You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1239 lines
45KB

  1. /*
  2. * FFV1 encoder
  3. *
  4. * Copyright (c) 2003-2013 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec) encoder
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/avassert.h"
  28. #include "libavutil/crc.h"
  29. #include "libavutil/opt.h"
  30. #include "libavutil/imgutils.h"
  31. #include "libavutil/pixdesc.h"
  32. #include "libavutil/timer.h"
  33. #include "avcodec.h"
  34. #include "internal.h"
  35. #include "put_bits.h"
  36. #include "rangecoder.h"
  37. #include "golomb.h"
  38. #include "mathops.h"
  39. #include "ffv1.h"
  40. static const int8_t quant5_10bit[256] = {
  41. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  42. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  43. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  44. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  45. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  46. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  47. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  48. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  49. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  50. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  51. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  52. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  53. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1,
  54. -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
  55. -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
  56. -1, -1, -1, -1, -1, -1, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,
  57. };
  58. static const int8_t quant5[256] = {
  59. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  60. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  61. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  66. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  67. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  68. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  69. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  70. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  71. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  72. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  73. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  74. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1,
  75. };
  76. static const int8_t quant9_10bit[256] = {
  77. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  78. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  79. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  80. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  81. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  82. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  83. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  84. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  85. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  86. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  87. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  88. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  89. -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3,
  90. -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,
  91. -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  92. -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -0, -0, -0, -0,
  93. };
  94. static const int8_t quant11[256] = {
  95. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  96. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  97. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  98. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  99. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  100. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  101. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  102. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  103. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  104. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  105. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  106. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  107. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  108. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4,
  109. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  110. -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -1,
  111. };
  112. static const uint8_t ver2_state[256] = {
  113. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  114. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  115. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  116. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  117. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  118. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  119. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  120. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  121. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  122. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  123. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  124. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  125. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  126. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  127. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  128. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  129. };
