
- if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) {
- // Size of LSB section in any segment
- b->lsb_section_size = get_bits_long(&s->gb, s->seg_size_nbits);
- if (b->lsb_section_size < 0 || b->lsb_section_size > s->frame_size) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid LSB section size\n");
- return AVERROR_INVALIDDATA;
- }
-
- // Account for optional CRC bytes after LSB section
- if (b->lsb_section_size && (s->band_crc_present > 2 ||
- (band == 0 && s->band_crc_present > 1)))
- b->lsb_section_size += 2;
-
- // Number of bits to represent the samples in LSB part
- for (i = 0; i < c->nchannels; i++) {
- b->nscalablelsbs[i] = get_bits(&s->gb, 4);
- if (b->nscalablelsbs[i] && !b->lsb_section_size) {
- av_log(s->avctx, AV_LOG_ERROR, "LSB section missing with non-zero LSB width\n");
- return AVERROR_INVALIDDATA;
- }
- }
- } else {
- b->lsb_section_size = 0;
- for (i = 0; i < c->nchannels; i++)
- b->nscalablelsbs[i] = 0;
- }
-
- // Scalable resolution flag in extension frequency band
- if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) {
- // Number of bits discarded by authoring
- for (i = 0; i < c->nchannels; i++)
- b->bit_width_adjust[i] = get_bits(&s->gb, 4);
- } else {
- for (i = 0; i < c->nchannels; i++)
- b->bit_width_adjust[i] = 0;
- }
- }
-
- // Reserved
- // Byte align
- // CRC16 of channel set sub-header
- if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
- av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL sub-header\n");
- return AVERROR_INVALIDDATA;
- }
-
- return 0;
- }
-
- static int chs_alloc_msb_band_data(DCAXllDecoder *s, DCAXllChSet *c)
- {
- int ndecisamples = c->nfreqbands > 1 ? DCA_XLL_DECI_HISTORY_MAX : 0;
- int nchsamples = s->nframesamples + ndecisamples;
- int i, j, nsamples = nchsamples * c->nchannels * c->nfreqbands;
- int32_t *ptr;
-
- // Reallocate MSB sample buffer
- av_fast_malloc(&c->sample_buffer[0], &c->sample_size[0], nsamples * sizeof(int32_t));
- if (!c->sample_buffer[0])
- return AVERROR(ENOMEM);
-
- ptr = c->sample_buffer[0] + ndecisamples;
- for (i = 0; i < c->nfreqbands; i++) {
- for (j = 0; j < c->nchannels; j++) {
- c->bands[i].msb_sample_buffer[j] = ptr;
- ptr += nchsamples;
- }
- }
-
- return 0;
- }
-
- static int chs_alloc_lsb_band_data(DCAXllDecoder *s, DCAXllChSet *c)
- {
- int i, j, nsamples = 0;
- int32_t *ptr;
-
- // Determine number of frequency bands that have MSB/LSB split
- for (i = 0; i < c->nfreqbands; i++)
- if (c->bands[i].lsb_section_size)
- nsamples += s->nframesamples * c->nchannels;
- if (!nsamples)
- return 0;
-
- // Reallocate LSB sample buffer
- av_fast_malloc(&c->sample_buffer[1], &c->sample_size[1], nsamples * sizeof(int32_t));
- if (!c->sample_buffer[1])
- return AVERROR(ENOMEM);
-
- ptr = c->sample_buffer[1];
- for (i = 0; i < c->nfreqbands; i++) {
- if (c->bands[i].lsb_section_size) {
- for (j = 0; j < c->nchannels; j++) {
- c->bands[i].lsb_sample_buffer[j] = ptr;
- ptr += s->nframesamples;
- }
- } else {
- for (j = 0; j < c->nchannels; j++)
- c->bands[i].lsb_sample_buffer[j] = NULL;
- }
- }
-
- return 0;
- }
-
- static int chs_parse_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg, int band_data_end)
- {
- DCAXllBand *b = &c->bands[band];
- int i, j, k;
-
- // Start unpacking MSB portion of the segment
- if (!(seg && get_bits1(&s->gb))) {
- // Unpack segment type
- // 0 - distinct coding parameters for each channel
- // 1 - common coding parameters for all channels
- c->seg_common = get_bits1(&s->gb);
-
- // Determine number of coding parameters encoded in segment
- k = c->seg_common ? 1 : c->nchannels;
-
- // Unpack Rice coding parameters
- for (i = 0; i < k; i++) {
- // Unpack Rice coding flag
- // 0 - linear code, 1 - Rice code
- c->rice_code_flag[i] = get_bits1(&s->gb);
- // Unpack Hybrid Rice coding flag
- // 0 - Rice code, 1 - Hybrid Rice code
- if (!c->seg_common && c->rice_code_flag[i] && get_bits1(&s->gb))
- // Unpack binary code length for isolated samples
- c->bitalloc_hybrid_linear[i] = get_bits(&s->gb, c->nabits) + 1;
- else
- // 0 indicates no Hybrid Rice coding
- c->bitalloc_hybrid_linear[i] = 0;
- }
-
