You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1242 lines
44KB

  1. /*
  2. * Copyright (c) 2001-2003 The ffmpeg Project
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "avcodec.h"
  21. #include "get_bits.h"
  22. #include "put_bits.h"
  23. #include "bytestream.h"
  24. #include "adpcm.h"
  25. #include "adpcm_data.h"
  26. /**
  27. * @file
  28. * ADPCM decoders
  29. * First version by Francois Revol (revol@free.fr)
  30. * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
  31. * by Mike Melanson (melanson@pcisys.net)
  32. * CD-ROM XA ADPCM codec by BERO
  33. * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
  34. * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
  35. * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
  36. * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
  37. * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
  38. * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
  39. * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
  40. *
  41. * Features and limitations:
  42. *
  43. * Reference documents:
  44. * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
  45. * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
  46. * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
  47. * http://openquicktime.sourceforge.net/
  48. * XAnim sources (xa_codec.c) http://xanim.polter.net/
  49. * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
  50. * SoX source code http://sox.sourceforge.net/
  51. *
  52. * CD-ROM XA:
  53. * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
  54. * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
  55. * readstr http://www.geocities.co.jp/Playtown/2004/
  56. */
  57. /* These are for CD-ROM XA ADPCM */
  58. static const int xa_adpcm_table[5][2] = {
  59. { 0, 0 },
  60. { 60, 0 },
  61. { 115, -52 },
  62. { 98, -55 },
  63. { 122, -60 }
  64. };
  65. static const int ea_adpcm_table[] = {
  66. 0, 240, 460, 392,
  67. 0, 0, -208, -220,
  68. 0, 1, 3, 4,
  69. 7, 8, 10, 11,
  70. 0, -1, -3, -4
  71. };
  72. // padded to zero where table size is less then 16
  73. static const int swf_index_tables[4][16] = {
  74. /*2*/ { -1, 2 },
  75. /*3*/ { -1, -1, 2, 4 },
  76. /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
  77. /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
  78. };
  79. /* end of tables */
  80. typedef struct ADPCMDecodeContext {
  81. AVFrame frame;
  82. ADPCMChannelStatus status[6];
  83. } ADPCMDecodeContext;
  84. static av_cold int adpcm_decode_init(AVCodecContext * avctx)
  85. {
  86. ADPCMDecodeContext *c = avctx->priv_data;
  87. unsigned int max_channels = 2;
  88. switch(avctx->codec->id) {
  89. case CODEC_ID_ADPCM_EA_R1:
  90. case CODEC_ID_ADPCM_EA_R2:
  91. case CODEC_ID_ADPCM_EA_R3:
  92. case CODEC_ID_ADPCM_EA_XAS:
  93. max_channels = 6;
  94. break;
  95. }
  96. if (avctx->channels <= 0 || avctx->channels > max_channels) {
  97. av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
  98. return AVERROR(EINVAL);
  99. }
  100. switch(avctx->codec->id) {
  101. case CODEC_ID_ADPCM_CT:
  102. c->status[0].step = c->status[1].step = 511;
  103. break;
  104. case CODEC_ID_ADPCM_IMA_WAV:
  105. if (avctx->bits_per_coded_sample != 4) {
  106. av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
  107. return -1;
  108. }
  109. break;
  110. case CODEC_ID_ADPCM_IMA_WS:
  111. if (avctx->extradata && avctx->extradata_size == 2 * 4) {
  112. c->status[0].predictor = AV_RL32(avctx->extradata);
  113. c->status[1].predictor = AV_RL32(avctx->extradata + 4);
  114. }
  115. break;
  116. default:
  117. break;
  118. }
  119. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  120. avcodec_get_frame_defaults(&c->frame);
  121. avctx->coded_frame = &c->frame;
  122. return 0;
  123. }
  124. static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
  125. {
  126. int step_index;
  127. int predictor;
  128. int sign, delta, diff, step;
  129. step = ff_adpcm_step_table[c->step_index];
  130. step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
  131. if (step_index < 0) step_index = 0;
  132. else if (step_index > 88) step_index = 88;
  133. sign = nibble & 8;
  134. delta = nibble & 7;
  135. /* perform direct multiplication instead of series of jumps proposed by
  136. * the reference ADPCM implementation since modern CPUs can do the mults
  137. * quickly enough */
  138. diff = ((2 * delta + 1) * step) >> shift;
  139. predictor = c->predictor;
  140. if (sign) predictor -= diff;
  141. else predictor += diff;
  142. c->predictor = av_clip_int16(predictor);
  143. c->step_index = step_index;
  144. return (short)c->predictor;
  145. }