  130. static void find_best_state(uint8_t best_state[256][256],
  131. const uint8_t one_state[256])
  132. {
  133. int i, j, k, m;
  134. double l2tab[256];
  135. for (i = 1; i < 256; i++)
  136. l2tab[i] = log2(i / 256.0);
  137. for (i = 0; i < 256; i++) {
  138. double best_len[256];
  139. double p = i / 256.0;
  140. for (j = 0; j < 256; j++)
  141. best_len[j] = 1 << 30;
  142. for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
  143. double occ[256] = { 0 };
  144. double len = 0;
  145. occ[j] = 1.0;
  146. for (k = 0; k < 256; k++) {
  147. double newocc[256] = { 0 };
  148. for (m = 1; m < 256; m++)
  149. if (occ[m]) {
  150. len -=occ[m]*( p *l2tab[ m]
  151. + (1-p)*l2tab[256-m]);
  152. }
  153. if (len < best_len[k]) {
  154. best_len[k] = len;
  155. best_state[i][k] = j;
  156. }
  157. for (m = 0; m < 256; m++)
  158. if (occ[m]) {
  159. newocc[ one_state[ m]] += occ[m] * p;
  160. newocc[256 - one_state[256 - m]] += occ[m] * (1 - p);
  161. }
  162. memcpy(occ, newocc, sizeof(occ));
  163. }
  164. }
  165. }
  166. }
  167. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c,
  168. uint8_t *state, int v,
  169. int is_signed,
  170. uint64_t rc_stat[256][2],
  171. uint64_t rc_stat2[32][2])
  172. {
  173. int i;
  174. #define put_rac(C, S, B) \
  175. do { \
  176. if (rc_stat) { \
  177. rc_stat[*(S)][B]++; \
  178. rc_stat2[(S) - state][B]++; \
  179. } \
  180. put_rac(C, S, B); \
  181. } while (0)
  182. if (v) {
  183. const int a = FFABS(v);
  184. const int e = av_log2(a);
  185. put_rac(c, state + 0, 0);
  186. if (e <= 9) {
  187. for (i = 0; i < e; i++)
  188. put_rac(c, state + 1 + i, 1); // 1..10
  189. put_rac(c, state + 1 + i, 0);
  190. for (i = e - 1; i >= 0; i--)
  191. put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31
  192. if (is_signed)
  193. put_rac(c, state + 11 + e, v < 0); // 11..21
  194. } else {
  195. for (i = 0; i < e; i++)
  196. put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10
  197. put_rac(c, state + 1 + 9, 0);
  198. for (i = e - 1; i >= 0; i--)
  199. put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31
  200. if (is_signed)
  201. put_rac(c, state + 11 + 10, v < 0); // 11..21
  202. }
  203. } else {
  204. put_rac(c, state + 0, 1);
  205. }
  206. #undef put_rac
  207. }
  208. static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
  209. int v, int is_signed)
  210. {
  211. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  212. }
  213. static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
  214. int v, int bits)
  215. {
  216. int i, k, code;
  217. v = fold(v - state->bias, bits);
  218. i = state->count;
  219. k = 0;
  220. while (i < state->error_sum) { // FIXME: optimize
  221. k++;
  222. i += i;
  223. }
  224. av_assert2(k <= 13);
  225. #if 0 // JPEG LS
  226. if (k == 0 && 2 * state->drift <= -state->count)
  227. code = v ^ (-1);
  228. else
  229. code = v;
  230. #else
  231. code = v ^ ((2 * state->drift + state->count) >> 31);
  232. #endif
  233. av_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
  234. state->bias, state->error_sum, state->drift, state->count, k);
  235. set_sr_golomb(pb, code, k, 12, bits);
  236. update_vlc_state(state, v);
  237. }
  238. static av_always_inline int encode_line(FFV1Context *s, int w,
  239. int16_t *sample[3],
  240. int plane_index, int bits)
  241. {
  242. PlaneContext *const p = &s->plane[plane_index];
  243. RangeCoder *const c = &s->c;
  244. int x;
  245. int run_index = s->run_index;
  246. int run_count = 0;
  247. int run_mode = 0;
  248. if (s->ac) {
  249. if (c->bytestream_end - c->bytestream < w * 35) {
  250. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  251. return AVERROR_INVALIDDATA;
  252. }
  253. } else {
  254. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < w * 4) {
  255. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  256. return AVERROR_INVALIDDATA;
  257. }
  258. }
  259. if (s->slice_coding_mode == 1) {
  260. for (x = 0; x < w; x++) {
  261. int i;
  262. int v = sample[0][x];
  263. for (i = bits-1; i>=0; i--) {
  264. uint8_t state = 128;
  265. put_rac(c, &state, (v>>i) & 1);
  266. }
  267. }
  268. return 0;
  269. }
  270. for (x = 0; x < w; x++) {
  271. int diff, context;
  272. context = get_context(p, sample[0] + x, sample[1] + x, sample[2] + x);
  273. diff = sample[0][x] - predict(sample[0] + x, sample[1] + x);
  274. if (context < 0) {
  275. context = -context;
  276. diff = -diff;
  277. }
  278. diff = fold(diff, bits);
  279. if (s->ac) {
  280. if (s->flags & CODEC_FLAG_PASS1) {
  281. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat,