- // Unpack coding parameters
- for (i = 0; i < k; i++) {
- if (seg == 0) {
- // Unpack coding parameter for part A of segment 0
- c->bitalloc_part_a[i] = get_bits(&s->gb, c->nabits);
-
- // Adjust for the linear code
- if (!c->rice_code_flag[i] && c->bitalloc_part_a[i])
- c->bitalloc_part_a[i]++;
-
- if (!c->seg_common)
- c->nsamples_part_a[i] = b->adapt_pred_order[i];
- else
- c->nsamples_part_a[i] = b->highest_pred_order;
- } else {
- c->bitalloc_part_a[i] = 0;
- c->nsamples_part_a[i] = 0;
- }
-
- // Unpack coding parameter for part B of segment
- c->bitalloc_part_b[i] = get_bits(&s->gb, c->nabits);
-
- // Adjust for the linear code
- if (!c->rice_code_flag[i] && c->bitalloc_part_b[i])
- c->bitalloc_part_b[i]++;
- }
- }
-
- // Unpack entropy codes
- for (i = 0; i < c->nchannels; i++) {
- int32_t *part_a, *part_b;
- int nsamples_part_b;
-
- // Select index of coding parameters
- k = c->seg_common ? 0 : i;
-
- // Slice the segment into parts A and B
- part_a = b->msb_sample_buffer[i] + seg * s->nsegsamples;
- part_b = part_a + c->nsamples_part_a[k];
- nsamples_part_b = s->nsegsamples - c->nsamples_part_a[k];
-
- if (get_bits_left(&s->gb) < 0)
- return AVERROR_INVALIDDATA;
-
- if (!c->rice_code_flag[k]) {
- // Linear codes
- // Unpack all residuals of part A of segment 0
- get_linear_array(&s->gb, part_a, c->nsamples_part_a[k],
- c->bitalloc_part_a[k]);
-
- // Unpack all residuals of part B of segment 0 and others
- get_linear_array(&s->gb, part_b, nsamples_part_b,
- c->bitalloc_part_b[k]);
- } else {
- // Rice codes
- // Unpack all residuals of part A of segment 0
- get_rice_array(&s->gb, part_a, c->nsamples_part_a[k],
- c->bitalloc_part_a[k]);
-
- if (c->bitalloc_hybrid_linear[k]) {
- // Hybrid Rice codes
- // Unpack the number of isolated samples
- int nisosamples = get_bits(&s->gb, s->nsegsamples_log2);
-
- // Set all locations to 0
- memset(part_b, 0, sizeof(*part_b) * nsamples_part_b);
-
- // Extract the locations of isolated samples and flag by -1
- for (j = 0; j < nisosamples; j++) {
- int loc = get_bits(&s->gb, s->nsegsamples_log2);
- if (loc >= nsamples_part_b) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid isolated sample location\n");
- return AVERROR_INVALIDDATA;
- }
- part_b[loc] = -1;
- }
-
- // Unpack all residuals of part B of segment 0 and others
- for (j = 0; j < nsamples_part_b; j++) {
- if (part_b[j])
- part_b[j] = get_linear(&s->gb, c->bitalloc_hybrid_linear[k]);
- else
- part_b[j] = get_rice(&s->gb, c->bitalloc_part_b[k]);
- }
- } else {
- // Rice codes
- // Unpack all residuals of part B of segment 0 and others
- get_rice_array(&s->gb, part_b, nsamples_part_b, c->bitalloc_part_b[k]);
- }
- }
- }
-
- // Unpack decimator history for frequency band 1
- if (seg == 0 && band == 1) {
- int nbits = get_bits(&s->gb, 5) + 1;
- for (i = 0; i < c->nchannels; i++)
- for (j = 1; j < DCA_XLL_DECI_HISTORY_MAX; j++)
- c->deci_history[i][j] = get_sbits_long(&s->gb, nbits);
- }
-
- // Start unpacking LSB portion of the segment
- if (b->lsb_section_size) {
- // Skip to the start of LSB portion
- if (ff_dca_seek_bits(&s->gb, band_data_end - b->lsb_section_size * 8)) {
- av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n");
- return AVERROR_INVALIDDATA;
- }
-
- // Unpack all LSB parts of residuals of this segment
- for (i = 0; i < c->nchannels; i++) {
- if (b->nscalablelsbs[i]) {
- get_array(&s->gb,
- b->lsb_sample_buffer[i] + seg * s->nsegsamples,
- s->nsegsamples, b->nscalablelsbs[i]);
- }
- }
- }
-
- // Skip to the end of band data
- if (ff_dca_seek_bits(&s->gb, band_data_end)) {
- av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n");
- return AVERROR_INVALIDDATA;
- }
-
- return 0;
- }
-
- static av_cold void chs_clear_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg)
- {
- DCAXllBand *b = &c->bands[band];
- int i, offset, nsamples;
-
- if (seg < 0) {
- offset = 0;
- nsamples = s->nframesamples;
- } else {
- offset = seg * s->nsegsamples;
- nsamples = s->nsegsamples;
- }
-
- for (i = 0; i < c->nchannels; i++) {
- memset(b->msb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t));
- if (b->lsb_section_size)
