You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

8104 lines
312KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file h264.c
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "dsputil.h"
  27. #include "avcodec.h"
  28. #include "mpegvideo.h"
  29. #include "h264.h"
  30. #include "h264data.h"
  31. #include "h264_parser.h"
  32. #include "golomb.h"
  33. #include "rectangle.h"
  34. #include "cabac.h"
  35. #ifdef ARCH_X86
  36. #include "i386/h264_i386.h"
  37. #endif
  38. //#undef NDEBUG
  39. #include <assert.h>
  40. /**
  41. * Value of Picture.reference when Picture is not a reference picture, but
  42. * is held for delayed output.
  43. */
  44. #define DELAYED_PIC_REF 4
  45. static VLC coeff_token_vlc[4];
  46. static VLC chroma_dc_coeff_token_vlc;
  47. static VLC total_zeros_vlc[15];
  48. static VLC chroma_dc_total_zeros_vlc[3];
  49. static VLC run_vlc[6];
  50. static VLC run7_vlc;
  51. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  52. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  53. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  54. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  55. static av_always_inline uint32_t pack16to32(int a, int b){
  56. #ifdef WORDS_BIGENDIAN
  57. return (b&0xFFFF) + (a<<16);
  58. #else
  59. return (a&0xFFFF) + (b<<16);
  60. #endif
  61. }
  62. const uint8_t ff_rem6[52]={
  63. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  64. };
  65. const uint8_t ff_div6[52]={
  66. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  67. };
  68. static void fill_caches(H264Context *h, int mb_type, int for_deblock){
  69. MpegEncContext * const s = &h->s;
  70. const int mb_xy= h->mb_xy;
  71. int topleft_xy, top_xy, topright_xy, left_xy[2];
  72. int topleft_type, top_type, topright_type, left_type[2];
  73. int left_block[8];
  74. int topleft_partition= -1;
  75. int i;
  76. top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  77. //FIXME deblocking could skip the intra and nnz parts.
  78. if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
  79. return;
  80. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  81. * stuff, I can't imagine that these complex rules are worth it. */
  82. topleft_xy = top_xy - 1;
  83. topright_xy= top_xy + 1;
  84. left_xy[1] = left_xy[0] = mb_xy-1;
  85. left_block[0]= 0;
  86. left_block[1]= 1;
  87. left_block[2]= 2;
  88. left_block[3]= 3;
  89. left_block[4]= 7;
  90. left_block[5]= 10;
  91. left_block[6]= 8;
  92. left_block[7]= 11;
  93. if(FRAME_MBAFF){
  94. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  95. const int top_pair_xy = pair_xy - s->mb_stride;
  96. const int topleft_pair_xy = top_pair_xy - 1;
  97. const int topright_pair_xy = top_pair_xy + 1;
  98. const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  99. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  100. const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  101. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  102. const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
  103. const int bottom = (s->mb_y & 1);
  104. tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
  105. if (bottom
  106. ? !curr_mb_frame_flag // bottom macroblock
  107. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  108. ) {
  109. top_xy -= s->mb_stride;
  110. }
  111. if (bottom
  112. ? !curr_mb_frame_flag // bottom macroblock
  113. : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
  114. ) {
  115. topleft_xy -= s->mb_stride;
  116. } else if(bottom && curr_mb_frame_flag && !left_mb_frame_flag) {
  117. topleft_xy += s->mb_stride;
  118. // take topleft mv from the middle of the mb, as opposed to all other modes which use the bottom-right partition
  119. topleft_partition = 0;
  120. }
  121. if (bottom
  122. ? !curr_mb_frame_flag // bottom macroblock
  123. : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
  124. ) {
  125. topright_xy -= s->mb_stride;
  126. }
  127. if (left_mb_frame_flag != curr_mb_frame_flag) {
  128. left_xy[1] = left_xy[0] = pair_xy - 1;
  129. if (curr_mb_frame_flag) {
  130. if (bottom) {
  131. left_block[0]= 2;
  132. left_block[1]= 2;
  133. left_block[2]= 3;
  134. left_block[3]= 3;
  135. left_block[4]= 8;
  136. left_block[5]= 11;
  137. left_block[6]= 8;
  138. left_block[7]= 11;
  139. } else {
  140. left_block[0]= 0;
  141. left_block[1]= 0;
  142. left_block[2]= 1;
  143. left_block[3]= 1;
  144. left_block[4]= 7;
  145. left_block[5]= 10;
  146. left_block[6]= 7;
  147. left_block[7]= 10;
  148. }
  149. } else {
  150. left_xy[1] += s->mb_stride;
  151. //left_block[0]= 0;
  152. left_block[1]= 2;
  153. left_block[2]= 0;
  154. left_block[3]= 2;
  155. //left_block[4]= 7;
  156. left_block[5]= 10;
  157. left_block[6]= 7;
  158. left_block[7]= 10;
  159. }
  160. }
  161. }
  162. h->top_mb_xy = top_xy;
  163. h->left_mb_xy[0] = left_xy[0];
  164. h->left_mb_xy[1] = left_xy[1];
  165. if(for_deblock){
  166. topleft_type = 0;
  167. topright_type = 0;
  168. top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
  169. left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
  170. left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
  171. if(FRAME_MBAFF && !IS_INTRA(mb_type)){
  172. int list;
  173. int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
  174. for(i=0; i<16; i++)
  175. h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
  176. for(list=0; list<h->list_count; list++){
  177. if(USES_LIST(mb_type,list)){
  178. uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
  179. uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
  180. int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  181. for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
  182. dst[0] = src[0];
  183. dst[1] = src[1];
  184. dst[2] = src[2];
  185. dst[3] = src[3];
  186. }
  187. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  188. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
  189. ref += h->b8_stride;
  190. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  191. *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
  192. }else{
  193. fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
  194. fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
  195. }
  196. }
  197. }
  198. }else{
  199. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  200. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  201. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  202. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  203. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  204. }
  205. if(IS_INTRA(mb_type)){
  206. h->topleft_samples_available=
  207. h->top_samples_available=
  208. h->left_samples_available= 0xFFFF;
  209. h->topright_samples_available= 0xEEEA;
  210. if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
  211. h->topleft_samples_available= 0xB3FF;
  212. h->top_samples_available= 0x33FF;
  213. h->topright_samples_available= 0x26EA;
  214. }
  215. for(i=0; i<2; i++){
  216. if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
  217. h->topleft_samples_available&= 0xDF5F;
  218. h->left_samples_available&= 0x5F5F;
  219. }
  220. }
  221. if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
  222. h->topleft_samples_available&= 0x7FFF;
  223. if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
  224. h->topright_samples_available&= 0xFBFF;
  225. if(IS_INTRA4x4(mb_type)){
  226. if(IS_INTRA4x4(top_type)){
  227. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  228. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  229. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  230. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  231. }else{
  232. int pred;
  233. if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
  234. pred= -1;
  235. else{
  236. pred= 2;
  237. }
  238. h->intra4x4_pred_mode_cache[4+8*0]=
  239. h->intra4x4_pred_mode_cache[5+8*0]=
  240. h->intra4x4_pred_mode_cache[6+8*0]=
  241. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  242. }
  243. for(i=0; i<2; i++){
  244. if(IS_INTRA4x4(left_type[i])){
  245. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  246. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  247. }else{
  248. int pred;
  249. if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
  250. pred= -1;
  251. else{
  252. pred= 2;
  253. }
  254. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  255. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  256. }
  257. }
  258. }
  259. }
  260. /*
  261. 0 . T T. T T T T
  262. 1 L . .L . . . .
  263. 2 L . .L . . . .
  264. 3 . T TL . . . .
  265. 4 L . .L . . . .
  266. 5 L . .. . . . .
  267. */
  268. //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
  269. if(top_type){
  270. h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
  271. h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
  272. h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
  273. h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
  274. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
  275. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
  276. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
  277. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
  278. }else{
  279. h->non_zero_count_cache[4+8*0]=
  280. h->non_zero_count_cache[5+8*0]=
  281. h->non_zero_count_cache[6+8*0]=
  282. h->non_zero_count_cache[7+8*0]=
  283. h->non_zero_count_cache[1+8*0]=
  284. h->non_zero_count_cache[2+8*0]=
  285. h->non_zero_count_cache[1+8*3]=
  286. h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  287. }
  288. for (i=0; i<2; i++) {
  289. if(left_type[i]){
  290. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
  291. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
  292. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
  293. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
  294. }else{
  295. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  296. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  297. h->non_zero_count_cache[0+8*1 + 8*i]=
  298. h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  299. }
  300. }
  301. if( h->pps.cabac ) {
  302. // top_cbp
  303. if(top_type) {
  304. h->top_cbp = h->cbp_table[top_xy];
  305. } else if(IS_INTRA(mb_type)) {
  306. h->top_cbp = 0x1C0;
  307. } else {
  308. h->top_cbp = 0;
  309. }
  310. // left_cbp
  311. if (left_type[0]) {
  312. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  313. } else if(IS_INTRA(mb_type)) {
  314. h->left_cbp = 0x1C0;
  315. } else {
  316. h->left_cbp = 0;
  317. }
  318. if (left_type[0]) {
  319. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  320. }
  321. if (left_type[1]) {
  322. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  323. }
  324. }
  325. #if 1
  326. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  327. int list;
  328. for(list=0; list<h->list_count; list++){
  329. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  330. /*if(!h->mv_cache_clean[list]){
  331. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  332. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  333. h->mv_cache_clean[list]= 1;
  334. }*/
  335. continue;
  336. }
  337. h->mv_cache_clean[list]= 0;
  338. if(USES_LIST(top_type, list)){
  339. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  340. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  341. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  342. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  343. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  344. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  345. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  346. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  347. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  348. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  349. }else{
  350. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  351. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  352. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  353. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  354. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  355. }
  356. for(i=0; i<2; i++){
  357. int cache_idx = scan8[0] - 1 + i*2*8;
  358. if(USES_LIST(left_type[i], list)){
  359. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  360. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  361. *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
  362. *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
  363. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  364. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  365. }else{
  366. *(uint32_t*)h->mv_cache [list][cache_idx ]=
  367. *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
  368. h->ref_cache[list][cache_idx ]=
  369. h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  370. }
  371. }
  372. if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
  373. continue;
  374. if(USES_LIST(topleft_type, list)){
  375. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
  376. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
  377. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  378. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  379. }else{
  380. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  381. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  382. }
  383. if(USES_LIST(topright_type, list)){
  384. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  385. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  386. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  387. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  388. }else{
  389. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  390. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  391. }
  392. if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
  393. continue;
  394. h->ref_cache[list][scan8[5 ]+1] =
  395. h->ref_cache[list][scan8[7 ]+1] =
  396. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  397. h->ref_cache[list][scan8[4 ]] =
  398. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  399. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  400. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  401. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  402. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  403. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  404. if( h->pps.cabac ) {
  405. /* XXX beurk, Load mvd */
  406. if(USES_LIST(top_type, list)){
  407. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  408. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  409. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  410. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  411. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  412. }else{
  413. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  414. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  415. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  416. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  417. }
  418. if(USES_LIST(left_type[0], list)){
  419. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  420. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  421. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  422. }else{
  423. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  424. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  425. }
  426. if(USES_LIST(left_type[1], list)){
  427. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  428. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  429. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  430. }else{
  431. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  432. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  433. }
  434. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  435. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  436. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  437. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  438. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  439. if(h->slice_type == FF_B_TYPE){
  440. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  441. if(IS_DIRECT(top_type)){
  442. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  443. }else if(IS_8X8(top_type)){
  444. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  445. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  446. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  447. }else{
  448. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  449. }
  450. if(IS_DIRECT(left_type[0]))
  451. h->direct_cache[scan8[0] - 1 + 0*8]= 1;
  452. else if(IS_8X8(left_type[0]))
  453. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  454. else
  455. h->direct_cache[scan8[0] - 1 + 0*8]= 0;
  456. if(IS_DIRECT(left_type[1]))
  457. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  458. else if(IS_8X8(left_type[1]))
  459. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  460. else
  461. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  462. }
  463. }
  464. if(FRAME_MBAFF){
  465. #define MAP_MVS\
  466. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  467. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  468. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  469. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  470. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  471. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  472. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  473. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  474. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  475. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  476. if(MB_FIELD){
  477. #define MAP_F2F(idx, mb_type)\
  478. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  479. h->ref_cache[list][idx] <<= 1;\
  480. h->mv_cache[list][idx][1] /= 2;\
  481. h->mvd_cache[list][idx][1] /= 2;\
  482. }
  483. MAP_MVS
  484. #undef MAP_F2F
  485. }else{
  486. #define MAP_F2F(idx, mb_type)\
  487. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  488. h->ref_cache[list][idx] >>= 1;\
  489. h->mv_cache[list][idx][1] <<= 1;\
  490. h->mvd_cache[list][idx][1] <<= 1;\
  491. }
  492. MAP_MVS
  493. #undef MAP_F2F
  494. }
  495. }
  496. }
  497. }
  498. #endif
  499. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  500. }
  501. static inline void write_back_intra_pred_mode(H264Context *h){
  502. const int mb_xy= h->mb_xy;
  503. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  504. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  505. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  506. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  507. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  508. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  509. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  510. }
  511. /**
  512. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  513. */
  514. static inline int check_intra4x4_pred_mode(H264Context *h){
  515. MpegEncContext * const s = &h->s;
  516. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  517. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  518. int i;
  519. if(!(h->top_samples_available&0x8000)){
  520. for(i=0; i<4; i++){
  521. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  522. if(status<0){
  523. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  524. return -1;
  525. } else if(status){
  526. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  527. }
  528. }
  529. }
  530. if(!(h->left_samples_available&0x8000)){
  531. for(i=0; i<4; i++){
  532. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  533. if(status<0){
  534. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  535. return -1;
  536. } else if(status){
  537. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  538. }
  539. }
  540. }
  541. return 0;
  542. } //FIXME cleanup like next
  543. /**
  544. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  545. */
  546. static inline int check_intra_pred_mode(H264Context *h, int mode){
  547. MpegEncContext * const s = &h->s;
  548. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  549. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  550. if(mode > 6U) {
  551. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  552. return -1;
  553. }
  554. if(!(h->top_samples_available&0x8000)){
  555. mode= top[ mode ];
  556. if(mode<0){
  557. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  558. return -1;
  559. }
  560. }
  561. if(!(h->left_samples_available&0x8000)){
  562. mode= left[ mode ];
  563. if(mode<0){
  564. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  565. return -1;
  566. }
  567. }
  568. return mode;
  569. }
  570. /**
  571. * gets the predicted intra4x4 prediction mode.
  572. */
  573. static inline int pred_intra_mode(H264Context *h, int n){
  574. const int index8= scan8[n];
  575. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  576. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  577. const int min= FFMIN(left, top);
  578. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  579. if(min<0) return DC_PRED;
  580. else return min;
  581. }
  582. static inline void write_back_non_zero_count(H264Context *h){
  583. const int mb_xy= h->mb_xy;
  584. h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
  585. h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
  586. h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
  587. h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
  588. h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
  589. h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
  590. h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
  591. h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
  592. h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
  593. h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
  594. h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
  595. h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
  596. h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
  597. if(FRAME_MBAFF){
  598. // store all luma nnzs, for deblocking
  599. int v = 0, i;
  600. for(i=0; i<16; i++)
  601. v += (!!h->non_zero_count_cache[scan8[i]]) << i;
  602. *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
  603. }
  604. }
  605. /**
  606. * gets the predicted number of non zero coefficients.
  607. * @param n block index
  608. */
  609. static inline int pred_non_zero_count(H264Context *h, int n){
  610. const int index8= scan8[n];
  611. const int left= h->non_zero_count_cache[index8 - 1];
  612. const int top = h->non_zero_count_cache[index8 - 8];
  613. int i= left + top;
  614. if(i<64) i= (i+1)>>1;
  615. tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  616. return i&31;
  617. }
  618. static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
  619. const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
  620. MpegEncContext *s = &h->s;
  621. /* there is no consistent mapping of mvs to neighboring locations that will
  622. * make mbaff happy, so we can't move all this logic to fill_caches */
  623. if(FRAME_MBAFF){
  624. const uint32_t *mb_types = s->current_picture_ptr->mb_type;
  625. const int16_t *mv;
  626. *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
  627. *C = h->mv_cache[list][scan8[0]-2];
  628. if(!MB_FIELD
  629. && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
  630. int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
  631. if(IS_INTERLACED(mb_types[topright_xy])){
  632. #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
  633. const int x4 = X4, y4 = Y4;\
  634. const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
  635. if(!USES_LIST(mb_type,list))\
  636. return LIST_NOT_USED;\
  637. mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
  638. h->mv_cache[list][scan8[0]-2][0] = mv[0];\
  639. h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
  640. return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
  641. SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
  642. }
  643. }
  644. if(topright_ref == PART_NOT_AVAILABLE
  645. && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
  646. && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
  647. if(!MB_FIELD
  648. && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
  649. SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
  650. }
  651. if(MB_FIELD
  652. && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
  653. && i >= scan8[0]+8){
  654. // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
  655. SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
  656. }
  657. }
  658. #undef SET_DIAG_MV
  659. }
  660. if(topright_ref != PART_NOT_AVAILABLE){
  661. *C= h->mv_cache[list][ i - 8 + part_width ];
  662. return topright_ref;
  663. }else{
  664. tprintf(s->avctx, "topright MV not available\n");
  665. *C= h->mv_cache[list][ i - 8 - 1 ];
  666. return h->ref_cache[list][ i - 8 - 1 ];
  667. }
  668. }
  669. /**
  670. * gets the predicted MV.
  671. * @param n the block index
  672. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  673. * @param mx the x component of the predicted motion vector
  674. * @param my the y component of the predicted motion vector
  675. */
  676. static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
  677. const int index8= scan8[n];
  678. const int top_ref= h->ref_cache[list][ index8 - 8 ];
  679. const int left_ref= h->ref_cache[list][ index8 - 1 ];
  680. const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
  681. const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
  682. const int16_t * C;
  683. int diagonal_ref, match_count;
  684. assert(part_width==1 || part_width==2 || part_width==4);
  685. /* mv_cache
  686. B . . A T T T T
  687. U . . L . . , .
  688. U . . L . . . .
  689. U . . L . . , .
  690. . . . L . . . .
  691. */
  692. diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
  693. match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
  694. tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
  695. if(match_count > 1){ //most common
  696. *mx= mid_pred(A[0], B[0], C[0]);
  697. *my= mid_pred(A[1], B[1], C[1]);
  698. }else if(match_count==1){
  699. if(left_ref==ref){
  700. *mx= A[0];
  701. *my= A[1];
  702. }else if(top_ref==ref){
  703. *mx= B[0];
  704. *my= B[1];
  705. }else{
  706. *mx= C[0];
  707. *my= C[1];
  708. }
  709. }else{
  710. if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
  711. *mx= A[0];
  712. *my= A[1];
  713. }else{
  714. *mx= mid_pred(A[0], B[0], C[0]);
  715. *my= mid_pred(A[1], B[1], C[1]);
  716. }
  717. }
  718. tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
  719. }
  720. /**
  721. * gets the directionally predicted 16x8 MV.
  722. * @param n the block index
  723. * @param mx the x component of the predicted motion vector
  724. * @param my the y component of the predicted motion vector
  725. */
  726. static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  727. if(n==0){
  728. const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
  729. const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
  730. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
  731. if(top_ref == ref){
  732. *mx= B[0];
  733. *my= B[1];
  734. return;
  735. }
  736. }else{
  737. const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
  738. const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
  739. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  740. if(left_ref == ref){
  741. *mx= A[0];
  742. *my= A[1];
  743. return;
  744. }
  745. }
  746. //RARE
  747. pred_motion(h, n, 4, list, ref, mx, my);
  748. }
  749. /**
  750. * gets the directionally predicted 8x16 MV.