  282. s->rc_stat2[p->quant_table_index][context]);
  283. } else {
  284. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  285. }
  286. } else {
  287. if (context == 0)
  288. run_mode = 1;
  289. if (run_mode) {
  290. if (diff) {
  291. while (run_count >= 1 << ff_log2_run[run_index]) {
  292. run_count -= 1 << ff_log2_run[run_index];
  293. run_index++;
  294. put_bits(&s->pb, 1, 1);
  295. }
  296. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  297. if (run_index)
  298. run_index--;
  299. run_count = 0;
  300. run_mode = 0;
  301. if (diff > 0)
  302. diff--;
  303. } else {
  304. run_count++;
  305. }
  306. }
  307. av_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n",
  308. run_count, run_index, run_mode, x,
  309. (int)put_bits_count(&s->pb));
  310. if (run_mode == 0)
  311. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  312. }
  313. }
  314. if (run_mode) {
  315. while (run_count >= 1 << ff_log2_run[run_index]) {
  316. run_count -= 1 << ff_log2_run[run_index];
  317. run_index++;
  318. put_bits(&s->pb, 1, 1);
  319. }
  320. if (run_count)
  321. put_bits(&s->pb, 1, 1);
  322. }
  323. s->run_index = run_index;
  324. return 0;
  325. }
  326. static int encode_plane(FFV1Context *s, uint8_t *src, int w, int h,
  327. int stride, int plane_index)
  328. {
  329. int x, y, i, ret;
  330. const int ring_size = s->avctx->context_model ? 3 : 2;
  331. int16_t *sample[3];
  332. s->run_index = 0;
  333. memset(s->sample_buffer, 0, ring_size * (w + 6) * sizeof(*s->sample_buffer));
  334. for (y = 0; y < h; y++) {
  335. for (i = 0; i < ring_size; i++)
  336. sample[i] = s->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
  337. sample[0][-1]= sample[1][0 ];
  338. sample[1][ w]= sample[1][w-1];
  339. // { START_TIMER
  340. if (s->bits_per_raw_sample <= 8) {
  341. for (x = 0; x < w; x++)
  342. sample[0][x] = src[x + stride * y];
  343. if((ret = encode_line(s, w, sample, plane_index, 8)) < 0)
  344. return ret;
  345. } else {
  346. if (s->packed_at_lsb) {
  347. for (x = 0; x < w; x++) {
  348. sample[0][x] = ((uint16_t*)(src + stride*y))[x];
  349. }
  350. } else {
  351. for (x = 0; x < w; x++) {
  352. sample[0][x] = ((uint16_t*)(src + stride*y))[x] >> (16 - s->bits_per_raw_sample);
  353. }
  354. }
  355. if((ret = encode_line(s, w, sample, plane_index, s->bits_per_raw_sample)) < 0)
  356. return ret;
  357. }
  358. // STOP_TIMER("encode line") }
  359. }
  360. return 0;
  361. }
  362. static int encode_rgb_frame(FFV1Context *s, uint8_t *src[3], int w, int h, int stride[3])
  363. {
  364. int x, y, p, i;
  365. const int ring_size = s->avctx->context_model ? 3 : 2;
  366. int16_t *sample[4][3];
  367. int lbd = s->bits_per_raw_sample <= 8;
  368. int bits = s->bits_per_raw_sample > 0 ? s->bits_per_raw_sample : 8;
  369. int offset = 1 << bits;
  370. s->run_index = 0;
  371. memset(s->sample_buffer, 0, ring_size * MAX_PLANES *
  372. (w + 6) * sizeof(*s->sample_buffer));
  373. for (y = 0; y < h; y++) {
  374. for (i = 0; i < ring_size; i++)
  375. for (p = 0; p < MAX_PLANES; p++)
  376. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  377. for (x = 0; x < w; x++) {
  378. int b, g, r, av_uninit(a);
  379. if (lbd) {
  380. unsigned v = *((uint32_t*)(src[0] + x*4 + stride[0]*y));
  381. b = v & 0xFF;
  382. g = (v >> 8) & 0xFF;
  383. r = (v >> 16) & 0xFF;
  384. a = v >> 24;
  385. } else {
  386. b = *((uint16_t*)(src[0] + x*2 + stride[0]*y));
  387. g = *((uint16_t*)(src[1] + x*2 + stride[1]*y));
  388. r = *((uint16_t*)(src[2] + x*2 + stride[2]*y));
  389. }
  390. if (s->slice_coding_mode != 1) {
  391. b -= g;
  392. r -= g;
  393. g += (b + r) >> 2;
  394. b += offset;
  395. r += offset;
  396. }
  397. sample[0][0][x] = g;
  398. sample[1][0][x] = b;
  399. sample[2][0][x] = r;
  400. sample[3][0][x] = a;
  401. }
  402. for (p = 0; p < 3 + s->transparency; p++) {
  403. int ret;
  404. sample[p][0][-1] = sample[p][1][0 ];
  405. sample[p][1][ w] = sample[p][1][w-1];
  406. if (lbd && s->slice_coding_mode == 0)
  407. ret = encode_line(s, w, sample[p], (p + 1) / 2, 9);
  408. else
  409. ret = encode_line(s, w, sample[p], (p + 1) / 2, bits + (s->slice_coding_mode != 1));
  410. if (ret < 0)
  411. return ret;
  412. }
  413. }
  414. return 0;
  415. }
  416. static void write_quant_table(RangeCoder *c, int16_t *quant_table)
  417. {
  418. int last = 0;
  419. int i;
  420. uint8_t state[CONTEXT_SIZE];
  421. memset(state, 128, sizeof(state));
  422. for (i = 1; i < 128; i++)
  423. if (quant_table[i] != quant_table[i - 1]) {
  424. put_symbol(c, state, i - last - 1, 0);
  425. last = i;
  426. }
  427. put_symbol(c, state, i - last - 1, 0);
  428. }
  429. static void write_quant_tables(RangeCoder *c,
  430. int16_t quant_table[MAX_CONTEXT_INPUTS][256])
  431. {
  432. int i;
  433. for (i = 0; i < 5; i++)
  434. write_quant_table(c, quant_table[i]);
  435. }
  436. static void write_header(FFV1Context *f)
  437. {
  438. uint8_t state[CONTEXT_SIZE];
  439. int i, j;