  146. static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
  147. {
  148. int step_index;
  149. int predictor;
  150. int diff, step;
  151. step = ff_adpcm_step_table[c->step_index];
  152. step_index = c->step_index + ff_adpcm_index_table[nibble];
  153. step_index = av_clip(step_index, 0, 88);
  154. diff = step >> 3;
  155. if (nibble & 4) diff += step;
  156. if (nibble & 2) diff += step >> 1;
  157. if (nibble & 1) diff += step >> 2;
  158. if (nibble & 8)
  159. predictor = c->predictor - diff;
  160. else
  161. predictor = c->predictor + diff;
  162. c->predictor = av_clip_int16(predictor);
  163. c->step_index = step_index;
  164. return c->predictor;
  165. }
  166. static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
  167. {
  168. int predictor;
  169. predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
  170. predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
  171. c->sample2 = c->sample1;
  172. c->sample1 = av_clip_int16(predictor);
  173. c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
  174. if (c->idelta < 16) c->idelta = 16;
  175. return c->sample1;
  176. }
  177. static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
  178. {
  179. int sign, delta, diff;
  180. int new_step;
  181. sign = nibble & 8;
  182. delta = nibble & 7;
  183. /* perform direct multiplication instead of series of jumps proposed by
  184. * the reference ADPCM implementation since modern CPUs can do the mults
  185. * quickly enough */
  186. diff = ((2 * delta + 1) * c->step) >> 3;
  187. /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
  188. c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
  189. c->predictor = av_clip_int16(c->predictor);
  190. /* calculate new step and clamp it to range 511..32767 */
  191. new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
  192. c->step = av_clip(new_step, 511, 32767);
  193. return (short)c->predictor;
  194. }
  195. static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
  196. {
  197. int sign, delta, diff;
  198. sign = nibble & (1<<(size-1));
  199. delta = nibble & ((1<<(size-1))-1);
  200. diff = delta << (7 + c->step + shift);
  201. /* clamp result */
  202. c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
  203. /* calculate new step */
  204. if (delta >= (2*size - 3) && c->step < 3)
  205. c->step++;
  206. else if (delta == 0 && c->step > 0)
  207. c->step--;
  208. return (short) c->predictor;
  209. }
  210. static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
  211. {
  212. if(!c->step) {
  213. c->predictor = 0;
  214. c->step = 127;
  215. }
  216. c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
  217. c->predictor = av_clip_int16(c->predictor);
  218. c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
  219. c->step = av_clip(c->step, 127, 24567);
  220. return c->predictor;
  221. }
  222. static void xa_decode(short *out, const unsigned char *in,
  223. ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
  224. {
  225. int i, j;
  226. int shift,filter,f0,f1;
  227. int s_1,s_2;
  228. int d,s,t;
  229. for(i=0;i<4;i++) {
  230. shift = 12 - (in[4+i*2] & 15);
  231. filter = in[4+i*2] >> 4;
  232. f0 = xa_adpcm_table[filter][0];
  233. f1 = xa_adpcm_table[filter][1];
  234. s_1 = left->sample1;
  235. s_2 = left->sample2;
  236. for(j=0;j<28;j++) {
  237. d = in[16+i+j*4];
  238. t = (signed char)(d<<4)>>4;
  239. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  240. s_2 = s_1;
  241. s_1 = av_clip_int16(s);
  242. *out = s_1;
  243. out += inc;
  244. }
  245. if (inc==2) { /* stereo */
  246. left->sample1 = s_1;
  247. left->sample2 = s_2;
  248. s_1 = right->sample1;
  249. s_2 = right->sample2;
  250. out = out + 1 - 28*2;
  251. }
  252. shift = 12 - (in[5+i*2] & 15);
  253. filter = in[5+i*2] >> 4;
  254. f0 = xa_adpcm_table[filter][0];
  255. f1 = xa_adpcm_table[filter][1];
  256. for(j=0;j<28;j++) {
  257. d = in[16+i+j*4];
  258. t = (signed char)d >> 4;
  259. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  260. s_2 = s_1;
  261. s_1 = av_clip_int16(s);
  262. *out = s_1;
  263. out += inc;
  264. }
  265. if (inc==2) { /* stereo */
  266. right->sample1 = s_1;
  267. right->sample2 = s_2;
  268. out -= 1;
  269. } else {
  270. left->sample1 = s_1;
  271. left->sample2 = s_2;
  272. }
  273. }
  274. }
  275. /**
  276. * Get the number of samples that will be decoded from the packet.
  277. * In one case, this is actually the maximum number of samples possible to
  278. * decode with the given buf_size.
  279. *
  280. * @param[out] coded_samples set to the number of samples as coded in the
  281. * packet, or 0 if the codec does not encode the
  282. * number of samples in each frame.