  751. * @param n the block index
  752. * @param mx the x component of the predicted motion vector
  753. * @param my the y component of the predicted motion vector
  754. */
  755. static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  756. if(n==0){
  757. const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
  758. const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
  759. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  760. if(left_ref == ref){
  761. *mx= A[0];
  762. *my= A[1];
  763. return;
  764. }
  765. }else{
  766. const int16_t * C;
  767. int diagonal_ref;
  768. diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
  769. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
  770. if(diagonal_ref == ref){
  771. *mx= C[0];
  772. *my= C[1];
  773. return;
  774. }
  775. }
  776. //RARE
  777. pred_motion(h, n, 2, list, ref, mx, my);
  778. }
  779. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
  780. const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
  781. const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
  782. tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
  783. if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
  784. || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
  785. || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
  786. *mx = *my = 0;
  787. return;
  788. }
  789. pred_motion(h, 0, 4, 0, 0, mx, my);
  790. return;
  791. }
  792. static inline void direct_dist_scale_factor(H264Context * const h){
  793. const int poc = h->s.current_picture_ptr->poc;
  794. const int poc1 = h->ref_list[1][0].poc;
  795. int i;
  796. for(i=0; i<h->ref_count[0]; i++){
  797. int poc0 = h->ref_list[0][i].poc;
  798. int td = av_clip(poc1 - poc0, -128, 127);
  799. if(td == 0 /* FIXME || pic0 is a long-term ref */){
  800. h->dist_scale_factor[i] = 256;
  801. }else{
  802. int tb = av_clip(poc - poc0, -128, 127);
  803. int tx = (16384 + (FFABS(td) >> 1)) / td;
  804. h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
  805. }
  806. }
  807. if(FRAME_MBAFF){
  808. for(i=0; i<h->ref_count[0]; i++){
  809. h->dist_scale_factor_field[2*i] =
  810. h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
  811. }
  812. }
  813. }
  814. static inline void direct_ref_list_init(H264Context * const h){
  815. MpegEncContext * const s = &h->s;
  816. Picture * const ref1 = &h->ref_list[1][0];
  817. Picture * const cur = s->current_picture_ptr;
  818. int list, i, j;
  819. if(cur->pict_type == FF_I_TYPE)
  820. cur->ref_count[0] = 0;
  821. if(cur->pict_type != FF_B_TYPE)
  822. cur->ref_count[1] = 0;
  823. for(list=0; list<2; list++){
  824. cur->ref_count[list] = h->ref_count[list];
  825. for(j=0; j<h->ref_count[list]; j++)
  826. cur->ref_poc[list][j] = h->ref_list[list][j].poc;
  827. }
  828. if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
  829. return;
  830. for(list=0; list<2; list++){
  831. for(i=0; i<ref1->ref_count[list]; i++){
  832. const int poc = ref1->ref_poc[list][i];
  833. h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
  834. for(j=0; j<h->ref_count[list]; j++)
  835. if(h->ref_list[list][j].poc == poc){
  836. h->map_col_to_list0[list][i] = j;
  837. break;
  838. }
  839. }
  840. }
  841. if(FRAME_MBAFF){
  842. for(list=0; list<2; list++){
  843. for(i=0; i<ref1->ref_count[list]; i++){
  844. j = h->map_col_to_list0[list][i];
  845. h->map_col_to_list0_field[list][2*i] = 2*j;
  846. h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
  847. }
  848. }
  849. }
  850. }
  851. static inline void pred_direct_motion(H264Context * const h, int *mb_type){
  852. MpegEncContext * const s = &h->s;
  853. const int mb_xy = h->mb_xy;
  854. const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  855. const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  856. const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
  857. const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
  858. const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
  859. const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
  860. const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
  861. const int is_b8x8 = IS_8X8(*mb_type);
  862. unsigned int sub_mb_type;
  863. int i8, i4;
  864. #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
  865. if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
  866. /* FIXME save sub mb types from previous frames (or derive from MVs)
  867. * so we know exactly what block size to use */
  868. sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
  869. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  870. }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
  871. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  872. *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
  873. }else{
  874. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  875. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  876. }
  877. if(!is_b8x8)
  878. *mb_type |= MB_TYPE_DIRECT2;
  879. if(MB_FIELD)
  880. *mb_type |= MB_TYPE_INTERLACED;
  881. tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
  882. if(h->direct_spatial_mv_pred){
  883. int ref[2];
  884. int mv[2][2];
  885. int list;
  886. /* FIXME interlacing + spatial direct uses wrong colocated block positions */
  887. /* ref = min(neighbors) */
  888. for(list=0; list<2; list++){
  889. int refa = h->ref_cache[list][scan8[0] - 1];
  890. int refb = h->ref_cache[list][scan8[0] - 8];
  891. int refc = h->ref_cache[list][scan8[0] - 8 + 4];
  892. if(refc == -2)
  893. refc = h->ref_cache[list][scan8[0] - 8 - 1];
  894. ref[list] = refa;
  895. if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
  896. ref[list] = refb;
  897. if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
  898. ref[list] = refc;
  899. if(ref[list] < 0)
  900. ref[list] = -1;
  901. }
  902. if(ref[0] < 0 && ref[1] < 0){
  903. ref[0] = ref[1] = 0;
  904. mv[0][0] = mv[0][1] =
  905. mv[1][0] = mv[1][1] = 0;
  906. }else{
  907. for(list=0; list<2; list++){
  908. if(ref[list] >= 0)
  909. pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
  910. else
  911. mv[list][0] = mv[list][1] = 0;
  912. }
  913. }
  914. if(ref[1] < 0){
  915. if(!is_b8x8)
  916. *mb_type &= ~MB_TYPE_L1;
  917. sub_mb_type &= ~MB_TYPE_L1;
  918. }else if(ref[0] < 0){
  919. if(!is_b8x8)
  920. *mb_type &= ~MB_TYPE_L0;
  921. sub_mb_type &= ~MB_TYPE_L0;
  922. }
  923. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  924. int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  925. int mb_types_col[2];
  926. int b8_stride = h->b8_stride;
  927. int b4_stride = h->b_stride;
  928. *mb_type = (*mb_type & ~MB_TYPE_16x16) | MB_TYPE_8x8;
  929. if(IS_INTERLACED(*mb_type)){
  930. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  931. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  932. if(s->mb_y&1){
  933. l1ref0 -= 2*b8_stride;
  934. l1ref1 -= 2*b8_stride;
  935. l1mv0 -= 4*b4_stride;
  936. l1mv1 -= 4*b4_stride;
  937. }
  938. b8_stride *= 3;
  939. b4_stride *= 6;
  940. }else{
  941. int cur_poc = s->current_picture_ptr->poc;
  942. int *col_poc = h->ref_list[1]->field_poc;
  943. int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
  944. int dy = 2*col_parity - (s->mb_y&1);
  945. mb_types_col[0] =
  946. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy + col_parity*s->mb_stride];
  947. l1ref0 += dy*b8_stride;
  948. l1ref1 += dy*b8_stride;
  949. l1mv0 += 2*dy*b4_stride;
  950. l1mv1 += 2*dy*b4_stride;
  951. b8_stride = 0;
  952. }
  953. for(i8=0; i8<4; i8++){
  954. int x8 = i8&1;
  955. int y8 = i8>>1;
  956. int xy8 = x8+y8*b8_stride;
  957. int xy4 = 3*x8+y8*b4_stride;
  958. int a=0, b=0;
  959. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  960. continue;
  961. h->sub_mb_type[i8] = sub_mb_type;
  962. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  963. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  964. if(!IS_INTRA(mb_types_col[y8])
  965. && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
  966. || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
  967. if(ref[0] > 0)
  968. a= pack16to32(mv[0][0],mv[0][1]);
  969. if(ref[1] > 0)
  970. b= pack16to32(mv[1][0],mv[1][1]);
  971. }else{
  972. a= pack16to32(mv[0][0],mv[0][1]);
  973. b= pack16to32(mv[1][0],mv[1][1]);
  974. }
  975. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
  976. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
  977. }
  978. }else if(IS_16X16(*mb_type)){
  979. int a=0, b=0;
  980. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
  981. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
  982. if(!IS_INTRA(mb_type_col)
  983. && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
  984. || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
  985. && (h->x264_build>33 || !h->x264_build)))){
  986. if(ref[0] > 0)
  987. a= pack16to32(mv[0][0],mv[0][1]);
  988. if(ref[1] > 0)
  989. b= pack16to32(mv[1][0],mv[1][1]);
  990. }else{
  991. a= pack16to32(mv[0][0],mv[0][1]);
  992. b= pack16to32(mv[1][0],mv[1][1]);
  993. }
  994. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
  995. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
  996. }else{
  997. for(i8=0; i8<4; i8++){
  998. const int x8 = i8&1;
  999. const int y8 = i8>>1;
  1000. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1001. continue;
  1002. h->sub_mb_type[i8] = sub_mb_type;
  1003. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1004. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1005. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  1006. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  1007. /* col_zero_flag */
  1008. if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
  1009. || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
  1010. && (h->x264_build>33 || !h->x264_build)))){
  1011. const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
  1012. if(IS_SUB_8X8(sub_mb_type)){
  1013. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1014. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1015. if(ref[0] == 0)
  1016. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1017. if(ref[1] == 0)
  1018. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1019. }
  1020. }else
  1021. for(i4=0; i4<4; i4++){
  1022. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1023. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1024. if(ref[0] == 0)
  1025. *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
  1026. if(ref[1] == 0)
  1027. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
  1028. }
  1029. }
  1030. }
  1031. }
  1032. }
  1033. }else{ /* direct temporal mv pred */
  1034. const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
  1035. const int *dist_scale_factor = h->dist_scale_factor;
  1036. if(FRAME_MBAFF){
  1037. if(IS_INTERLACED(*mb_type)){
  1038. map_col_to_list0[0] = h->map_col_to_list0_field[0];
  1039. map_col_to_list0[1] = h->map_col_to_list0_field[1];
  1040. dist_scale_factor = h->dist_scale_factor_field;
  1041. }
  1042. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  1043. /* FIXME assumes direct_8x8_inference == 1 */
  1044. const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  1045. int mb_types_col[2];
  1046. int y_shift;
  1047. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
  1048. | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
  1049. | (*mb_type & MB_TYPE_INTERLACED);
  1050. sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
  1051. if(IS_INTERLACED(*mb_type)){
  1052. /* frame to field scaling */
  1053. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  1054. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1055. if(s->mb_y&1){
  1056. l1ref0 -= 2*h->b8_stride;
  1057. l1ref1 -= 2*h->b8_stride;
  1058. l1mv0 -= 4*h->b_stride;
  1059. l1mv1 -= 4*h->b_stride;
  1060. }
  1061. y_shift = 0;
  1062. if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
  1063. && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
  1064. && !is_b8x8)
  1065. *mb_type |= MB_TYPE_16x8;
  1066. else
  1067. *mb_type |= MB_TYPE_8x8;
  1068. }else{
  1069. /* field to frame scaling */
  1070. /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
  1071. * but in MBAFF, top and bottom POC are equal */
  1072. int dy = (s->mb_y&1) ? 1 : 2;
  1073. mb_types_col[0] =
  1074. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1075. l1ref0 += dy*h->b8_stride;
  1076. l1ref1 += dy*h->b8_stride;
  1077. l1mv0 += 2*dy*h->b_stride;
  1078. l1mv1 += 2*dy*h->b_stride;
  1079. y_shift = 2;
  1080. if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
  1081. && !is_b8x8)
  1082. *mb_type |= MB_TYPE_16x16;
  1083. else
  1084. *mb_type |= MB_TYPE_8x8;
  1085. }
  1086. for(i8=0; i8<4; i8++){
  1087. const int x8 = i8&1;
  1088. const int y8 = i8>>1;
  1089. int ref0, scale;
  1090. const int16_t (*l1mv)[2]= l1mv0;
  1091. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1092. continue;
  1093. h->sub_mb_type[i8] = sub_mb_type;
  1094. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1095. if(IS_INTRA(mb_types_col[y8])){
  1096. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1097. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1098. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1099. continue;
  1100. }
  1101. ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
  1102. if(ref0 >= 0)
  1103. ref0 = map_col_to_list0[0][ref0*2>>y_shift];
  1104. else{
  1105. ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
  1106. l1mv= l1mv1;
  1107. }
  1108. scale = dist_scale_factor[ref0];
  1109. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1110. {
  1111. const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
  1112. int my_col = (mv_col[1]<<y_shift)/2;
  1113. int mx = (scale * mv_col[0] + 128) >> 8;
  1114. int my = (scale * my_col + 128) >> 8;
  1115. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1116. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
  1117. }
  1118. }
  1119. return;
  1120. }
  1121. }
  1122. /* one-to-one mv scaling */
  1123. if(IS_16X16(*mb_type)){
  1124. int ref, mv0, mv1;
  1125. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
  1126. if(IS_INTRA(mb_type_col)){
  1127. ref=mv0=mv1=0;
  1128. }else{
  1129. const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
  1130. : map_col_to_list0[1][l1ref1[0]];
  1131. const int scale = dist_scale_factor[ref0];
  1132. const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
  1133. int mv_l0[2];
  1134. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1135. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1136. ref= ref0;
  1137. mv0= pack16to32(mv_l0[0],mv_l0[1]);
  1138. mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1139. }
  1140. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
  1141. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
  1142. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
  1143. }else{
  1144. for(i8=0; i8<4; i8++){
  1145. const int x8 = i8&1;
  1146. const int y8 = i8>>1;
  1147. int ref0, scale;
  1148. const int16_t (*l1mv)[2]= l1mv0;
  1149. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1150. continue;
  1151. h->sub_mb_type[i8] = sub_mb_type;
  1152. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1153. if(IS_INTRA(mb_type_col)){
  1154. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1155. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1156. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1157. continue;
  1158. }
  1159. ref0 = l1ref0[x8 + y8*h->b8_stride];
  1160. if(ref0 >= 0)
  1161. ref0 = map_col_to_list0[0][ref0];
  1162. else{
  1163. ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
  1164. l1mv= l1mv1;
  1165. }
  1166. scale = dist_scale_factor[ref0];
  1167. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1168. if(IS_SUB_8X8(sub_mb_type)){
  1169. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1170. int mx = (scale * mv_col[0] + 128) >> 8;
  1171. int my = (scale * mv_col[1] + 128) >> 8;
  1172. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1173. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
  1174. }else
  1175. for(i4=0; i4<4; i4++){
  1176. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1177. int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
  1178. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1179. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1180. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
  1181. pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1182. }
  1183. }
  1184. }
  1185. }
  1186. }
  1187. static inline void write_back_motion(H264Context *h, int mb_type){
  1188. MpegEncContext * const s = &h->s;
  1189. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1190. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1191. int list;
  1192. if(!USES_LIST(mb_type, 0))
  1193. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1194. for(list=0; list<h->list_count; list++){
  1195. int y;
  1196. if(!USES_LIST(mb_type, list))
  1197. continue;
  1198. for(y=0; y<4; y++){
  1199. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1200. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1201. }
  1202. if( h->pps.cabac ) {
  1203. if(IS_SKIP(mb_type))
  1204. fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
  1205. else
  1206. for(y=0; y<4; y++){
  1207. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1208. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1209. }
  1210. }
  1211. {
  1212. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1213. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1214. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1215. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1216. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1217. }
  1218. }
  1219. if(h->slice_type == FF_B_TYPE && h->pps.cabac){
  1220. if(IS_8X8(mb_type)){
  1221. uint8_t *direct_table = &h->direct_table[b8_xy];
  1222. direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1223. direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1224. direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1225. }
  1226. }
  1227. }
  1228. /**
  1229. * Decodes a network abstraction layer unit.
  1230. * @param consumed is the number of bytes used as input
  1231. * @param length is the length of the array
  1232. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  1233. * @returns decoded bytes, might be src+1 if no escapes
  1234. */
  1235. static const uint8_t *decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  1236. int i, si, di;
  1237. uint8_t *dst;
  1238. int bufidx;
  1239. // src[0]&0x80; //forbidden bit
  1240. h->nal_ref_idc= src[0]>>5;
  1241. h->nal_unit_type= src[0]&0x1F;
  1242. src++; length--;
  1243. #if 0
  1244. for(i=0; i<length; i++)
  1245. printf("%2X ", src[i]);
  1246. #endif
  1247. for(i=0; i+1<length; i+=2){
  1248. if(src[i]) continue;
  1249. if(i>0 && src[i-1]==0) i--;
  1250. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1251. if(src[i+2]!=3){
  1252. /* startcode, so we must be past the end */
  1253. length=i;
  1254. }
  1255. break;
  1256. }
  1257. }
  1258. if(i>=length-1){ //no escaped 0
  1259. *dst_length= length;
  1260. *consumed= length+1; //+1 for the header
  1261. return src;
  1262. }
  1263. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  1264. h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
  1265. dst= h->rbsp_buffer[bufidx];
  1266. if (dst == NULL){
  1267. return NULL;
  1268. }
  1269. //printf("decoding esc\n");
  1270. si=di=0;
  1271. while(si<length){
  1272. //remove escapes (very rare 1:2^22)
  1273. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1274. if(src[si+2]==3){ //escape
  1275. dst[di++]= 0;
  1276. dst[di++]= 0;
  1277. si+=3;
  1278. continue;
  1279. }else //next start code
  1280. break;
  1281. }
  1282. dst[di++]= src[si++];
  1283. }
  1284. *dst_length= di;
  1285. *consumed= si + 1;//+1 for the header
  1286. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  1287. return dst;
  1288. }
  1289. /**
  1290. * identifies the exact end of the bitstream
  1291. * @return the length of the trailing, or 0 if damaged
  1292. */
  1293. static int decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  1294. int v= *src;
  1295. int r;
  1296. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  1297. for(r=1; r<9; r++){
  1298. if(v&1) return r;
  1299. v>>=1;
  1300. }
  1301. return 0;
  1302. }
  1303. /**
  1304. * idct tranforms the 16 dc values and dequantize them.
  1305. * @param qp quantization parameter
  1306. */
  1307. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1308. #define stride 16
  1309. int i;
  1310. int temp[16]; //FIXME check if this is a good idea
  1311. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1312. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1313. //memset(block, 64, 2*256);
  1314. //return;
  1315. for(i=0; i<4; i++){
  1316. const int offset= y_offset[i];
  1317. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1318. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1319. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1320. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1321. temp[4*i+0]= z0+z3;
  1322. temp[4*i+1]= z1+z2;
  1323. temp[4*i+2]= z1-z2;
  1324. temp[4*i+3]= z0-z3;
  1325. }
  1326. for(i=0; i<4; i++){
  1327. const int offset= x_offset[i];
  1328. const int z0= temp[4*0+i] + temp[4*2+i];
  1329. const int z1= temp[4*0+i] - temp[4*2+i];
  1330. const int z2= temp[4*1+i] - temp[4*3+i];
  1331. const int z3= temp[4*1+i] + temp[4*3+i];
  1332. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
  1333. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  1334. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  1335. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  1336. }
  1337. }
  1338. #if 0
  1339. /**
  1340. * dct tranforms the 16 dc values.
  1341. * @param qp quantization parameter ??? FIXME
  1342. */
  1343. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  1344. // const int qmul= dequant_coeff[qp][0];
  1345. int i;
  1346. int temp[16]; //FIXME check if this is a good idea
  1347. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1348. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1349. for(i=0; i<4; i++){
  1350. const int offset= y_offset[i];
  1351. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1352. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1353. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1354. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1355. temp[4*i+0]= z0+z3;
  1356. temp[4*i+1]= z1+z2;
  1357. temp[4*i+2]= z1-z2;
  1358. temp[4*i+3]= z0-z3;
  1359. }
  1360. for(i=0; i<4; i++){
  1361. const int offset= x_offset[i];
  1362. const int z0= temp[4*0+i] + temp[4*2+i];
  1363. const int z1= temp[4*0+i] - temp[4*2+i];
  1364. const int z2= temp[4*1+i] - temp[4*3+i];
  1365. const int z3= temp[4*1+i] + temp[4*3+i];
  1366. block[stride*0 +offset]= (z0 + z3)>>1;
  1367. block[stride*2 +offset]= (z1 + z2)>>1;
  1368. block[stride*8 +offset]= (z1 - z2)>>1;
  1369. block[stride*10+offset]= (z0 - z3)>>1;
  1370. }
  1371. }
  1372. #endif
  1373. #undef xStride
  1374. #undef stride
  1375. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1376. const int stride= 16*2;
  1377. const int xStride= 16;
  1378. int a,b,c,d,e;
  1379. a= block[stride*0 + xStride*0];
  1380. b= block[stride*0 + xStride*1];
  1381. c= block[stride*1 + xStride*0];
  1382. d= block[stride*1 + xStride*1];
  1383. e= a-b;
  1384. a= a+b;
  1385. b= c-d;
  1386. c= c+d;
  1387. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  1388. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  1389. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  1390. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  1391. }
  1392. #if 0
  1393. static void chroma_dc_dct_c(DCTELEM *block){
  1394. const int stride= 16*2;
  1395. const int xStride= 16;
  1396. int a,b,c,d,e;
  1397. a= block[stride*0 + xStride*0];
  1398. b= block[stride*0 + xStride*1];
  1399. c= block[stride*1 + xStride*0];
  1400. d= block[stride*1 + xStride*1];
  1401. e= a-b;
  1402. a= a+b;
  1403. b= c-d;
  1404. c= c+d;
  1405. block[stride*0 + xStride*0]= (a+c);
  1406. block[stride*0 + xStride*1]= (e+b);
  1407. block[stride*1 + xStride*0]= (a-c);
  1408. block[stride*1 + xStride*1]= (e-b);
  1409. }
  1410. #endif
  1411. /**
  1412. * gets the chroma qp.
  1413. */
  1414. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  1415. return h->pps.chroma_qp_table[t][qscale & 0xff];
  1416. }
  1417. //FIXME need to check that this does not overflow signed 32 bit for low qp, I am not sure, it's very close
  1418. //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
  1419. static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
  1420. int i;
  1421. const int * const quant_table= quant_coeff[qscale];
  1422. const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
  1423. const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
  1424. const unsigned int threshold2= (threshold1<<1);
  1425. int last_non_zero;
  1426. if(separate_dc){
  1427. if(qscale<=18){
  1428. //avoid overflows
  1429. const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
  1430. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
  1431. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1432. int level= block[0]*quant_coeff[qscale+18][0];
  1433. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1434. if(level>0){
  1435. level= (dc_bias + level)>>(QUANT_SHIFT-2);
  1436. block[0]= level;
  1437. }else{
  1438. level= (dc_bias - level)>>(QUANT_SHIFT-2);
  1439. block[0]= -level;
  1440. }
  1441. // last_non_zero = i;
  1442. }else{
  1443. block[0]=0;
  1444. }
  1445. }else{
  1446. const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
  1447. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
  1448. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1449. int level= block[0]*quant_table[0];
  1450. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1451. if(level>0){
  1452. level= (dc_bias + level)>>(QUANT_SHIFT+1);
  1453. block[0]= level;
  1454. }else{
  1455. level= (dc_bias - level)>>(QUANT_SHIFT+1);
  1456. block[0]= -level;
  1457. }
  1458. // last_non_zero = i;
  1459. }else{
  1460. block[0]=0;
  1461. }
  1462. }
  1463. last_non_zero= 0;
  1464. i=1;
  1465. }else{
  1466. last_non_zero= -1;
  1467. i=0;
  1468. }
  1469. for(; i<16; i++){
  1470. const int j= scantable[i];
  1471. int level= block[j]*quant_table[j];
  1472. // if( bias+level >= (1<<(QMAT_SHIFT - 3))
  1473. // || bias-level >= (1<<(QMAT_SHIFT - 3))){
  1474. if(((unsigned)(level+threshold1))>threshold2){
  1475. if(level>0){
  1476. level= (bias + level)>>QUANT_SHIFT;
  1477. block[j]= level;
  1478. }else{
  1479. level= (bias - level)>>QUANT_SHIFT;
  1480. block[j]= -level;
  1481. }
  1482. last_non_zero = i;
  1483. }else{
  1484. block[j]=0;
  1485. }
  1486. }
  1487. return last_non_zero;
  1488. }
  1489. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  1490. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1491. int src_x_offset, int src_y_offset,
  1492. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  1493. MpegEncContext * const s = &h->s;
  1494. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  1495. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  1496. const int luma_xy= (mx&3) + ((my&3)<<2);
  1497. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  1498. uint8_t * src_cb, * src_cr;
  1499. int extra_width= h->emu_edge_width;
  1500. int extra_height= h->emu_edge_height;
  1501. int emu=0;
  1502. const int full_mx= mx>>2;
  1503. const int full_my= my>>2;
  1504. const int pic_width = 16*s->mb_width;
  1505. const int pic_height = 16*s->mb_height >> MB_FIELD;
  1506. if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
  1507. return;
  1508. if(mx&7) extra_width -= 3;
  1509. if(my&7) extra_height -= 3;
  1510. if( full_mx < 0-extra_width
  1511. || full_my < 0-extra_height
  1512. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  1513. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  1514. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  1515. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  1516. emu=1;
  1517. }
  1518. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  1519. if(!square){
  1520. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  1521. }
  1522. if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  1523. if(MB_FIELD){
  1524. // chroma offset when predicting from a field of opposite parity
  1525. my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
  1526. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  1527. }
  1528. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1529. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1530. if(emu){
  1531. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1532. src_cb= s->edge_emu_buffer;
  1533. }
  1534. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1535. if(emu){
  1536. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1537. src_cr= s->edge_emu_buffer;
  1538. }
  1539. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1540. }
  1541. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  1542. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1543. int x_offset, int y_offset,
  1544. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1545. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1546. int list0, int list1){
  1547. MpegEncContext * const s = &h->s;
  1548. qpel_mc_func *qpix_op= qpix_put;
  1549. h264_chroma_mc_func chroma_op= chroma_put;
  1550. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1551. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1552. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1553. x_offset += 8*s->mb_x;
  1554. y_offset += 8*(s->mb_y >> MB_FIELD);
  1555. if(list0){
  1556. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  1557. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  1558. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1559. qpix_op, chroma_op);
  1560. qpix_op= qpix_avg;
  1561. chroma_op= chroma_avg;
  1562. }
  1563. if(list1){
  1564. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  1565. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  1566. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1567. qpix_op, chroma_op);
  1568. }
  1569. }
  1570. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  1571. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1572. int x_offset, int y_offset,
  1573. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1574. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  1575. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  1576. int list0, int list1){
  1577. MpegEncContext * const s = &h->s;
  1578. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1579. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1580. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1581. x_offset += 8*s->mb_x;
  1582. y_offset += 8*(s->mb_y >> MB_FIELD);
  1583. if(list0 && list1){
  1584. /* don't optimize for luma-only case, since B-frames usually
  1585. * use implicit weights => chroma too. */
  1586. uint8_t *tmp_cb = s->obmc_scratchpad;
  1587. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  1588. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  1589. int refn0 = h->ref_cache[0][ scan8[n] ];
  1590. int refn1 = h->ref_cache[1][ scan8[n] ];
  1591. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  1592. dest_y, dest_cb, dest_cr,
  1593. x_offset, y_offset, qpix_put, chroma_put);
  1594. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  1595. tmp_y, tmp_cb, tmp_cr,
  1596. x_offset, y_offset, qpix_put, chroma_put);
  1597. if(h->use_weight == 2){
  1598. int weight0 = h->implicit_weight[refn0][refn1];
  1599. int weight1 = 64 - weight0;
  1600. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  1601. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1602. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1603. }else{
  1604. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  1605. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  1606. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  1607. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1608. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  1609. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  1610. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1611. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  1612. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  1613. }
  1614. }else{
  1615. int list = list1 ? 1 : 0;
  1616. int refn = h->ref_cache[list][ scan8[n] ];
  1617. Picture *ref= &h->ref_list[list][refn];
  1618. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  1619. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1620. qpix_put, chroma_put);
  1621. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  1622. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  1623. if(h->use_weight_chroma){
  1624. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1625. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  1626. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1627. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  1628. }
  1629. }
  1630. }
  1631. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  1632. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1633. int x_offset, int y_offset,
  1634. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1635. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1636. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  1637. int list0, int list1){
  1638. if((h->use_weight==2 && list0 && list1
  1639. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  1640. || h->use_weight==1)
  1641. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1642. x_offset, y_offset, qpix_put, chroma_put,
  1643. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  1644. else
  1645. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1646. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  1647. }
  1648. static inline void prefetch_motion(H264Context *h, int list){
  1649. /* fetch pixels for estimated mv 4 macroblocks ahead
  1650. * optimized for 64byte cache lines */
  1651. MpegEncContext * const s = &h->s;
  1652. const int refn = h->ref_cache[list][scan8[0]];
  1653. if(refn >= 0){
  1654. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  1655. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  1656. uint8_t **src= h->ref_list[list][refn].data;
  1657. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  1658. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  1659. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  1660. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  1661. }
  1662. }
  1663. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1664. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  1665. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  1666. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  1667. MpegEncContext * const s = &h->s;
  1668. const int mb_xy= h->mb_xy;
  1669. const int mb_type= s->current_picture.mb_type[mb_xy];
  1670. assert(IS_INTER(mb_type));
  1671. prefetch_motion(h, 0);
  1672. if(IS_16X16(mb_type)){
  1673. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  1674. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  1675. &weight_op[0], &weight_avg[0],
  1676. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1677. }else if(IS_16X8(mb_type)){
  1678. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  1679. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1680. &weight_op[1], &weight_avg[1],
  1681. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1682. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  1683. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1684. &weight_op[1], &weight_avg[1],
  1685. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1686. }else if(IS_8X16(mb_type)){
  1687. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  1688. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1689. &weight_op[2], &weight_avg[2],
  1690. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1691. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  1692. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1693. &weight_op[2], &weight_avg[2],
  1694. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1695. }else{
  1696. int i;
  1697. assert(IS_8X8(mb_type));
  1698. for(i=0; i<4; i++){
  1699. const int sub_mb_type= h->sub_mb_type[i];
  1700. const int n= 4*i;
  1701. int x_offset= (i&1)<<2;
  1702. int y_offset= (i&2)<<1;
  1703. if(IS_SUB_8X8(sub_mb_type)){
  1704. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1705. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1706. &weight_op[3], &weight_avg[3],
  1707. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1708. }else if(IS_SUB_8X4(sub_mb_type)){
  1709. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1710. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1711. &weight_op[4], &weight_avg[4],
  1712. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1713. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  1714. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1715. &weight_op[4], &weight_avg[4],
  1716. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1717. }else if(IS_SUB_4X8(sub_mb_type)){
  1718. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1719. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1720. &weight_op[5], &weight_avg[5],
  1721. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1722. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  1723. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1724. &weight_op[5], &weight_avg[5],
  1725. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1726. }else{
  1727. int j;
  1728. assert(IS_SUB_4X4(sub_mb_type));
  1729. for(j=0; j<4; j++){
  1730. int sub_x_offset= x_offset + 2*(j&1);
  1731. int sub_y_offset= y_offset + (j&2);
  1732. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  1733. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1734. &weight_op[6], &weight_avg[6],
  1735. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1736. }
  1737. }
  1738. }
  1739. }
  1740. prefetch_motion(h, 1);
  1741. }
  1742. static av_cold void decode_init_vlc(void){
  1743. static int done = 0;
  1744. if (!done) {
  1745. int i;
  1746. done = 1;
  1747. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  1748. &chroma_dc_coeff_token_len [0], 1, 1,
  1749. &chroma_dc_coeff_token_bits[0], 1, 1, 1);
  1750. for(i=0; i<4; i++){
  1751. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  1752. &coeff_token_len [i][0], 1, 1,
  1753. &coeff_token_bits[i][0], 1, 1, 1);
  1754. }
  1755. for(i=0; i<3; i++){
  1756. init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  1757. &chroma_dc_total_zeros_len [i][0], 1, 1,
  1758. &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
  1759. }
  1760. for(i=0; i<15; i++){
  1761. init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
  1762. &total_zeros_len [i][0], 1, 1,
  1763. &total_zeros_bits[i][0], 1, 1, 1);
  1764. }
  1765. for(i=0; i<6; i++){
  1766. init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
  1767. &run_len [i][0], 1, 1,
  1768. &run_bits[i][0], 1, 1, 1);
  1769. }
  1770. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  1771. &run_len [6][0], 1, 1,
  1772. &run_bits[6][0], 1, 1, 1);
  1773. }
  1774. }
  1775. static void free_tables(H264Context *h){
  1776. int i;
  1777. H264Context *hx;
  1778. av_freep(&h->intra4x4_pred_mode);
  1779. av_freep(&h->chroma_pred_mode_table);
  1780. av_freep(&h->cbp_table);
  1781. av_freep(&h->mvd_table[0]);
  1782. av_freep(&h->mvd_table[1]);
  1783. av_freep(&h->direct_table);
  1784. av_freep(&h->non_zero_count);
  1785. av_freep(&h->slice_table_base);
  1786. h->slice_table= NULL;
  1787. av_freep(&h->mb2b_xy);
  1788. av_freep(&h->mb2b8_xy);
  1789. for(i = 0; i < MAX_SPS_COUNT; i++)
  1790. av_freep(h->sps_buffers + i);
  1791. for(i = 0; i < MAX_PPS_COUNT; i++)
  1792. av_freep(h->pps_buffers + i);
  1793. for(i = 0; i < h->s.avctx->thread_count; i++) {
  1794. hx = h->thread_context[i];
  1795. if(!hx) continue;
  1796. av_freep(&hx->top_borders[1]);
  1797. av_freep(&hx->top_borders[0]);
  1798. av_freep(&hx->s.obmc_scratchpad);
  1799. }
  1800. }
  1801. static void init_dequant8_coeff_table(H264Context *h){
  1802. int i,q,x;
  1803. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  1804. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  1805. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  1806. for(i=0; i<2; i++ ){
  1807. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  1808. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  1809. break;
  1810. }
  1811. for(q=0; q<52; q++){
  1812. int shift = ff_div6[q];
  1813. int idx = ff_rem6[q];
  1814. for(x=0; x<64; x++)
  1815. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  1816. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  1817. h->pps.scaling_matrix8[i][x]) << shift;
  1818. }
  1819. }
  1820. }
  1821. static void init_dequant4_coeff_table(H264Context *h){
  1822. int i,j,q,x;
  1823. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  1824. for(i=0; i<6; i++ ){
  1825. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  1826. for(j=0; j<i; j++){
  1827. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  1828. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  1829. break;
  1830. }
  1831. }
  1832. if(j<i)
  1833. continue;
  1834. for(q=0; q<52; q++){
  1835. int shift = ff_div6[q] + 2;
  1836. int idx = ff_rem6[q];
  1837. for(x=0; x<16; x++)
  1838. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  1839. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  1840. h->pps.scaling_matrix4[i][x]) << shift;
  1841. }
  1842. }
  1843. }
  1844. static void init_dequant_tables(H264Context *h){
  1845. int i,x;
  1846. init_dequant4_coeff_table(h);
  1847. if(h->pps.transform_8x8_mode)
  1848. init_dequant8_coeff_table(h);
  1849. if(h->sps.transform_bypass){
  1850. for(i=0; i<6; i++)
  1851. for(x=0; x<16; x++)
  1852. h->dequant4_coeff[i][0][x] = 1<<6;
  1853. if(h->pps.transform_8x8_mode)
  1854. for(i=0; i<2; i++)
  1855. for(x=0; x<64; x++)
  1856. h->dequant8_coeff[i][0][x] = 1<<6;
  1857. }
  1858. }
  1859. /**
  1860. * allocates tables.