  440. RangeCoder *const c = &f->slice_context[0]->c;
  441. memset(state, 128, sizeof(state));
  442. if (f->version < 2) {
  443. put_symbol(c, state, f->version, 0);
  444. put_symbol(c, state, f->ac, 0);
  445. if (f->ac > 1) {
  446. for (i = 1; i < 256; i++)
  447. put_symbol(c, state,
  448. f->state_transition[i] - c->one_state[i], 1);
  449. }
  450. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  451. if (f->version > 0)
  452. put_symbol(c, state, f->bits_per_raw_sample, 0);
  453. put_rac(c, state, f->chroma_planes);
  454. put_symbol(c, state, f->chroma_h_shift, 0);
  455. put_symbol(c, state, f->chroma_v_shift, 0);
  456. put_rac(c, state, f->transparency);
  457. write_quant_tables(c, f->quant_table);
  458. } else if (f->version < 3) {
  459. put_symbol(c, state, f->slice_count, 0);
  460. for (i = 0; i < f->slice_count; i++) {
  461. FFV1Context *fs = f->slice_context[i];
  462. put_symbol(c, state,
  463. (fs->slice_x + 1) * f->num_h_slices / f->width, 0);
  464. put_symbol(c, state,
  465. (fs->slice_y + 1) * f->num_v_slices / f->height, 0);
  466. put_symbol(c, state,
  467. (fs->slice_width + 1) * f->num_h_slices / f->width - 1,
  468. 0);
  469. put_symbol(c, state,
  470. (fs->slice_height + 1) * f->num_v_slices / f->height - 1,
  471. 0);
  472. for (j = 0; j < f->plane_count; j++) {
  473. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  474. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  475. }
  476. }
  477. }
  478. }
  479. static int write_extradata(FFV1Context *f)
  480. {
  481. RangeCoder *const c = &f->c;
  482. uint8_t state[CONTEXT_SIZE];
  483. int i, j, k;
  484. uint8_t state2[32][CONTEXT_SIZE];
  485. unsigned v;
  486. memset(state2, 128, sizeof(state2));
  487. memset(state, 128, sizeof(state));
  488. f->avctx->extradata_size = 10000 + 4 +
  489. (11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32;
  490. f->avctx->extradata = av_malloc(f->avctx->extradata_size);
  491. if (!f->avctx->extradata)
  492. return AVERROR(ENOMEM);
  493. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  494. ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
  495. put_symbol(c, state, f->version, 0);
  496. if (f->version > 2) {
  497. if (f->version == 3)
  498. f->micro_version = 4;
  499. put_symbol(c, state, f->micro_version, 0);
  500. }
  501. put_symbol(c, state, f->ac, 0);
  502. if (f->ac > 1)
  503. for (i = 1; i < 256; i++)
  504. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  505. put_symbol(c, state, f->colorspace, 0); // YUV cs type
  506. put_symbol(c, state, f->bits_per_raw_sample, 0);
  507. put_rac(c, state, f->chroma_planes);
  508. put_symbol(c, state, f->chroma_h_shift, 0);
  509. put_symbol(c, state, f->chroma_v_shift, 0);
  510. put_rac(c, state, f->transparency);
  511. put_symbol(c, state, f->num_h_slices - 1, 0);
  512. put_symbol(c, state, f->num_v_slices - 1, 0);
  513. put_symbol(c, state, f->quant_table_count, 0);
  514. for (i = 0; i < f->quant_table_count; i++)
  515. write_quant_tables(c, f->quant_tables[i]);
  516. for (i = 0; i < f->quant_table_count; i++) {
  517. for (j = 0; j < f->context_count[i] * CONTEXT_SIZE; j++)
  518. if (f->initial_states[i] && f->initial_states[i][0][j] != 128)
  519. break;
  520. if (j < f->context_count[i] * CONTEXT_SIZE) {
  521. put_rac(c, state, 1);
  522. for (j = 0; j < f->context_count[i]; j++)
  523. for (k = 0; k < CONTEXT_SIZE; k++) {
  524. int pred = j ? f->initial_states[i][j - 1][k] : 128;
  525. put_symbol(c, state2[k],
  526. (int8_t)(f->initial_states[i][j][k] - pred), 1);
  527. }
  528. } else {
  529. put_rac(c, state, 0);
  530. }
  531. }
  532. if (f->version > 2) {
  533. put_symbol(c, state, f->ec, 0);
  534. put_symbol(c, state, f->intra = (f->avctx->gop_size < 2), 0);
  535. }
  536. f->avctx->extradata_size = ff_rac_terminate(c);
  537. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, f->avctx->extradata, f->avctx->extradata_size);
  538. AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
  539. f->avctx->extradata_size += 4;
  540. return 0;
  541. }
  542. static int sort_stt(FFV1Context *s, uint8_t stt[256])
  543. {
  544. int i, i2, changed, print = 0;
  545. do {
  546. changed = 0;
  547. for (i = 12; i < 244; i++) {
  548. for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
  549. #define COST(old, new) \
  550. s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \
  551. s->rc_stat[old][1] * -log2((new) / 256.0)
  552. #define COST2(old, new) \
  553. COST(old, new) + COST(256 - (old), 256 - (new))
  554. double size0 = COST2(i, i) + COST2(i2, i2);
  555. double sizeX = COST2(i, i2) + COST2(i2, i);
  556. if (size0 - sizeX > size0*(1e-14) && i != 128 && i2 != 128) {
  557. int j;
  558. FFSWAP(int, stt[i], stt[i2]);
  559. FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
  560. FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
  561. if (i != 256 - i2) {
  562. FFSWAP(int, stt[256 - i], stt[256 - i2]);
  563. FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
