You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

490 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/attributes.h"
  22. #include "avcodec.h"
  23. #include "sinewin.h"
  24. #include "wma.h"
  25. #include "wma_common.h"
  26. #include "wmadata.h"
  27. #undef NDEBUG
  28. #include <assert.h>
  29. /* XXX: use same run/length optimization as mpeg decoders */
  30. //FIXME maybe split decode / encode or pass flag
  31. static av_cold void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  32. float **plevel_table, uint16_t **pint_table,
  33. const CoefVLCTable *vlc_table)
  34. {
  35. int n = vlc_table->n;
  36. const uint8_t *table_bits = vlc_table->huffbits;
  37. const uint32_t *table_codes = vlc_table->huffcodes;
  38. const uint16_t *levels_table = vlc_table->levels;
  39. uint16_t *run_table, *level_table, *int_table;
  40. float *flevel_table;
  41. int i, l, j, k, level;
  42. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  43. run_table = av_malloc(n * sizeof(uint16_t));
  44. level_table = av_malloc(n * sizeof(uint16_t));
  45. flevel_table= av_malloc(n * sizeof(*flevel_table));
  46. int_table = av_malloc(n * sizeof(uint16_t));
  47. i = 2;
  48. level = 1;
  49. k = 0;
  50. while (i < n) {
  51. int_table[k] = i;
  52. l = levels_table[k++];
  53. for (j = 0; j < l; j++) {
  54. run_table[i] = j;
  55. level_table[i] = level;
  56. flevel_table[i]= level;
  57. i++;
  58. }
  59. level++;
  60. }
  61. *prun_table = run_table;
  62. *plevel_table = flevel_table;
  63. *pint_table = int_table;
  64. av_free(level_table);
  65. }
  66. av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
  67. {
  68. WMACodecContext *s = avctx->priv_data;
  69. int i;
  70. float bps1, high_freq;
  71. volatile float bps;
  72. int sample_rate1;
  73. int coef_vlc_table;
  74. if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000
  75. || avctx->channels <= 0 || avctx->channels > 2
  76. || avctx->bit_rate <= 0)
  77. return -1;
  78. ff_fmt_convert_init(&s->fmt_conv, avctx);
  79. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  80. if (avctx->codec->id == AV_CODEC_ID_WMAV1) {
  81. s->version = 1;
  82. } else {
  83. s->version = 2;
  84. }
  85. /* compute MDCT block size */
  86. s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
  87. s->version, 0);
  88. s->next_block_len_bits = s->frame_len_bits;
  89. s->prev_block_len_bits = s->frame_len_bits;
  90. s->block_len_bits = s->frame_len_bits;
  91. s->frame_len = 1 << s->frame_len_bits;
  92. if (s->use_variable_block_len) {
  93. int nb_max, nb;
  94. nb = ((flags2 >> 3) & 3) + 1;
  95. if ((avctx->bit_rate / avctx->channels) >= 32000)
  96. nb += 2;
  97. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  98. if (nb > nb_max)
  99. nb = nb_max;
  100. s->nb_block_sizes = nb + 1;
  101. } else {
  102. s->nb_block_sizes = 1;
  103. }
  104. /* init rate dependent parameters */
  105. s->use_noise_coding = 1;
  106. high_freq = avctx->sample_rate * 0.5;
  107. /* if version 2, then the rates are normalized */
  108. sample_rate1 = avctx->sample_rate;
  109. if (s->version == 2) {
  110. if (sample_rate1 >= 44100) {
  111. sample_rate1 = 44100;
  112. } else if (sample_rate1 >= 22050) {
  113. sample_rate1 = 22050;
  114. } else if (sample_rate1 >= 16000) {
  115. sample_rate1 = 16000;
  116. } else if (sample_rate1 >= 11025) {
  117. sample_rate1 = 11025;
  118. } else if (sample_rate1 >= 8000) {
  119. sample_rate1 = 8000;
  120. }
  121. }
  122. bps = (float)avctx->bit_rate / (float)(avctx->channels * avctx->sample_rate);
  123. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
  124. if (s->byte_offset_bits + 3 > MIN_CACHE_BITS) {