  1861. * needs width/height
  1862. */
  1863. static int alloc_tables(H264Context *h){
  1864. MpegEncContext * const s = &h->s;
  1865. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  1866. int x,y;
  1867. CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
  1868. CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
  1869. CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
  1870. CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
  1871. CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
  1872. CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
  1873. CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
  1874. CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
  1875. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
  1876. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  1877. CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
  1878. CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
  1879. for(y=0; y<s->mb_height; y++){
  1880. for(x=0; x<s->mb_width; x++){
  1881. const int mb_xy= x + y*s->mb_stride;
  1882. const int b_xy = 4*x + 4*y*h->b_stride;
  1883. const int b8_xy= 2*x + 2*y*h->b8_stride;
  1884. h->mb2b_xy [mb_xy]= b_xy;
  1885. h->mb2b8_xy[mb_xy]= b8_xy;
  1886. }
  1887. }
  1888. s->obmc_scratchpad = NULL;
  1889. if(!h->dequant4_coeff[0])
  1890. init_dequant_tables(h);
  1891. return 0;
  1892. fail:
  1893. free_tables(h);
  1894. return -1;
  1895. }
  1896. /**
  1897. * Mimic alloc_tables(), but for every context thread.
  1898. */
  1899. static void clone_tables(H264Context *dst, H264Context *src){
  1900. dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
  1901. dst->non_zero_count = src->non_zero_count;
  1902. dst->slice_table = src->slice_table;
  1903. dst->cbp_table = src->cbp_table;
  1904. dst->mb2b_xy = src->mb2b_xy;
  1905. dst->mb2b8_xy = src->mb2b8_xy;
  1906. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  1907. dst->mvd_table[0] = src->mvd_table[0];
  1908. dst->mvd_table[1] = src->mvd_table[1];
  1909. dst->direct_table = src->direct_table;
  1910. dst->s.obmc_scratchpad = NULL;
  1911. ff_h264_pred_init(&dst->hpc, src->s.codec_id);
  1912. }
  1913. /**
  1914. * Init context
  1915. * Allocate buffers which are not shared amongst multiple threads.
  1916. */
  1917. static int context_init(H264Context *h){
  1918. CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1919. CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1920. return 0;
  1921. fail:
  1922. return -1; // free_tables will clean up for us
  1923. }
  1924. static av_cold void common_init(H264Context *h){
  1925. MpegEncContext * const s = &h->s;
  1926. s->width = s->avctx->width;
  1927. s->height = s->avctx->height;
  1928. s->codec_id= s->avctx->codec->id;
  1929. ff_h264_pred_init(&h->hpc, s->codec_id);
  1930. h->dequant_coeff_pps= -1;
  1931. s->unrestricted_mv=1;
  1932. s->decode=1; //FIXME
  1933. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  1934. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  1935. }
  1936. static av_cold int decode_init(AVCodecContext *avctx){
  1937. H264Context *h= avctx->priv_data;
  1938. MpegEncContext * const s = &h->s;
  1939. MPV_decode_defaults(s);
  1940. s->avctx = avctx;
  1941. common_init(h);
  1942. s->out_format = FMT_H264;
  1943. s->workaround_bugs= avctx->workaround_bugs;
  1944. // set defaults
  1945. // s->decode_mb= ff_h263_decode_mb;
  1946. s->quarter_sample = 1;
  1947. s->low_delay= 1;
  1948. avctx->pix_fmt= PIX_FMT_YUV420P;
  1949. decode_init_vlc();
  1950. if(avctx->extradata_size > 0 && avctx->extradata &&
  1951. *(char *)avctx->extradata == 1){
  1952. h->is_avc = 1;
  1953. h->got_avcC = 0;
  1954. } else {
  1955. h->is_avc = 0;
  1956. }
  1957. h->thread_context[0] = h;
  1958. return 0;
  1959. }
  1960. static int frame_start(H264Context *h){
  1961. MpegEncContext * const s = &h->s;
  1962. int i;
  1963. if(MPV_frame_start(s, s->avctx) < 0)
  1964. return -1;
  1965. ff_er_frame_start(s);
  1966. /*
  1967. * MPV_frame_start uses pict_type to derive key_frame.
  1968. * This is incorrect for H.264; IDR markings must be used.
  1969. * Zero here; IDR markings per slice in frame or fields are OR'd in later.
  1970. * See decode_nal_units().
  1971. */
  1972. s->current_picture_ptr->key_frame= 0;
  1973. assert(s->linesize && s->uvlinesize);
  1974. for(i=0; i<16; i++){
  1975. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  1976. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  1977. }
  1978. for(i=0; i<4; i++){
  1979. h->block_offset[16+i]=
  1980. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1981. h->block_offset[24+16+i]=
  1982. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1983. }
  1984. /* can't be in alloc_tables because linesize isn't known there.
  1985. * FIXME: redo bipred weight to not require extra buffer? */
  1986. for(i = 0; i < s->avctx->thread_count; i++)
  1987. if(!h->thread_context[i]->s.obmc_scratchpad)
  1988. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  1989. /* some macroblocks will be accessed before they're available */
  1990. if(FRAME_MBAFF || s->avctx->thread_count > 1)
  1991. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
  1992. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  1993. return 0;
  1994. }
  1995. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  1996. MpegEncContext * const s = &h->s;
  1997. int i;
  1998. src_y -= linesize;
  1999. src_cb -= uvlinesize;
  2000. src_cr -= uvlinesize;
  2001. // There are two lines saved, the line above the the top macroblock of a pair,
  2002. // and the line above the bottom macroblock
  2003. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2004. for(i=1; i<17; i++){
  2005. h->left_border[i]= src_y[15+i* linesize];
  2006. }
  2007. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  2008. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  2009. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2010. h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
  2011. h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
  2012. for(i=1; i<9; i++){
  2013. h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
  2014. h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
  2015. }
  2016. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  2017. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  2018. }
  2019. }
  2020. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  2021. MpegEncContext * const s = &h->s;
  2022. int temp8, i;
  2023. uint64_t temp64;
  2024. int deblock_left;
  2025. int deblock_top;
  2026. int mb_xy;
  2027. if(h->deblocking_filter == 2) {
  2028. mb_xy = h->mb_xy;
  2029. deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
  2030. deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
  2031. } else {
  2032. deblock_left = (s->mb_x > 0);
  2033. deblock_top = (s->mb_y > 0);
  2034. }
  2035. src_y -= linesize + 1;
  2036. src_cb -= uvlinesize + 1;
  2037. src_cr -= uvlinesize + 1;
  2038. #define XCHG(a,b,t,xchg)\
  2039. t= a;\
  2040. if(xchg)\
  2041. a= b;\
  2042. b= t;
  2043. if(deblock_left){
  2044. for(i = !deblock_top; i<17; i++){
  2045. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2046. }
  2047. }
  2048. if(deblock_top){
  2049. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2050. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2051. if(s->mb_x+1 < s->mb_width){
  2052. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2053. }
  2054. }
  2055. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2056. if(deblock_left){
  2057. for(i = !deblock_top; i<9; i++){
  2058. XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
  2059. XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
  2060. }
  2061. }
  2062. if(deblock_top){
  2063. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2064. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2065. }
  2066. }
  2067. }
  2068. static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  2069. MpegEncContext * const s = &h->s;
  2070. int i;
  2071. src_y -= 2 * linesize;
  2072. src_cb -= 2 * uvlinesize;
  2073. src_cr -= 2 * uvlinesize;
  2074. // There are two lines saved, the line above the the top macroblock of a pair,
  2075. // and the line above the bottom macroblock
  2076. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2077. h->left_border[1]= h->top_borders[1][s->mb_x][15];
  2078. for(i=2; i<34; i++){
  2079. h->left_border[i]= src_y[15+i* linesize];
  2080. }
  2081. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
  2082. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
  2083. *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
  2084. *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
  2085. if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2086. h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
  2087. h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
  2088. h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
  2089. h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
  2090. for(i=2; i<18; i++){
  2091. h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
  2092. h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
  2093. }
  2094. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
  2095. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
  2096. *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
  2097. *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
  2098. }
  2099. }
  2100. static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  2101. MpegEncContext * const s = &h->s;
  2102. int temp8, i;
  2103. uint64_t temp64;
  2104. int deblock_left = (s->mb_x > 0);
  2105. int deblock_top = (s->mb_y > 1);
  2106. tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
  2107. src_y -= 2 * linesize + 1;
  2108. src_cb -= 2 * uvlinesize + 1;
  2109. src_cr -= 2 * uvlinesize + 1;
  2110. #define XCHG(a,b,t,xchg)\
  2111. t= a;\
  2112. if(xchg)\
  2113. a= b;\
  2114. b= t;
  2115. if(deblock_left){
  2116. for(i = (!deblock_top)<<1; i<34; i++){
  2117. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2118. }
  2119. }
  2120. if(deblock_top){
  2121. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2122. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2123. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
  2124. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
  2125. if(s->mb_x+1 < s->mb_width){
  2126. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2127. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
  2128. }
  2129. }
  2130. if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2131. if(deblock_left){
  2132. for(i = (!deblock_top) << 1; i<18; i++){
  2133. XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
  2134. XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
  2135. }
  2136. }
  2137. if(deblock_top){
  2138. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2139. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2140. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
  2141. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
  2142. }
  2143. }
  2144. }
  2145. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  2146. MpegEncContext * const s = &h->s;
  2147. const int mb_x= s->mb_x;
  2148. const int mb_y= s->mb_y;
  2149. const int mb_xy= h->mb_xy;
  2150. const int mb_type= s->current_picture.mb_type[mb_xy];
  2151. uint8_t *dest_y, *dest_cb, *dest_cr;
  2152. int linesize, uvlinesize /*dct_offset*/;
  2153. int i;
  2154. int *block_offset = &h->block_offset[0];
  2155. const unsigned int bottom = mb_y & 1;
  2156. const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
  2157. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  2158. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  2159. dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2160. dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2161. dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2162. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  2163. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  2164. if (!simple && MB_FIELD) {
  2165. linesize = h->mb_linesize = s->linesize * 2;
  2166. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  2167. block_offset = &h->block_offset[24];
  2168. if(mb_y&1){ //FIXME move out of this func?
  2169. dest_y -= s->linesize*15;
  2170. dest_cb-= s->uvlinesize*7;
  2171. dest_cr-= s->uvlinesize*7;
  2172. }
  2173. if(FRAME_MBAFF) {
  2174. int list;
  2175. for(list=0; list<h->list_count; list++){
  2176. if(!USES_LIST(mb_type, list))
  2177. continue;
  2178. if(IS_16X16(mb_type)){
  2179. int8_t *ref = &h->ref_cache[list][scan8[0]];
  2180. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  2181. }else{
  2182. for(i=0; i<16; i+=4){
  2183. //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
  2184. int ref = h->ref_cache[list][scan8[i]];
  2185. if(ref >= 0)
  2186. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  2187. }
  2188. }
  2189. }
  2190. }
  2191. } else {
  2192. linesize = h->mb_linesize = s->linesize;
  2193. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  2194. // dct_offset = s->linesize * 16;
  2195. }
  2196. if(transform_bypass){
  2197. idct_dc_add =
  2198. idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  2199. }else if(IS_8x8DCT(mb_type)){
  2200. idct_dc_add = s->dsp.h264_idct8_dc_add;
  2201. idct_add = s->dsp.h264_idct8_add;
  2202. }else{
  2203. idct_dc_add = s->dsp.h264_idct_dc_add;
  2204. idct_add = s->dsp.h264_idct_add;
  2205. }
  2206. if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
  2207. && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
  2208. int mbt_y = mb_y&~1;
  2209. uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
  2210. uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2211. uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2212. xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
  2213. }
  2214. if (!simple && IS_INTRA_PCM(mb_type)) {
  2215. unsigned int x, y;
  2216. // The pixels are stored in h->mb array in the same order as levels,
  2217. // copy them in output in the correct order.
  2218. for(i=0; i<16; i++) {
  2219. for (y=0; y<4; y++) {
  2220. for (x=0; x<4; x++) {
  2221. *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
  2222. }
  2223. }
  2224. }
  2225. for(i=16; i<16+4; i++) {
  2226. for (y=0; y<4; y++) {
  2227. for (x=0; x<4; x++) {
  2228. *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2229. }
  2230. }
  2231. }
  2232. for(i=20; i<20+4; i++) {
  2233. for (y=0; y<4; y++) {
  2234. for (x=0; x<4; x++) {
  2235. *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2236. }
  2237. }
  2238. }
  2239. } else {
  2240. if(IS_INTRA(mb_type)){
  2241. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2242. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  2243. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2244. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  2245. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  2246. }
  2247. if(IS_INTRA4x4(mb_type)){
  2248. if(simple || !s->encoding){
  2249. if(IS_8x8DCT(mb_type)){
  2250. for(i=0; i<16; i+=4){
  2251. uint8_t * const ptr= dest_y + block_offset[i];
  2252. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2253. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  2254. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  2255. (h->topright_samples_available<<i)&0x4000, linesize);
  2256. if(nnz){
  2257. if(nnz == 1 && h->mb[i*16])
  2258. idct_dc_add(ptr, h->mb + i*16, linesize);
  2259. else
  2260. idct_add(ptr, h->mb + i*16, linesize);
  2261. }
  2262. }
  2263. }else
  2264. for(i=0; i<16; i++){
  2265. uint8_t * const ptr= dest_y + block_offset[i];
  2266. uint8_t *topright;
  2267. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2268. int nnz, tr;
  2269. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  2270. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  2271. assert(mb_y || linesize <= block_offset[i]);
  2272. if(!topright_avail){
  2273. tr= ptr[3 - linesize]*0x01010101;
  2274. topright= (uint8_t*) &tr;
  2275. }else
  2276. topright= ptr + 4 - linesize;
  2277. }else
  2278. topright= NULL;
  2279. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  2280. nnz = h->non_zero_count_cache[ scan8[i] ];
  2281. if(nnz){
  2282. if(is_h264){
  2283. if(nnz == 1 && h->mb[i*16])
  2284. idct_dc_add(ptr, h->mb + i*16, linesize);
  2285. else
  2286. idct_add(ptr, h->mb + i*16, linesize);
  2287. }else
  2288. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  2289. }
  2290. }
  2291. }
  2292. }else{
  2293. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  2294. if(is_h264){
  2295. if(!transform_bypass)
  2296. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
  2297. }else
  2298. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  2299. }
  2300. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2301. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  2302. }else if(is_h264){
  2303. hl_motion(h, dest_y, dest_cb, dest_cr,
  2304. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  2305. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  2306. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  2307. }
  2308. if(!IS_INTRA4x4(mb_type)){
  2309. if(is_h264){
  2310. if(IS_INTRA16x16(mb_type)){
  2311. for(i=0; i<16; i++){
  2312. if(h->non_zero_count_cache[ scan8[i] ])
  2313. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2314. else if(h->mb[i*16])
  2315. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2316. }
  2317. }else{
  2318. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  2319. for(i=0; i<16; i+=di){
  2320. int nnz = h->non_zero_count_cache[ scan8[i] ];
  2321. if(nnz){
  2322. if(nnz==1 && h->mb[i*16])
  2323. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2324. else
  2325. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2326. }
  2327. }
  2328. }
  2329. }else{
  2330. for(i=0; i<16; i++){
  2331. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  2332. uint8_t * const ptr= dest_y + block_offset[i];
  2333. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  2334. }
  2335. }
  2336. }
  2337. }
  2338. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2339. uint8_t *dest[2] = {dest_cb, dest_cr};
  2340. if(transform_bypass){
  2341. idct_add = idct_dc_add = s->dsp.add_pixels4;
  2342. }else{
  2343. idct_add = s->dsp.h264_idct_add;
  2344. idct_dc_add = s->dsp.h264_idct_dc_add;
  2345. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  2346. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  2347. }
  2348. if(is_h264){
  2349. for(i=16; i<16+8; i++){
  2350. if(h->non_zero_count_cache[ scan8[i] ])
  2351. idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2352. else if(h->mb[i*16])
  2353. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2354. }
  2355. }else{
  2356. for(i=16; i<16+8; i++){
  2357. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  2358. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  2359. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
  2360. }
  2361. }
  2362. }
  2363. }
  2364. }
  2365. if(h->deblocking_filter) {
  2366. if (!simple && FRAME_MBAFF) {
  2367. //FIXME try deblocking one mb at a time?
  2368. // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
  2369. const int mb_y = s->mb_y - 1;
  2370. uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
  2371. const int mb_xy= mb_x + mb_y*s->mb_stride;
  2372. const int mb_type_top = s->current_picture.mb_type[mb_xy];
  2373. const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
  2374. if (!bottom) return;
  2375. pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2376. pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2377. pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2378. if(IS_INTRA(mb_type_top | mb_type_bottom))
  2379. xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
  2380. backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
  2381. // deblock a pair
  2382. // top
  2383. s->mb_y--; h->mb_xy -= s->mb_stride;
  2384. tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
  2385. fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2386. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  2387. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  2388. filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
  2389. // bottom
  2390. s->mb_y++; h->mb_xy += s->mb_stride;
  2391. tprintf(h->s.avctx, "call mbaff filter_mb\n");
  2392. fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2393. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  2394. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  2395. filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2396. } else {
  2397. tprintf(h->s.avctx, "call filter_mb\n");
  2398. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
  2399. fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2400. filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2401. }
  2402. }
  2403. }
  2404. /**
  2405. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  2406. */
  2407. static void hl_decode_mb_simple(H264Context *h){
  2408. hl_decode_mb_internal(h, 1);
  2409. }
  2410. /**
  2411. * Process a macroblock; this handles edge cases, such as interlacing.
  2412. */
  2413. static void av_noinline hl_decode_mb_complex(H264Context *h){
  2414. hl_decode_mb_internal(h, 0);
  2415. }
  2416. static void hl_decode_mb(H264Context *h){
  2417. MpegEncContext * const s = &h->s;
  2418. const int mb_xy= h->mb_xy;
  2419. const int mb_type= s->current_picture.mb_type[mb_xy];
  2420. int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 || (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || s->encoding;
  2421. if(!s->decode)
  2422. return;
  2423. if (is_complex)
  2424. hl_decode_mb_complex(h);
  2425. else hl_decode_mb_simple(h);
  2426. }
  2427. static void pic_as_field(Picture *pic, const int parity){
  2428. int i;
  2429. for (i = 0; i < 4; ++i) {
  2430. if (parity == PICT_BOTTOM_FIELD)
  2431. pic->data[i] += pic->linesize[i];
  2432. pic->reference = parity;
  2433. pic->linesize[i] *= 2;
  2434. }
  2435. }
  2436. static int split_field_copy(Picture *dest, Picture *src,
  2437. int parity, int id_add){
  2438. int match = !!(src->reference & parity);
  2439. if (match) {
  2440. *dest = *src;
  2441. pic_as_field(dest, parity);
  2442. dest->pic_id *= 2;
  2443. dest->pic_id += id_add;
  2444. }
  2445. return match;
  2446. }
  2447. /**
  2448. * Split one reference list into field parts, interleaving by parity
  2449. * as per H.264 spec section 8.2.4.2.5. Output fields have their data pointers
  2450. * set to look at the actual start of data for that field.
  2451. *
  2452. * @param dest output list
  2453. * @param dest_len maximum number of fields to put in dest
  2454. * @param src the source reference list containing fields and/or field pairs
  2455. * (aka short_ref/long_ref, or
  2456. * refFrameListXShortTerm/refFrameListLongTerm in spec-speak)
  2457. * @param src_len number of Picture's in source (pairs and unmatched fields)
  2458. * @param parity the parity of the picture being decoded/needing
  2459. * these ref pics (PICT_{TOP,BOTTOM}_FIELD)
  2460. * @return number of fields placed in dest
  2461. */
  2462. static int split_field_half_ref_list(Picture *dest, int dest_len,
  2463. Picture *src, int src_len, int parity){
  2464. int same_parity = 1;
  2465. int same_i = 0;
  2466. int opp_i = 0;
  2467. int out_i;
  2468. int field_output;
  2469. for (out_i = 0; out_i < dest_len; out_i += field_output) {
  2470. if (same_parity && same_i < src_len) {
  2471. field_output = split_field_copy(dest + out_i, src + same_i,
  2472. parity, 1);
  2473. same_parity = !field_output;
  2474. same_i++;
  2475. } else if (opp_i < src_len) {
  2476. field_output = split_field_copy(dest + out_i, src + opp_i,
  2477. PICT_FRAME - parity, 0);
  2478. same_parity = field_output;
  2479. opp_i++;
  2480. } else {
  2481. break;
  2482. }
  2483. }
  2484. return out_i;
  2485. }
  2486. /**
  2487. * Split the reference frame list into a reference field list.
  2488. * This implements H.264 spec 8.2.4.2.5 for a combined input list.
  2489. * The input list contains both reference field pairs and
  2490. * unmatched reference fields; it is ordered as spec describes
  2491. * RefPicListX for frames in 8.2.4.2.1 and 8.2.4.2.3, except that
  2492. * unmatched field pairs are also present. Conceptually this is equivalent
  2493. * to concatenation of refFrameListXShortTerm with refFrameListLongTerm.
  2494. *
  2495. * @param dest output reference list where ordered fields are to be placed
  2496. * @param dest_len max number of fields to place at dest
  2497. * @param src source reference list, as described above
  2498. * @param src_len number of pictures (pairs and unmatched fields) in src
  2499. * @param parity parity of field being currently decoded
  2500. * (one of PICT_{TOP,BOTTOM}_FIELD)
  2501. * @param long_i index into src array that holds first long reference picture,
  2502. * or src_len if no long refs present.
  2503. */
  2504. static int split_field_ref_list(Picture *dest, int dest_len,
  2505. Picture *src, int src_len,
  2506. int parity, int long_i){
  2507. int i = split_field_half_ref_list(dest, dest_len, src, long_i, parity);
  2508. dest += i;
  2509. dest_len -= i;
  2510. i += split_field_half_ref_list(dest, dest_len, src + long_i,
  2511. src_len - long_i, parity);
  2512. return i;
  2513. }
  2514. /**
  2515. * fills the default_ref_list.