  564. FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
  565. }
  566. for (j = 1; j < 256; j++) {
  567. if (stt[j] == i)
  568. stt[j] = i2;
  569. else if (stt[j] == i2)
  570. stt[j] = i;
  571. if (i != 256 - i2) {
  572. if (stt[256 - j] == 256 - i)
  573. stt[256 - j] = 256 - i2;
  574. else if (stt[256 - j] == 256 - i2)
  575. stt[256 - j] = 256 - i;
  576. }
  577. }
  578. print = changed = 1;
  579. }
  580. }
  581. }
  582. } while (changed);
  583. return print;
  584. }
  585. static av_cold int encode_init(AVCodecContext *avctx)
  586. {
  587. FFV1Context *s = avctx->priv_data;
  588. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
  589. int i, j, k, m, ret;
  590. if ((ret = ffv1_common_init(avctx)) < 0)
  591. return ret;
  592. s->version = 0;
  593. if ((avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) || avctx->slices>1)
  594. s->version = FFMAX(s->version, 2);
  595. if (avctx->level == 3 || (avctx->level <= 0 && s->version == 2)) {
  596. s->version = 3;
  597. }
  598. if (s->ec < 0) {
  599. s->ec = (s->version >= 3);
  600. }
  601. if ((s->version == 2 || s->version>3) && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
  602. av_log(avctx, AV_LOG_ERROR, "Version 2 needed for requested features but version 2 is experimental and not enabled\n");
  603. return AVERROR_INVALIDDATA;
  604. }
  605. s->ac = avctx->coder_type > 0 ? 2 : 0;
  606. s->plane_count = 3;
  607. switch(avctx->pix_fmt) {
  608. case AV_PIX_FMT_YUV444P9:
  609. case AV_PIX_FMT_YUV422P9:
  610. case AV_PIX_FMT_YUV420P9:
  611. case AV_PIX_FMT_YUVA444P9:
  612. case AV_PIX_FMT_YUVA422P9:
  613. case AV_PIX_FMT_YUVA420P9:
  614. if (!avctx->bits_per_raw_sample)
  615. s->bits_per_raw_sample = 9;
  616. case AV_PIX_FMT_YUV444P10:
  617. case AV_PIX_FMT_YUV420P10:
  618. case AV_PIX_FMT_YUV422P10:
  619. case AV_PIX_FMT_YUVA444P10:
  620. case AV_PIX_FMT_YUVA422P10:
  621. case AV_PIX_FMT_YUVA420P10:
  622. s->packed_at_lsb = 1;
  623. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  624. s->bits_per_raw_sample = 10;
  625. case AV_PIX_FMT_GRAY16:
  626. case AV_PIX_FMT_YUV444P16:
  627. case AV_PIX_FMT_YUV422P16:
  628. case AV_PIX_FMT_YUV420P16:
  629. case AV_PIX_FMT_YUVA444P16:
  630. case AV_PIX_FMT_YUVA422P16:
  631. case AV_PIX_FMT_YUVA420P16:
  632. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
  633. s->bits_per_raw_sample = 16;
  634. } else if (!s->bits_per_raw_sample) {
  635. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  636. }
  637. if (s->bits_per_raw_sample <= 8) {
  638. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  639. return AVERROR_INVALIDDATA;
  640. }
  641. if (!s->ac && avctx->coder_type == -1) {
  642. av_log(avctx, AV_LOG_INFO, "bits_per_raw_sample > 8, forcing coder 1\n");
  643. s->ac = 2;
  644. }
  645. if (!s->ac) {
  646. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  647. return AVERROR(ENOSYS);
  648. }
  649. s->version = FFMAX(s->version, 1);
  650. case AV_PIX_FMT_GRAY8:
  651. case AV_PIX_FMT_YUV444P:
  652. case AV_PIX_FMT_YUV440P:
  653. case AV_PIX_FMT_YUV422P:
  654. case AV_PIX_FMT_YUV420P:
  655. case AV_PIX_FMT_YUV411P:
  656. case AV_PIX_FMT_YUV410P:
  657. case AV_PIX_FMT_YUVA444P:
  658. case AV_PIX_FMT_YUVA422P:
  659. case AV_PIX_FMT_YUVA420P:
  660. s->chroma_planes = desc->nb_components < 3 ? 0 : 1;
  661. s->colorspace = 0;
  662. s->transparency = desc->nb_components == 4;
  663. break;
  664. case AV_PIX_FMT_RGB32:
  665. s->colorspace = 1;
  666. s->transparency = 1;
  667. s->chroma_planes = 1;
  668. break;
  669. case AV_PIX_FMT_0RGB32:
  670. s->colorspace = 1;
  671. s->chroma_planes = 1;
  672. break;
  673. case AV_PIX_FMT_GBRP9:
  674. if (!avctx->bits_per_raw_sample)
  675. s->bits_per_raw_sample = 9;
  676. case AV_PIX_FMT_GBRP10:
  677. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  678. s->bits_per_raw_sample = 10;
  679. case AV_PIX_FMT_GBRP12:
  680. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  681. s->bits_per_raw_sample = 12;
  682. case AV_PIX_FMT_GBRP14:
  683. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  684. s->bits_per_raw_sample = 14;
  685. else if (!s->bits_per_raw_sample)
  686. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  687. s->colorspace = 1;
  688. s->chroma_planes = 1;
  689. s->version = FFMAX(s->version, 1);
  690. break;
  691. default:
  692. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  693. return AVERROR(ENOSYS);
  694. }
  695. if (s->transparency) {
  696. av_log(avctx, AV_LOG_WARNING, "Storing alpha plane, this will require a recent FFV1 decoder to playback!\n");
  697. }
  698. if (avctx->context_model > 1U) {
  699. av_log(avctx, AV_LOG_ERROR, "Invalid context model %d, valid values are 0 and 1\n", avctx->context_model);
  700. return AVERROR(EINVAL);
  701. }
  702. if (s->ac > 1)
  703. for (i = 1; i < 256; i++)
  704. s->state_transition[i] = ver2_state[i];
  705. for (i = 0; i < 256; i++) {
  706. s->quant_table_count = 2;
  707. if (s->bits_per_raw_sample <= 8) {
  708. s->quant_tables[0][0][i]= quant11[i];