  125. av_log(avctx, AV_LOG_ERROR, "byte_offset_bits %d is too large\n", s->byte_offset_bits);
  126. return AVERROR_PATCHWELCOME;
  127. }
  128. /* compute high frequency value and choose if noise coding should
  129. be activated */
  130. bps1 = bps;
  131. if (avctx->channels == 2)
  132. bps1 = bps * 1.6;
  133. if (sample_rate1 == 44100) {
  134. if (bps1 >= 0.61) {
  135. s->use_noise_coding = 0;
  136. } else {
  137. high_freq = high_freq * 0.4;
  138. }
  139. } else if (sample_rate1 == 22050) {
  140. if (bps1 >= 1.16) {
  141. s->use_noise_coding = 0;
  142. } else if (bps1 >= 0.72) {
  143. high_freq = high_freq * 0.7;
  144. } else {
  145. high_freq = high_freq * 0.6;
  146. }
  147. } else if (sample_rate1 == 16000) {
  148. if (bps > 0.5) {
  149. high_freq = high_freq * 0.5;
  150. } else {
  151. high_freq = high_freq * 0.3;
  152. }
  153. } else if (sample_rate1 == 11025) {
  154. high_freq = high_freq * 0.7;
  155. } else if (sample_rate1 == 8000) {
  156. if (bps <= 0.625) {
  157. high_freq = high_freq * 0.5;
  158. } else if (bps > 0.75) {
  159. s->use_noise_coding = 0;
  160. } else {
  161. high_freq = high_freq * 0.65;
  162. }
  163. } else {
  164. if (bps >= 0.8) {
  165. high_freq = high_freq * 0.75;
  166. } else if (bps >= 0.6) {
  167. high_freq = high_freq * 0.6;
  168. } else {
  169. high_freq = high_freq * 0.5;
  170. }
  171. }
  172. av_dlog(s->avctx, "flags2=0x%x\n", flags2);
  173. av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  174. s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
  175. avctx->block_align);
  176. av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  177. bps, bps1, high_freq, s->byte_offset_bits);
  178. av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  179. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  180. /* compute the scale factor band sizes for each MDCT block size */
  181. {
  182. int a, b, pos, lpos, k, block_len, i, j, n;
  183. const uint8_t *table;
  184. if (s->version == 1) {
  185. s->coefs_start = 3;
  186. } else {
  187. s->coefs_start = 0;
  188. }
  189. for (k = 0; k < s->nb_block_sizes; k++) {
  190. block_len = s->frame_len >> k;
  191. if (s->version == 1) {
  192. lpos = 0;
  193. for (i = 0; i < 25; i++) {
  194. a = ff_wma_critical_freqs[i];
  195. b = avctx->sample_rate;
  196. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  197. if (pos > block_len)
  198. pos = block_len;
  199. s->exponent_bands[0][i] = pos - lpos;
  200. if (pos >= block_len) {
  201. i++;
  202. break;
  203. }
  204. lpos = pos;
  205. }
  206. s->exponent_sizes[0] = i;
  207. } else {
  208. /* hardcoded tables */
  209. table = NULL;
  210. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  211. if (a < 3) {
  212. if (avctx->sample_rate >= 44100) {
  213. table = exponent_band_44100[a];
  214. } else if (avctx->sample_rate >= 32000) {
  215. table = exponent_band_32000[a];
  216. } else if (avctx->sample_rate >= 22050) {
  217. table = exponent_band_22050[a];
  218. }
  219. }
  220. if (table) {
  221. n = *table++;
  222. for (i = 0; i < n; i++)
  223. s->exponent_bands[k][i] = table[i];
  224. s->exponent_sizes[k] = n;
  225. } else {
  226. j = 0;
  227. lpos = 0;
  228. for (i = 0; i < 25; i++) {
  229. a = ff_wma_critical_freqs[i];
  230. b = avctx->sample_rate;
  231. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  232. pos <<= 2;
  233. if (pos > block_len)
  234. pos = block_len;
  235. if (pos > lpos)
  236. s->exponent_bands[k][j++] = pos - lpos;
  237. if (pos >= block_len)
  238. break;
  239. lpos = pos;
  240. }
  241. s->exponent_sizes[k] = j;
  242. }
  243. }
  244. /* max number of coefs */