  2516. */
  2517. static int fill_default_ref_list(H264Context *h){
  2518. MpegEncContext * const s = &h->s;
  2519. int i;
  2520. int smallest_poc_greater_than_current = -1;
  2521. int structure_sel;
  2522. Picture sorted_short_ref[32];
  2523. Picture field_entry_list[2][32];
  2524. Picture *frame_list[2];
  2525. if (FIELD_PICTURE) {
  2526. structure_sel = PICT_FRAME;
  2527. frame_list[0] = field_entry_list[0];
  2528. frame_list[1] = field_entry_list[1];
  2529. } else {
  2530. structure_sel = 0;
  2531. frame_list[0] = h->default_ref_list[0];
  2532. frame_list[1] = h->default_ref_list[1];
  2533. }
  2534. if(h->slice_type==FF_B_TYPE){
  2535. int list;
  2536. int len[2];
  2537. int short_len[2];
  2538. int out_i;
  2539. int limit= INT_MIN;
  2540. /* sort frame according to poc in B slice */
  2541. for(out_i=0; out_i<h->short_ref_count; out_i++){
  2542. int best_i=INT_MIN;
  2543. int best_poc=INT_MAX;
  2544. for(i=0; i<h->short_ref_count; i++){
  2545. const int poc= h->short_ref[i]->poc;
  2546. if(poc > limit && poc < best_poc){
  2547. best_poc= poc;
  2548. best_i= i;
  2549. }
  2550. }
  2551. assert(best_i != INT_MIN);
  2552. limit= best_poc;
  2553. sorted_short_ref[out_i]= *h->short_ref[best_i];
  2554. tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
  2555. if (-1 == smallest_poc_greater_than_current) {
  2556. if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
  2557. smallest_poc_greater_than_current = out_i;
  2558. }
  2559. }
  2560. }
  2561. tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
  2562. // find the largest poc
  2563. for(list=0; list<2; list++){
  2564. int index = 0;
  2565. int j= -99;
  2566. int step= list ? -1 : 1;
  2567. for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
  2568. int sel;
  2569. while(j<0 || j>= h->short_ref_count){
  2570. if(j != -99 && step == (list ? -1 : 1))
  2571. return -1;
  2572. step = -step;
  2573. j= smallest_poc_greater_than_current + (step>>1);
  2574. }
  2575. sel = sorted_short_ref[j].reference | structure_sel;
  2576. if(sel != PICT_FRAME) continue;
  2577. frame_list[list][index ]= sorted_short_ref[j];
  2578. frame_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
  2579. }
  2580. short_len[list] = index;
  2581. for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
  2582. int sel;
  2583. if(h->long_ref[i] == NULL) continue;
  2584. sel = h->long_ref[i]->reference | structure_sel;
  2585. if(sel != PICT_FRAME) continue;
  2586. frame_list[ list ][index ]= *h->long_ref[i];
  2587. frame_list[ list ][index++].pic_id= i;
  2588. }
  2589. len[list] = index;
  2590. }
  2591. for(list=0; list<2; list++){
  2592. if (FIELD_PICTURE)
  2593. len[list] = split_field_ref_list(h->default_ref_list[list],
  2594. h->ref_count[list],
  2595. frame_list[list],
  2596. len[list],
  2597. s->picture_structure,
  2598. short_len[list]);
  2599. // swap the two first elements of L1 when L0 and L1 are identical
  2600. if(list && len[0] > 1 && len[0] == len[1])
  2601. for(i=0; h->default_ref_list[0][i].data[0] == h->default_ref_list[1][i].data[0]; i++)
  2602. if(i == len[0]){
  2603. FFSWAP(Picture, h->default_ref_list[1][0], h->default_ref_list[1][1]);
  2604. break;
  2605. }
  2606. if(len[list] < h->ref_count[ list ])
  2607. memset(&h->default_ref_list[list][len[list]], 0, sizeof(Picture)*(h->ref_count[ list ] - len[list]));
  2608. }
  2609. }else{
  2610. int index=0;
  2611. int short_len;
  2612. for(i=0; i<h->short_ref_count; i++){
  2613. int sel;
  2614. sel = h->short_ref[i]->reference | structure_sel;
  2615. if(sel != PICT_FRAME) continue;
  2616. frame_list[0][index ]= *h->short_ref[i];
  2617. frame_list[0][index++].pic_id= h->short_ref[i]->frame_num;
  2618. }
  2619. short_len = index;
  2620. for(i = 0; i < 16; i++){
  2621. int sel;
  2622. if(h->long_ref[i] == NULL) continue;
  2623. sel = h->long_ref[i]->reference | structure_sel;
  2624. if(sel != PICT_FRAME) continue;
  2625. frame_list[0][index ]= *h->long_ref[i];
  2626. frame_list[0][index++].pic_id= i;
  2627. }
  2628. if (FIELD_PICTURE)
  2629. index = split_field_ref_list(h->default_ref_list[0],
  2630. h->ref_count[0], frame_list[0],
  2631. index, s->picture_structure,
  2632. short_len);
  2633. if(index < h->ref_count[0])
  2634. memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
  2635. }
  2636. #ifdef TRACE
  2637. for (i=0; i<h->ref_count[0]; i++) {
  2638. tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
  2639. }
  2640. if(h->slice_type==FF_B_TYPE){
  2641. for (i=0; i<h->ref_count[1]; i++) {
  2642. tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[1][i].data[0]);
  2643. }
  2644. }
  2645. #endif
  2646. return 0;
  2647. }
  2648. static void print_short_term(H264Context *h);
  2649. static void print_long_term(H264Context *h);
  2650. /**
  2651. * Extract structure information about the picture described by pic_num in
  2652. * the current decoding context (frame or field). Note that pic_num is
  2653. * picture number without wrapping (so, 0<=pic_num<max_pic_num).
  2654. * @param pic_num picture number for which to extract structure information
  2655. * @param structure one of PICT_XXX describing structure of picture
  2656. * with pic_num
  2657. * @return frame number (short term) or long term index of picture
  2658. * described by pic_num
  2659. */
  2660. static int pic_num_extract(H264Context *h, int pic_num, int *structure){
  2661. MpegEncContext * const s = &h->s;
  2662. *structure = s->picture_structure;
  2663. if(FIELD_PICTURE){
  2664. if (!(pic_num & 1))
  2665. /* opposite field */
  2666. *structure ^= PICT_FRAME;
  2667. pic_num >>= 1;
  2668. }
  2669. return pic_num;
  2670. }
  2671. static int decode_ref_pic_list_reordering(H264Context *h){
  2672. MpegEncContext * const s = &h->s;
  2673. int list, index, pic_structure;
  2674. print_short_term(h);
  2675. print_long_term(h);
  2676. if(h->slice_type==FF_I_TYPE || h->slice_type==FF_SI_TYPE) return 0; //FIXME move before func
  2677. for(list=0; list<h->list_count; list++){
  2678. memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
  2679. if(get_bits1(&s->gb)){
  2680. int pred= h->curr_pic_num;
  2681. for(index=0; ; index++){
  2682. unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
  2683. unsigned int pic_id;
  2684. int i;
  2685. Picture *ref = NULL;
  2686. if(reordering_of_pic_nums_idc==3)
  2687. break;
  2688. if(index >= h->ref_count[list]){
  2689. av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
  2690. return -1;
  2691. }
  2692. if(reordering_of_pic_nums_idc<3){
  2693. if(reordering_of_pic_nums_idc<2){
  2694. const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
  2695. int frame_num;
  2696. if(abs_diff_pic_num > h->max_pic_num){
  2697. av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
  2698. return -1;
  2699. }
  2700. if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
  2701. else pred+= abs_diff_pic_num;
  2702. pred &= h->max_pic_num - 1;
  2703. frame_num = pic_num_extract(h, pred, &pic_structure);
  2704. for(i= h->short_ref_count-1; i>=0; i--){
  2705. ref = h->short_ref[i];
  2706. assert(ref->reference);
  2707. assert(!ref->long_ref);
  2708. if(ref->data[0] != NULL &&
  2709. ref->frame_num == frame_num &&
  2710. (ref->reference & pic_structure) &&
  2711. ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
  2712. break;
  2713. }
  2714. if(i>=0)
  2715. ref->pic_id= pred;
  2716. }else{
  2717. int long_idx;
  2718. pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
  2719. long_idx= pic_num_extract(h, pic_id, &pic_structure);
  2720. if(long_idx>31){
  2721. av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
  2722. return -1;
  2723. }
  2724. ref = h->long_ref[long_idx];
  2725. assert(!(ref && !ref->reference));
  2726. if(ref && (ref->reference & pic_structure)){
  2727. ref->pic_id= pic_id;
  2728. assert(ref->long_ref);
  2729. i=0;
  2730. }else{
  2731. i=-1;
  2732. }
  2733. }
  2734. if (i < 0) {
  2735. av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
  2736. memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
  2737. } else {
  2738. for(i=index; i+1<h->ref_count[list]; i++){
  2739. if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
  2740. break;
  2741. }
  2742. for(; i > index; i--){
  2743. h->ref_list[list][i]= h->ref_list[list][i-1];
  2744. }
  2745. h->ref_list[list][index]= *ref;
  2746. if (FIELD_PICTURE){
  2747. pic_as_field(&h->ref_list[list][index], pic_structure);
  2748. }
  2749. }
  2750. }else{
  2751. av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
  2752. return -1;
  2753. }
  2754. }
  2755. }
  2756. }
  2757. for(list=0; list<h->list_count; list++){
  2758. for(index= 0; index < h->ref_count[list]; index++){
  2759. if(!h->ref_list[list][index].data[0])
  2760. h->ref_list[list][index]= s->current_picture;
  2761. }
  2762. }
  2763. if(h->slice_type==FF_B_TYPE && !h->direct_spatial_mv_pred)
  2764. direct_dist_scale_factor(h);
  2765. direct_ref_list_init(h);
  2766. return 0;
  2767. }
  2768. static void fill_mbaff_ref_list(H264Context *h){
  2769. int list, i, j;
  2770. for(list=0; list<2; list++){ //FIXME try list_count
  2771. for(i=0; i<h->ref_count[list]; i++){
  2772. Picture *frame = &h->ref_list[list][i];
  2773. Picture *field = &h->ref_list[list][16+2*i];
  2774. field[0] = *frame;
  2775. for(j=0; j<3; j++)
  2776. field[0].linesize[j] <<= 1;
  2777. field[0].reference = PICT_TOP_FIELD;
  2778. field[1] = field[0];
  2779. for(j=0; j<3; j++)
  2780. field[1].data[j] += frame->linesize[j];
  2781. field[1].reference = PICT_BOTTOM_FIELD;
  2782. h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
  2783. h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
  2784. for(j=0; j<2; j++){
  2785. h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
  2786. h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
  2787. }
  2788. }
  2789. }
  2790. for(j=0; j<h->ref_count[1]; j++){
  2791. for(i=0; i<h->ref_count[0]; i++)
  2792. h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
  2793. memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2794. memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2795. }
  2796. }
  2797. static int pred_weight_table(H264Context *h){
  2798. MpegEncContext * const s = &h->s;
  2799. int list, i;
  2800. int luma_def, chroma_def;
  2801. h->use_weight= 0;
  2802. h->use_weight_chroma= 0;
  2803. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  2804. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  2805. luma_def = 1<<h->luma_log2_weight_denom;
  2806. chroma_def = 1<<h->chroma_log2_weight_denom;
  2807. for(list=0; list<2; list++){
  2808. for(i=0; i<h->ref_count[list]; i++){
  2809. int luma_weight_flag, chroma_weight_flag;
  2810. luma_weight_flag= get_bits1(&s->gb);
  2811. if(luma_weight_flag){
  2812. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  2813. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  2814. if( h->luma_weight[list][i] != luma_def
  2815. || h->luma_offset[list][i] != 0)
  2816. h->use_weight= 1;
  2817. }else{
  2818. h->luma_weight[list][i]= luma_def;
  2819. h->luma_offset[list][i]= 0;
  2820. }
  2821. chroma_weight_flag= get_bits1(&s->gb);
  2822. if(chroma_weight_flag){
  2823. int j;
  2824. for(j=0; j<2; j++){
  2825. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  2826. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  2827. if( h->chroma_weight[list][i][j] != chroma_def
  2828. || h->chroma_offset[list][i][j] != 0)
  2829. h->use_weight_chroma= 1;
  2830. }
  2831. }else{
  2832. int j;
  2833. for(j=0; j<2; j++){
  2834. h->chroma_weight[list][i][j]= chroma_def;
  2835. h->chroma_offset[list][i][j]= 0;
  2836. }
  2837. }
  2838. }
  2839. if(h->slice_type != FF_B_TYPE) break;
  2840. }
  2841. h->use_weight= h->use_weight || h->use_weight_chroma;
  2842. return 0;
  2843. }
  2844. static void implicit_weight_table(H264Context *h){
  2845. MpegEncContext * const s = &h->s;
  2846. int ref0, ref1;
  2847. int cur_poc = s->current_picture_ptr->poc;
  2848. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  2849. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  2850. h->use_weight= 0;
  2851. h->use_weight_chroma= 0;
  2852. return;
  2853. }
  2854. h->use_weight= 2;
  2855. h->use_weight_chroma= 2;
  2856. h->luma_log2_weight_denom= 5;
  2857. h->chroma_log2_weight_denom= 5;
  2858. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  2859. int poc0 = h->ref_list[0][ref0].poc;
  2860. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  2861. int poc1 = h->ref_list[1][ref1].poc;
  2862. int td = av_clip(poc1 - poc0, -128, 127);
  2863. if(td){
  2864. int tb = av_clip(cur_poc - poc0, -128, 127);
  2865. int tx = (16384 + (FFABS(td) >> 1)) / td;
  2866. int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  2867. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  2868. h->implicit_weight[ref0][ref1] = 32;
  2869. else
  2870. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  2871. }else
  2872. h->implicit_weight[ref0][ref1] = 32;
  2873. }
  2874. }
  2875. }
  2876. /**
  2877. * Mark a picture as no longer needed for reference. The refmask
  2878. * argument allows unreferencing of individual fields or the whole frame.
  2879. * If the picture becomes entirely unreferenced, but is being held for
  2880. * display purposes, it is marked as such.
  2881. * @param refmask mask of fields to unreference; the mask is bitwise
  2882. * anded with the reference marking of pic
  2883. * @return non-zero if pic becomes entirely unreferenced (except possibly
  2884. * for display purposes) zero if one of the fields remains in
  2885. * reference
  2886. */
  2887. static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
  2888. int i;
  2889. if (pic->reference &= refmask) {
  2890. return 0;
  2891. } else {
  2892. if(pic == h->delayed_output_pic)
  2893. pic->reference=DELAYED_PIC_REF;
  2894. else{
  2895. for(i = 0; h->delayed_pic[i]; i++)
  2896. if(pic == h->delayed_pic[i]){
  2897. pic->reference=DELAYED_PIC_REF;
  2898. break;
  2899. }
  2900. }
  2901. return 1;
  2902. }
  2903. }
  2904. /**
  2905. * instantaneous decoder refresh.
  2906. */
  2907. static void idr(H264Context *h){
  2908. int i;
  2909. for(i=0; i<16; i++){
  2910. if (h->long_ref[i] != NULL) {
  2911. unreference_pic(h, h->long_ref[i], 0);
  2912. h->long_ref[i]= NULL;
  2913. }
  2914. }
  2915. h->long_ref_count=0;
  2916. for(i=0; i<h->short_ref_count; i++){
  2917. unreference_pic(h, h->short_ref[i], 0);
  2918. h->short_ref[i]= NULL;
  2919. }
  2920. h->short_ref_count=0;
  2921. }
  2922. /* forget old pics after a seek */
  2923. static void flush_dpb(AVCodecContext *avctx){
  2924. H264Context *h= avctx->priv_data;
  2925. int i;
  2926. for(i=0; i<16; i++) {
  2927. if(h->delayed_pic[i])
  2928. h->delayed_pic[i]->reference= 0;
  2929. h->delayed_pic[i]= NULL;
  2930. }
  2931. if(h->delayed_output_pic)
  2932. h->delayed_output_pic->reference= 0;
  2933. h->delayed_output_pic= NULL;
  2934. idr(h);
  2935. if(h->s.current_picture_ptr)
  2936. h->s.current_picture_ptr->reference= 0;
  2937. h->s.first_field= 0;
  2938. ff_mpeg_flush(avctx);
  2939. }
  2940. /**
  2941. * Find a Picture in the short term reference list by frame number.
  2942. * @param frame_num frame number to search for
  2943. * @param idx the index into h->short_ref where returned picture is found
  2944. * undefined if no picture found.
  2945. * @return pointer to the found picture, or NULL if no pic with the provided
  2946. * frame number is found
  2947. */
  2948. static Picture * find_short(H264Context *h, int frame_num, int *idx){
  2949. MpegEncContext * const s = &h->s;
  2950. int i;
  2951. for(i=0; i<h->short_ref_count; i++){
  2952. Picture *pic= h->short_ref[i];
  2953. if(s->avctx->debug&FF_DEBUG_MMCO)
  2954. av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
  2955. if(pic->frame_num == frame_num) {
  2956. *idx = i;
  2957. return pic;
  2958. }
  2959. }
  2960. return NULL;
  2961. }
  2962. /**
  2963. * Remove a picture from the short term reference list by its index in
  2964. * that list. This does no checking on the provided index; it is assumed
  2965. * to be valid. Other list entries are shifted down.
  2966. * @param i index into h->short_ref of picture to remove.
  2967. */
  2968. static void remove_short_at_index(H264Context *h, int i){
  2969. assert(i > 0 && i < h->short_ref_count);
  2970. h->short_ref[i]= NULL;
  2971. if (--h->short_ref_count)
  2972. memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
  2973. }
  2974. /**
  2975. *
  2976. * @return the removed picture or NULL if an error occurs
  2977. */
  2978. static Picture * remove_short(H264Context *h, int frame_num){
  2979. MpegEncContext * const s = &h->s;
  2980. Picture *pic;
  2981. int i;
  2982. if(s->avctx->debug&FF_DEBUG_MMCO)
  2983. av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
  2984. pic = find_short(h, frame_num, &i);
  2985. if (pic)
  2986. remove_short_at_index(h, i);
  2987. return pic;
  2988. }
  2989. /**
  2990. * Remove a picture from the long term reference list by its index in
  2991. * that list. This does no checking on the provided index; it is assumed
  2992. * to be valid. The removed entry is set to NULL. Other entries are unaffected.
  2993. * @param i index into h->long_ref of picture to remove.
  2994. */
  2995. static void remove_long_at_index(H264Context *h, int i){
  2996. h->long_ref[i]= NULL;
  2997. h->long_ref_count--;
  2998. }
  2999. /**
  3000. *
  3001. * @return the removed picture or NULL if an error occurs
  3002. */
  3003. static Picture * remove_long(H264Context *h, int i){
  3004. Picture *pic;
  3005. pic= h->long_ref[i];
  3006. if (pic)
  3007. remove_long_at_index(h, i);
  3008. return pic;
  3009. }
  3010. /**
  3011. * print short term list
  3012. */
  3013. static void print_short_term(H264Context *h) {
  3014. uint32_t i;
  3015. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3016. av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
  3017. for(i=0; i<h->short_ref_count; i++){
  3018. Picture *pic= h->short_ref[i];
  3019. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3020. }
  3021. }
  3022. }
  3023. /**
  3024. * print long term list
  3025. */
  3026. static void print_long_term(H264Context *h) {
  3027. uint32_t i;
  3028. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3029. av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
  3030. for(i = 0; i < 16; i++){
  3031. Picture *pic= h->long_ref[i];
  3032. if (pic) {
  3033. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3034. }
  3035. }
  3036. }
  3037. }
  3038. /**
  3039. * Executes the reference picture marking (memory management control operations).
  3040. */
  3041. static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
  3042. MpegEncContext * const s = &h->s;
  3043. int i, j;
  3044. int current_ref_assigned=0;
  3045. Picture *pic;
  3046. if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
  3047. av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
  3048. for(i=0; i<mmco_count; i++){
  3049. int structure, frame_num, unref_pic;
  3050. if(s->avctx->debug&FF_DEBUG_MMCO)
  3051. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_pic_num, h->mmco[i].long_arg);
  3052. switch(mmco[i].opcode){
  3053. case MMCO_SHORT2UNUSED:
  3054. if(s->avctx->debug&FF_DEBUG_MMCO)
  3055. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short %d count %d\n", h->mmco[i].short_pic_num, h->short_ref_count);
  3056. frame_num = pic_num_extract(h, mmco[i].short_pic_num, &structure);
  3057. pic = find_short(h, frame_num, &j);
  3058. if (pic) {
  3059. if (unreference_pic(h, pic, structure ^ PICT_FRAME))
  3060. remove_short_at_index(h, j);
  3061. } else if(s->avctx->debug&FF_DEBUG_MMCO)
  3062. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short failure\n");
  3063. break;
  3064. case MMCO_SHORT2LONG:
  3065. if (FIELD_PICTURE && mmco[i].long_arg < h->long_ref_count &&
  3066. h->long_ref[mmco[i].long_arg]->frame_num ==
  3067. mmco[i].short_pic_num / 2) {
  3068. /* do nothing, we've already moved this field pair. */
  3069. } else {
  3070. int frame_num = mmco[i].short_pic_num >> FIELD_PICTURE;
  3071. pic= remove_long(h, mmco[i].long_arg);
  3072. if(pic) unreference_pic(h, pic, 0);
  3073. h->long_ref[ mmco[i].long_arg ]= remove_short(h, frame_num);
  3074. if (h->long_ref[ mmco[i].long_arg ]){
  3075. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  3076. h->long_ref_count++;
  3077. }
  3078. }
  3079. break;
  3080. case MMCO_LONG2UNUSED:
  3081. j = pic_num_extract(h, mmco[i].long_arg, &structure);
  3082. pic = h->long_ref[j];
  3083. if (pic) {
  3084. if (unreference_pic(h, pic, structure ^ PICT_FRAME))
  3085. remove_long_at_index(h, j);
  3086. } else if(s->avctx->debug&FF_DEBUG_MMCO)
  3087. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref long failure\n");
  3088. break;
  3089. case MMCO_LONG:
  3090. unref_pic = 1;
  3091. if (FIELD_PICTURE && !s->first_field) {
  3092. if (h->long_ref[mmco[i].long_arg] == s->current_picture_ptr) {
  3093. /* Just mark second field as referenced */
  3094. unref_pic = 0;
  3095. } else if (s->current_picture_ptr->reference) {
  3096. /* First field in pair is in short term list or
  3097. * at a different long term index.
  3098. * This is not allowed; see 7.4.3, notes 2 and 3.
  3099. * Report the problem and keep the pair where it is,
  3100. * and mark this field valid.
  3101. */
  3102. av_log(h->s.avctx, AV_LOG_ERROR,
  3103. "illegal long term reference assignment for second "
  3104. "field in complementary field pair (first field is "
  3105. "short term or has non-matching long index)\n");
  3106. unref_pic = 0;
  3107. }
  3108. }
  3109. if (unref_pic) {
  3110. pic= remove_long(h, mmco[i].long_arg);
  3111. if(pic) unreference_pic(h, pic, 0);
  3112. h->long_ref[ mmco[i].long_arg ]= s->current_picture_ptr;
  3113. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  3114. h->long_ref_count++;
  3115. }
  3116. s->current_picture_ptr->reference |= s->picture_structure;
  3117. current_ref_assigned=1;
  3118. break;
  3119. case MMCO_SET_MAX_LONG:
  3120. assert(mmco[i].long_arg <= 16);
  3121. // just remove the long term which index is greater than new max
  3122. for(j = mmco[i].long_arg; j<16; j++){
  3123. pic = remove_long(h, j);
  3124. if (pic) unreference_pic(h, pic, 0);
  3125. }
  3126. break;
  3127. case MMCO_RESET:
  3128. while(h->short_ref_count){
  3129. pic= remove_short(h, h->short_ref[0]->frame_num);
  3130. if(pic) unreference_pic(h, pic, 0);
  3131. }
  3132. for(j = 0; j < 16; j++) {
  3133. pic= remove_long(h, j);
  3134. if(pic) unreference_pic(h, pic, 0);
  3135. }
  3136. break;
  3137. default: assert(0);
  3138. }
  3139. }
  3140. if (!current_ref_assigned && FIELD_PICTURE &&
  3141. !s->first_field && s->current_picture_ptr->reference) {
  3142. /* Second field of complementary field pair; the first field of
  3143. * which is already referenced. If short referenced, it
  3144. * should be first entry in short_ref. If not, it must exist
  3145. * in long_ref; trying to put it on the short list here is an
  3146. * error in the encoded bit stream (ref: 7.4.3, NOTE 2 and 3).
  3147. */
  3148. if (h->short_ref_count && h->short_ref[0] == s->current_picture_ptr) {
  3149. /* Just mark the second field valid */
  3150. s->current_picture_ptr->reference = PICT_FRAME;
  3151. } else if (s->current_picture_ptr->long_ref) {
  3152. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term reference "
  3153. "assignment for second field "
  3154. "in complementary field pair "
  3155. "(first field is long term)\n");
  3156. } else {
  3157. /*
  3158. * First field in reference, but not in any sensible place on our
  3159. * reference lists. This shouldn't happen unless reference
  3160. * handling somewhere else is wrong.
  3161. */
  3162. assert(0);
  3163. }
  3164. current_ref_assigned = 1;
  3165. }
  3166. if(!current_ref_assigned){
  3167. pic= remove_short(h, s->current_picture_ptr->frame_num);
  3168. if(pic){
  3169. unreference_pic(h, pic, 0);
  3170. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
  3171. }
  3172. if(h->short_ref_count)
  3173. memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
  3174. h->short_ref[0]= s->current_picture_ptr;
  3175. h->short_ref[0]->long_ref=0;
  3176. h->short_ref_count++;
  3177. s->current_picture_ptr->reference |= s->picture_structure;
  3178. }
  3179. if (h->long_ref_count + h->short_ref_count > h->sps.ref_frame_count){
  3180. /* We have too many reference frames, probably due to corrupted
  3181. * stream. Need to discard one frame. Prevents overrun of the
  3182. * short_ref and long_ref buffers.