  709. s->quant_tables[0][1][i]= 11*quant11[i];
  710. s->quant_tables[0][2][i]= 11*11*quant11[i];
  711. s->quant_tables[1][0][i]= quant11[i];
  712. s->quant_tables[1][1][i]= 11*quant11[i];
  713. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  714. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  715. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  716. } else {
  717. s->quant_tables[0][0][i]= quant9_10bit[i];
  718. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  719. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  720. s->quant_tables[1][0][i]= quant9_10bit[i];
  721. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  722. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  723. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  724. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  725. }
  726. }
  727. s->context_count[0] = (11 * 11 * 11 + 1) / 2;
  728. s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
  729. memcpy(s->quant_table, s->quant_tables[avctx->context_model],
  730. sizeof(s->quant_table));
  731. for (i = 0; i < s->plane_count; i++) {
  732. PlaneContext *const p = &s->plane[i];
  733. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  734. p->quant_table_index = avctx->context_model;
  735. p->context_count = s->context_count[p->quant_table_index];
  736. }
  737. if ((ret = ffv1_allocate_initial_states(s)) < 0)
  738. return ret;
  739. if (!s->transparency)
  740. s->plane_count = 2;
  741. if (!s->chroma_planes && s->version > 3)
  742. s->plane_count--;
  743. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  744. s->picture_number = 0;
  745. if (avctx->flags & (CODEC_FLAG_PASS1 | CODEC_FLAG_PASS2)) {
  746. for (i = 0; i < s->quant_table_count; i++) {
  747. s->rc_stat2[i] = av_mallocz(s->context_count[i] *
  748. sizeof(*s->rc_stat2[i]));
  749. if (!s->rc_stat2[i])
  750. return AVERROR(ENOMEM);
  751. }
  752. }
  753. if (avctx->stats_in) {
  754. char *p = avctx->stats_in;
  755. uint8_t best_state[256][256];
  756. int gob_count = 0;
  757. char *next;
  758. av_assert0(s->version >= 2);
  759. for (;;) {
  760. for (j = 0; j < 256; j++)
  761. for (i = 0; i < 2; i++) {
  762. s->rc_stat[j][i] = strtol(p, &next, 0);
  763. if (next == p) {
  764. av_log(avctx, AV_LOG_ERROR,
  765. "2Pass file invalid at %d %d [%s]\n", j, i, p);
  766. return AVERROR_INVALIDDATA;
  767. }
  768. p = next;
  769. }
  770. for (i = 0; i < s->quant_table_count; i++)
  771. for (j = 0; j < s->context_count[i]; j++) {
  772. for (k = 0; k < 32; k++)
  773. for (m = 0; m < 2; m++) {
  774. s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
  775. if (next == p) {
  776. av_log(avctx, AV_LOG_ERROR,
  777. "2Pass file invalid at %d %d %d %d [%s]\n",
  778. i, j, k, m, p);
  779. return AVERROR_INVALIDDATA;
  780. }
  781. p = next;
  782. }
  783. }
  784. gob_count = strtol(p, &next, 0);
  785. if (next == p || gob_count <= 0) {
  786. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
  787. return AVERROR_INVALIDDATA;
  788. }
  789. p = next;
  790. while (*p == '\n' || *p == ' ')
  791. p++;
  792. if (p[0] == 0)
  793. break;
  794. }
  795. sort_stt(s, s->state_transition);
  796. find_best_state(best_state, s->state_transition);
  797. for (i = 0; i < s->quant_table_count; i++) {
  798. for (k = 0; k < 32; k++) {
  799. double a=0, b=0;
  800. int jp = 0;
  801. for (j = 0; j < s->context_count[i]; j++) {
  802. double p = 128;
  803. if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1] > 200 && j || a+b > 200) {
  804. if (a+b)
  805. p = 256.0 * b / (a + b);
  806. s->initial_states[i][jp][k] =
  807. best_state[av_clip(round(p), 1, 255)][av_clip((a + b) / gob_count, 0, 255)];
  808. for(jp++; jp<j; jp++)
  809. s->initial_states[i][jp][k] = s->initial_states[i][jp-1][k];
  810. a=b=0;
  811. }
  812. a += s->rc_stat2[i][j][k][0];
  813. b += s->rc_stat2[i][j][k][1];
  814. if (a+b) {
  815. p = 256.0 * b / (a + b);
  816. }
  817. s->initial_states[i][j][k] =
  818. best_state[av_clip(round(p), 1, 255)][av_clip((a + b) / gob_count, 0, 255)];
  819. }
  820. }
  821. }
  822. }
  823. if (s->version > 1) {
  824. s->num_v_slices = (avctx->width > 352 || avctx->height > 288 || !avctx->slices) ? 2 : 1;
  825. for (; s->num_v_slices < 9; s->num_v_slices++) {
  826. for (s->num_h_slices = s->num_v_slices; s->num_h_slices < 2*s->num_v_slices; s->num_h_slices++) {
  827. if (avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= 64 || !avctx->slices)
  828. goto slices_ok;
  829. }
  830. }
  831. av_log(avctx, AV_LOG_ERROR,
  832. "Unsupported number %d of slices requested, please specify a "
  833. "supported number with -slices (ex:4,6,9,12,16, ...)\n",
  834. avctx->slices);
  835. return AVERROR(ENOSYS);
  836. slices_ok:
  837. if ((ret = write_extradata(s)) < 0)
  838. return ret;
  839. }
  840. if ((ret = ffv1_init_slice_contexts(s)) < 0)
  841. return ret;
  842. if ((ret = ffv1_init_slices_state(s)) < 0)
  843. return ret;
  844. #define STATS_OUT_SIZE 1024 * 1024 * 6