- memset(b->lsb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t));
- }
-
- if (seg <= 0 && band)
- memset(c->deci_history, 0, sizeof(c->deci_history));
-
- if (seg < 0) {
- memset(b->nscalablelsbs, 0, sizeof(b->nscalablelsbs));
- memset(b->bit_width_adjust, 0, sizeof(b->bit_width_adjust));
- }
- }
-
- static void chs_filter_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band)
- {
- DCAXllBand *b = &c->bands[band];
- int nsamples = s->nframesamples;
- int i, j, k;
-
- // Inverse adaptive or fixed prediction
- for (i = 0; i < c->nchannels; i++) {
- int32_t *buf = b->msb_sample_buffer[i];
- int order = b->adapt_pred_order[i];
- if (order > 0) {
- int coeff[DCA_XLL_ADAPT_PRED_ORDER_MAX];
- // Conversion from reflection coefficients to direct form coefficients
- for (j = 0; j < order; j++) {
- int rc = b->adapt_refl_coeff[i][j];
- for (k = 0; k < (j + 1) / 2; k++) {
- int tmp1 = coeff[ k ];
- int tmp2 = coeff[j - k - 1];
- coeff[ k ] = tmp1 + mul16(rc, tmp2);
- coeff[j - k - 1] = tmp2 + mul16(rc, tmp1);
- }
- coeff[j] = rc;
- }
- // Inverse adaptive prediction
- for (j = 0; j < nsamples - order; j++) {
- int64_t err = 0;
- for (k = 0; k < order; k++)
- err += (int64_t)buf[j + k] * coeff[order - k - 1];
- buf[j + k] -= clip23(norm16(err));
- }
- } else {
- // Inverse fixed coefficient prediction
- for (j = 0; j < b->fixed_pred_order[i]; j++)
- for (k = 1; k < nsamples; k++)
- buf[k] += buf[k - 1];
- }
- }
-
- // Inverse pairwise channel decorrellation
- if (b->decor_enabled) {
- int32_t *tmp[DCA_XLL_CHANNELS_MAX];
-
- for (i = 0; i < c->nchannels / 2; i++) {
- int coeff = b->decor_coeff[i];
- if (coeff) {
- s->dcadsp->decor(b->msb_sample_buffer[i * 2 + 1],
- b->msb_sample_buffer[i * 2 ],
- coeff, nsamples);
- }
- }
-
- // Reorder channel pointers to the original order
- for (i = 0; i < c->nchannels; i++)
- tmp[i] = b->msb_sample_buffer[i];
-
- for (i = 0; i < c->nchannels; i++)
- b->msb_sample_buffer[b->orig_order[i]] = tmp[i];
- }
-
- // Map output channel pointers for frequency band 0
- if (c->nfreqbands == 1)
- for (i = 0; i < c->nchannels; i++)
- s->output_samples[c->ch_remap[i]] = b->msb_sample_buffer[i];
- }
-
- static int chs_get_lsb_width(DCAXllDecoder *s, DCAXllChSet *c, int band, int ch)
- {
- int adj = c->bands[band].bit_width_adjust[ch];
- int shift = c->bands[band].nscalablelsbs[ch];
-
- if (s->fixed_lsb_width)
- shift = s->fixed_lsb_width;
- else if (shift && adj)
- shift += adj - 1;
- else
- shift += adj;
-
- return shift;
- }
-
- static void chs_assemble_msbs_lsbs(DCAXllDecoder *s, DCAXllChSet *c, int band)
- {
- DCAXllBand *b = &c->bands[band];
- int n, ch, nsamples = s->nframesamples;
-
- for (ch = 0; ch < c->nchannels; ch++) {
- int shift = chs_get_lsb_width(s, c, band, ch);
- if (shift) {
- int32_t *msb = b->msb_sample_buffer[ch];
- if (b->nscalablelsbs[ch]) {
- int32_t *lsb = b->lsb_sample_buffer[ch];
- int adj = b->bit_width_adjust[ch];
- for (n = 0; n < nsamples; n++)
- msb[n] = msb[n] * (1 << shift) + (lsb[n] << adj);
- } else {
- for (n = 0; n < nsamples; n++)
- msb[n] = msb[n] * (1 << shift);
- }
- }
- }
- }
-
- static int chs_assemble_freq_bands(DCAXllDecoder *s, DCAXllChSet *c)
- {
- int ch, nsamples = s->nframesamples;
- int32_t *ptr;
-
- av_assert1(c->nfreqbands > 1);
-
- // Reallocate frequency band assembly buffer
- av_fast_malloc(&c->sample_buffer[2], &c->sample_size[2],
- 2 * nsamples * c->nchannels * sizeof(int32_t));
- if (!c->sample_buffer[2])
- return AVERROR(ENOMEM);
-
- // Assemble frequency bands 0 and 1
- ptr = c->sample_buffer[2];
- for (ch = 0; ch < c->nchannels; ch++) {
- int32_t *band0 = c->bands[0].msb_sample_buffer[ch];
- int32_t *band1 = c->bands[1].msb_sample_buffer[ch];
-
- // Copy decimator history
- memcpy(band0 - DCA_XLL_DECI_HISTORY_MAX,
- c->deci_history[ch], sizeof(c->deci_history[0]));
-
- // Filter
- s->dcadsp->assemble_freq_bands(ptr, band0, band1,
- ff_dca_xll_band_coeff,
- nsamples);
-
- // Remap output channel pointer to assembly buffer
- s->output_samples[c->ch_remap[ch]] = ptr;
- ptr += nsamples * 2;
- }
-
- return 0;
- }
-
- static int parse_common_header(DCAXllDecoder *s)