  3183. */
  3184. av_log(h->s.avctx, AV_LOG_ERROR,
  3185. "number of reference frames exceeds max (probably "
  3186. "corrupt input), discarding one\n");
  3187. if (h->long_ref_count) {
  3188. for (i = 0; i < 16; ++i)
  3189. if (h->long_ref[i])
  3190. break;
  3191. assert(i < 16);
  3192. pic = h->long_ref[i];
  3193. remove_long_at_index(h, i);
  3194. } else {
  3195. pic = h->short_ref[h->short_ref_count - 1];
  3196. remove_short_at_index(h, h->short_ref_count - 1);
  3197. }
  3198. unreference_pic(h, pic, 0);
  3199. }
  3200. print_short_term(h);
  3201. print_long_term(h);
  3202. return 0;
  3203. }
  3204. static int decode_ref_pic_marking(H264Context *h, GetBitContext *gb){
  3205. MpegEncContext * const s = &h->s;
  3206. int i;
  3207. if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
  3208. s->broken_link= get_bits1(gb) -1;
  3209. h->mmco[0].long_arg= get_bits1(gb) - 1; // current_long_term_idx
  3210. if(h->mmco[0].long_arg == -1)
  3211. h->mmco_index= 0;
  3212. else{
  3213. h->mmco[0].opcode= MMCO_LONG;
  3214. h->mmco_index= 1;
  3215. }
  3216. }else{
  3217. if(get_bits1(gb)){ // adaptive_ref_pic_marking_mode_flag
  3218. for(i= 0; i<MAX_MMCO_COUNT; i++) {
  3219. MMCOOpcode opcode= get_ue_golomb(gb);
  3220. h->mmco[i].opcode= opcode;
  3221. if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
  3222. h->mmco[i].short_pic_num= (h->curr_pic_num - get_ue_golomb(gb) - 1) & (h->max_pic_num - 1);
  3223. /* if(h->mmco[i].short_pic_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_pic_num ] == NULL){
  3224. av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
  3225. return -1;
  3226. }*/
  3227. }
  3228. if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
  3229. unsigned int long_arg= get_ue_golomb(gb);
  3230. if(long_arg >= 32 || (long_arg >= 16 && !(opcode == MMCO_LONG2UNUSED && FIELD_PICTURE))){
  3231. av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
  3232. return -1;
  3233. }
  3234. h->mmco[i].long_arg= long_arg;
  3235. }
  3236. if(opcode > (unsigned)MMCO_LONG){
  3237. av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
  3238. return -1;
  3239. }
  3240. if(opcode == MMCO_END)
  3241. break;
  3242. }
  3243. h->mmco_index= i;
  3244. }else{
  3245. assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
  3246. if(h->short_ref_count && h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count &&
  3247. !(FIELD_PICTURE && !s->first_field && s->current_picture_ptr->reference)) {
  3248. h->mmco[0].opcode= MMCO_SHORT2UNUSED;
  3249. h->mmco[0].short_pic_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
  3250. h->mmco_index= 1;
  3251. if (FIELD_PICTURE) {
  3252. h->mmco[0].short_pic_num *= 2;
  3253. h->mmco[1].opcode= MMCO_SHORT2UNUSED;
  3254. h->mmco[1].short_pic_num= h->mmco[0].short_pic_num + 1;
  3255. h->mmco_index= 2;
  3256. }
  3257. }else
  3258. h->mmco_index= 0;
  3259. }
  3260. }
  3261. return 0;
  3262. }
  3263. static int init_poc(H264Context *h){
  3264. MpegEncContext * const s = &h->s;
  3265. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  3266. int field_poc[2];
  3267. if(h->nal_unit_type == NAL_IDR_SLICE){
  3268. h->frame_num_offset= 0;
  3269. }else{
  3270. if(h->frame_num < h->prev_frame_num)
  3271. h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
  3272. else
  3273. h->frame_num_offset= h->prev_frame_num_offset;
  3274. }
  3275. if(h->sps.poc_type==0){
  3276. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  3277. if(h->nal_unit_type == NAL_IDR_SLICE){
  3278. h->prev_poc_msb=
  3279. h->prev_poc_lsb= 0;
  3280. }
  3281. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  3282. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  3283. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  3284. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  3285. else
  3286. h->poc_msb = h->prev_poc_msb;
  3287. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  3288. field_poc[0] =
  3289. field_poc[1] = h->poc_msb + h->poc_lsb;
  3290. if(s->picture_structure == PICT_FRAME)
  3291. field_poc[1] += h->delta_poc_bottom;
  3292. }else if(h->sps.poc_type==1){
  3293. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  3294. int i;
  3295. if(h->sps.poc_cycle_length != 0)
  3296. abs_frame_num = h->frame_num_offset + h->frame_num;
  3297. else
  3298. abs_frame_num = 0;
  3299. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  3300. abs_frame_num--;
  3301. expected_delta_per_poc_cycle = 0;
  3302. for(i=0; i < h->sps.poc_cycle_length; i++)
  3303. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  3304. if(abs_frame_num > 0){
  3305. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  3306. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  3307. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  3308. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  3309. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  3310. } else
  3311. expectedpoc = 0;
  3312. if(h->nal_ref_idc == 0)
  3313. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  3314. field_poc[0] = expectedpoc + h->delta_poc[0];
  3315. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  3316. if(s->picture_structure == PICT_FRAME)
  3317. field_poc[1] += h->delta_poc[1];
  3318. }else{
  3319. int poc;
  3320. if(h->nal_unit_type == NAL_IDR_SLICE){
  3321. poc= 0;
  3322. }else{
  3323. if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
  3324. else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
  3325. }
  3326. field_poc[0]= poc;
  3327. field_poc[1]= poc;
  3328. }
  3329. if(s->picture_structure != PICT_BOTTOM_FIELD) {
  3330. s->current_picture_ptr->field_poc[0]= field_poc[0];
  3331. s->current_picture_ptr->poc = field_poc[0];
  3332. }
  3333. if(s->picture_structure != PICT_TOP_FIELD) {
  3334. s->current_picture_ptr->field_poc[1]= field_poc[1];
  3335. s->current_picture_ptr->poc = field_poc[1];
  3336. }
  3337. if(!FIELD_PICTURE || !s->first_field) {
  3338. Picture *cur = s->current_picture_ptr;
  3339. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  3340. }
  3341. return 0;
  3342. }
  3343. /**
  3344. * initialize scan tables
  3345. */
  3346. static void init_scan_tables(H264Context *h){
  3347. MpegEncContext * const s = &h->s;
  3348. int i;
  3349. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  3350. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  3351. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  3352. }else{
  3353. for(i=0; i<16; i++){
  3354. #define T(x) (x>>2) | ((x<<2) & 0xF)
  3355. h->zigzag_scan[i] = T(zigzag_scan[i]);
  3356. h-> field_scan[i] = T( field_scan[i]);
  3357. #undef T
  3358. }
  3359. }
  3360. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  3361. memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
  3362. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  3363. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  3364. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  3365. }else{
  3366. for(i=0; i<64; i++){
  3367. #define T(x) (x>>3) | ((x&7)<<3)
  3368. h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
  3369. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  3370. h->field_scan8x8[i] = T(field_scan8x8[i]);
  3371. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  3372. #undef T
  3373. }
  3374. }
  3375. if(h->sps.transform_bypass){ //FIXME same ugly
  3376. h->zigzag_scan_q0 = zigzag_scan;
  3377. h->zigzag_scan8x8_q0 = zigzag_scan8x8;
  3378. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  3379. h->field_scan_q0 = field_scan;
  3380. h->field_scan8x8_q0 = field_scan8x8;
  3381. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  3382. }else{
  3383. h->zigzag_scan_q0 = h->zigzag_scan;
  3384. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  3385. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  3386. h->field_scan_q0 = h->field_scan;
  3387. h->field_scan8x8_q0 = h->field_scan8x8;
  3388. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  3389. }
  3390. }
  3391. /**
  3392. * Replicates H264 "master" context to thread contexts.
  3393. */
  3394. static void clone_slice(H264Context *dst, H264Context *src)
  3395. {
  3396. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  3397. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  3398. dst->s.current_picture = src->s.current_picture;
  3399. dst->s.linesize = src->s.linesize;
  3400. dst->s.uvlinesize = src->s.uvlinesize;
  3401. dst->s.first_field = src->s.first_field;
  3402. dst->prev_poc_msb = src->prev_poc_msb;
  3403. dst->prev_poc_lsb = src->prev_poc_lsb;
  3404. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  3405. dst->prev_frame_num = src->prev_frame_num;
  3406. dst->short_ref_count = src->short_ref_count;
  3407. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  3408. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  3409. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  3410. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  3411. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  3412. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  3413. }
  3414. /**
  3415. * decodes a slice header.
  3416. * This will also call MPV_common_init() and frame_start() as needed.
  3417. *
  3418. * @param h h264context
  3419. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  3420. *
  3421. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  3422. */
  3423. static int decode_slice_header(H264Context *h, H264Context *h0){
  3424. MpegEncContext * const s = &h->s;
  3425. MpegEncContext * const s0 = &h0->s;
  3426. unsigned int first_mb_in_slice;
  3427. unsigned int pps_id;
  3428. int num_ref_idx_active_override_flag;
  3429. static const uint8_t slice_type_map[5]= {FF_P_TYPE, FF_B_TYPE, FF_I_TYPE, FF_SP_TYPE, FF_SI_TYPE};
  3430. unsigned int slice_type, tmp, i;
  3431. int default_ref_list_done = 0;
  3432. int last_pic_structure;
  3433. s->dropable= h->nal_ref_idc == 0;
  3434. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
  3435. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  3436. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  3437. }else{
  3438. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  3439. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  3440. }
  3441. first_mb_in_slice= get_ue_golomb(&s->gb);
  3442. if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){
  3443. h0->current_slice = 0;
  3444. if (!s0->first_field)
  3445. s->current_picture_ptr= NULL;
  3446. }
  3447. slice_type= get_ue_golomb(&s->gb);
  3448. if(slice_type > 9){
  3449. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  3450. return -1;
  3451. }
  3452. if(slice_type > 4){
  3453. slice_type -= 5;
  3454. h->slice_type_fixed=1;
  3455. }else
  3456. h->slice_type_fixed=0;
  3457. slice_type= slice_type_map[ slice_type ];
  3458. if (slice_type == FF_I_TYPE
  3459. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  3460. default_ref_list_done = 1;
  3461. }
  3462. h->slice_type= slice_type;
  3463. s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though
  3464. if (s->pict_type == FF_B_TYPE && s0->last_picture_ptr == NULL) {
  3465. av_log(h->s.avctx, AV_LOG_ERROR,
  3466. "B picture before any references, skipping\n");
  3467. return -1;
  3468. }
  3469. pps_id= get_ue_golomb(&s->gb);
  3470. if(pps_id>=MAX_PPS_COUNT){
  3471. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  3472. return -1;
  3473. }
  3474. if(!h0->pps_buffers[pps_id]) {
  3475. av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
  3476. return -1;
  3477. }
  3478. h->pps= *h0->pps_buffers[pps_id];
  3479. if(!h0->sps_buffers[h->pps.sps_id]) {
  3480. av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
  3481. return -1;
  3482. }
  3483. h->sps = *h0->sps_buffers[h->pps.sps_id];
  3484. if(h == h0 && h->dequant_coeff_pps != pps_id){
  3485. h->dequant_coeff_pps = pps_id;
  3486. init_dequant_tables(h);
  3487. }
  3488. s->mb_width= h->sps.mb_width;
  3489. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  3490. h->b_stride= s->mb_width*4;
  3491. h->b8_stride= s->mb_width*2;
  3492. s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7);
  3493. if(h->sps.frame_mbs_only_flag)
  3494. s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7);
  3495. else
  3496. s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3);
  3497. if (s->context_initialized
  3498. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  3499. if(h != h0)
  3500. return -1; // width / height changed during parallelized decoding
  3501. free_tables(h);
  3502. MPV_common_end(s);
  3503. }
  3504. if (!s->context_initialized) {
  3505. if(h != h0)
  3506. return -1; // we cant (re-)initialize context during parallel decoding
  3507. if (MPV_common_init(s) < 0)
  3508. return -1;
  3509. s->first_field = 0;
  3510. init_scan_tables(h);
  3511. alloc_tables(h);
  3512. for(i = 1; i < s->avctx->thread_count; i++) {
  3513. H264Context *c;
  3514. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  3515. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  3516. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  3517. c->sps = h->sps;
  3518. c->pps = h->pps;
  3519. init_scan_tables(c);
  3520. clone_tables(c, h);
  3521. }
  3522. for(i = 0; i < s->avctx->thread_count; i++)
  3523. if(context_init(h->thread_context[i]) < 0)
  3524. return -1;
  3525. s->avctx->width = s->width;
  3526. s->avctx->height = s->height;
  3527. s->avctx->sample_aspect_ratio= h->sps.sar;
  3528. if(!s->avctx->sample_aspect_ratio.den)
  3529. s->avctx->sample_aspect_ratio.den = 1;
  3530. if(h->sps.timing_info_present_flag){
  3531. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
  3532. if(h->x264_build > 0 && h->x264_build < 44)
  3533. s->avctx->time_base.den *= 2;
  3534. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  3535. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  3536. }
  3537. }
  3538. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  3539. h->mb_mbaff = 0;
  3540. h->mb_aff_frame = 0;
  3541. last_pic_structure = s0->picture_structure;
  3542. if(h->sps.frame_mbs_only_flag){
  3543. s->picture_structure= PICT_FRAME;
  3544. }else{
  3545. if(get_bits1(&s->gb)) { //field_pic_flag
  3546. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  3547. } else {
  3548. s->picture_structure= PICT_FRAME;
  3549. h->mb_aff_frame = h->sps.mb_aff;
  3550. }
  3551. }
  3552. if(h0->current_slice == 0){
  3553. /* See if we have a decoded first field looking for a pair... */
  3554. if (s0->first_field) {
  3555. assert(s0->current_picture_ptr);
  3556. assert(s0->current_picture_ptr->data[0]);
  3557. assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
  3558. /* figure out if we have a complementary field pair */
  3559. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  3560. /*
  3561. * Previous field is unmatched. Don't display it, but let it
  3562. * remain for reference if marked as such.
  3563. */
  3564. s0->current_picture_ptr = NULL;
  3565. s0->first_field = FIELD_PICTURE;
  3566. } else {
  3567. if (h->nal_ref_idc &&
  3568. s0->current_picture_ptr->reference &&
  3569. s0->current_picture_ptr->frame_num != h->frame_num) {
  3570. /*
  3571. * This and previous field were reference, but had
  3572. * different frame_nums. Consider this field first in
  3573. * pair. Throw away previous field except for reference
  3574. * purposes.
  3575. */
  3576. s0->first_field = 1;
  3577. s0->current_picture_ptr = NULL;
  3578. } else {
  3579. /* Second field in complementary pair */
  3580. s0->first_field = 0;
  3581. }
  3582. }
  3583. } else {
  3584. /* Frame or first field in a potentially complementary pair */
  3585. assert(!s0->current_picture_ptr);
  3586. s0->first_field = FIELD_PICTURE;
  3587. }
  3588. if((!FIELD_PICTURE || s0->first_field) && frame_start(h) < 0) {
  3589. s0->first_field = 0;
  3590. return -1;
  3591. }
  3592. }
  3593. if(h != h0)
  3594. clone_slice(h, h0);
  3595. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  3596. assert(s->mb_num == s->mb_width * s->mb_height);
  3597. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  3598. first_mb_in_slice >= s->mb_num){
  3599. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  3600. return -1;
  3601. }
  3602. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  3603. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  3604. if (s->picture_structure == PICT_BOTTOM_FIELD)
  3605. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  3606. assert(s->mb_y < s->mb_height);
  3607. if(s->picture_structure==PICT_FRAME){
  3608. h->curr_pic_num= h->frame_num;
  3609. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  3610. }else{
  3611. h->curr_pic_num= 2*h->frame_num + 1;
  3612. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  3613. }
  3614. if(h->nal_unit_type == NAL_IDR_SLICE){
  3615. get_ue_golomb(&s->gb); /* idr_pic_id */
  3616. }
  3617. if(h->sps.poc_type==0){
  3618. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  3619. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  3620. h->delta_poc_bottom= get_se_golomb(&s->gb);
  3621. }
  3622. }
  3623. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  3624. h->delta_poc[0]= get_se_golomb(&s->gb);
  3625. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  3626. h->delta_poc[1]= get_se_golomb(&s->gb);
  3627. }
  3628. init_poc(h);
  3629. if(h->pps.redundant_pic_cnt_present){
  3630. h->redundant_pic_count= get_ue_golomb(&s->gb);
  3631. }
  3632. //set defaults, might be overriden a few line later
  3633. h->ref_count[0]= h->pps.ref_count[0];
  3634. h->ref_count[1]= h->pps.ref_count[1];
  3635. if(h->slice_type == FF_P_TYPE || h->slice_type == FF_SP_TYPE || h->slice_type == FF_B_TYPE){
  3636. if(h->slice_type == FF_B_TYPE){
  3637. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  3638. }
  3639. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  3640. if(num_ref_idx_active_override_flag){
  3641. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  3642. if(h->slice_type==FF_B_TYPE)
  3643. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  3644. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  3645. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  3646. h->ref_count[0]= h->ref_count[1]= 1;
  3647. return -1;
  3648. }
  3649. }
  3650. if(h->slice_type == FF_B_TYPE)
  3651. h->list_count= 2;
  3652. else
  3653. h->list_count= 1;
  3654. }else
  3655. h->list_count= 0;
  3656. if(!default_ref_list_done){
  3657. fill_default_ref_list(h);
  3658. }
  3659. if(decode_ref_pic_list_reordering(h) < 0)
  3660. return -1;
  3661. if( (h->pps.weighted_pred && (h->slice_type == FF_P_TYPE || h->slice_type == FF_SP_TYPE ))
  3662. || (h->pps.weighted_bipred_idc==1 && h->slice_type==FF_B_TYPE ) )
  3663. pred_weight_table(h);
  3664. else if(h->pps.weighted_bipred_idc==2 && h->slice_type==FF_B_TYPE)
  3665. implicit_weight_table(h);
  3666. else
  3667. h->use_weight = 0;
  3668. if(h->nal_ref_idc)
  3669. decode_ref_pic_marking(h0, &s->gb);
  3670. if(FRAME_MBAFF)
  3671. fill_mbaff_ref_list(h);
  3672. if( h->slice_type != FF_I_TYPE && h->slice_type != FF_SI_TYPE && h->pps.cabac ){
  3673. tmp = get_ue_golomb(&s->gb);
  3674. if(tmp > 2){
  3675. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  3676. return -1;
  3677. }
  3678. h->cabac_init_idc= tmp;
  3679. }
  3680. h->last_qscale_diff = 0;
  3681. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  3682. if(tmp>51){
  3683. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  3684. return -1;
  3685. }
  3686. s->qscale= tmp;
  3687. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  3688. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  3689. //FIXME qscale / qp ... stuff
  3690. if(h->slice_type == FF_SP_TYPE){
  3691. get_bits1(&s->gb); /* sp_for_switch_flag */
  3692. }
  3693. if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
  3694. get_se_golomb(&s->gb); /* slice_qs_delta */
  3695. }
  3696. h->deblocking_filter = 1;
  3697. h->slice_alpha_c0_offset = 0;
  3698. h->slice_beta_offset = 0;
  3699. if( h->pps.deblocking_filter_parameters_present ) {
  3700. tmp= get_ue_golomb(&s->gb);
  3701. if(tmp > 2){
  3702. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  3703. return -1;
  3704. }
  3705. h->deblocking_filter= tmp;
  3706. if(h->deblocking_filter < 2)
  3707. h->deblocking_filter^= 1; // 1<->0
  3708. if( h->deblocking_filter ) {
  3709. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  3710. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  3711. }
  3712. }
  3713. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  3714. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type != FF_I_TYPE)
  3715. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type == FF_B_TYPE)
  3716. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  3717. h->deblocking_filter= 0;
  3718. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  3719. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  3720. /* Cheat slightly for speed:
  3721. Do not bother to deblock across slices. */
  3722. h->deblocking_filter = 2;
  3723. } else {
  3724. h0->max_contexts = 1;
  3725. if(!h0->single_decode_warning) {
  3726. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  3727. h0->single_decode_warning = 1;
  3728. }
  3729. if(h != h0)
  3730. return 1; // deblocking switched inside frame
  3731. }
  3732. }
  3733. #if 0 //FMO
  3734. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  3735. slice_group_change_cycle= get_bits(&s->gb, ?);
  3736. #endif
  3737. h0->last_slice_type = slice_type;
  3738. h->slice_num = ++h0->current_slice;
  3739. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  3740. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  3741. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  3742. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  3743. h->slice_num,
  3744. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  3745. first_mb_in_slice,
  3746. av_get_pict_type_char(h->slice_type),
  3747. pps_id, h->frame_num,
  3748. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  3749. h->ref_count[0], h->ref_count[1],
  3750. s->qscale,
  3751. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  3752. h->use_weight,
  3753. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  3754. h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  3755. );
  3756. }
  3757. return 0;
  3758. }
  3759. /**
  3760. *
  3761. */
  3762. static inline int get_level_prefix(GetBitContext *gb){
  3763. unsigned int buf;
  3764. int log;
  3765. OPEN_READER(re, gb);
  3766. UPDATE_CACHE(re, gb);
  3767. buf=GET_CACHE(re, gb);
  3768. log= 32 - av_log2(buf);
  3769. #ifdef TRACE
  3770. print_bin(buf>>(32-log), log);
  3771. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  3772. #endif
  3773. LAST_SKIP_BITS(re, gb, log);
  3774. CLOSE_READER(re, gb);
  3775. return log-1;
  3776. }
  3777. static inline int get_dct8x8_allowed(H264Context *h){
  3778. int i;
  3779. for(i=0; i<4; i++){
  3780. if(!IS_SUB_8X8(h->sub_mb_type[i])
  3781. || (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
  3782. return 0;
  3783. }
  3784. return 1;
  3785. }
  3786. /**
  3787. * decodes a residual block.
  3788. * @param n block index
  3789. * @param scantable scantable
  3790. * @param max_coeff number of coefficients in the block
  3791. * @return <0 if an error occurred
  3792. */
  3793. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  3794. MpegEncContext * const s = &h->s;
  3795. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  3796. int level[16];
  3797. int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
  3798. //FIXME put trailing_onex into the context
  3799. if(n == CHROMA_DC_BLOCK_INDEX){
  3800. coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  3801. total_coeff= coeff_token>>2;
  3802. }else{
  3803. if(n == LUMA_DC_BLOCK_INDEX){
  3804. total_coeff= pred_non_zero_count(h, 0);
  3805. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3806. total_coeff= coeff_token>>2;
  3807. }else{
  3808. total_coeff= pred_non_zero_count(h, n);
  3809. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3810. total_coeff= coeff_token>>2;
  3811. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  3812. }
  3813. }
  3814. //FIXME set last_non_zero?
  3815. if(total_coeff==0)
  3816. return 0;
  3817. if(total_coeff > (unsigned)max_coeff) {
  3818. av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
  3819. return -1;
  3820. }
  3821. trailing_ones= coeff_token&3;
  3822. tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  3823. assert(total_coeff<=16);
  3824. for(i=0; i<trailing_ones; i++){
  3825. level[i]= 1 - 2*get_bits1(gb);
  3826. }
  3827. if(i<total_coeff) {
  3828. int level_code, mask;
  3829. int suffix_length = total_coeff > 10 && trailing_ones < 3;
  3830. int prefix= get_level_prefix(gb);
  3831. //first coefficient has suffix_length equal to 0 or 1
  3832. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  3833. if(suffix_length)
  3834. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3835. else
  3836. level_code= (prefix<<suffix_length); //part
  3837. }else if(prefix==14){
  3838. if(suffix_length)
  3839. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3840. else
  3841. level_code= prefix + get_bits(gb, 4); //part
  3842. }else if(prefix==15){
  3843. level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
  3844. if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
  3845. }else{
  3846. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  3847. return -1;
  3848. }
  3849. if(trailing_ones < 3) level_code += 2;
  3850. suffix_length = 1;
  3851. if(level_code > 5)
  3852. suffix_length++;
  3853. mask= -(level_code&1);
  3854. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  3855. i++;
  3856. //remaining coefficients have suffix_length > 0
  3857. for(;i<total_coeff;i++) {
  3858. static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
  3859. prefix = get_level_prefix(gb);
  3860. if(prefix<15){
  3861. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  3862. }else if(prefix==15){
  3863. level_code = (prefix<<suffix_length) + get_bits(gb, 12);
  3864. }else{
  3865. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  3866. return -1;
  3867. }
  3868. mask= -(level_code&1);
  3869. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  3870. if(level_code > suffix_limit[suffix_length])
  3871. suffix_length++;
  3872. }
  3873. }
  3874. if(total_coeff == max_coeff)
  3875. zeros_left=0;
  3876. else{
  3877. if(n == CHROMA_DC_BLOCK_INDEX)
  3878. zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  3879. else
  3880. zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
  3881. }
  3882. coeff_num = zeros_left + total_coeff - 1;
  3883. j = scantable[coeff_num];
  3884. if(n > 24){
  3885. block[j] = level[0];
  3886. for(i=1;i<total_coeff;i++) {
  3887. if(zeros_left <= 0)
  3888. run_before = 0;
  3889. else if(zeros_left < 7){
  3890. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3891. }else{
  3892. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3893. }
  3894. zeros_left -= run_before;
  3895. coeff_num -= 1 + run_before;
  3896. j= scantable[ coeff_num ];
  3897. block[j]= level[i];
  3898. }
  3899. }else{
  3900. block[j] = (level[0] * qmul[j] + 32)>>6;
  3901. for(i=1;i<total_coeff;i++) {
  3902. if(zeros_left <= 0)
  3903. run_before = 0;
  3904. else if(zeros_left < 7){
  3905. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3906. }else{
  3907. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3908. }
  3909. zeros_left -= run_before;
  3910. coeff_num -= 1 + run_before;
  3911. j= scantable[ coeff_num ];
  3912. block[j]= (level[i] * qmul[j] + 32)>>6;
  3913. }
  3914. }
  3915. if(zeros_left<0){
  3916. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  3917. return -1;
  3918. }
  3919. return 0;
  3920. }
  3921. static void predict_field_decoding_flag(H264Context *h){
  3922. MpegEncContext * const s = &h->s;
  3923. const int mb_xy= h->mb_xy;
  3924. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  3925. ? s->current_picture.mb_type[mb_xy-1]
  3926. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  3927. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  3928. : 0;
  3929. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  3930. }
  3931. /**
  3932. * decodes a P_SKIP or B_SKIP macroblock
  3933. */
  3934. static void decode_mb_skip(H264Context *h){
  3935. MpegEncContext * const s = &h->s;
  3936. const int mb_xy= h->mb_xy;
  3937. int mb_type=0;
  3938. memset(h->non_zero_count[mb_xy], 0, 16);
  3939. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  3940. if(MB_FIELD)
  3941. mb_type|= MB_TYPE_INTERLACED;
  3942. if( h->slice_type == FF_B_TYPE )
  3943. {
  3944. // just for fill_caches. pred_direct_motion will set the real mb_type
  3945. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  3946. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3947. pred_direct_motion(h, &mb_type);
  3948. mb_type|= MB_TYPE_SKIP;
  3949. }
  3950. else
  3951. {
  3952. int mx, my;
  3953. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  3954. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3955. pred_pskip_motion(h, &mx, &my);
  3956. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  3957. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  3958. }
  3959. write_back_motion(h, mb_type);
  3960. s->current_picture.mb_type[mb_xy]= mb_type;
  3961. s->current_picture.qscale_table[mb_xy]= s->qscale;
  3962. h->slice_table[ mb_xy ]= h->slice_num;
  3963. h->prev_mb_skipped= 1;
  3964. }
  3965. /**
  3966. * decodes a macroblock
  3967. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  3968. */
  3969. static int decode_mb_cavlc(H264Context *h){
  3970. MpegEncContext * const s = &h->s;
  3971. int mb_xy;
  3972. int partition_count;
  3973. unsigned int mb_type, cbp;
  3974. int dct8x8_allowed= h->pps.transform_8x8_mode;
  3975. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  3976. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
  3977. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  3978. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  3979. down the code */
  3980. if(h->slice_type != FF_I_TYPE && h->slice_type != FF_SI_TYPE){
  3981. if(s->mb_skip_run==-1)
  3982. s->mb_skip_run= get_ue_golomb(&s->gb);
  3983. if (s->mb_skip_run--) {
  3984. if(FRAME_MBAFF && (s->mb_y&1) == 0){
  3985. if(s->mb_skip_run==0)
  3986. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  3987. else
  3988. predict_field_decoding_flag(h);
  3989. }
  3990. decode_mb_skip(h);
  3991. return 0;
  3992. }
  3993. }
  3994. if(FRAME_MBAFF){
  3995. if( (s->mb_y&1) == 0 )
  3996. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  3997. }else
  3998. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  3999. h->prev_mb_skipped= 0;
  4000. mb_type= get_ue_golomb(&s->gb);
  4001. if(h->slice_type == FF_B_TYPE){
  4002. if(mb_type < 23){
  4003. partition_count= b_mb_type_info[mb_type].partition_count;
  4004. mb_type= b_mb_type_info[mb_type].type;
  4005. }else{
  4006. mb_type -= 23;
  4007. goto decode_intra_mb;
  4008. }
  4009. }else if(h->slice_type == FF_P_TYPE /*|| h->slice_type == FF_SP_TYPE */){
  4010. if(mb_type < 5){
  4011. partition_count= p_mb_type_info[mb_type].partition_count;
  4012. mb_type= p_mb_type_info[mb_type].type;
  4013. }else{
  4014. mb_type -= 5;
  4015. goto decode_intra_mb;
  4016. }
  4017. }else{
  4018. assert(h->slice_type == FF_I_TYPE);
  4019. decode_intra_mb:
  4020. if(mb_type > 25){
  4021. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
  4022. return -1;
  4023. }
  4024. partition_count=0;
  4025. cbp= i_mb_type_info[mb_type].cbp;
  4026. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  4027. mb_type= i_mb_type_info[mb_type].type;
  4028. }
  4029. if(MB_FIELD)
  4030. mb_type |= MB_TYPE_INTERLACED;
  4031. h->slice_table[ mb_xy ]= h->slice_num;
  4032. if(IS_INTRA_PCM(mb_type)){
  4033. unsigned int x, y;
  4034. // We assume these blocks are very rare so we do not optimize it.