  245. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  246. /* high freq computation */
  247. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  248. avctx->sample_rate + 0.5);
  249. n = s->exponent_sizes[k];
  250. j = 0;
  251. pos = 0;
  252. for (i = 0; i < n; i++) {
  253. int start, end;
  254. start = pos;
  255. pos += s->exponent_bands[k][i];
  256. end = pos;
  257. if (start < s->high_band_start[k])
  258. start = s->high_band_start[k];
  259. if (end > s->coefs_end[k])
  260. end = s->coefs_end[k];
  261. if (end > start)
  262. s->exponent_high_bands[k][j++] = end - start;
  263. }
  264. s->exponent_high_sizes[k] = j;
  265. #if 0
  266. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  267. s->frame_len >> k,
  268. s->coefs_end[k],
  269. s->high_band_start[k],
  270. s->exponent_high_sizes[k]);
  271. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  272. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  273. tprintf(s->avctx, "\n");
  274. #endif
  275. }
  276. }
  277. #ifdef TRACE
  278. {
  279. int i, j;
  280. for (i = 0; i < s->nb_block_sizes; i++) {
  281. tprintf(s->avctx, "%5d: n=%2d:",
  282. s->frame_len >> i,
  283. s->exponent_sizes[i]);
  284. for (j = 0; j < s->exponent_sizes[i]; j++)
  285. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  286. tprintf(s->avctx, "\n");
  287. }
  288. }
  289. #endif
  290. /* init MDCT windows : simple sine window */
  291. for (i = 0; i < s->nb_block_sizes; i++) {
  292. ff_init_ff_sine_windows(s->frame_len_bits - i);
  293. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  294. }
  295. s->reset_block_lengths = 1;
  296. if (s->use_noise_coding) {
  297. /* init the noise generator */
  298. if (s->use_exp_vlc) {
  299. s->noise_mult = 0.02;
  300. } else {
  301. s->noise_mult = 0.04;
  302. }
  303. #ifdef TRACE
  304. for (i = 0; i < NOISE_TAB_SIZE; i++)
  305. s->noise_table[i] = 1.0 * s->noise_mult;
  306. #else
  307. {
  308. unsigned int seed;
  309. float norm;
  310. seed = 1;
  311. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  312. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  313. seed = seed * 314159 + 1;
  314. s->noise_table[i] = (float)((int)seed) * norm;
  315. }
  316. }
  317. #endif
  318. }
  319. /* choose the VLC tables for the coefficients */
  320. coef_vlc_table = 2;
  321. if (avctx->sample_rate >= 32000) {
  322. if (bps1 < 0.72) {
  323. coef_vlc_table = 0;
  324. } else if (bps1 < 1.16) {
  325. coef_vlc_table = 1;
  326. }
  327. }
  328. s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ];
  329. s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
  330. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
  331. s->coef_vlcs[0]);
  332. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
  333. s->coef_vlcs[1]);
  334. return 0;
  335. }
  336. int ff_wma_total_gain_to_bits(int total_gain)
  337. {
  338. if (total_gain < 15) return 13;
  339. else if (total_gain < 32) return 12;
  340. else if (total_gain < 40) return 11;
  341. else if (total_gain < 45) return 10;
  342. else return 9;
  343. }
  344. int ff_wma_end(AVCodecContext *avctx)
  345. {
  346. WMACodecContext *s = avctx->priv_data;
  347. int i;
  348. for (i = 0; i < s->nb_block_sizes; i++)
  349. ff_mdct_end(&s->mdct_ctx[i]);
  350. if (s->use_exp_vlc) {
  351. ff_free_vlc(&s->exp_vlc);
  352. }
  353. if (s->use_noise_coding) {
  354. ff_free_vlc(&s->hgain_vlc);
  355. }
  356. for (i = 0; i < 2; i++) {
  357. ff_free_vlc(&s->coef_vlc[i]);
  358. av_freep(&s->run_table[i]);
  359. av_freep(&s->level_table[i]);
  360. av_freep(&s->int_table[i]);
  361. }
  362. return 0;
  363. }
  364. /**
  365. * Decode an uncompressed coefficient.