  283. */
  284. static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
  285. int buf_size, int *coded_samples)
  286. {
  287. ADPCMDecodeContext *s = avctx->priv_data;
  288. int nb_samples = 0;
  289. int ch = avctx->channels;
  290. int has_coded_samples = 0;
  291. int header_size;
  292. *coded_samples = 0;
  293. if(ch <= 0)
  294. return 0;
  295. switch (avctx->codec->id) {
  296. /* constant, only check buf_size */
  297. case CODEC_ID_ADPCM_EA_XAS:
  298. if (buf_size < 76 * ch)
  299. return 0;
  300. nb_samples = 128;
  301. break;
  302. case CODEC_ID_ADPCM_IMA_QT:
  303. if (buf_size < 34 * ch)
  304. return 0;
  305. nb_samples = 64;
  306. break;
  307. /* simple 4-bit adpcm */
  308. case CODEC_ID_ADPCM_CT:
  309. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  310. case CODEC_ID_ADPCM_IMA_WS:
  311. case CODEC_ID_ADPCM_YAMAHA:
  312. nb_samples = buf_size * 2 / ch;
  313. break;
  314. }
  315. if (nb_samples)
  316. return nb_samples;
  317. /* simple 4-bit adpcm, with header */
  318. header_size = 0;
  319. switch (avctx->codec->id) {
  320. case CODEC_ID_ADPCM_4XM:
  321. case CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
  322. case CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
  323. case CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
  324. }
  325. if (header_size > 0)
  326. return (buf_size - header_size) * 2 / ch;
  327. /* more complex formats */
  328. switch (avctx->codec->id) {
  329. case CODEC_ID_ADPCM_EA:
  330. has_coded_samples = 1;
  331. if (buf_size < 4)
  332. return 0;
  333. *coded_samples = AV_RL32(buf);
  334. *coded_samples -= *coded_samples % 28;
  335. nb_samples = (buf_size - 12) / 30 * 28;
  336. break;
  337. case CODEC_ID_ADPCM_IMA_EA_EACS:
  338. has_coded_samples = 1;
  339. if (buf_size < 4)
  340. return 0;
  341. *coded_samples = AV_RL32(buf);
  342. nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
  343. break;
  344. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  345. nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
  346. break;
  347. case CODEC_ID_ADPCM_EA_R1:
  348. case CODEC_ID_ADPCM_EA_R2:
  349. case CODEC_ID_ADPCM_EA_R3:
  350. /* maximum number of samples */
  351. /* has internal offsets and a per-frame switch to signal raw 16-bit */
  352. has_coded_samples = 1;
  353. if (buf_size < 4)
  354. return 0;
  355. switch (avctx->codec->id) {
  356. case CODEC_ID_ADPCM_EA_R1:
  357. header_size = 4 + 9 * ch;
  358. *coded_samples = AV_RL32(buf);
  359. break;
  360. case CODEC_ID_ADPCM_EA_R2:
  361. header_size = 4 + 5 * ch;
  362. *coded_samples = AV_RL32(buf);
  363. break;
  364. case CODEC_ID_ADPCM_EA_R3:
  365. header_size = 4 + 5 * ch;
  366. *coded_samples = AV_RB32(buf);
  367. break;
  368. }
  369. *coded_samples -= *coded_samples % 28;
  370. nb_samples = (buf_size - header_size) * 2 / ch;
  371. nb_samples -= nb_samples % 28;
  372. break;
  373. case CODEC_ID_ADPCM_IMA_DK3:
  374. if (avctx->block_align > 0)
  375. buf_size = FFMIN(buf_size, avctx->block_align);
  376. nb_samples = ((buf_size - 16) * 8 / 3) / ch;
  377. break;
  378. case CODEC_ID_ADPCM_IMA_DK4:
  379. nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
  380. break;
  381. case CODEC_ID_ADPCM_IMA_WAV:
  382. if (avctx->block_align > 0)
  383. buf_size = FFMIN(buf_size, avctx->block_align);
  384. nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
  385. break;
  386. case CODEC_ID_ADPCM_MS:
  387. if (avctx->block_align > 0)
  388. buf_size = FFMIN(buf_size, avctx->block_align);
  389. nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
  390. break;
  391. case CODEC_ID_ADPCM_SBPRO_2:
  392. case CODEC_ID_ADPCM_SBPRO_3:
  393. case CODEC_ID_ADPCM_SBPRO_4:
  394. {
  395. int samples_per_byte;
  396. switch (avctx->codec->id) {
  397. case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
  398. case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
  399. case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
  400. }
  401. if (!s->status[0].step_index) {
  402. nb_samples++;
  403. buf_size -= ch;
  404. }
  405. nb_samples += buf_size * samples_per_byte / ch;
  406. break;
  407. }
  408. case CODEC_ID_ADPCM_SWF:
  409. {
  410. int buf_bits = buf_size * 8 - 2;
  411. int nbits = (buf[0] >> 6) + 2;
  412. int block_hdr_size = 22 * ch;
  413. int block_size = block_hdr_size + nbits * ch * 4095;
  414. int nblocks = buf_bits / block_size;
  415. int bits_left = buf_bits - nblocks * block_size;
  416. nb_samples = nblocks * 4096;
  417. if (bits_left >= block_hdr_size)
  418. nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
  419. break;
  420. }
  421. case CODEC_ID_ADPCM_THP:
  422. has_coded_samples = 1;
  423. if (buf_size < 8)
  424. return 0;
  425. *coded_samples = AV_RB32(&buf[4]);
  426. *coded_samples -= *coded_samples % 14;
  427. nb_samples = (buf_size - 80) / (8 * ch) * 14;
  428. break;
  429. case CODEC_ID_ADPCM_XA:
  430. nb_samples = (buf_size / 128) * 224 / ch;
  431. break;
  432. }
  433. /* validate coded sample count */
  434. if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