  4035. align_get_bits(&s->gb);
  4036. // The pixels are stored in the same order as levels in h->mb array.
  4037. for(y=0; y<16; y++){
  4038. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  4039. for(x=0; x<16; x++){
  4040. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4041. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8);
  4042. }
  4043. }
  4044. for(y=0; y<8; y++){
  4045. const int index= 256 + 4*(y&3) + 32*(y>>2);
  4046. for(x=0; x<8; x++){
  4047. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4048. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4049. }
  4050. }
  4051. for(y=0; y<8; y++){
  4052. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  4053. for(x=0; x<8; x++){
  4054. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4055. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4056. }
  4057. }
  4058. // In deblocking, the quantizer is 0
  4059. s->current_picture.qscale_table[mb_xy]= 0;
  4060. h->chroma_qp[0] = get_chroma_qp(h, 0, 0);
  4061. h->chroma_qp[1] = get_chroma_qp(h, 1, 0);
  4062. // All coeffs are present
  4063. memset(h->non_zero_count[mb_xy], 16, 16);
  4064. s->current_picture.mb_type[mb_xy]= mb_type;
  4065. return 0;
  4066. }
  4067. if(MB_MBAFF){
  4068. h->ref_count[0] <<= 1;
  4069. h->ref_count[1] <<= 1;
  4070. }
  4071. fill_caches(h, mb_type, 0);
  4072. //mb_pred
  4073. if(IS_INTRA(mb_type)){
  4074. int pred_mode;
  4075. // init_top_left_availability(h);
  4076. if(IS_INTRA4x4(mb_type)){
  4077. int i;
  4078. int di = 1;
  4079. if(dct8x8_allowed && get_bits1(&s->gb)){
  4080. mb_type |= MB_TYPE_8x8DCT;
  4081. di = 4;
  4082. }
  4083. // fill_intra4x4_pred_table(h);
  4084. for(i=0; i<16; i+=di){
  4085. int mode= pred_intra_mode(h, i);
  4086. if(!get_bits1(&s->gb)){
  4087. const int rem_mode= get_bits(&s->gb, 3);
  4088. mode = rem_mode + (rem_mode >= mode);
  4089. }
  4090. if(di==4)
  4091. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  4092. else
  4093. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  4094. }
  4095. write_back_intra_pred_mode(h);
  4096. if( check_intra4x4_pred_mode(h) < 0)
  4097. return -1;
  4098. }else{
  4099. h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
  4100. if(h->intra16x16_pred_mode < 0)
  4101. return -1;
  4102. }
  4103. pred_mode= check_intra_pred_mode(h, get_ue_golomb(&s->gb));
  4104. if(pred_mode < 0)
  4105. return -1;
  4106. h->chroma_pred_mode= pred_mode;
  4107. }else if(partition_count==4){
  4108. int i, j, sub_partition_count[4], list, ref[2][4];
  4109. if(h->slice_type == FF_B_TYPE){
  4110. for(i=0; i<4; i++){
  4111. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4112. if(h->sub_mb_type[i] >=13){
  4113. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4114. return -1;
  4115. }
  4116. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4117. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4118. }
  4119. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  4120. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  4121. pred_direct_motion(h, &mb_type);
  4122. h->ref_cache[0][scan8[4]] =
  4123. h->ref_cache[1][scan8[4]] =
  4124. h->ref_cache[0][scan8[12]] =
  4125. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  4126. }
  4127. }else{
  4128. assert(h->slice_type == FF_P_TYPE || h->slice_type == FF_SP_TYPE); //FIXME SP correct ?
  4129. for(i=0; i<4; i++){
  4130. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4131. if(h->sub_mb_type[i] >=4){
  4132. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4133. return -1;
  4134. }
  4135. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4136. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4137. }
  4138. }
  4139. for(list=0; list<h->list_count; list++){
  4140. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4141. for(i=0; i<4; i++){
  4142. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  4143. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4144. unsigned int tmp = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
  4145. if(tmp>=ref_count){
  4146. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  4147. return -1;
  4148. }
  4149. ref[list][i]= tmp;
  4150. }else{
  4151. //FIXME
  4152. ref[list][i] = -1;
  4153. }
  4154. }
  4155. }
  4156. if(dct8x8_allowed)
  4157. dct8x8_allowed = get_dct8x8_allowed(h);
  4158. for(list=0; list<h->list_count; list++){
  4159. for(i=0; i<4; i++){
  4160. if(IS_DIRECT(h->sub_mb_type[i])) {
  4161. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  4162. continue;
  4163. }
  4164. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  4165. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  4166. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4167. const int sub_mb_type= h->sub_mb_type[i];
  4168. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  4169. for(j=0; j<sub_partition_count[i]; j++){
  4170. int mx, my;
  4171. const int index= 4*i + block_width*j;
  4172. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  4173. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  4174. mx += get_se_golomb(&s->gb);
  4175. my += get_se_golomb(&s->gb);
  4176. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4177. if(IS_SUB_8X8(sub_mb_type)){
  4178. mv_cache[ 1 ][0]=
  4179. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  4180. mv_cache[ 1 ][1]=
  4181. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  4182. }else if(IS_SUB_8X4(sub_mb_type)){
  4183. mv_cache[ 1 ][0]= mx;
  4184. mv_cache[ 1 ][1]= my;
  4185. }else if(IS_SUB_4X8(sub_mb_type)){
  4186. mv_cache[ 8 ][0]= mx;
  4187. mv_cache[ 8 ][1]= my;
  4188. }
  4189. mv_cache[ 0 ][0]= mx;
  4190. mv_cache[ 0 ][1]= my;
  4191. }
  4192. }else{
  4193. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  4194. p[0] = p[1]=
  4195. p[8] = p[9]= 0;
  4196. }
  4197. }
  4198. }
  4199. }else if(IS_DIRECT(mb_type)){
  4200. pred_direct_motion(h, &mb_type);
  4201. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  4202. }else{
  4203. int list, mx, my, i;
  4204. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  4205. if(IS_16X16(mb_type)){
  4206. for(list=0; list<h->list_count; list++){
  4207. unsigned int val;
  4208. if(IS_DIR(mb_type, 0, list)){
  4209. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4210. if(val >= h->ref_count[list]){
  4211. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4212. return -1;
  4213. }
  4214. }else
  4215. val= LIST_NOT_USED&0xFF;
  4216. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  4217. }
  4218. for(list=0; list<h->list_count; list++){
  4219. unsigned int val;
  4220. if(IS_DIR(mb_type, 0, list)){
  4221. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  4222. mx += get_se_golomb(&s->gb);
  4223. my += get_se_golomb(&s->gb);
  4224. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4225. val= pack16to32(mx,my);
  4226. }else
  4227. val=0;
  4228. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4);
  4229. }
  4230. }
  4231. else if(IS_16X8(mb_type)){
  4232. for(list=0; list<h->list_count; list++){
  4233. for(i=0; i<2; i++){
  4234. unsigned int val;
  4235. if(IS_DIR(mb_type, i, list)){
  4236. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4237. if(val >= h->ref_count[list]){
  4238. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4239. return -1;
  4240. }
  4241. }else
  4242. val= LIST_NOT_USED&0xFF;
  4243. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  4244. }
  4245. }
  4246. for(list=0; list<h->list_count; list++){
  4247. for(i=0; i<2; i++){
  4248. unsigned int val;
  4249. if(IS_DIR(mb_type, i, list)){
  4250. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  4251. mx += get_se_golomb(&s->gb);
  4252. my += get_se_golomb(&s->gb);
  4253. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4254. val= pack16to32(mx,my);
  4255. }else
  4256. val=0;
  4257. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  4258. }
  4259. }
  4260. }else{
  4261. assert(IS_8X16(mb_type));
  4262. for(list=0; list<h->list_count; list++){
  4263. for(i=0; i<2; i++){
  4264. unsigned int val;
  4265. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  4266. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4267. if(val >= h->ref_count[list]){
  4268. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4269. return -1;
  4270. }
  4271. }else
  4272. val= LIST_NOT_USED&0xFF;
  4273. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  4274. }
  4275. }
  4276. for(list=0; list<h->list_count; list++){
  4277. for(i=0; i<2; i++){
  4278. unsigned int val;
  4279. if(IS_DIR(mb_type, i, list)){
  4280. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  4281. mx += get_se_golomb(&s->gb);
  4282. my += get_se_golomb(&s->gb);
  4283. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4284. val= pack16to32(mx,my);
  4285. }else
  4286. val=0;
  4287. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  4288. }
  4289. }
  4290. }
  4291. }
  4292. if(IS_INTER(mb_type))
  4293. write_back_motion(h, mb_type);
  4294. if(!IS_INTRA16x16(mb_type)){
  4295. cbp= get_ue_golomb(&s->gb);
  4296. if(cbp > 47){
  4297. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
  4298. return -1;
  4299. }
  4300. if(IS_INTRA4x4(mb_type))
  4301. cbp= golomb_to_intra4x4_cbp[cbp];
  4302. else
  4303. cbp= golomb_to_inter_cbp[cbp];
  4304. }
  4305. h->cbp = cbp;
  4306. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  4307. if(get_bits1(&s->gb))
  4308. mb_type |= MB_TYPE_8x8DCT;
  4309. }
  4310. s->current_picture.mb_type[mb_xy]= mb_type;
  4311. if(cbp || IS_INTRA16x16(mb_type)){
  4312. int i8x8, i4x4, chroma_idx;
  4313. int dquant;
  4314. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  4315. const uint8_t *scan, *scan8x8, *dc_scan;
  4316. // fill_non_zero_count_cache(h);
  4317. if(IS_INTERLACED(mb_type)){
  4318. scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  4319. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  4320. dc_scan= luma_dc_field_scan;
  4321. }else{
  4322. scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  4323. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  4324. dc_scan= luma_dc_zigzag_scan;
  4325. }
  4326. dquant= get_se_golomb(&s->gb);
  4327. if( dquant > 25 || dquant < -26 ){
  4328. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  4329. return -1;
  4330. }
  4331. s->qscale += dquant;
  4332. if(((unsigned)s->qscale) > 51){
  4333. if(s->qscale<0) s->qscale+= 52;
  4334. else s->qscale-= 52;
  4335. }
  4336. h->chroma_qp[0]= get_chroma_qp(h, 0, s->qscale);
  4337. h->chroma_qp[1]= get_chroma_qp(h, 1, s->qscale);
  4338. if(IS_INTRA16x16(mb_type)){
  4339. if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
  4340. return -1; //FIXME continue if partitioned and other return -1 too
  4341. }
  4342. assert((cbp&15) == 0 || (cbp&15) == 15);
  4343. if(cbp&15){
  4344. for(i8x8=0; i8x8<4; i8x8++){
  4345. for(i4x4=0; i4x4<4; i4x4++){
  4346. const int index= i4x4 + 4*i8x8;
  4347. if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
  4348. return -1;
  4349. }
  4350. }
  4351. }
  4352. }else{
  4353. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  4354. }
  4355. }else{
  4356. for(i8x8=0; i8x8<4; i8x8++){
  4357. if(cbp & (1<<i8x8)){
  4358. if(IS_8x8DCT(mb_type)){
  4359. DCTELEM *buf = &h->mb[64*i8x8];
  4360. uint8_t *nnz;
  4361. for(i4x4=0; i4x4<4; i4x4++){
  4362. if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
  4363. h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
  4364. return -1;
  4365. }
  4366. nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4367. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  4368. }else{
  4369. for(i4x4=0; i4x4<4; i4x4++){
  4370. const int index= i4x4 + 4*i8x8;
  4371. if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
  4372. return -1;
  4373. }
  4374. }
  4375. }
  4376. }else{
  4377. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4378. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  4379. }
  4380. }
  4381. }
  4382. if(cbp&0x30){
  4383. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  4384. if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
  4385. return -1;
  4386. }
  4387. }
  4388. if(cbp&0x20){
  4389. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  4390. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]];
  4391. for(i4x4=0; i4x4<4; i4x4++){
  4392. const int index= 16 + 4*chroma_idx + i4x4;
  4393. if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, qmul, 15) < 0){
  4394. return -1;
  4395. }
  4396. }
  4397. }
  4398. }else{
  4399. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4400. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4401. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4402. }
  4403. }else{
  4404. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4405. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  4406. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4407. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4408. }
  4409. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4410. write_back_non_zero_count(h);
  4411. if(MB_MBAFF){
  4412. h->ref_count[0] >>= 1;
  4413. h->ref_count[1] >>= 1;
  4414. }
  4415. return 0;
  4416. }
  4417. static int decode_cabac_field_decoding_flag(H264Context *h) {
  4418. MpegEncContext * const s = &h->s;
  4419. const int mb_x = s->mb_x;
  4420. const int mb_y = s->mb_y & ~1;
  4421. const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
  4422. const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
  4423. unsigned int ctx = 0;
  4424. if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
  4425. ctx += 1;
  4426. }
  4427. if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
  4428. ctx += 1;
  4429. }
  4430. return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] );
  4431. }
  4432. static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
  4433. uint8_t *state= &h->cabac_state[ctx_base];
  4434. int mb_type;
  4435. if(intra_slice){
  4436. MpegEncContext * const s = &h->s;
  4437. const int mba_xy = h->left_mb_xy[0];
  4438. const int mbb_xy = h->top_mb_xy;
  4439. int ctx=0;
  4440. if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
  4441. ctx++;
  4442. if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
  4443. ctx++;
  4444. if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 )
  4445. return 0; /* I4x4 */
  4446. state += 2;
  4447. }else{
  4448. if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 )
  4449. return 0; /* I4x4 */
  4450. }
  4451. if( get_cabac_terminate( &h->cabac ) )
  4452. return 25; /* PCM */
  4453. mb_type = 1; /* I16x16 */
  4454. mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */
  4455. if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */
  4456. mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] );
  4457. mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] );
  4458. mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] );
  4459. return mb_type;
  4460. }
  4461. static int decode_cabac_mb_type( H264Context *h ) {
  4462. MpegEncContext * const s = &h->s;
  4463. if( h->slice_type == FF_I_TYPE ) {
  4464. return decode_cabac_intra_mb_type(h, 3, 1);
  4465. } else if( h->slice_type == FF_P_TYPE ) {
  4466. if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
  4467. /* P-type */
  4468. if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
  4469. /* P_L0_D16x16, P_8x8 */
  4470. return 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
  4471. } else {
  4472. /* P_L0_D8x16, P_L0_D16x8 */
  4473. return 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
  4474. }
  4475. } else {
  4476. return decode_cabac_intra_mb_type(h, 17, 0) + 5;
  4477. }
  4478. } else if( h->slice_type == FF_B_TYPE ) {
  4479. const int mba_xy = h->left_mb_xy[0];
  4480. const int mbb_xy = h->top_mb_xy;
  4481. int ctx = 0;
  4482. int bits;
  4483. if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
  4484. ctx++;
  4485. if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
  4486. ctx++;
  4487. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) )
  4488. return 0; /* B_Direct_16x16 */
  4489. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
  4490. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
  4491. }
  4492. bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
  4493. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
  4494. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
  4495. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4496. if( bits < 8 )
  4497. return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
  4498. else if( bits == 13 ) {
  4499. return decode_cabac_intra_mb_type(h, 32, 0) + 23;
  4500. } else if( bits == 14 )
  4501. return 11; /* B_L1_L0_8x16 */
  4502. else if( bits == 15 )
  4503. return 22; /* B_8x8 */
  4504. bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4505. return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
  4506. } else {
  4507. /* TODO SI/SP frames? */
  4508. return -1;
  4509. }
  4510. }
  4511. static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) {
  4512. MpegEncContext * const s = &h->s;
  4513. int mba_xy, mbb_xy;
  4514. int ctx = 0;
  4515. if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches?
  4516. int mb_xy = mb_x + (mb_y&~1)*s->mb_stride;
  4517. mba_xy = mb_xy - 1;
  4518. if( (mb_y&1)
  4519. && h->slice_table[mba_xy] == h->slice_num
  4520. && MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) )
  4521. mba_xy += s->mb_stride;
  4522. if( MB_FIELD ){
  4523. mbb_xy = mb_xy - s->mb_stride;
  4524. if( !(mb_y&1)
  4525. && h->slice_table[mbb_xy] == h->slice_num
  4526. && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) )
  4527. mbb_xy -= s->mb_stride;
  4528. }else
  4529. mbb_xy = mb_x + (mb_y-1)*s->mb_stride;
  4530. }else{
  4531. int mb_xy = h->mb_xy;
  4532. mba_xy = mb_xy - 1;
  4533. mbb_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  4534. }
  4535. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
  4536. ctx++;
  4537. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
  4538. ctx++;
  4539. if( h->slice_type == FF_B_TYPE )
  4540. ctx += 13;
  4541. return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] );
  4542. }
  4543. static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
  4544. int mode = 0;
  4545. if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
  4546. return pred_mode;
  4547. mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4548. mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4549. mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4550. if( mode >= pred_mode )
  4551. return mode + 1;
  4552. else
  4553. return mode;
  4554. }
  4555. static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
  4556. const int mba_xy = h->left_mb_xy[0];
  4557. const int mbb_xy = h->top_mb_xy;
  4558. int ctx = 0;
  4559. /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
  4560. if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
  4561. ctx++;
  4562. if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
  4563. ctx++;
  4564. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
  4565. return 0;
  4566. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4567. return 1;
  4568. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4569. return 2;
  4570. else
  4571. return 3;
  4572. }
  4573. static int decode_cabac_mb_cbp_luma( H264Context *h) {
  4574. int cbp_b, cbp_a, ctx, cbp = 0;
  4575. cbp_a = h->slice_table[h->left_mb_xy[0]] == h->slice_num ? h->left_cbp : -1;
  4576. cbp_b = h->slice_table[h->top_mb_xy] == h->slice_num ? h->top_cbp : -1;
  4577. ctx = !(cbp_a & 0x02) + 2 * !(cbp_b & 0x04);
  4578. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]);
  4579. ctx = !(cbp & 0x01) + 2 * !(cbp_b & 0x08);
  4580. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 1;
  4581. ctx = !(cbp_a & 0x08) + 2 * !(cbp & 0x01);
  4582. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 2;
  4583. ctx = !(cbp & 0x04) + 2 * !(cbp & 0x02);
  4584. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 3;
  4585. return cbp;
  4586. }
  4587. static int decode_cabac_mb_cbp_chroma( H264Context *h) {
  4588. int ctx;
  4589. int cbp_a, cbp_b;
  4590. cbp_a = (h->left_cbp>>4)&0x03;
  4591. cbp_b = (h-> top_cbp>>4)&0x03;
  4592. ctx = 0;
  4593. if( cbp_a > 0 ) ctx++;
  4594. if( cbp_b > 0 ) ctx += 2;
  4595. if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
  4596. return 0;
  4597. ctx = 4;
  4598. if( cbp_a == 2 ) ctx++;
  4599. if( cbp_b == 2 ) ctx += 2;
  4600. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] );
  4601. }
  4602. static int decode_cabac_mb_dqp( H264Context *h) {
  4603. int ctx = 0;
  4604. int val = 0;
  4605. if( h->last_qscale_diff != 0 )
  4606. ctx++;
  4607. while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
  4608. if( ctx < 2 )
  4609. ctx = 2;
  4610. else
  4611. ctx = 3;
  4612. val++;
  4613. if(val > 102) //prevent infinite loop
  4614. return INT_MIN;
  4615. }
  4616. if( val&0x01 )
  4617. return (val + 1)/2;
  4618. else
  4619. return -(val + 1)/2;
  4620. }
  4621. static int decode_cabac_p_mb_sub_type( H264Context *h ) {
  4622. if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
  4623. return 0; /* 8x8 */
  4624. if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
  4625. return 1; /* 8x4 */
  4626. if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
  4627. return 2; /* 4x8 */
  4628. return 3; /* 4x4 */
  4629. }
  4630. static int decode_cabac_b_mb_sub_type( H264Context *h ) {
  4631. int type;
  4632. if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
  4633. return 0; /* B_Direct_8x8 */
  4634. if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
  4635. return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
  4636. type = 3;
  4637. if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
  4638. if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
  4639. return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
  4640. type += 4;
  4641. }
  4642. type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
  4643. type += get_cabac( &h->cabac, &h->cabac_state[39] );
  4644. return type;
  4645. }
  4646. static inline int decode_cabac_mb_transform_size( H264Context *h ) {
  4647. return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
  4648. }
  4649. static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
  4650. int refa = h->ref_cache[list][scan8[n] - 1];
  4651. int refb = h->ref_cache[list][scan8[n] - 8];
  4652. int ref = 0;
  4653. int ctx = 0;
  4654. if( h->slice_type == FF_B_TYPE) {
  4655. if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
  4656. ctx++;
  4657. if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
  4658. ctx += 2;
  4659. } else {
  4660. if( refa > 0 )
  4661. ctx++;
  4662. if( refb > 0 )
  4663. ctx += 2;
  4664. }
  4665. while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
  4666. ref++;
  4667. if( ctx < 4 )
  4668. ctx = 4;
  4669. else
  4670. ctx = 5;
  4671. if(ref >= 32 /*h->ref_list[list]*/){
  4672. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_ref\n");
  4673. return 0; //FIXME we should return -1 and check the return everywhere
  4674. }
  4675. }
  4676. return ref;
  4677. }
  4678. static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
  4679. int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
  4680. abs( h->mvd_cache[list][scan8[n] - 8][l] );
  4681. int ctxbase = (l == 0) ? 40 : 47;
  4682. int ctx, mvd;
  4683. if( amvd < 3 )
  4684. ctx = 0;
  4685. else if( amvd > 32 )
  4686. ctx = 2;
  4687. else
  4688. ctx = 1;
  4689. if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
  4690. return 0;
  4691. mvd= 1;
  4692. ctx= 3;
  4693. while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
  4694. mvd++;
  4695. if( ctx < 6 )
  4696. ctx++;
  4697. }
  4698. if( mvd >= 9 ) {
  4699. int k = 3;
  4700. while( get_cabac_bypass( &h->cabac ) ) {
  4701. mvd += 1 << k;
  4702. k++;
  4703. if(k>24){
  4704. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n");
  4705. return INT_MIN;
  4706. }
  4707. }
  4708. while( k-- ) {
  4709. if( get_cabac_bypass( &h->cabac ) )
  4710. mvd += 1 << k;
  4711. }
  4712. }
  4713. return get_cabac_bypass_sign( &h->cabac, -mvd );
  4714. }
  4715. static inline int get_cabac_cbf_ctx( H264Context *h, int cat, int idx ) {
  4716. int nza, nzb;
  4717. int ctx = 0;
  4718. if( cat == 0 ) {
  4719. nza = h->left_cbp&0x100;
  4720. nzb = h-> top_cbp&0x100;
  4721. } else if( cat == 1 || cat == 2 ) {
  4722. nza = h->non_zero_count_cache[scan8[idx] - 1];
  4723. nzb = h->non_zero_count_cache[scan8[idx] - 8];
  4724. } else if( cat == 3 ) {
  4725. nza = (h->left_cbp>>(6+idx))&0x01;
  4726. nzb = (h-> top_cbp>>(6+idx))&0x01;
  4727. } else {
  4728. assert(cat == 4);
  4729. nza = h->non_zero_count_cache[scan8[16+idx] - 1];
  4730. nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
  4731. }
  4732. if( nza > 0 )
  4733. ctx++;
  4734. if( nzb > 0 )
  4735. ctx += 2;
  4736. return ctx + 4 * cat;
  4737. }
  4738. DECLARE_ASM_CONST(1, uint8_t, last_coeff_flag_offset_8x8[63]) = {
  4739. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  4740. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  4741. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  4742. 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
  4743. };
  4744. static void decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff) {
  4745. static const int significant_coeff_flag_offset[2][6] = {
  4746. { 105+0, 105+15, 105+29, 105+44, 105+47, 402 },
  4747. { 277+0, 277+15, 277+29, 277+44, 277+47, 436 }
  4748. };
  4749. static const int last_coeff_flag_offset[2][6] = {
  4750. { 166+0, 166+15, 166+29, 166+44, 166+47, 417 },
  4751. { 338+0, 338+15, 338+29, 338+44, 338+47, 451 }
  4752. };
  4753. static const int coeff_abs_level_m1_offset[6] = {
  4754. 227+0, 227+10, 227+20, 227+30, 227+39, 426
  4755. };
  4756. static const uint8_t significant_coeff_flag_offset_8x8[2][63] = {
  4757. { 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
  4758. 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
  4759. 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
  4760. 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 },
  4761. { 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
  4762. 6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11,
  4763. 9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9,
  4764. 9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 }
  4765. };
  4766. /* node ctx: 0..3: abslevel1 (with abslevelgt1 == 0).
  4767. * 4..7: abslevelgt1 + 3 (and abslevel1 doesn't matter).