- {
- int stream_ver, header_size, frame_size_nbits, nframesegs_log2;
-
- // XLL extension sync word
- if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XLL) {
- av_log(s->avctx, AV_LOG_VERBOSE, "Invalid XLL sync word\n");
- return AVERROR(EAGAIN);
- }
-
- // Version number
- stream_ver = get_bits(&s->gb, 4) + 1;
- if (stream_ver > 1) {
- avpriv_request_sample(s->avctx, "XLL stream version %d", stream_ver);
- return AVERROR_PATCHWELCOME;
- }
-
- // Lossless frame header length
- header_size = get_bits(&s->gb, 8) + 1;
-
- // Check CRC
- if (ff_dca_check_crc(s->avctx, &s->gb, 32, header_size * 8)) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL common header checksum\n");
- return AVERROR_INVALIDDATA;
- }
-
- // Number of bits used to read frame size
- frame_size_nbits = get_bits(&s->gb, 5) + 1;
-
- // Number of bytes in a lossless frame
- s->frame_size = get_bits_long(&s->gb, frame_size_nbits);
- if (s->frame_size < 0 || s->frame_size >= DCA_XLL_PBR_BUFFER_MAX) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL frame size (%d bytes)\n", s->frame_size);
- return AVERROR_INVALIDDATA;
- }
- s->frame_size++;
-
- // Number of channels sets per frame
- s->nchsets = get_bits(&s->gb, 4) + 1;
- if (s->nchsets > DCA_XLL_CHSETS_MAX) {
- avpriv_request_sample(s->avctx, "%d XLL channel sets", s->nchsets);
- return AVERROR_PATCHWELCOME;
- }
-
- // Number of segments per frame
- nframesegs_log2 = get_bits(&s->gb, 4);
- s->nframesegs = 1 << nframesegs_log2;
- if (s->nframesegs > 1024) {
- av_log(s->avctx, AV_LOG_ERROR, "Too many segments per XLL frame\n");
- return AVERROR_INVALIDDATA;
- }
-
- // Samples in segment per one frequency band for the first channel set
- // Maximum value is 256 for sampling frequencies <= 48 kHz
- // Maximum value is 512 for sampling frequencies > 48 kHz
- s->nsegsamples_log2 = get_bits(&s->gb, 4);
- if (!s->nsegsamples_log2) {
- av_log(s->avctx, AV_LOG_ERROR, "Too few samples per XLL segment\n");
- return AVERROR_INVALIDDATA;
- }
- s->nsegsamples = 1 << s->nsegsamples_log2;
- if (s->nsegsamples > 512) {
- av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL segment\n");
- return AVERROR_INVALIDDATA;
- }
-
- // Samples in frame per one frequency band for the first channel set
- s->nframesamples_log2 = s->nsegsamples_log2 + nframesegs_log2;
- s->nframesamples = 1 << s->nframesamples_log2;
- if (s->nframesamples > 65536) {
- av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL frame\n");
- return AVERROR_INVALIDDATA;
- }
-
- // Number of bits used to read segment size
- s->seg_size_nbits = get_bits(&s->gb, 5) + 1;
-
- // Presence of CRC16 within each frequency band
- // 0 - No CRC16 within band
- // 1 - CRC16 placed at the end of MSB0
- // 2 - CRC16 placed at the end of MSB0 and LSB0
- // 3 - CRC16 placed at the end of MSB0 and LSB0 and other frequency bands
- s->band_crc_present = get_bits(&s->gb, 2);
-
- // MSB/LSB split flag
- s->scalable_lsbs = get_bits1(&s->gb);
-
- // Channel position mask
- s->ch_mask_nbits = get_bits(&s->gb, 5) + 1;
-
- // Fixed LSB width
- if (s->scalable_lsbs)
- s->fixed_lsb_width = get_bits(&s->gb, 4);
- else
- s->fixed_lsb_width = 0;
-
- // Reserved
- // Byte align
- // Header CRC16 protection
- if (ff_dca_seek_bits(&s->gb, header_size * 8)) {
- av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL common header\n");
- return AVERROR_INVALIDDATA;
- }
-
- return 0;
- }
-
- static int is_hier_dmix_chset(DCAXllChSet *c)
- {
- return !c->primary_chset && c->dmix_embedded && c->hier_chset;
- }
-
- static DCAXllChSet *find_next_hier_dmix_chset(DCAXllDecoder *s, DCAXllChSet *c)
- {
- if (c->hier_chset)
- while (++c < &s->chset[s->nchsets])
- if (is_hier_dmix_chset(c))
- return c;
-
- return NULL;
- }
-
- static void prescale_down_mix(DCAXllChSet *c, DCAXllChSet *o)
- {
- int i, j, *coeff_ptr = c->dmix_coeff;
-
- for (i = 0; i < c->hier_ofs; i++) {
- int scale = o->dmix_scale[i];
- int scale_inv = o->dmix_scale_inv[i];
- c->dmix_scale[i] = mul15(c->dmix_scale[i], scale);
- c->dmix_scale_inv[i] = mul16(c->dmix_scale_inv[i], scale_inv);
- for (j = 0; j < c->nchannels; j++) {