  435. return AVERROR_INVALIDDATA;
  436. return nb_samples;
  437. }
  438. /* DK3 ADPCM support macro */
  439. #define DK3_GET_NEXT_NIBBLE() \
  440. if (decode_top_nibble_next) \
  441. { \
  442. nibble = last_byte >> 4; \
  443. decode_top_nibble_next = 0; \
  444. } \
  445. else \
  446. { \
  447. if (end_of_packet) \
  448. break; \
  449. last_byte = *src++; \
  450. if (src >= buf + buf_size) \
  451. end_of_packet = 1; \
  452. nibble = last_byte & 0x0F; \
  453. decode_top_nibble_next = 1; \
  454. }
  455. static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
  456. int *got_frame_ptr, AVPacket *avpkt)
  457. {
  458. const uint8_t *buf = avpkt->data;
  459. int buf_size = avpkt->size;
  460. ADPCMDecodeContext *c = avctx->priv_data;
  461. ADPCMChannelStatus *cs;
  462. int n, m, channel, i;
  463. short *samples;
  464. const uint8_t *src;
  465. int st; /* stereo */
  466. int count1, count2;
  467. int nb_samples, coded_samples, ret;
  468. nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples);
  469. if (nb_samples <= 0) {
  470. av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
  471. return AVERROR_INVALIDDATA;
  472. }
  473. /* get output buffer */
  474. c->frame.nb_samples = nb_samples;
  475. if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) {
  476. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  477. return ret;
  478. }
  479. samples = (short *)c->frame.data[0];
  480. /* use coded_samples when applicable */
  481. /* it is always <= nb_samples, so the output buffer will be large enough */
  482. if (coded_samples) {
  483. if (coded_samples != nb_samples)
  484. av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
  485. c->frame.nb_samples = nb_samples = coded_samples;
  486. }
  487. src = buf;
  488. st = avctx->channels == 2 ? 1 : 0;
  489. switch(avctx->codec->id) {
  490. case CODEC_ID_ADPCM_IMA_QT:
  491. /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
  492. Channel data is interleaved per-chunk. */
  493. for (channel = 0; channel < avctx->channels; channel++) {
  494. int16_t predictor;
  495. int step_index;
  496. cs = &(c->status[channel]);
  497. /* (pppppp) (piiiiiii) */
  498. /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
  499. predictor = AV_RB16(src);
  500. step_index = predictor & 0x7F;
  501. predictor &= 0xFF80;
  502. src += 2;
  503. if (cs->step_index == step_index) {
  504. int diff = (int)predictor - cs->predictor;
  505. if (diff < 0)
  506. diff = - diff;
  507. if (diff > 0x7f)
  508. goto update;
  509. } else {
  510. update:
  511. cs->step_index = step_index;
  512. cs->predictor = predictor;
  513. }
  514. if (cs->step_index > 88){
  515. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
  516. cs->step_index = 88;
  517. }
  518. samples = (short *)c->frame.data[0] + channel;
  519. for (m = 0; m < 32; m++) {
  520. *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3);
  521. samples += avctx->channels;
  522. *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4 , 3);
  523. samples += avctx->channels;
  524. src ++;
  525. }
  526. }
  527. break;
  528. case CODEC_ID_ADPCM_IMA_WAV:
  529. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  530. buf_size = avctx->block_align;
  531. for(i=0; i<avctx->channels; i++){
  532. cs = &(c->status[i]);
  533. cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
  534. cs->step_index = *src++;
  535. if (cs->step_index > 88){
  536. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
  537. cs->step_index = 88;
  538. }
  539. if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
  540. }
  541. for (n = (nb_samples - 1) / 8; n > 0; n--) {
  542. for (i = 0; i < avctx->channels; i++) {
  543. cs = &c->status[i];
  544. for (m = 0; m < 4; m++) {
  545. uint8_t v = *src++;
  546. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
  547. samples += avctx->channels;
  548. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
  549. samples += avctx->channels;
  550. }
  551. samples -= 8 * avctx->channels - 1;
  552. }
  553. samples += 7 * avctx->channels;
  554. }
  555. break;
  556. case CODEC_ID_ADPCM_4XM:
  557. for (i = 0; i < avctx->channels; i++)
  558. c->status[i].predictor= (int16_t)bytestream_get_le16(&src);
  559. for (i = 0; i < avctx->channels; i++) {
  560. c->status[i].step_index= (int16_t)bytestream_get_le16(&src);
  561. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
  562. }
  563. for (i = 0; i < avctx->channels; i++) {
  564. samples = (short *)c->frame.data[0] + i;
  565. cs = &c->status[i];
  566. for (n = nb_samples >> 1; n > 0; n--, src++) {
  567. uint8_t v = *src;
  568. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
  569. samples += avctx->channels;
  570. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
  571. samples += avctx->channels;
  572. }
  573. }
  574. break;
  575. case CODEC_ID_ADPCM_MS:
  576. {
  577. int block_predictor;
  578. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  579. buf_size = avctx->block_align;
  580. block_predictor = av_clip(*src++, 0, 6);