  4768. * map node ctx => cabac ctx for level=1 */
  4769. static const uint8_t coeff_abs_level1_ctx[8] = { 1, 2, 3, 4, 0, 0, 0, 0 };
  4770. /* map node ctx => cabac ctx for level>1 */
  4771. static const uint8_t coeff_abs_levelgt1_ctx[8] = { 5, 5, 5, 5, 6, 7, 8, 9 };
  4772. static const uint8_t coeff_abs_level_transition[2][8] = {
  4773. /* update node ctx after decoding a level=1 */
  4774. { 1, 2, 3, 3, 4, 5, 6, 7 },
  4775. /* update node ctx after decoding a level>1 */
  4776. { 4, 4, 4, 4, 5, 6, 7, 7 }
  4777. };
  4778. int index[64];
  4779. int av_unused last;
  4780. int coeff_count = 0;
  4781. int node_ctx = 0;
  4782. uint8_t *significant_coeff_ctx_base;
  4783. uint8_t *last_coeff_ctx_base;
  4784. uint8_t *abs_level_m1_ctx_base;
  4785. #ifndef ARCH_X86
  4786. #define CABAC_ON_STACK
  4787. #endif
  4788. #ifdef CABAC_ON_STACK
  4789. #define CC &cc
  4790. CABACContext cc;
  4791. cc.range = h->cabac.range;
  4792. cc.low = h->cabac.low;
  4793. cc.bytestream= h->cabac.bytestream;
  4794. #else
  4795. #define CC &h->cabac
  4796. #endif
  4797. /* cat: 0-> DC 16x16 n = 0
  4798. * 1-> AC 16x16 n = luma4x4idx
  4799. * 2-> Luma4x4 n = luma4x4idx
  4800. * 3-> DC Chroma n = iCbCr
  4801. * 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
  4802. * 5-> Luma8x8 n = 4 * luma8x8idx
  4803. */
  4804. /* read coded block flag */
  4805. if( cat != 5 ) {
  4806. if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n ) ] ) == 0 ) {
  4807. if( cat == 1 || cat == 2 )
  4808. h->non_zero_count_cache[scan8[n]] = 0;
  4809. else if( cat == 4 )
  4810. h->non_zero_count_cache[scan8[16+n]] = 0;
  4811. #ifdef CABAC_ON_STACK
  4812. h->cabac.range = cc.range ;
  4813. h->cabac.low = cc.low ;
  4814. h->cabac.bytestream= cc.bytestream;
  4815. #endif
  4816. return;
  4817. }
  4818. }
  4819. significant_coeff_ctx_base = h->cabac_state
  4820. + significant_coeff_flag_offset[MB_FIELD][cat];
  4821. last_coeff_ctx_base = h->cabac_state
  4822. + last_coeff_flag_offset[MB_FIELD][cat];
  4823. abs_level_m1_ctx_base = h->cabac_state
  4824. + coeff_abs_level_m1_offset[cat];
  4825. if( cat == 5 ) {
  4826. #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
  4827. for(last= 0; last < coefs; last++) { \
  4828. uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
  4829. if( get_cabac( CC, sig_ctx )) { \
  4830. uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
  4831. index[coeff_count++] = last; \
  4832. if( get_cabac( CC, last_ctx ) ) { \
  4833. last= max_coeff; \
  4834. break; \
  4835. } \
  4836. } \
  4837. }\
  4838. if( last == max_coeff -1 ) {\
  4839. index[coeff_count++] = last;\
  4840. }
  4841. const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD];
  4842. #if defined(ARCH_X86) && defined(HAVE_7REGS) && defined(HAVE_EBX_AVAILABLE) && !defined(BROKEN_RELOCATIONS)
  4843. coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off);
  4844. } else {
  4845. coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index);
  4846. #else
  4847. DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] );
  4848. } else {
  4849. DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
  4850. #endif
  4851. }
  4852. assert(coeff_count > 0);
  4853. if( cat == 0 )
  4854. h->cbp_table[h->mb_xy] |= 0x100;
  4855. else if( cat == 1 || cat == 2 )
  4856. h->non_zero_count_cache[scan8[n]] = coeff_count;
  4857. else if( cat == 3 )
  4858. h->cbp_table[h->mb_xy] |= 0x40 << n;
  4859. else if( cat == 4 )
  4860. h->non_zero_count_cache[scan8[16+n]] = coeff_count;
  4861. else {
  4862. assert( cat == 5 );
  4863. fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
  4864. }
  4865. for( coeff_count--; coeff_count >= 0; coeff_count-- ) {
  4866. uint8_t *ctx = coeff_abs_level1_ctx[node_ctx] + abs_level_m1_ctx_base;
  4867. int j= scantable[index[coeff_count]];
  4868. if( get_cabac( CC, ctx ) == 0 ) {
  4869. node_ctx = coeff_abs_level_transition[0][node_ctx];
  4870. if( !qmul ) {
  4871. block[j] = get_cabac_bypass_sign( CC, -1);
  4872. }else{
  4873. block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;
  4874. }
  4875. } else {
  4876. int coeff_abs = 2;
  4877. ctx = coeff_abs_levelgt1_ctx[node_ctx] + abs_level_m1_ctx_base;
  4878. node_ctx = coeff_abs_level_transition[1][node_ctx];
  4879. while( coeff_abs < 15 && get_cabac( CC, ctx ) ) {
  4880. coeff_abs++;
  4881. }
  4882. if( coeff_abs >= 15 ) {
  4883. int j = 0;
  4884. while( get_cabac_bypass( CC ) ) {
  4885. j++;
  4886. }
  4887. coeff_abs=1;
  4888. while( j-- ) {
  4889. coeff_abs += coeff_abs + get_cabac_bypass( CC );
  4890. }
  4891. coeff_abs+= 14;
  4892. }
  4893. if( !qmul ) {
  4894. if( get_cabac_bypass( CC ) ) block[j] = -coeff_abs;
  4895. else block[j] = coeff_abs;
  4896. }else{
  4897. if( get_cabac_bypass( CC ) ) block[j] = (-coeff_abs * qmul[j] + 32) >> 6;
  4898. else block[j] = ( coeff_abs * qmul[j] + 32) >> 6;
  4899. }
  4900. }
  4901. }
  4902. #ifdef CABAC_ON_STACK
  4903. h->cabac.range = cc.range ;
  4904. h->cabac.low = cc.low ;
  4905. h->cabac.bytestream= cc.bytestream;
  4906. #endif
  4907. }
  4908. static inline void compute_mb_neighbors(H264Context *h)
  4909. {
  4910. MpegEncContext * const s = &h->s;
  4911. const int mb_xy = h->mb_xy;
  4912. h->top_mb_xy = mb_xy - s->mb_stride;
  4913. h->left_mb_xy[0] = mb_xy - 1;
  4914. if(FRAME_MBAFF){
  4915. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  4916. const int top_pair_xy = pair_xy - s->mb_stride;
  4917. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  4918. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  4919. const int curr_mb_frame_flag = !MB_FIELD;
  4920. const int bottom = (s->mb_y & 1);
  4921. if (bottom
  4922. ? !curr_mb_frame_flag // bottom macroblock
  4923. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  4924. ) {
  4925. h->top_mb_xy -= s->mb_stride;
  4926. }
  4927. if (left_mb_frame_flag != curr_mb_frame_flag) {
  4928. h->left_mb_xy[0] = pair_xy - 1;
  4929. }
  4930. } else if (FIELD_PICTURE) {
  4931. h->top_mb_xy -= s->mb_stride;
  4932. }
  4933. return;
  4934. }
  4935. /**
  4936. * decodes a macroblock
  4937. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  4938. */
  4939. static int decode_mb_cabac(H264Context *h) {
  4940. MpegEncContext * const s = &h->s;
  4941. int mb_xy;
  4942. int mb_type, partition_count, cbp = 0;
  4943. int dct8x8_allowed= h->pps.transform_8x8_mode;
  4944. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  4945. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
  4946. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  4947. if( h->slice_type != FF_I_TYPE && h->slice_type != FF_SI_TYPE ) {
  4948. int skip;
  4949. /* a skipped mb needs the aff flag from the following mb */
  4950. if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 )
  4951. predict_field_decoding_flag(h);
  4952. if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
  4953. skip = h->next_mb_skipped;
  4954. else
  4955. skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
  4956. /* read skip flags */
  4957. if( skip ) {
  4958. if( FRAME_MBAFF && (s->mb_y&1)==0 ){
  4959. s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP;
  4960. h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
  4961. if(h->next_mb_skipped)
  4962. predict_field_decoding_flag(h);
  4963. else
  4964. h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  4965. }
  4966. decode_mb_skip(h);
  4967. h->cbp_table[mb_xy] = 0;
  4968. h->chroma_pred_mode_table[mb_xy] = 0;
  4969. h->last_qscale_diff = 0;
  4970. return 0;
  4971. }
  4972. }
  4973. if(FRAME_MBAFF){
  4974. if( (s->mb_y&1) == 0 )
  4975. h->mb_mbaff =
  4976. h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  4977. }else
  4978. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  4979. h->prev_mb_skipped = 0;
  4980. compute_mb_neighbors(h);
  4981. if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) {
  4982. av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" );
  4983. return -1;
  4984. }
  4985. if( h->slice_type == FF_B_TYPE ) {
  4986. if( mb_type < 23 ){
  4987. partition_count= b_mb_type_info[mb_type].partition_count;
  4988. mb_type= b_mb_type_info[mb_type].type;
  4989. }else{
  4990. mb_type -= 23;
  4991. goto decode_intra_mb;
  4992. }
  4993. } else if( h->slice_type == FF_P_TYPE ) {
  4994. if( mb_type < 5) {
  4995. partition_count= p_mb_type_info[mb_type].partition_count;
  4996. mb_type= p_mb_type_info[mb_type].type;
  4997. } else {
  4998. mb_type -= 5;
  4999. goto decode_intra_mb;
  5000. }
  5001. } else {
  5002. assert(h->slice_type == FF_I_TYPE);
  5003. decode_intra_mb:
  5004. partition_count = 0;
  5005. cbp= i_mb_type_info[mb_type].cbp;
  5006. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  5007. mb_type= i_mb_type_info[mb_type].type;
  5008. }
  5009. if(MB_FIELD)
  5010. mb_type |= MB_TYPE_INTERLACED;
  5011. h->slice_table[ mb_xy ]= h->slice_num;
  5012. if(IS_INTRA_PCM(mb_type)) {
  5013. const uint8_t *ptr;
  5014. unsigned int x, y;
  5015. // We assume these blocks are very rare so we do not optimize it.
  5016. // FIXME The two following lines get the bitstream position in the cabac
  5017. // decode, I think it should be done by a function in cabac.h (or cabac.c).
  5018. ptr= h->cabac.bytestream;
  5019. if(h->cabac.low&0x1) ptr--;
  5020. if(CABAC_BITS==16){
  5021. if(h->cabac.low&0x1FF) ptr--;
  5022. }
  5023. // The pixels are stored in the same order as levels in h->mb array.
  5024. for(y=0; y<16; y++){
  5025. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  5026. for(x=0; x<16; x++){
  5027. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", *ptr);
  5028. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++;
  5029. }
  5030. }
  5031. for(y=0; y<8; y++){
  5032. const int index= 256 + 4*(y&3) + 32*(y>>2);
  5033. for(x=0; x<8; x++){
  5034. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", *ptr);
  5035. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5036. }
  5037. }
  5038. for(y=0; y<8; y++){
  5039. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  5040. for(x=0; x<8; x++){
  5041. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", *ptr);
  5042. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5043. }
  5044. }
  5045. ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
  5046. // All blocks are present
  5047. h->cbp_table[mb_xy] = 0x1ef;
  5048. h->chroma_pred_mode_table[mb_xy] = 0;
  5049. // In deblocking, the quantizer is 0
  5050. s->current_picture.qscale_table[mb_xy]= 0;
  5051. h->chroma_qp[0] = get_chroma_qp(h, 0, 0);
  5052. h->chroma_qp[1] = get_chroma_qp(h, 1, 0);
  5053. // All coeffs are present
  5054. memset(h->non_zero_count[mb_xy], 16, 16);
  5055. s->current_picture.mb_type[mb_xy]= mb_type;
  5056. return 0;
  5057. }
  5058. if(MB_MBAFF){
  5059. h->ref_count[0] <<= 1;
  5060. h->ref_count[1] <<= 1;
  5061. }
  5062. fill_caches(h, mb_type, 0);
  5063. if( IS_INTRA( mb_type ) ) {
  5064. int i, pred_mode;
  5065. if( IS_INTRA4x4( mb_type ) ) {
  5066. if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
  5067. mb_type |= MB_TYPE_8x8DCT;
  5068. for( i = 0; i < 16; i+=4 ) {
  5069. int pred = pred_intra_mode( h, i );
  5070. int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5071. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  5072. }
  5073. } else {
  5074. for( i = 0; i < 16; i++ ) {
  5075. int pred = pred_intra_mode( h, i );
  5076. h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5077. //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
  5078. }
  5079. }
  5080. write_back_intra_pred_mode(h);
  5081. if( check_intra4x4_pred_mode(h) < 0 ) return -1;
  5082. } else {
  5083. h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
  5084. if( h->intra16x16_pred_mode < 0 ) return -1;
  5085. }
  5086. h->chroma_pred_mode_table[mb_xy] =
  5087. pred_mode = decode_cabac_mb_chroma_pre_mode( h );
  5088. pred_mode= check_intra_pred_mode( h, pred_mode );
  5089. if( pred_mode < 0 ) return -1;
  5090. h->chroma_pred_mode= pred_mode;
  5091. } else if( partition_count == 4 ) {
  5092. int i, j, sub_partition_count[4], list, ref[2][4];
  5093. if( h->slice_type == FF_B_TYPE ) {
  5094. for( i = 0; i < 4; i++ ) {
  5095. h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
  5096. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5097. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5098. }
  5099. if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
  5100. h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
  5101. pred_direct_motion(h, &mb_type);
  5102. h->ref_cache[0][scan8[4]] =
  5103. h->ref_cache[1][scan8[4]] =
  5104. h->ref_cache[0][scan8[12]] =
  5105. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  5106. if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
  5107. for( i = 0; i < 4; i++ )
  5108. if( IS_DIRECT(h->sub_mb_type[i]) )
  5109. fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
  5110. }
  5111. }
  5112. } else {
  5113. for( i = 0; i < 4; i++ ) {
  5114. h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
  5115. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5116. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5117. }
  5118. }
  5119. for( list = 0; list < h->list_count; list++ ) {
  5120. for( i = 0; i < 4; i++ ) {
  5121. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  5122. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  5123. if( h->ref_count[list] > 1 )
  5124. ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
  5125. else
  5126. ref[list][i] = 0;
  5127. } else {
  5128. ref[list][i] = -1;
  5129. }
  5130. h->ref_cache[list][ scan8[4*i]+1 ]=
  5131. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  5132. }
  5133. }
  5134. if(dct8x8_allowed)
  5135. dct8x8_allowed = get_dct8x8_allowed(h);
  5136. for(list=0; list<h->list_count; list++){
  5137. for(i=0; i<4; i++){
  5138. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
  5139. if(IS_DIRECT(h->sub_mb_type[i])){
  5140. fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
  5141. continue;
  5142. }
  5143. if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
  5144. const int sub_mb_type= h->sub_mb_type[i];
  5145. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  5146. for(j=0; j<sub_partition_count[i]; j++){
  5147. int mpx, mpy;
  5148. int mx, my;
  5149. const int index= 4*i + block_width*j;
  5150. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  5151. int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
  5152. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
  5153. mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
  5154. my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
  5155. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5156. if(IS_SUB_8X8(sub_mb_type)){
  5157. mv_cache[ 1 ][0]=
  5158. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  5159. mv_cache[ 1 ][1]=
  5160. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  5161. mvd_cache[ 1 ][0]=
  5162. mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
  5163. mvd_cache[ 1 ][1]=
  5164. mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
  5165. }else if(IS_SUB_8X4(sub_mb_type)){
  5166. mv_cache[ 1 ][0]= mx;
  5167. mv_cache[ 1 ][1]= my;
  5168. mvd_cache[ 1 ][0]= mx - mpx;
  5169. mvd_cache[ 1 ][1]= my - mpy;
  5170. }else if(IS_SUB_4X8(sub_mb_type)){
  5171. mv_cache[ 8 ][0]= mx;
  5172. mv_cache[ 8 ][1]= my;
  5173. mvd_cache[ 8 ][0]= mx - mpx;
  5174. mvd_cache[ 8 ][1]= my - mpy;
  5175. }
  5176. mv_cache[ 0 ][0]= mx;
  5177. mv_cache[ 0 ][1]= my;
  5178. mvd_cache[ 0 ][0]= mx - mpx;
  5179. mvd_cache[ 0 ][1]= my - mpy;
  5180. }
  5181. }else{
  5182. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  5183. uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
  5184. p[0] = p[1] = p[8] = p[9] = 0;
  5185. pd[0]= pd[1]= pd[8]= pd[9]= 0;
  5186. }
  5187. }
  5188. }
  5189. } else if( IS_DIRECT(mb_type) ) {
  5190. pred_direct_motion(h, &mb_type);
  5191. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  5192. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  5193. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  5194. } else {
  5195. int list, mx, my, i, mpx, mpy;
  5196. if(IS_16X16(mb_type)){
  5197. for(list=0; list<h->list_count; list++){
  5198. if(IS_DIR(mb_type, 0, list)){
  5199. const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
  5200. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
  5201. }else
  5202. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too
  5203. }
  5204. for(list=0; list<h->list_count; list++){
  5205. if(IS_DIR(mb_type, 0, list)){
  5206. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
  5207. mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
  5208. my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
  5209. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5210. fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5211. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  5212. }else
  5213. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  5214. }
  5215. }
  5216. else if(IS_16X8(mb_type)){
  5217. for(list=0; list<h->list_count; list++){
  5218. for(i=0; i<2; i++){
  5219. if(IS_DIR(mb_type, i, list)){
  5220. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
  5221. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
  5222. }else
  5223. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  5224. }
  5225. }
  5226. for(list=0; list<h->list_count; list++){
  5227. for(i=0; i<2; i++){
  5228. if(IS_DIR(mb_type, i, list)){
  5229. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
  5230. mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
  5231. my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
  5232. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5233. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
  5234. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  5235. }else{
  5236. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5237. fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5238. }
  5239. }
  5240. }
  5241. }else{
  5242. assert(IS_8X16(mb_type));
  5243. for(list=0; list<h->list_count; list++){
  5244. for(i=0; i<2; i++){
  5245. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  5246. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
  5247. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
  5248. }else
  5249. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  5250. }
  5251. }
  5252. for(list=0; list<h->list_count; list++){
  5253. for(i=0; i<2; i++){
  5254. if(IS_DIR(mb_type, i, list)){
  5255. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
  5256. mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
  5257. my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
  5258. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5259. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5260. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  5261. }else{
  5262. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5263. fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5264. }
  5265. }
  5266. }
  5267. }
  5268. }
  5269. if( IS_INTER( mb_type ) ) {
  5270. h->chroma_pred_mode_table[mb_xy] = 0;
  5271. write_back_motion( h, mb_type );
  5272. }
  5273. if( !IS_INTRA16x16( mb_type ) ) {
  5274. cbp = decode_cabac_mb_cbp_luma( h );
  5275. cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
  5276. }
  5277. h->cbp_table[mb_xy] = h->cbp = cbp;
  5278. if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
  5279. if( decode_cabac_mb_transform_size( h ) )
  5280. mb_type |= MB_TYPE_8x8DCT;
  5281. }
  5282. s->current_picture.mb_type[mb_xy]= mb_type;
  5283. if( cbp || IS_INTRA16x16( mb_type ) ) {
  5284. const uint8_t *scan, *scan8x8, *dc_scan;
  5285. const uint32_t *qmul;
  5286. int dqp;
  5287. if(IS_INTERLACED(mb_type)){
  5288. scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
  5289. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  5290. dc_scan= luma_dc_field_scan;
  5291. }else{
  5292. scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
  5293. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  5294. dc_scan= luma_dc_zigzag_scan;
  5295. }
  5296. h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
  5297. if( dqp == INT_MIN ){
  5298. av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
  5299. return -1;
  5300. }
  5301. s->qscale += dqp;
  5302. if(((unsigned)s->qscale) > 51){
  5303. if(s->qscale<0) s->qscale+= 52;
  5304. else s->qscale-= 52;
  5305. }
  5306. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  5307. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  5308. if( IS_INTRA16x16( mb_type ) ) {
  5309. int i;
  5310. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
  5311. decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16);
  5312. if( cbp&15 ) {
  5313. qmul = h->dequant4_coeff[0][s->qscale];
  5314. for( i = 0; i < 16; i++ ) {
  5315. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
  5316. decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, qmul, 15);
  5317. }
  5318. } else {
  5319. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  5320. }
  5321. } else {
  5322. int i8x8, i4x4;
  5323. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  5324. if( cbp & (1<<i8x8) ) {
  5325. if( IS_8x8DCT(mb_type) ) {
  5326. decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
  5327. scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64);
  5328. } else {
  5329. qmul = h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale];
  5330. for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
  5331. const int index = 4*i8x8 + i4x4;
  5332. //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
  5333. //START_TIMER
  5334. decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, qmul, 16);
  5335. //STOP_TIMER("decode_residual")
  5336. }
  5337. }
  5338. } else {
  5339. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  5340. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  5341. }
  5342. }
  5343. }
  5344. if( cbp&0x30 ){
  5345. int c;
  5346. for( c = 0; c < 2; c++ ) {
  5347. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
  5348. decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4);
  5349. }
  5350. }
  5351. if( cbp&0x20 ) {
  5352. int c, i;
  5353. for( c = 0; c < 2; c++ ) {
  5354. qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[c]];
  5355. for( i = 0; i < 4; i++ ) {
  5356. const int index = 16 + 4 * c + i;
  5357. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
  5358. decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, qmul, 15);
  5359. }
  5360. }
  5361. } else {
  5362. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5363. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5364. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5365. }
  5366. } else {
  5367. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5368. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  5369. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5370. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5371. h->last_qscale_diff = 0;
  5372. }
  5373. s->current_picture.qscale_table[mb_xy]= s->qscale;
  5374. write_back_non_zero_count(h);
  5375. if(MB_MBAFF){
  5376. h->ref_count[0] >>= 1;
  5377. h->ref_count[1] >>= 1;
  5378. }
  5379. return 0;
  5380. }
  5381. static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5382. int i, d;
  5383. const int index_a = qp + h->slice_alpha_c0_offset;
  5384. const int alpha = (alpha_table+52)[index_a];
  5385. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5386. if( bS[0] < 4 ) {
  5387. int8_t tc[4];
  5388. for(i=0; i<4; i++)
  5389. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5390. h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  5391. } else {
  5392. /* 16px edge length, because bS=4 is triggered by being at
  5393. * the edge of an intra MB, so all 4 bS are the same */
  5394. for( d = 0; d < 16; d++ ) {
  5395. const int p0 = pix[-1];
  5396. const int p1 = pix[-2];
  5397. const int p2 = pix[-3];
  5398. const int q0 = pix[0];
  5399. const int q1 = pix[1];
  5400. const int q2 = pix[2];
  5401. if( FFABS( p0 - q0 ) < alpha &&
  5402. FFABS( p1 - p0 ) < beta &&
  5403. FFABS( q1 - q0 ) < beta ) {
  5404. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5405. if( FFABS( p2 - p0 ) < beta)
  5406. {
  5407. const int p3 = pix[-4];
  5408. /* p0', p1', p2' */
  5409. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5410. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5411. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5412. } else {
  5413. /* p0' */
  5414. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5415. }
  5416. if( FFABS( q2 - q0 ) < beta)
  5417. {
  5418. const int q3 = pix[3];
  5419. /* q0', q1', q2' */
  5420. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5421. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5422. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5423. } else {
  5424. /* q0' */
  5425. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5426. }
  5427. }else{
  5428. /* p0', q0' */
  5429. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5430. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5431. }
  5432. tprintf(h->s.avctx, "filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
  5433. }
  5434. pix += stride;
  5435. }
  5436. }
  5437. }
  5438. static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5439. int i;
  5440. const int index_a = qp + h->slice_alpha_c0_offset;
  5441. const int alpha = (alpha_table+52)[index_a];
  5442. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5443. if( bS[0] < 4 ) {
  5444. int8_t tc[4];
  5445. for(i=0; i<4; i++)
  5446. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5447. h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5448. } else {
  5449. h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5450. }
  5451. }
  5452. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5453. int i;
  5454. for( i = 0; i < 16; i++, pix += stride) {
  5455. int index_a;
  5456. int alpha;
  5457. int beta;
  5458. int qp_index;
  5459. int bS_index = (i >> 1);
  5460. if (!MB_FIELD) {
  5461. bS_index &= ~1;
  5462. bS_index |= (i & 1);
  5463. }
  5464. if( bS[bS_index] == 0 ) {
  5465. continue;
  5466. }
  5467. qp_index = MB_FIELD ? (i >> 3) : (i & 1);
  5468. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5469. alpha = (alpha_table+52)[index_a];
  5470. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5471. if( bS[bS_index] < 4 ) {
  5472. const int tc0 = (tc0_table+52)[index_a][bS[bS_index] - 1];
  5473. const int p0 = pix[-1];
  5474. const int p1 = pix[-2];
  5475. const int p2 = pix[-3];
  5476. const int q0 = pix[0];
  5477. const int q1 = pix[1];
  5478. const int q2 = pix[2];
  5479. if( FFABS( p0 - q0 ) < alpha &&
  5480. FFABS( p1 - p0 ) < beta &&
  5481. FFABS( q1 - q0 ) < beta ) {
  5482. int tc = tc0;
  5483. int i_delta;
  5484. if( FFABS( p2 - p0 ) < beta ) {
  5485. pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  5486. tc++;
  5487. }
  5488. if( FFABS( q2 - q0 ) < beta ) {
  5489. pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  5490. tc++;
  5491. }
  5492. i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5493. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5494. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5495. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5496. }
  5497. }else{
  5498. const int p0 = pix[-1];
  5499. const int p1 = pix[-2];
  5500. const int p2 = pix[-3];
  5501. const int q0 = pix[0];
  5502. const int q1 = pix[1];
  5503. const int q2 = pix[2];
  5504. if( FFABS( p0 - q0 ) < alpha &&
  5505. FFABS( p1 - p0 ) < beta &&
  5506. FFABS( q1 - q0 ) < beta ) {
  5507. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5508. if( FFABS( p2 - p0 ) < beta)
  5509. {
  5510. const int p3 = pix[-4];
  5511. /* p0', p1', p2' */
  5512. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5513. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5514. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5515. } else {
  5516. /* p0' */
  5517. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5518. }
  5519. if( FFABS( q2 - q0 ) < beta)
  5520. {
  5521. const int q3 = pix[3];
  5522. /* q0', q1', q2' */
  5523. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5524. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5525. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5526. } else {
  5527. /* q0' */
  5528. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5529. }
  5530. }else{
  5531. /* p0', q0' */
  5532. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5533. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5534. }