  845. if (avctx->flags & CODEC_FLAG_PASS1) {
  846. avctx->stats_out = av_mallocz(STATS_OUT_SIZE);
  847. if (!avctx->stats_out)
  848. return AVERROR(ENOMEM);
  849. for (i = 0; i < s->quant_table_count; i++)
  850. for (j = 0; j < s->slice_count; j++) {
  851. FFV1Context *sf = s->slice_context[j];
  852. av_assert0(!sf->rc_stat2[i]);
  853. sf->rc_stat2[i] = av_mallocz(s->context_count[i] *
  854. sizeof(*sf->rc_stat2[i]));
  855. if (!sf->rc_stat2[i])
  856. return AVERROR(ENOMEM);
  857. }
  858. }
  859. return 0;
  860. }
  861. static void encode_slice_header(FFV1Context *f, FFV1Context *fs)
  862. {
  863. RangeCoder *c = &fs->c;
  864. uint8_t state[CONTEXT_SIZE];
  865. int j;
  866. memset(state, 128, sizeof(state));
  867. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  868. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  869. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  870. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  871. for (j=0; j<f->plane_count; j++) {
  872. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  873. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  874. }
  875. if (!f->picture.f->interlaced_frame)
  876. put_symbol(c, state, 3, 0);
  877. else
  878. put_symbol(c, state, 1 + !f->picture.f->top_field_first, 0);
  879. put_symbol(c, state, f->picture.f->sample_aspect_ratio.num, 0);
  880. put_symbol(c, state, f->picture.f->sample_aspect_ratio.den, 0);
  881. if (f->version > 3) {
  882. put_rac(c, state, fs->slice_coding_mode == 1);
  883. if (fs->slice_coding_mode == 1)
  884. ffv1_clear_slice_state(f, fs);
  885. put_symbol(c, state, fs->slice_coding_mode, 0);
  886. }
  887. }
  888. static int encode_slice(AVCodecContext *c, void *arg)
  889. {
  890. FFV1Context *fs = *(void **)arg;
  891. FFV1Context *f = fs->avctx->priv_data;
  892. int width = fs->slice_width;
  893. int height = fs->slice_height;
  894. int x = fs->slice_x;
  895. int y = fs->slice_y;
  896. AVFrame *const p = f->picture.f;
  897. const int ps = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step_minus1 + 1;
  898. int ret;
  899. RangeCoder c_bak = fs->c;
  900. fs->slice_coding_mode = 0;
  901. retry:
  902. if (p->key_frame)
  903. ffv1_clear_slice_state(f, fs);
  904. if (f->version > 2) {
  905. encode_slice_header(f, fs);
  906. }
  907. if (!fs->ac) {
  908. if (f->version > 2)
  909. put_rac(&fs->c, (uint8_t[]) { 129 }, 0);
  910. fs->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate(&fs->c) : 0;
  911. init_put_bits(&fs->pb,
  912. fs->c.bytestream_start + fs->ac_byte_count,
  913. fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count);
  914. }
  915. if (f->colorspace == 0) {
  916. const int chroma_width = FF_CEIL_RSHIFT(width, f->chroma_h_shift);
  917. const int chroma_height = FF_CEIL_RSHIFT(height, f->chroma_v_shift);
  918. const int cx = x >> f->chroma_h_shift;
  919. const int cy = y >> f->chroma_v_shift;
  920. ret = encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  921. if (f->chroma_planes) {
  922. ret |= encode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  923. ret |= encode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  924. }
  925. if (fs->transparency)
  926. ret |= encode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  927. } else {
  928. uint8_t *planes[3] = {p->data[0] + ps*x + y*p->linesize[0],
  929. p->data[1] + ps*x + y*p->linesize[1],
  930. p->data[2] + ps*x + y*p->linesize[2]};
  931. ret = encode_rgb_frame(fs, planes, width, height, p->linesize);
  932. }
  933. emms_c();
  934. if (ret < 0) {
  935. av_assert0(fs->slice_coding_mode == 0);
  936. if (fs->version < 4 || !fs->ac) {
  937. av_log(c, AV_LOG_ERROR, "Buffer too small\n");
  938. return ret;
  939. }
  940. av_log(c, AV_LOG_DEBUG, "Coding slice as PCM\n");
  941. fs->slice_coding_mode = 1;
  942. fs->c = c_bak;
  943. goto retry;
  944. }
  945. return 0;
  946. }
  947. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  948. const AVFrame *pict, int *got_packet)
  949. {
  950. FFV1Context *f = avctx->priv_data;
  951. RangeCoder *const c = &f->slice_context[0]->c;
  952. AVFrame *const p = f->picture.f;
  953. int used_count = 0;
  954. uint8_t keystate = 128;
  955. uint8_t *buf_p;
  956. int i, ret;
  957. int64_t maxsize = FF_MIN_BUFFER_SIZE
  958. + avctx->width*avctx->height*35LL*4;
  959. if (f->version > 3)
  960. maxsize = FF_MIN_BUFFER_SIZE + avctx->width*avctx->height*3*4;
  961. if ((ret = ff_alloc_packet2(avctx, pkt, maxsize)) < 0)
  962. return ret;
  963. ff_init_range_encoder(c, pkt->data, pkt->size);
  964. ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
  965. av_frame_unref(p);
  966. if ((ret = av_frame_ref(p, pict)) < 0)
  967. return ret;
  968. p->pict_type = AV_PICTURE_TYPE_I;
  969. if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
  970. put_rac(c, &keystate, 1);
  971. p->key_frame = 1;
  972. f->gob_count++;
  973. write_header(f);
  974. } else {
  975. put_rac(c, &keystate, 0);
  976. p->key_frame = 0;