- int coeff = mul16(*coeff_ptr, scale_inv);
- *coeff_ptr++ = mul15(coeff, o->dmix_scale[c->hier_ofs + j]);
- }
- }
- }
-
- static int parse_sub_headers(DCAXllDecoder *s, DCAExssAsset *asset)
- {
- DCAContext *dca = s->avctx->priv_data;
- DCAXllChSet *c;
- int i, ret;
-
- // Parse channel set headers
- s->nfreqbands = 0;
- s->nchannels = 0;
- s->nreschsets = 0;
- for (i = 0, c = s->chset; i < s->nchsets; i++, c++) {
- c->hier_ofs = s->nchannels;
- if ((ret = chs_parse_header(s, c, asset)) < 0)
- return ret;
- if (c->nfreqbands > s->nfreqbands)
- s->nfreqbands = c->nfreqbands;
- if (c->hier_chset)
- s->nchannels += c->nchannels;
- if (c->residual_encode != (1 << c->nchannels) - 1)
- s->nreschsets++;
- }
-
- // Pre-scale downmixing coefficients for all non-primary channel sets
- for (i = s->nchsets - 1, c = &s->chset[i]; i > 0; i--, c--) {
- if (is_hier_dmix_chset(c)) {
- DCAXllChSet *o = find_next_hier_dmix_chset(s, c);
- if (o)
- prescale_down_mix(c, o);
- }
- }
-
- // Determine number of active channel sets to decode
- switch (dca->request_channel_layout) {
- case DCA_SPEAKER_LAYOUT_STEREO:
- s->nactivechsets = 1;
- break;
- case DCA_SPEAKER_LAYOUT_5POINT0:
- case DCA_SPEAKER_LAYOUT_5POINT1:
- s->nactivechsets = (s->chset[0].nchannels < 5 && s->nchsets > 1) ? 2 : 1;
- break;
- default:
- s->nactivechsets = s->nchsets;
- break;
- }
-
- return 0;
- }
-
- static int parse_navi_table(DCAXllDecoder *s)
- {
- int chs, seg, band, navi_nb, navi_pos, *navi_ptr;
- DCAXllChSet *c;
-
- // Determine size of NAVI table
- navi_nb = s->nfreqbands * s->nframesegs * s->nchsets;
- if (navi_nb > 1024) {
- av_log(s->avctx, AV_LOG_ERROR, "Too many NAVI entries (%d)\n", navi_nb);
- return AVERROR_INVALIDDATA;
- }
-
- // Reallocate NAVI table
- av_fast_malloc(&s->navi, &s->navi_size, navi_nb * sizeof(*s->navi));
- if (!s->navi)
- return AVERROR(ENOMEM);
-
- // Parse NAVI
- navi_pos = get_bits_count(&s->gb);
- navi_ptr = s->navi;
- for (band = 0; band < s->nfreqbands; band++) {
- for (seg = 0; seg < s->nframesegs; seg++) {
- for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) {
- int size = 0;
- if (c->nfreqbands > band) {
- size = get_bits_long(&s->gb, s->seg_size_nbits);
- if (size < 0 || size >= s->frame_size) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI segment size (%d bytes)\n", size);
- return AVERROR_INVALIDDATA;
- }
- size++;
- }
- *navi_ptr++ = size;
- }
- }
- }
-
- // Byte align
- // CRC16
- skip_bits(&s->gb, -get_bits_count(&s->gb) & 7);
- skip_bits(&s->gb, 16);
-
- // Check CRC
- if (ff_dca_check_crc(s->avctx, &s->gb, navi_pos, get_bits_count(&s->gb))) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI checksum\n");
- return AVERROR_INVALIDDATA;
- }
-
- return 0;
- }
-
- static int parse_band_data(DCAXllDecoder *s)
- {
- int ret, chs, seg, band, navi_pos, *navi_ptr;
- DCAXllChSet *c;
-
- for (chs = 0, c = s->chset; chs < s->nactivechsets; chs++, c++) {
- if ((ret = chs_alloc_msb_band_data(s, c)) < 0)
- return ret;
- if ((ret = chs_alloc_lsb_band_data(s, c)) < 0)
- return ret;
- }
-
- navi_pos = get_bits_count(&s->gb);
- navi_ptr = s->navi;
- for (band = 0; band < s->nfreqbands; band++) {
- for (seg = 0; seg < s->nframesegs; seg++) {
- for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) {
- if (c->nfreqbands > band) {
- navi_pos += *navi_ptr * 8;
- if (navi_pos > s->gb.size_in_bits) {
- av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI position\n");
- return AVERROR_INVALIDDATA;
- }
- if (chs < s->nactivechsets &&
- (ret = chs_parse_band_data(s, c, band, seg, navi_pos)) < 0) {
- if (s->avctx->err_recognition & AV_EF_EXPLODE)
- return ret;
- chs_clear_band_data(s, c, band, seg);
- }
- s->gb.index = navi_pos;
- }
- navi_ptr++;
- }
- }
- }
-
- return 0;
- }
-
- static int parse_frame(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
- {
- int ret;
-
- if ((ret = init_get_bits8(&s->gb, data, size)) < 0)
- return ret;
- if ((ret = parse_common_header(s)) < 0)
- return ret;
- if ((ret = parse_sub_headers(s, asset)) < 0)
- return ret;
- if ((ret = parse_navi_table(s)) < 0)
- return ret;
- if ((ret = parse_band_data(s)) < 0)