  581. c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  582. c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  583. if (st) {
  584. block_predictor = av_clip(*src++, 0, 6);
  585. c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  586. c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  587. }
  588. c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
  589. if (st){
  590. c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
  591. }
  592. c->status[0].sample1 = bytestream_get_le16(&src);
  593. if (st) c->status[1].sample1 = bytestream_get_le16(&src);
  594. c->status[0].sample2 = bytestream_get_le16(&src);
  595. if (st) c->status[1].sample2 = bytestream_get_le16(&src);
  596. *samples++ = c->status[0].sample2;
  597. if (st) *samples++ = c->status[1].sample2;
  598. *samples++ = c->status[0].sample1;
  599. if (st) *samples++ = c->status[1].sample1;
  600. for(n = (nb_samples - 2) >> (1 - st); n > 0; n--, src++) {
  601. *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
  602. *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
  603. }
  604. break;
  605. }
  606. case CODEC_ID_ADPCM_IMA_DK4:
  607. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  608. buf_size = avctx->block_align;
  609. for (channel = 0; channel < avctx->channels; channel++) {
  610. cs = &c->status[channel];
  611. cs->predictor = (int16_t)bytestream_get_le16(&src);
  612. cs->step_index = *src++;
  613. src++;
  614. *samples++ = cs->predictor;
  615. }
  616. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  617. uint8_t v = *src;
  618. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
  619. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  620. }
  621. break;
  622. case CODEC_ID_ADPCM_IMA_DK3:
  623. {
  624. unsigned char last_byte = 0;
  625. unsigned char nibble;
  626. int decode_top_nibble_next = 0;
  627. int end_of_packet = 0;
  628. int diff_channel;
  629. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  630. buf_size = avctx->block_align;
  631. c->status[0].predictor = (int16_t)AV_RL16(src + 10);
  632. c->status[1].predictor = (int16_t)AV_RL16(src + 12);
  633. c->status[0].step_index = src[14];
  634. c->status[1].step_index = src[15];
  635. /* sign extend the predictors */
  636. src += 16;
  637. diff_channel = c->status[1].predictor;
  638. /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
  639. * the buffer is consumed */
  640. while (1) {
  641. /* for this algorithm, c->status[0] is the sum channel and
  642. * c->status[1] is the diff channel */
  643. /* process the first predictor of the sum channel */
  644. DK3_GET_NEXT_NIBBLE();
  645. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  646. /* process the diff channel predictor */
  647. DK3_GET_NEXT_NIBBLE();
  648. adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
  649. /* process the first pair of stereo PCM samples */
  650. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  651. *samples++ = c->status[0].predictor + c->status[1].predictor;
  652. *samples++ = c->status[0].predictor - c->status[1].predictor;
  653. /* process the second predictor of the sum channel */
  654. DK3_GET_NEXT_NIBBLE();
  655. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  656. /* process the second pair of stereo PCM samples */
  657. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  658. *samples++ = c->status[0].predictor + c->status[1].predictor;
  659. *samples++ = c->status[0].predictor - c->status[1].predictor;
  660. }
  661. break;
  662. }
  663. case CODEC_ID_ADPCM_IMA_ISS:
  664. for (channel = 0; channel < avctx->channels; channel++) {
  665. cs = &c->status[channel];
  666. cs->predictor = (int16_t)bytestream_get_le16(&src);
  667. cs->step_index = *src++;
  668. src++;
  669. }
  670. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  671. uint8_t v1, v2;
  672. uint8_t v = *src;
  673. /* nibbles are swapped for mono */
  674. if (st) {
  675. v1 = v >> 4;
  676. v2 = v & 0x0F;
  677. } else {
  678. v2 = v >> 4;
  679. v1 = v & 0x0F;
  680. }
  681. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
  682. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
  683. }
  684. break;
  685. case CODEC_ID_ADPCM_IMA_WS:
  686. while (src < buf + buf_size) {
  687. uint8_t v = *src++;
  688. *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
  689. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  690. }
  691. break;
  692. case CODEC_ID_ADPCM_XA:
  693. while (buf_size >= 128) {
  694. xa_decode(samples, src, &c->status[0], &c->status[1],
  695. avctx->channels);
  696. src += 128;
  697. samples += 28 * 8;
  698. buf_size -= 128;
  699. }
  700. break;
  701. case CODEC_ID_ADPCM_IMA_EA_EACS:
  702. src += 4; // skip sample count (already read)
  703. for (i=0; i<=st; i++)
  704. c->status[i].step_index = bytestream_get_le32(&src);
  705. for (i=0; i<=st; i++)
  706. c->status[i].predictor = bytestream_get_le32(&src);
  707. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  708. *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
  709. *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
  710. }
  711. break;