  366. * @param gb GetBitContext
  367. * @return the decoded coefficient
  368. */
  369. unsigned int ff_wma_get_large_val(GetBitContext* gb)
  370. {
  371. /** consumes up to 34 bits */
  372. int n_bits = 8;
  373. /** decode length */
  374. if (get_bits1(gb)) {
  375. n_bits += 8;
  376. if (get_bits1(gb)) {
  377. n_bits += 8;
  378. if (get_bits1(gb)) {
  379. n_bits += 7;
  380. }
  381. }
  382. }
  383. return get_bits_long(gb, n_bits);
  384. }
  385. /**
  386. * Decode run level compressed coefficients.
  387. * @param avctx codec context
  388. * @param gb bitstream reader context
  389. * @param vlc vlc table for get_vlc2
  390. * @param level_table level codes
  391. * @param run_table run codes
  392. * @param version 0 for wma1,2 1 for wmapro
  393. * @param ptr output buffer
  394. * @param offset offset in the output buffer
  395. * @param num_coefs number of input coefficents
  396. * @param block_len input buffer length (2^n)
  397. * @param frame_len_bits number of bits for escaped run codes
  398. * @param coef_nb_bits number of bits for escaped level codes
  399. * @return 0 on success, -1 otherwise
  400. */
  401. int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
  402. VLC *vlc,
  403. const float *level_table, const uint16_t *run_table,
  404. int version, WMACoef *ptr, int offset,
  405. int num_coefs, int block_len, int frame_len_bits,
  406. int coef_nb_bits)
  407. {
  408. int code, level, sign;
  409. const uint32_t *ilvl = (const uint32_t*)level_table;
  410. uint32_t *iptr = (uint32_t*)ptr;
  411. const unsigned int coef_mask = block_len - 1;
  412. for (; offset < num_coefs; offset++) {
  413. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  414. if (code > 1) {
  415. /** normal code */
  416. offset += run_table[code];
  417. sign = get_bits1(gb) - 1;
  418. iptr[offset & coef_mask] = ilvl[code] ^ sign<<31;
  419. } else if (code == 1) {
  420. /** EOB */
  421. break;
  422. } else {
  423. /** escape */
  424. if (!version) {
  425. level = get_bits(gb, coef_nb_bits);
  426. /** NOTE: this is rather suboptimal. reading
  427. block_len_bits would be better */
  428. offset += get_bits(gb, frame_len_bits);
  429. } else {
  430. level = ff_wma_get_large_val(gb);
  431. /** escape decode */
  432. if (get_bits1(gb)) {
  433. if (get_bits1(gb)) {
  434. if (get_bits1(gb)) {
  435. av_log(avctx,AV_LOG_ERROR,
  436. "broken escape sequence\n");
  437. return -1;
  438. } else
  439. offset += get_bits(gb, frame_len_bits) + 4;
  440. } else
  441. offset += get_bits(gb, 2) + 1;
  442. }
  443. }
  444. sign = get_bits1(gb) - 1;
  445. ptr[offset & coef_mask] = (level^sign) - sign;
  446. }
  447. }
  448. /** NOTE: EOB can be omitted */
  449. if (offset > num_coefs) {
  450. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  451. return -1;
  452. }
  453. return 0;
  454. }