- return ret;
- if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) {
- av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL frame\n");
- return AVERROR_INVALIDDATA;
- }
- return ret;
- }
-
- static void clear_pbr(DCAXllDecoder *s)
- {
- s->pbr_length = 0;
- s->pbr_delay = 0;
- }
-
- static int copy_to_pbr(DCAXllDecoder *s, uint8_t *data, int size, int delay)
- {
- if (size > DCA_XLL_PBR_BUFFER_MAX)
- return AVERROR(ENOSPC);
-
- if (!s->pbr_buffer && !(s->pbr_buffer = av_malloc(DCA_XLL_PBR_BUFFER_MAX + AV_INPUT_BUFFER_PADDING_SIZE)))
- return AVERROR(ENOMEM);
-
- memcpy(s->pbr_buffer, data, size);
- s->pbr_length = size;
- s->pbr_delay = delay;
- return 0;
- }
-
- static int parse_frame_no_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
- {
- int ret = parse_frame(s, data, size, asset);
-
- // If XLL packet data didn't start with a sync word, we must have jumped
- // right into the middle of PBR smoothing period
- if (ret == AVERROR(EAGAIN) && asset->xll_sync_present && asset->xll_sync_offset < size) {
- // Skip to the next sync word in this packet
- data += asset->xll_sync_offset;
- size -= asset->xll_sync_offset;
-
- // If decoding delay is set, put the frame into PBR buffer and return
- // failure code. Higher level decoder is expected to switch to lossy
- // core decoding or mute its output until decoding delay expires.
- if (asset->xll_delay_nframes > 0) {
- if ((ret = copy_to_pbr(s, data, size, asset->xll_delay_nframes)) < 0)
- return ret;
- return AVERROR(EAGAIN);
- }
-
- // No decoding delay, just parse the frame in place
- ret = parse_frame(s, data, size, asset);
- }
-
- if (ret < 0)
- return ret;
-
- if (s->frame_size > size)
- return AVERROR(EINVAL);
-
- // If the XLL decoder didn't consume full packet, start PBR smoothing period
- if (s->frame_size < size)
- if ((ret = copy_to_pbr(s, data + s->frame_size, size - s->frame_size, 0)) < 0)
- return ret;
-
- return 0;
- }
-
- static int parse_frame_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
- {
- int ret;
-
- if (size > DCA_XLL_PBR_BUFFER_MAX - s->pbr_length) {
- ret = AVERROR(ENOSPC);
- goto fail;
- }
-
- memcpy(s->pbr_buffer + s->pbr_length, data, size);
- s->pbr_length += size;
-
- // Respect decoding delay after synchronization error
- if (s->pbr_delay > 0 && --s->pbr_delay)
- return AVERROR(EAGAIN);
-
- if ((ret = parse_frame(s, s->pbr_buffer, s->pbr_length, asset)) < 0)
- goto fail;
-
- if (s->frame_size > s->pbr_length) {
- ret = AVERROR(EINVAL);
- goto fail;
- }
-
- if (s->frame_size == s->pbr_length) {
- // End of PBR smoothing period
- clear_pbr(s);
- } else {
- s->pbr_length -= s->frame_size;
- memmove(s->pbr_buffer, s->pbr_buffer + s->frame_size, s->pbr_length);
- }
-
- return 0;
-
- fail:
- // For now, throw out all PBR state on failure.
- // Perhaps we can be smarter and try to resync somehow.
- clear_pbr(s);
- return ret;
- }
-
- int ff_dca_xll_parse(DCAXllDecoder *s, uint8_t *data, DCAExssAsset *asset)
- {
- int ret;
-
- if (s->hd_stream_id != asset->hd_stream_id) {
- clear_pbr(s);
- s->hd_stream_id = asset->hd_stream_id;
- }
-
- if (s->pbr_length)
- ret = parse_frame_pbr(s, data + asset->xll_offset, asset->xll_size, asset);
- else
- ret = parse_frame_no_pbr(s, data + asset->xll_offset, asset->xll_size, asset);
-
- return ret;
- }
-
- static void undo_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band)
- {
- int i, j, k, nchannels = 0, *coeff_ptr = o->dmix_coeff;
- DCAXllChSet *c;
-
- for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
- if (!c->hier_chset)
- continue;
-
- av_assert1(band < c->nfreqbands);
- for (j = 0; j < c->nchannels; j++) {
- for (k = 0; k < o->nchannels; k++) {
- int coeff = *coeff_ptr++;
- if (coeff) {
- s->dcadsp->dmix_sub(c->bands[band].msb_sample_buffer[j],
- o->bands[band].msb_sample_buffer[k],
- coeff, s->nframesamples);
- if (band)
- s->dcadsp->dmix_sub(c->deci_history[j],
- o->deci_history[k],
- coeff, DCA_XLL_DECI_HISTORY_MAX);
- }
- }
- }
-
- nchannels += c->nchannels;
- if (nchannels >= o->hier_ofs)
- break;
- }
- }
-
- static void scale_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band)