  712. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  713. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  714. *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
  715. *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
  716. }
  717. break;
  718. case CODEC_ID_ADPCM_EA:
  719. {
  720. int32_t previous_left_sample, previous_right_sample;
  721. int32_t current_left_sample, current_right_sample;
  722. int32_t next_left_sample, next_right_sample;
  723. int32_t coeff1l, coeff2l, coeff1r, coeff2r;
  724. uint8_t shift_left, shift_right;
  725. /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
  726. each coding 28 stereo samples. */
  727. if(avctx->channels != 2)
  728. return AVERROR_INVALIDDATA;
  729. src += 4; // skip sample count (already read)
  730. current_left_sample = (int16_t)bytestream_get_le16(&src);
  731. previous_left_sample = (int16_t)bytestream_get_le16(&src);
  732. current_right_sample = (int16_t)bytestream_get_le16(&src);
  733. previous_right_sample = (int16_t)bytestream_get_le16(&src);
  734. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  735. coeff1l = ea_adpcm_table[ *src >> 4 ];
  736. coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
  737. coeff1r = ea_adpcm_table[*src & 0x0F];
  738. coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
  739. src++;
  740. shift_left = 20 - (*src >> 4);
  741. shift_right = 20 - (*src & 0x0F);
  742. src++;
  743. for (count2 = 0; count2 < 28; count2++) {
  744. next_left_sample = sign_extend(*src >> 4, 4) << shift_left;
  745. next_right_sample = sign_extend(*src, 4) << shift_right;
  746. src++;
  747. next_left_sample = (next_left_sample +
  748. (current_left_sample * coeff1l) +
  749. (previous_left_sample * coeff2l) + 0x80) >> 8;
  750. next_right_sample = (next_right_sample +
  751. (current_right_sample * coeff1r) +
  752. (previous_right_sample * coeff2r) + 0x80) >> 8;
  753. previous_left_sample = current_left_sample;
  754. current_left_sample = av_clip_int16(next_left_sample);
  755. previous_right_sample = current_right_sample;
  756. current_right_sample = av_clip_int16(next_right_sample);
  757. *samples++ = (unsigned short)current_left_sample;
  758. *samples++ = (unsigned short)current_right_sample;
  759. }
  760. }
  761. if (src - buf == buf_size - 2)
  762. src += 2; // Skip terminating 0x0000
  763. break;
  764. }
  765. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  766. {
  767. int coeff[2][2], shift[2];
  768. for(channel = 0; channel < avctx->channels; channel++) {
  769. for (i=0; i<2; i++)
  770. coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
  771. shift[channel] = 20 - (*src & 0x0F);
  772. src++;
  773. }
  774. for (count1 = 0; count1 < nb_samples / 2; count1++) {
  775. for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
  776. for(channel = 0; channel < avctx->channels; channel++) {
  777. int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
  778. sample = (sample +
  779. c->status[channel].sample1 * coeff[channel][0] +
  780. c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
  781. c->status[channel].sample2 = c->status[channel].sample1;
  782. c->status[channel].sample1 = av_clip_int16(sample);
  783. *samples++ = c->status[channel].sample1;
  784. }
  785. }
  786. src+=avctx->channels;
  787. }
  788. /* consume whole packet */
  789. src = buf + buf_size;
  790. break;
  791. }
  792. case CODEC_ID_ADPCM_EA_R1:
  793. case CODEC_ID_ADPCM_EA_R2:
  794. case CODEC_ID_ADPCM_EA_R3: {
  795. /* channel numbering
  796. 2chan: 0=fl, 1=fr
  797. 4chan: 0=fl, 1=rl, 2=fr, 3=rr
  798. 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
  799. const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
  800. int32_t previous_sample, current_sample, next_sample;
  801. int32_t coeff1, coeff2;
  802. uint8_t shift;
  803. unsigned int channel;
  804. uint16_t *samplesC;
  805. const uint8_t *srcC;
  806. const uint8_t *src_end = buf + buf_size;
  807. int count = 0;
  808. src += 4; // skip sample count (already read)
  809. for (channel=0; channel<avctx->channels; channel++) {
  810. int32_t offset = (big_endian ? bytestream_get_be32(&src)
  811. : bytestream_get_le32(&src))
  812. + (avctx->channels-channel-1) * 4;
  813. if ((offset < 0) || (offset >= src_end - src - 4)) break;
  814. srcC = src + offset;
  815. samplesC = samples + channel;
  816. if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
  817. current_sample = (int16_t)bytestream_get_le16(&srcC);
  818. previous_sample = (int16_t)bytestream_get_le16(&srcC);
  819. } else {
  820. current_sample = c->status[channel].predictor;
  821. previous_sample = c->status[channel].prev_sample;
  822. }
  823. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  824. if (*srcC == 0xEE) { /* only seen in R2 and R3 */
  825. srcC++;
  826. if (srcC > src_end - 30*2) break;
  827. current_sample = (int16_t)bytestream_get_be16(&srcC);
  828. previous_sample = (int16_t)bytestream_get_be16(&srcC);
  829. for (count2=0; count2<28; count2++) {
  830. *samplesC = (int16_t)bytestream_get_be16(&srcC);
  831. samplesC += avctx->channels;
  832. }
  833. } else {