  977. }
  978. if (f->ac > 1) {
  979. int i;
  980. for (i = 1; i < 256; i++) {
  981. c->one_state[i] = f->state_transition[i];
  982. c->zero_state[256 - i] = 256 - c->one_state[i];
  983. }
  984. }
  985. for (i = 1; i < f->slice_count; i++) {
  986. FFV1Context *fs = f->slice_context[i];
  987. uint8_t *start = pkt->data + (pkt->size - used_count) * (int64_t)i / f->slice_count;
  988. int len = pkt->size / f->slice_count;
  989. ff_init_range_encoder(&fs->c, start, len);
  990. }
  991. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL,
  992. f->slice_count, sizeof(void *));
  993. buf_p = pkt->data;
  994. for (i = 0; i < f->slice_count; i++) {
  995. FFV1Context *fs = f->slice_context[i];
  996. int bytes;
  997. if (fs->ac) {
  998. uint8_t state = 129;
  999. put_rac(&fs->c, &state, 0);
  1000. bytes = ff_rac_terminate(&fs->c);
  1001. } else {
  1002. flush_put_bits(&fs->pb); // FIXME: nicer padding
  1003. bytes = fs->ac_byte_count + (put_bits_count(&fs->pb) + 7) / 8;
  1004. }
  1005. if (i > 0 || f->version > 2) {
  1006. av_assert0(bytes < pkt->size / f->slice_count);
  1007. memmove(buf_p, fs->c.bytestream_start, bytes);
  1008. av_assert0(bytes < (1 << 24));
  1009. AV_WB24(buf_p + bytes, bytes);
  1010. bytes += 3;
  1011. }
  1012. if (f->ec) {
  1013. unsigned v;
  1014. buf_p[bytes++] = 0;
  1015. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, bytes);
  1016. AV_WL32(buf_p + bytes, v);
  1017. bytes += 4;
  1018. }
  1019. buf_p += bytes;
  1020. }
  1021. if ((avctx->flags & CODEC_FLAG_PASS1) && (f->picture_number & 31) == 0) {
  1022. int j, k, m;
  1023. char *p = avctx->stats_out;
  1024. char *end = p + STATS_OUT_SIZE;
  1025. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  1026. for (i = 0; i < f->quant_table_count; i++)
  1027. memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
  1028. for (j = 0; j < f->slice_count; j++) {
  1029. FFV1Context *fs = f->slice_context[j];
  1030. for (i = 0; i < 256; i++) {
  1031. f->rc_stat[i][0] += fs->rc_stat[i][0];
  1032. f->rc_stat[i][1] += fs->rc_stat[i][1];
  1033. }
  1034. for (i = 0; i < f->quant_table_count; i++) {
  1035. for (k = 0; k < f->context_count[i]; k++)
  1036. for (m = 0; m < 32; m++) {
  1037. f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
  1038. f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
  1039. }
  1040. }
  1041. }
  1042. for (j = 0; j < 256; j++) {
  1043. snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
  1044. f->rc_stat[j][0], f->rc_stat[j][1]);
  1045. p += strlen(p);
  1046. }
  1047. snprintf(p, end - p, "\n");
  1048. for (i = 0; i < f->quant_table_count; i++) {
  1049. for (j = 0; j < f->context_count[i]; j++)
  1050. for (m = 0; m < 32; m++) {
  1051. snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
  1052. f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  1053. p += strlen(p);
  1054. }
  1055. }
  1056. snprintf(p, end - p, "%d\n", f->gob_count);
  1057. } else if (avctx->flags & CODEC_FLAG_PASS1)
  1058. avctx->stats_out[0] = '\0';
  1059. f->picture_number++;
  1060. pkt->size = buf_p - pkt->data;
  1061. pkt->flags |= AV_PKT_FLAG_KEY * p->key_frame;
  1062. *got_packet = 1;
  1063. return 0;
  1064. }
  1065. #define OFFSET(x) offsetof(FFV1Context, x)
  1066. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  1067. static const AVOption options[] = {
  1068. { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 1, VE },
  1069. { NULL }
  1070. };
  1071. static const AVClass ffv1_class = {
  1072. .class_name = "ffv1 encoder",
  1073. .item_name = av_default_item_name,
  1074. .option = options,
  1075. .version = LIBAVUTIL_VERSION_INT,
  1076. };
  1077. static const AVCodecDefault ffv1_defaults[] = {
  1078. { "coder", "-1" },
  1079. { NULL },
  1080. };
  1081. AVCodec ff_ffv1_encoder = {
  1082. .name = "ffv1",
  1083. .type = AVMEDIA_TYPE_VIDEO,
  1084. .id = AV_CODEC_ID_FFV1,
  1085. .priv_data_size = sizeof(FFV1Context),
  1086. .init = encode_init,
  1087. .encode2 = encode_frame,
  1088. .close = ffv1_close,
  1089. .capabilities = CODEC_CAP_SLICE_THREADS,
  1090. .pix_fmts = (const enum AVPixelFormat[]) {
  1091. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV444P,
  1092. AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV411P,
  1093. AV_PIX_FMT_YUV410P, AV_PIX_FMT_0RGB32, AV_PIX_FMT_RGB32, AV_PIX_FMT_YUV420P16,
  1094. AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9,
  1095. AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
  1096. AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA420P16,
  1097. AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA420P10,
  1098. AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA420P9,
  1099. AV_PIX_FMT_GRAY16, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
  1100. AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14,
  1101. AV_PIX_FMT_NONE
  1102. },
  1103. .long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1104. .defaults = ffv1_defaults,
  1105. .priv_class = &ffv1_class,
  1106. };