- {
- int i, j, nchannels = 0;
- DCAXllChSet *c;
-
- for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
- if (!c->hier_chset)
- continue;
-
- av_assert1(band < c->nfreqbands);
- for (j = 0; j < c->nchannels; j++) {
- int scale = o->dmix_scale[nchannels++];
- if (scale != (1 << 15)) {
- s->dcadsp->dmix_scale(c->bands[band].msb_sample_buffer[j],
- scale, s->nframesamples);
- if (band)
- s->dcadsp->dmix_scale(c->deci_history[j],
- scale, DCA_XLL_DECI_HISTORY_MAX);
- }
- }
-
- if (nchannels >= o->hier_ofs)
- break;
- }
- }
-
- // Clear all band data and replace non-residual encoded channels with lossy
- // counterparts
- static av_cold void force_lossy_output(DCAXllDecoder *s, DCAXllChSet *c)
- {
- DCAContext *dca = s->avctx->priv_data;
- int band, ch;
-
- for (band = 0; band < c->nfreqbands; band++)
- chs_clear_band_data(s, c, band, -1);
-
- for (ch = 0; ch < c->nchannels; ch++) {
- if (!(c->residual_encode & (1 << ch)))
- continue;
- if (ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]) < 0)
- continue;
- c->residual_encode &= ~(1 << ch);
- }
- }
-
- static int combine_residual_frame(DCAXllDecoder *s, DCAXllChSet *c)
- {
- DCAContext *dca = s->avctx->priv_data;
- int ch, nsamples = s->nframesamples;
- DCAXllChSet *o;
-
- // Verify that core is compatible
- if (!(dca->packet & DCA_PACKET_CORE)) {
- av_log(s->avctx, AV_LOG_ERROR, "Residual encoded channels are present without core\n");
- return AVERROR(EINVAL);
- }
-
- if (c->freq != dca->core.output_rate) {
- av_log(s->avctx, AV_LOG_WARNING, "Sample rate mismatch between core (%d Hz) and XLL (%d Hz)\n", dca->core.output_rate, c->freq);
- return AVERROR_INVALIDDATA;
- }
-
- if (nsamples != dca->core.npcmsamples) {
- av_log(s->avctx, AV_LOG_WARNING, "Number of samples per frame mismatch between core (%d) and XLL (%d)\n", dca->core.npcmsamples, nsamples);
- return AVERROR_INVALIDDATA;
- }
-
- // See if this channel set is downmixed and find the next channel set in
- // hierarchy. If downmixed, undo core pre-scaling before combining with
- // residual (residual is not scaled).
- o = find_next_hier_dmix_chset(s, c);
-
- // Reduce core bit width and combine with residual
- for (ch = 0; ch < c->nchannels; ch++) {
- int n, spkr, shift, round;
- int32_t *src, *dst;
-
- if (c->residual_encode & (1 << ch))
- continue;
-
- // Map this channel to core speaker
- spkr = ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]);
- if (spkr < 0) {
- av_log(s->avctx, AV_LOG_WARNING, "Residual encoded channel (%d) references unavailable core channel\n", c->ch_remap[ch]);
- return AVERROR_INVALIDDATA;
- }
-
- // Account for LSB width
- shift = 24 - c->pcm_bit_res + chs_get_lsb_width(s, c, 0, ch);
- if (shift > 24) {
- av_log(s->avctx, AV_LOG_WARNING, "Invalid core shift (%d bits)\n", shift);
- return AVERROR_INVALIDDATA;
- }
-
- round = shift > 0 ? 1 << (shift - 1) : 0;
-
- src = dca->core.output_samples[spkr];
- dst = c->bands[0].msb_sample_buffer[ch];
- if (o) {
- // Undo embedded core downmix pre-scaling
- int scale_inv = o->dmix_scale_inv[c->hier_ofs + ch];
- for (n = 0; n < nsamples; n++)
- dst[n] += clip23((mul16(src[n], scale_inv) + round) >> shift);
- } else {
- // No downmix scaling
- for (n = 0; n < nsamples; n++)
- dst[n] += (src[n] + round) >> shift;
- }
- }
-
- return 0;
- }
-
- int ff_dca_xll_filter_frame(DCAXllDecoder *s, AVFrame *frame)
- {
- AVCodecContext *avctx = s->avctx;
- DCAContext *dca = avctx->priv_data;
- DCAExssAsset *asset = &dca->exss.assets[0];
- DCAXllChSet *p = &s->chset[0], *c;
- enum AVMatrixEncoding matrix_encoding = AV_MATRIX_ENCODING_NONE;
- int i, j, k, ret, shift, nsamples, request_mask;
- int ch_remap[DCA_SPEAKER_COUNT];
-
- // Force lossy downmixed output during recovery
- if (dca->packet & DCA_PACKET_RECOVERY) {
- for (i = 0, c = s->chset; i < s->nchsets; i++, c++) {
- if (i < s->nactivechsets)
- force_lossy_output(s, c);
-
- if (!c->primary_chset)
- c->dmix_embedded = 0;
- }
-
- s->scalable_lsbs = 0;
- s->fixed_lsb_width = 0;
- }
-
- // Filter frequency bands for active channel sets
- s->output_mask = 0;
- for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