  834. coeff1 = ea_adpcm_table[ *srcC>>4 ];
  835. coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
  836. shift = 20 - (*srcC++ & 0x0F);
  837. if (srcC > src_end - 14) break;
  838. for (count2=0; count2<28; count2++) {
  839. if (count2 & 1)
  840. next_sample = sign_extend(*srcC++, 4) << shift;
  841. else
  842. next_sample = sign_extend(*srcC >> 4, 4) << shift;
  843. next_sample += (current_sample * coeff1) +
  844. (previous_sample * coeff2);
  845. next_sample = av_clip_int16(next_sample >> 8);
  846. previous_sample = current_sample;
  847. current_sample = next_sample;
  848. *samplesC = current_sample;
  849. samplesC += avctx->channels;
  850. }
  851. }
  852. }
  853. if (!count) {
  854. count = count1;
  855. } else if (count != count1) {
  856. av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
  857. count = FFMAX(count, count1);
  858. }
  859. if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
  860. c->status[channel].predictor = current_sample;
  861. c->status[channel].prev_sample = previous_sample;
  862. }
  863. }
  864. c->frame.nb_samples = count * 28;
  865. src = src_end;
  866. break;
  867. }
  868. case CODEC_ID_ADPCM_EA_XAS:
  869. for (channel=0; channel<avctx->channels; channel++) {
  870. int coeff[2][4], shift[4];
  871. short *s2, *s = &samples[channel];
  872. for (n=0; n<4; n++, s+=32*avctx->channels) {
  873. for (i=0; i<2; i++)
  874. coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
  875. shift[n] = 20 - (src[2] & 0x0F);
  876. for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
  877. s2[0] = (src[0]&0xF0) + (src[1]<<8);
  878. }
  879. for (m=2; m<32; m+=2) {
  880. s = &samples[m*avctx->channels + channel];
  881. for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
  882. for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
  883. int level = sign_extend(*src >> (4 - i), 4) << shift[n];
  884. int pred = s2[-1*avctx->channels] * coeff[0][n]
  885. + s2[-2*avctx->channels] * coeff[1][n];
  886. s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
  887. }
  888. }
  889. }
  890. }
  891. break;
  892. case CODEC_ID_ADPCM_IMA_AMV:
  893. case CODEC_ID_ADPCM_IMA_SMJPEG:
  894. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) {
  895. c->status[0].predictor = sign_extend(bytestream_get_le16(&src), 16);
  896. c->status[0].step_index = bytestream_get_le16(&src);
  897. src += 4;
  898. } else {
  899. c->status[0].predictor = sign_extend(bytestream_get_be16(&src), 16);
  900. c->status[0].step_index = bytestream_get_byte(&src);
  901. src += 1;
  902. }
  903. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  904. char hi, lo;
  905. lo = *src & 0x0F;
  906. hi = *src >> 4;
  907. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
  908. FFSWAP(char, hi, lo);
  909. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  910. lo, 3);
  911. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  912. hi, 3);
  913. }
  914. break;
  915. case CODEC_ID_ADPCM_CT:
  916. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  917. uint8_t v = *src;
  918. *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
  919. *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
  920. }
  921. break;
  922. case CODEC_ID_ADPCM_SBPRO_4:
  923. case CODEC_ID_ADPCM_SBPRO_3:
  924. case CODEC_ID_ADPCM_SBPRO_2:
  925. if (!c->status[0].step_index) {
  926. /* the first byte is a raw sample */
  927. *samples++ = 128 * (*src++ - 0x80);
  928. if (st)
  929. *samples++ = 128 * (*src++ - 0x80);
  930. c->status[0].step_index = 1;
  931. nb_samples--;
  932. }
  933. if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
  934. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  935. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  936. src[0] >> 4, 4, 0);
  937. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  938. src[0] & 0x0F, 4, 0);
  939. }
  940. } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
  941. for (n = nb_samples / 3; n > 0; n--, src++) {
  942. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  943. src[0] >> 5 , 3, 0);
  944. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  945. (src[0] >> 2) & 0x07, 3, 0);
  946. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  947. src[0] & 0x03, 2, 0);
  948. }
  949. } else {
  950. for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
  951. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  952. src[0] >> 6 , 2, 2);
  953. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  954. (src[0] >> 4) & 0x03, 2, 2);
  955. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  956. (src[0] >> 2) & 0x03, 2, 2);
  957. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  958. src[0] & 0x03, 2, 2);
  959. }
  960. }
  961. break;
  962. case CODEC_ID_ADPCM_SWF:
  963. {
  964. GetBitContext gb;
  965. const int *table;
  966. int k0, signmask, nb_bits, count;
  967. int size = buf_size*8;
  968. init_get_bits(&gb, buf, size);
  969. //read bits & initial values
  970. nb_bits = get_bits(&gb, 2)+2;
  971. //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
  972. table = swf_index_tables[nb_bits-2];
  973. k0 = 1 << (nb_bits-2);
  974. signmask = 1 << (nb_bits-1);
  975. while (get_bits_count(&gb) <= size - 22*avctx->channels) {
  976. for (i = 0; i < avctx->channels; i++) {
  977. *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
  978. c->status[i].step_index = get_bits(&gb, 6);
  979. }
  980. for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
  981. int i;
  982. for (i = 0; i < avctx->channels; i++) {
  983. // similar to IMA adpcm
  984. int delta = get_bits(&gb, nb_bits);
  985. int step = ff_adpcm_step_table[c->status[i].step_index];
  986. long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
  987. int k = k0;
  988. do {
  989. if (delta & k)
  990. vpdiff += step;
  991. step >>= 1;
  992. k >>= 1;
  993. } while(k);
  994. vpdiff += step;
  995. if (delta & signmask)
  996. c->status[i].predictor -= vpdiff;
  997. else
  998. c->status[i].predictor += vpdiff;
  999. c->status[i].step_index += table[delta & (~signmask)];
  1000. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
  1001. c->status[i].predictor = av_clip_int16(c->status[i].predictor);
  1002. *samples++ = c->status[i].predictor;
  1003. }
  1004. }
  1005. }
  1006. src += buf_size;
  1007. break;
  1008. }
  1009. case CODEC_ID_ADPCM_YAMAHA:
  1010. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  1011. uint8_t v = *src;
  1012. *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
  1013. *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
  1014. }
  1015. break;
  1016. case CODEC_ID_ADPCM_THP:
  1017. {
  1018. int table[2][16];
  1019. int prev[2][2];
  1020. int ch;
  1021. src += 4; // skip channel size
  1022. src += 4; // skip number of samples (already read)
  1023. for (i = 0; i < 32; i++)
  1024. table[0][i] = (int16_t)bytestream_get_be16(&src);
  1025. /* Initialize the previous sample. */
  1026. for (i = 0; i < 4; i++)
  1027. prev[0][i] = (int16_t)bytestream_get_be16(&src);
  1028. for (ch = 0; ch <= st; ch++) {
  1029. samples = (short *)c->frame.data[0] + ch;
  1030. /* Read in every sample for this channel. */
  1031. for (i = 0; i < nb_samples / 14; i++) {
  1032. int index = (*src >> 4) & 7;
  1033. unsigned int exp = *src++ & 15;
  1034. int factor1 = table[ch][index * 2];
  1035. int factor2 = table[ch][index * 2 + 1];
  1036. /* Decode 14 samples. */
  1037. for (n = 0; n < 14; n++) {
  1038. int32_t sampledat;
  1039. if(n&1) sampledat = sign_extend(*src++, 4);
  1040. else sampledat = sign_extend(*src >> 4, 4);
  1041. sampledat = ((prev[ch][0]*factor1
  1042. + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
  1043. *samples = av_clip_int16(sampledat);
  1044. prev[ch][1] = prev[ch][0];
  1045. prev[ch][0] = *samples++;
  1046. /* In case of stereo, skip one sample, this sample
  1047. is for the other channel. */
  1048. samples += st;
  1049. }
  1050. }
  1051. }
  1052. break;
  1053. }
  1054. default:
  1055. return -1;
  1056. }
  1057. *got_frame_ptr = 1;
  1058. *(AVFrame *)data = c->frame;
  1059. return src - buf;
  1060. }
  1061. #define ADPCM_DECODER(id_, name_, long_name_) \
  1062. AVCodec ff_ ## name_ ## _decoder = { \
  1063. .name = #name_, \
  1064. .type = AVMEDIA_TYPE_AUDIO, \
  1065. .id = id_, \
  1066. .priv_data_size = sizeof(ADPCMDecodeContext), \
  1067. .init = adpcm_decode_init, \
  1068. .decode = adpcm_decode_frame, \
  1069. .capabilities = CODEC_CAP_DR1, \
  1070. .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
  1071. }
  1072. /* Note: Do not forget to add new entries to the Makefile as well. */
  1073. ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
  1074. ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
  1075. ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
  1076. ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
  1077. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
  1078. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
  1079. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
  1080. ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
  1081. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
  1082. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
  1083. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
  1084. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
  1085. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
  1086. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
  1087. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
  1088. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
  1089. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
  1090. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
  1091. ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
  1092. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
  1093. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
  1094. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
  1095. ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
  1096. ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
  1097. ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
  1098. ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");