- chs_filter_band_data(s, c, 0);
-
- if (c->residual_encode != (1 << c->nchannels) - 1
- && (ret = combine_residual_frame(s, c)) < 0)
- return ret;
-
- if (s->scalable_lsbs)
- chs_assemble_msbs_lsbs(s, c, 0);
-
- if (c->nfreqbands > 1) {
- chs_filter_band_data(s, c, 1);
- chs_assemble_msbs_lsbs(s, c, 1);
- }
-
- s->output_mask |= c->ch_mask;
- }
-
- // Undo hierarchial downmix and/or apply scaling
- for (i = 1, c = &s->chset[1]; i < s->nchsets; i++, c++) {
- if (!is_hier_dmix_chset(c))
- continue;
-
- if (i >= s->nactivechsets) {
- for (j = 0; j < c->nfreqbands; j++)
- if (c->bands[j].dmix_embedded)
- scale_down_mix(s, c, j);
- break;
- }
-
- for (j = 0; j < c->nfreqbands; j++)
- if (c->bands[j].dmix_embedded)
- undo_down_mix(s, c, j);
- }
-
- // Assemble frequency bands for active channel sets
- if (s->nfreqbands > 1) {
- for (i = 0; i < s->nactivechsets; i++)
- if ((ret = chs_assemble_freq_bands(s, &s->chset[i])) < 0)
- return ret;
- }
-
- // Normalize to regular 5.1 layout if downmixing
- if (dca->request_channel_layout) {
- if (s->output_mask & DCA_SPEAKER_MASK_Lss) {
- s->output_samples[DCA_SPEAKER_Ls] = s->output_samples[DCA_SPEAKER_Lss];
- s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Lss) | DCA_SPEAKER_MASK_Ls;
- }
- if (s->output_mask & DCA_SPEAKER_MASK_Rss) {
- s->output_samples[DCA_SPEAKER_Rs] = s->output_samples[DCA_SPEAKER_Rss];
- s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Rss) | DCA_SPEAKER_MASK_Rs;
- }
- }
-
- // Handle downmixing to stereo request
- if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO
- && DCA_HAS_STEREO(s->output_mask) && p->dmix_embedded
- && (p->dmix_type == DCA_DMIX_TYPE_LoRo ||
- p->dmix_type == DCA_DMIX_TYPE_LtRt))
- request_mask = DCA_SPEAKER_LAYOUT_STEREO;
- else
- request_mask = s->output_mask;
- if (!ff_dca_set_channel_layout(avctx, ch_remap, request_mask))
- return AVERROR(EINVAL);
-
- avctx->sample_rate = p->freq << (s->nfreqbands - 1);
-
- switch (p->storage_bit_res) {
- case 16:
- avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
- break;
- case 24:
- avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
- break;
- default:
- return AVERROR(EINVAL);
- }
-
- avctx->bits_per_raw_sample = p->storage_bit_res;
- avctx->profile = FF_PROFILE_DTS_HD_MA;
- avctx->bit_rate = 0;
-
- frame->nb_samples = nsamples = s->nframesamples << (s->nfreqbands - 1);
- if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
- return ret;
-
- // Downmix primary channel set to stereo
- if (request_mask != s->output_mask) {
- ff_dca_downmix_to_stereo_fixed(s->dcadsp, s->output_samples,
- p->dmix_coeff, nsamples,
- s->output_mask);
- }
-
- shift = p->storage_bit_res - p->pcm_bit_res;
- for (i = 0; i < avctx->channels; i++) {
- int32_t *samples = s->output_samples[ch_remap[i]];
- if (frame->format == AV_SAMPLE_FMT_S16P) {
- int16_t *plane = (int16_t *)frame->extended_data[i];
- for (k = 0; k < nsamples; k++)
- plane[k] = av_clip_int16(samples[k] * (1 << shift));
- } else {
- int32_t *plane = (int32_t *)frame->extended_data[i];
- for (k = 0; k < nsamples; k++)
- plane[k] = clip23(samples[k] * (1 << shift)) * (1 << 8);
- }
- }
-
- if (!asset->one_to_one_map_ch_to_spkr) {
- if (asset->representation_type == DCA_REPR_TYPE_LtRt)
- matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
- else if (asset->representation_type == DCA_REPR_TYPE_LhRh)
- matrix_encoding = AV_MATRIX_ENCODING_DOLBYHEADPHONE;
- } else if (request_mask != s->output_mask && p->dmix_type == DCA_DMIX_TYPE_LtRt) {
- matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
- }
- if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0)
- return ret;
-
- return 0;
- }
-
- av_cold void ff_dca_xll_flush(DCAXllDecoder *s)
- {
- clear_pbr(s);
- }
-
- av_cold void ff_dca_xll_close(DCAXllDecoder *s)
- {
- DCAXllChSet *c;
- int i, j;
-
- for (i = 0, c = s->chset; i < DCA_XLL_CHSETS_MAX; i++, c++) {
- for (j = 0; j < DCA_XLL_SAMPLE_BUFFERS_MAX; j++) {
- av_freep(&c->sample_buffer[j]);
- c->sample_size[j] = 0;
- }
- }
-
- av_freep(&s->navi);
- s->navi_size = 0;
-
- av_freep(&s->pbr_buffer);
- clear_pbr(s);
- }
|