  5535. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5536. }
  5537. }
  5538. }
  5539. }
  5540. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5541. int i;
  5542. for( i = 0; i < 8; i++, pix += stride) {
  5543. int index_a;
  5544. int alpha;
  5545. int beta;
  5546. int qp_index;
  5547. int bS_index = i;
  5548. if( bS[bS_index] == 0 ) {
  5549. continue;
  5550. }
  5551. qp_index = MB_FIELD ? (i >> 2) : (i & 1);
  5552. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5553. alpha = (alpha_table+52)[index_a];
  5554. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5555. if( bS[bS_index] < 4 ) {
  5556. const int tc = (tc0_table+52)[index_a][bS[bS_index] - 1] + 1;
  5557. const int p0 = pix[-1];
  5558. const int p1 = pix[-2];
  5559. const int q0 = pix[0];
  5560. const int q1 = pix[1];
  5561. if( FFABS( p0 - q0 ) < alpha &&
  5562. FFABS( p1 - p0 ) < beta &&
  5563. FFABS( q1 - q0 ) < beta ) {
  5564. const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5565. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5566. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5567. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5568. }
  5569. }else{
  5570. const int p0 = pix[-1];
  5571. const int p1 = pix[-2];
  5572. const int q0 = pix[0];
  5573. const int q1 = pix[1];
  5574. if( FFABS( p0 - q0 ) < alpha &&
  5575. FFABS( p1 - p0 ) < beta &&
  5576. FFABS( q1 - q0 ) < beta ) {
  5577. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  5578. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  5579. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5580. }
  5581. }
  5582. }
  5583. }
  5584. static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5585. int i, d;
  5586. const int index_a = qp + h->slice_alpha_c0_offset;
  5587. const int alpha = (alpha_table+52)[index_a];
  5588. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5589. const int pix_next = stride;
  5590. if( bS[0] < 4 ) {
  5591. int8_t tc[4];
  5592. for(i=0; i<4; i++)
  5593. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5594. h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  5595. } else {
  5596. /* 16px edge length, see filter_mb_edgev */
  5597. for( d = 0; d < 16; d++ ) {
  5598. const int p0 = pix[-1*pix_next];
  5599. const int p1 = pix[-2*pix_next];
  5600. const int p2 = pix[-3*pix_next];
  5601. const int q0 = pix[0];
  5602. const int q1 = pix[1*pix_next];
  5603. const int q2 = pix[2*pix_next];
  5604. if( FFABS( p0 - q0 ) < alpha &&
  5605. FFABS( p1 - p0 ) < beta &&
  5606. FFABS( q1 - q0 ) < beta ) {
  5607. const int p3 = pix[-4*pix_next];
  5608. const int q3 = pix[ 3*pix_next];
  5609. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5610. if( FFABS( p2 - p0 ) < beta) {
  5611. /* p0', p1', p2' */
  5612. pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5613. pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5614. pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5615. } else {
  5616. /* p0' */
  5617. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5618. }
  5619. if( FFABS( q2 - q0 ) < beta) {
  5620. /* q0', q1', q2' */
  5621. pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5622. pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5623. pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5624. } else {
  5625. /* q0' */
  5626. pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5627. }
  5628. }else{
  5629. /* p0', q0' */
  5630. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5631. pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5632. }
  5633. tprintf(h->s.avctx, "filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
  5634. }
  5635. pix++;
  5636. }
  5637. }
  5638. }
  5639. static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5640. int i;
  5641. const int index_a = qp + h->slice_alpha_c0_offset;
  5642. const int alpha = (alpha_table+52)[index_a];
  5643. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5644. if( bS[0] < 4 ) {
  5645. int8_t tc[4];
  5646. for(i=0; i<4; i++)
  5647. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5648. h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5649. } else {
  5650. h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5651. }
  5652. }
  5653. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5654. MpegEncContext * const s = &h->s;
  5655. int mb_y_firstrow = s->picture_structure == PICT_BOTTOM_FIELD;
  5656. int mb_xy, mb_type;
  5657. int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
  5658. mb_xy = h->mb_xy;
  5659. if(mb_x==0 || mb_y==mb_y_firstrow || !s->dsp.h264_loop_filter_strength || h->pps.chroma_qp_diff ||
  5660. (h->deblocking_filter == 2 && (h->slice_table[mb_xy] != h->slice_table[h->top_mb_xy] ||
  5661. h->slice_table[mb_xy] != h->slice_table[mb_xy - 1]))) {
  5662. filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
  5663. return;
  5664. }
  5665. assert(!FRAME_MBAFF);
  5666. mb_type = s->current_picture.mb_type[mb_xy];
  5667. qp = s->current_picture.qscale_table[mb_xy];
  5668. qp0 = s->current_picture.qscale_table[mb_xy-1];
  5669. qp1 = s->current_picture.qscale_table[h->top_mb_xy];
  5670. qpc = get_chroma_qp( h, 0, qp );
  5671. qpc0 = get_chroma_qp( h, 0, qp0 );
  5672. qpc1 = get_chroma_qp( h, 0, qp1 );
  5673. qp0 = (qp + qp0 + 1) >> 1;
  5674. qp1 = (qp + qp1 + 1) >> 1;
  5675. qpc0 = (qpc + qpc0 + 1) >> 1;
  5676. qpc1 = (qpc + qpc1 + 1) >> 1;
  5677. qp_thresh = 15 - h->slice_alpha_c0_offset;
  5678. if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
  5679. qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
  5680. return;
  5681. if( IS_INTRA(mb_type) ) {
  5682. int16_t bS4[4] = {4,4,4,4};
  5683. int16_t bS3[4] = {3,3,3,3};
  5684. int16_t *bSH = FIELD_PICTURE ? bS3 : bS4;
  5685. if( IS_8x8DCT(mb_type) ) {
  5686. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5687. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5688. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5689. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5690. } else {
  5691. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5692. filter_mb_edgev( h, &img_y[4*1], linesize, bS3, qp );
  5693. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5694. filter_mb_edgev( h, &img_y[4*3], linesize, bS3, qp );
  5695. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5696. filter_mb_edgeh( h, &img_y[4*1*linesize], linesize, bS3, qp );
  5697. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5698. filter_mb_edgeh( h, &img_y[4*3*linesize], linesize, bS3, qp );
  5699. }
  5700. filter_mb_edgecv( h, &img_cb[2*0], uvlinesize, bS4, qpc0 );
  5701. filter_mb_edgecv( h, &img_cb[2*2], uvlinesize, bS3, qpc );
  5702. filter_mb_edgecv( h, &img_cr[2*0], uvlinesize, bS4, qpc0 );
  5703. filter_mb_edgecv( h, &img_cr[2*2], uvlinesize, bS3, qpc );
  5704. filter_mb_edgech( h, &img_cb[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5705. filter_mb_edgech( h, &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5706. filter_mb_edgech( h, &img_cr[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5707. filter_mb_edgech( h, &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5708. return;
  5709. } else {
  5710. DECLARE_ALIGNED_8(int16_t, bS[2][4][4]);
  5711. uint64_t (*bSv)[4] = (uint64_t(*)[4])bS;
  5712. int edges;
  5713. if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
  5714. edges = 4;
  5715. bSv[0][0] = bSv[0][2] = bSv[1][0] = bSv[1][2] = 0x0002000200020002ULL;
  5716. } else {
  5717. int mask_edge1 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 :
  5718. (mb_type & MB_TYPE_16x8) ? 1 : 0;
  5719. int mask_edge0 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5720. && (s->current_picture.mb_type[mb_xy-1] & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5721. ? 3 : 0;
  5722. int step = IS_8x8DCT(mb_type) ? 2 : 1;
  5723. edges = (mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
  5724. s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
  5725. (h->slice_type == FF_B_TYPE), edges, step, mask_edge0, mask_edge1 );
  5726. }
  5727. if( IS_INTRA(s->current_picture.mb_type[mb_xy-1]) )
  5728. bSv[0][0] = 0x0004000400040004ULL;
  5729. if( IS_INTRA(s->current_picture.mb_type[h->top_mb_xy]) )
  5730. bSv[1][0] = FIELD_PICTURE ? 0x0003000300030003ULL : 0x0004000400040004ULL;
  5731. #define FILTER(hv,dir,edge)\
  5732. if(bSv[dir][edge]) {\
  5733. filter_mb_edge##hv( h, &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir );\
  5734. if(!(edge&1)) {\
  5735. filter_mb_edgec##hv( h, &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5736. filter_mb_edgec##hv( h, &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5737. }\
  5738. }
  5739. if( edges == 1 ) {
  5740. FILTER(v,0,0);
  5741. FILTER(h,1,0);
  5742. } else if( IS_8x8DCT(mb_type) ) {
  5743. FILTER(v,0,0);
  5744. FILTER(v,0,2);
  5745. FILTER(h,1,0);
  5746. FILTER(h,1,2);
  5747. } else {
  5748. FILTER(v,0,0);
  5749. FILTER(v,0,1);
  5750. FILTER(v,0,2);
  5751. FILTER(v,0,3);
  5752. FILTER(h,1,0);
  5753. FILTER(h,1,1);
  5754. FILTER(h,1,2);
  5755. FILTER(h,1,3);
  5756. }
  5757. #undef FILTER
  5758. }
  5759. }
  5760. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5761. MpegEncContext * const s = &h->s;
  5762. const int mb_xy= mb_x + mb_y*s->mb_stride;
  5763. const int mb_type = s->current_picture.mb_type[mb_xy];
  5764. const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
  5765. int first_vertical_edge_done = 0;
  5766. int dir;
  5767. /* FIXME: A given frame may occupy more than one position in
  5768. * the reference list. So ref2frm should be populated with
  5769. * frame numbers, not indexes. */
  5770. static const int ref2frm[34] = {-1,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
  5771. 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31};
  5772. //for sufficiently low qp, filtering wouldn't do anything
  5773. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  5774. if(!FRAME_MBAFF){
  5775. int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]);
  5776. int qp = s->current_picture.qscale_table[mb_xy];
  5777. if(qp <= qp_thresh
  5778. && (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
  5779. && (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
  5780. return;
  5781. }
  5782. }
  5783. if (FRAME_MBAFF
  5784. // left mb is in picture
  5785. && h->slice_table[mb_xy-1] != 255
  5786. // and current and left pair do not have the same interlaced type
  5787. && (IS_INTERLACED(mb_type) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
  5788. // and left mb is in the same slice if deblocking_filter == 2
  5789. && (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
  5790. /* First vertical edge is different in MBAFF frames
  5791. * There are 8 different bS to compute and 2 different Qp
  5792. */
  5793. const int pair_xy = mb_x + (mb_y&~1)*s->mb_stride;
  5794. const int left_mb_xy[2] = { pair_xy-1, pair_xy-1+s->mb_stride };
  5795. int16_t bS[8];
  5796. int qp[2];
  5797. int bqp[2];
  5798. int rqp[2];
  5799. int mb_qp, mbn0_qp, mbn1_qp;
  5800. int i;
  5801. first_vertical_edge_done = 1;
  5802. if( IS_INTRA(mb_type) )
  5803. bS[0] = bS[1] = bS[2] = bS[3] = bS[4] = bS[5] = bS[6] = bS[7] = 4;
  5804. else {
  5805. for( i = 0; i < 8; i++ ) {
  5806. int mbn_xy = MB_FIELD ? left_mb_xy[i>>2] : left_mb_xy[i&1];
  5807. if( IS_INTRA( s->current_picture.mb_type[mbn_xy] ) )
  5808. bS[i] = 4;
  5809. else if( h->non_zero_count_cache[12+8*(i>>1)] != 0 ||
  5810. /* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */
  5811. h->non_zero_count[mbn_xy][MB_FIELD ? i&3 : (i>>2)+(mb_y&1)*2] )
  5812. bS[i] = 2;
  5813. else
  5814. bS[i] = 1;
  5815. }
  5816. }
  5817. mb_qp = s->current_picture.qscale_table[mb_xy];
  5818. mbn0_qp = s->current_picture.qscale_table[left_mb_xy[0]];
  5819. mbn1_qp = s->current_picture.qscale_table[left_mb_xy[1]];
  5820. qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
  5821. bqp[0] = ( get_chroma_qp( h, 0, mb_qp ) +
  5822. get_chroma_qp( h, 0, mbn0_qp ) + 1 ) >> 1;
  5823. rqp[0] = ( get_chroma_qp( h, 1, mb_qp ) +
  5824. get_chroma_qp( h, 1, mbn0_qp ) + 1 ) >> 1;
  5825. qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
  5826. bqp[1] = ( get_chroma_qp( h, 0, mb_qp ) +
  5827. get_chroma_qp( h, 0, mbn1_qp ) + 1 ) >> 1;
  5828. rqp[1] = ( get_chroma_qp( h, 1, mb_qp ) +
  5829. get_chroma_qp( h, 1, mbn1_qp ) + 1 ) >> 1;
  5830. /* Filter edge */
  5831. tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPb:%d/%d QPr:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], bqp[0], bqp[1], rqp[0], rqp[1], linesize, uvlinesize);
  5832. { int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5833. filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
  5834. filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, bqp );
  5835. filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, rqp );
  5836. }
  5837. /* dir : 0 -> vertical edge, 1 -> horizontal edge */
  5838. for( dir = 0; dir < 2; dir++ )
  5839. {
  5840. int edge;
  5841. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  5842. const int mbm_type = s->current_picture.mb_type[mbm_xy];
  5843. int start = h->slice_table[mbm_xy] == 255 ? 1 : 0;
  5844. const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
  5845. == (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
  5846. // how often to recheck mv-based bS when iterating between edges
  5847. const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
  5848. (mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
  5849. // how often to recheck mv-based bS when iterating along each edge
  5850. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  5851. if (first_vertical_edge_done) {
  5852. start = 1;
  5853. first_vertical_edge_done = 0;
  5854. }
  5855. if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
  5856. start = 1;
  5857. if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && start == 0
  5858. && !IS_INTERLACED(mb_type)
  5859. && IS_INTERLACED(mbm_type)
  5860. ) {
  5861. // This is a special case in the norm where the filtering must
  5862. // be done twice (one each of the field) even if we are in a
  5863. // frame macroblock.
  5864. //
  5865. static const int nnz_idx[4] = {4,5,6,3};
  5866. unsigned int tmp_linesize = 2 * linesize;
  5867. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  5868. int mbn_xy = mb_xy - 2 * s->mb_stride;
  5869. int qp;
  5870. int i, j;
  5871. int16_t bS[4];
  5872. for(j=0; j<2; j++, mbn_xy += s->mb_stride){
  5873. if( IS_INTRA(mb_type) ||
  5874. IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
  5875. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  5876. } else {
  5877. const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy];
  5878. for( i = 0; i < 4; i++ ) {
  5879. if( h->non_zero_count_cache[scan8[0]+i] != 0 ||
  5880. mbn_nnz[nnz_idx[i]] != 0 )
  5881. bS[i] = 2;
  5882. else
  5883. bS[i] = 1;
  5884. }
  5885. }
  5886. // Do not use s->qscale as luma quantizer because it has not the same
  5887. // value in IPCM macroblocks.
  5888. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5889. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  5890. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5891. filter_mb_edgeh( h, &img_y[j*linesize], tmp_linesize, bS, qp );
  5892. filter_mb_edgech( h, &img_cb[j*uvlinesize], tmp_uvlinesize, bS,
  5893. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5894. filter_mb_edgech( h, &img_cr[j*uvlinesize], tmp_uvlinesize, bS,
  5895. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5896. }
  5897. start = 1;
  5898. }
  5899. /* Calculate bS */
  5900. for( edge = start; edge < edges; edge++ ) {
  5901. /* mbn_xy: neighbor macroblock */
  5902. const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
  5903. const int mbn_type = s->current_picture.mb_type[mbn_xy];
  5904. int16_t bS[4];
  5905. int qp;
  5906. if( (edge&1) && IS_8x8DCT(mb_type) )
  5907. continue;
  5908. if( IS_INTRA(mb_type) ||
  5909. IS_INTRA(mbn_type) ) {
  5910. int value;
  5911. if (edge == 0) {
  5912. if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
  5913. || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  5914. ) {
  5915. value = 4;
  5916. } else {
  5917. value = 3;
  5918. }
  5919. } else {
  5920. value = 3;
  5921. }
  5922. bS[0] = bS[1] = bS[2] = bS[3] = value;
  5923. } else {
  5924. int i, l;
  5925. int mv_done;
  5926. if( edge & mask_edge ) {
  5927. bS[0] = bS[1] = bS[2] = bS[3] = 0;
  5928. mv_done = 1;
  5929. }
  5930. else if( FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbn_type)) {
  5931. bS[0] = bS[1] = bS[2] = bS[3] = 1;
  5932. mv_done = 1;
  5933. }
  5934. else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  5935. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  5936. int bn_idx= b_idx - (dir ? 8:1);
  5937. int v = 0;
  5938. for( l = 0; !v && l < 1 + (h->slice_type == FF_B_TYPE); l++ ) {
  5939. v |= ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  5940. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5941. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit;
  5942. }
  5943. bS[0] = bS[1] = bS[2] = bS[3] = v;
  5944. mv_done = 1;
  5945. }
  5946. else
  5947. mv_done = 0;
  5948. for( i = 0; i < 4; i++ ) {
  5949. int x = dir == 0 ? edge : i;
  5950. int y = dir == 0 ? i : edge;
  5951. int b_idx= 8 + 4 + x + 8*y;
  5952. int bn_idx= b_idx - (dir ? 8:1);
  5953. if( h->non_zero_count_cache[b_idx] != 0 ||
  5954. h->non_zero_count_cache[bn_idx] != 0 ) {
  5955. bS[i] = 2;
  5956. }
  5957. else if(!mv_done)
  5958. {
  5959. bS[i] = 0;
  5960. for( l = 0; l < 1 + (h->slice_type == FF_B_TYPE); l++ ) {
  5961. if( ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  5962. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5963. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit ) {
  5964. bS[i] = 1;
  5965. break;
  5966. }
  5967. }
  5968. }
  5969. }
  5970. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  5971. continue;
  5972. }
  5973. /* Filter edge */
  5974. // Do not use s->qscale as luma quantizer because it has not the same
  5975. // value in IPCM macroblocks.
  5976. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5977. //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
  5978. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  5979. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5980. if( dir == 0 ) {
  5981. filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
  5982. if( (edge&1) == 0 ) {
  5983. filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS,
  5984. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5985. filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS,
  5986. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5987. }
  5988. } else {
  5989. filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
  5990. if( (edge&1) == 0 ) {
  5991. filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS,
  5992. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5993. filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS,
  5994. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5995. }
  5996. }
  5997. }
  5998. }
  5999. }
  6000. static int decode_slice(struct AVCodecContext *avctx, H264Context *h){
  6001. MpegEncContext * const s = &h->s;
  6002. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  6003. s->mb_skip_run= -1;
  6004. if( h->pps.cabac ) {
  6005. int i;
  6006. /* realign */
  6007. align_get_bits( &s->gb );
  6008. /* init cabac */
  6009. ff_init_cabac_states( &h->cabac);
  6010. ff_init_cabac_decoder( &h->cabac,
  6011. s->gb.buffer + get_bits_count(&s->gb)/8,
  6012. ( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
  6013. /* calculate pre-state */
  6014. for( i= 0; i < 460; i++ ) {
  6015. int pre;
  6016. if( h->slice_type == FF_I_TYPE )
  6017. pre = av_clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
  6018. else
  6019. pre = av_clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
  6020. if( pre <= 63 )
  6021. h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
  6022. else
  6023. h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
  6024. }
  6025. for(;;){
  6026. //START_TIMER
  6027. int ret = decode_mb_cabac(h);
  6028. int eos;
  6029. //STOP_TIMER("decode_mb_cabac")
  6030. if(ret>=0) hl_decode_mb(h);
  6031. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  6032. s->mb_y++;
  6033. if(ret>=0) ret = decode_mb_cabac(h);
  6034. if(ret>=0) hl_decode_mb(h);
  6035. s->mb_y--;
  6036. }
  6037. eos = get_cabac_terminate( &h->cabac );
  6038. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  6039. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  6040. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6041. return -1;
  6042. }
  6043. if( ++s->mb_x >= s->mb_width ) {
  6044. s->mb_x = 0;
  6045. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6046. ++s->mb_y;
  6047. if(FIELD_OR_MBAFF_PICTURE) {
  6048. ++s->mb_y;
  6049. }
  6050. }
  6051. if( eos || s->mb_y >= s->mb_height ) {
  6052. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6053. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6054. return 0;
  6055. }
  6056. }
  6057. } else {
  6058. for(;;){
  6059. int ret = decode_mb_cavlc(h);
  6060. if(ret>=0) hl_decode_mb(h);
  6061. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  6062. s->mb_y++;
  6063. ret = decode_mb_cavlc(h);
  6064. if(ret>=0) hl_decode_mb(h);
  6065. s->mb_y--;
  6066. }
  6067. if(ret<0){
  6068. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6069. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6070. return -1;
  6071. }
  6072. if(++s->mb_x >= s->mb_width){
  6073. s->mb_x=0;
  6074. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6075. ++s->mb_y;
  6076. if(FIELD_OR_MBAFF_PICTURE) {
  6077. ++s->mb_y;
  6078. }
  6079. if(s->mb_y >= s->mb_height){
  6080. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6081. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  6082. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6083. return 0;
  6084. }else{
  6085. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6086. return -1;
  6087. }
  6088. }
  6089. }
  6090. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  6091. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6092. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  6093. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6094. return 0;
  6095. }else{
  6096. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6097. return -1;
  6098. }
  6099. }
  6100. }
  6101. }
  6102. #if 0
  6103. for(;s->mb_y < s->mb_height; s->mb_y++){
  6104. for(;s->mb_x < s->mb_width; s->mb_x++){
  6105. int ret= decode_mb(h);
  6106. hl_decode_mb(h);
  6107. if(ret<0){
  6108. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6109. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6110. return -1;
  6111. }
  6112. if(++s->mb_x >= s->mb_width){
  6113. s->mb_x=0;
  6114. if(++s->mb_y >= s->mb_height){
  6115. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6116. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6117. return 0;
  6118. }else{
  6119. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6120. return -1;
  6121. }
  6122. }
  6123. }
  6124. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  6125. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6126. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6127. return 0;
  6128. }else{
  6129. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6130. return -1;
  6131. }
  6132. }
  6133. }
  6134. s->mb_x=0;
  6135. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6136. }
  6137. #endif
  6138. return -1; //not reached
  6139. }
  6140. static int decode_unregistered_user_data(H264Context *h, int size){
  6141. MpegEncContext * const s = &h->s;
  6142. uint8_t user_data[16+256];
  6143. int e, build, i;
  6144. if(size<16)
  6145. return -1;
  6146. for(i=0; i<sizeof(user_data)-1 && i<size; i++){
  6147. user_data[i]= get_bits(&s->gb, 8);
  6148. }
  6149. user_data[i]= 0;
  6150. e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
  6151. if(e==1 && build>=0)
  6152. h->x264_build= build;
  6153. if(s->avctx->debug & FF_DEBUG_BUGS)
  6154. av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
  6155. for(; i<size; i++)
  6156. skip_bits(&s->gb, 8);
  6157. return 0;
  6158. }
  6159. static int decode_sei(H264Context *h){
  6160. MpegEncContext * const s = &h->s;
  6161. while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
  6162. int size, type;
  6163. type=0;
  6164. do{
  6165. type+= show_bits(&s->gb, 8);
  6166. }while(get_bits(&s->gb, 8) == 255);
  6167. size=0;
  6168. do{
  6169. size+= show_bits(&s->gb, 8);
  6170. }while(get_bits(&s->gb, 8) == 255);
  6171. switch(type){
  6172. case 5:
  6173. if(decode_unregistered_user_data(h, size) < 0)
  6174. return -1;
  6175. break;
  6176. default:
  6177. skip_bits(&s->gb, 8*size);
  6178. }
  6179. //FIXME check bits here
  6180. align_get_bits(&s->gb);
  6181. }
  6182. return 0;
  6183. }
  6184. static inline void decode_hrd_parameters(H264Context *h, SPS *sps){
  6185. MpegEncContext * const s = &h->s;
  6186. int cpb_count, i;
  6187. cpb_count = get_ue_golomb(&s->gb) + 1;
  6188. get_bits(&s->gb, 4); /* bit_rate_scale */
  6189. get_bits(&s->gb, 4); /* cpb_size_scale */
  6190. for(i=0; i<cpb_count; i++){
  6191. get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
  6192. get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
  6193. get_bits1(&s->gb); /* cbr_flag */
  6194. }
  6195. get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
  6196. get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */
  6197. get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */
  6198. get_bits(&s->gb, 5); /* time_offset_length */
  6199. }
  6200. static inline int decode_vui_parameters(H264Context *h, SPS *sps){
  6201. MpegEncContext * const s = &h->s;
  6202. int aspect_ratio_info_present_flag;
  6203. unsigned int aspect_ratio_idc;
  6204. int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag;
  6205. aspect_ratio_info_present_flag= get_bits1(&s->gb);
  6206. if( aspect_ratio_info_present_flag ) {
  6207. aspect_ratio_idc= get_bits(&s->gb, 8);
  6208. if( aspect_ratio_idc == EXTENDED_SAR ) {
  6209. sps->sar.num= get_bits(&s->gb, 16);
  6210. sps->sar.den= get_bits(&s->gb, 16);
  6211. }else if(aspect_ratio_idc < sizeof(pixel_aspect)/sizeof(*pixel_aspect)){
  6212. sps->sar= pixel_aspect[aspect_ratio_idc];
  6213. }else{
  6214. av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
  6215. return -1;
  6216. }
  6217. }else{
  6218. sps->sar.num=
  6219. sps->sar.den= 0;
  6220. }
  6221. // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
  6222. if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
  6223. get_bits1(&s->gb); /* overscan_appropriate_flag */
  6224. }
  6225. if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
  6226. get_bits(&s->gb, 3); /* video_format */
  6227. get_bits1(&s->gb); /* video_full_range_flag */
  6228. if(get_bits1(&s->gb)){ /* colour_description_present_flag */
  6229. get_bits(&s->gb, 8); /* colour_primaries */
  6230. get_bits(&s->gb, 8); /* transfer_characteristics */
  6231. get_bits(&s->gb, 8); /* matrix_coefficients */
  6232. }
  6233. }
  6234. if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
  6235. get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
  6236. get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
  6237. }
  6238. sps->timing_info_present_flag = get_bits1(&s->gb);
  6239. if(sps->timing_info_present_flag){
  6240. sps->num_units_in_tick = get_bits_long(&s->gb, 32);
  6241. sps->time_scale = get_bits_long(&s->gb, 32);
  6242. sps->fixed_frame_rate_flag = get_bits1(&s->gb);
  6243. }
  6244. nal_hrd_parameters_present_flag = get_bits1(&s->gb);
  6245. if(nal_hrd_parameters_present_flag)
  6246. decode_hrd_parameters(h, sps);
  6247. vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
  6248. if(vcl_hrd_parameters_present_flag)
  6249. decode_hrd_parameters(h, sps);
  6250. if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag)
  6251. get_bits1(&s->gb); /* low_delay_hrd_flag */
  6252. get_bits1(&s->gb); /* pic_struct_present_flag */
  6253. sps->bitstream_restriction_flag = get_bits1(&s->gb);
  6254. if(sps->bitstream_restriction_flag){
  6255. unsigned int num_reorder_frames;
  6256. get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
  6257. get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
  6258. get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
  6259. get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
  6260. get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
  6261. num_reorder_frames= get_ue_golomb(&s->gb);
  6262. get_ue_golomb(&s->gb); /*max_dec_frame_buffering*/
  6263. if(num_reorder_frames > 16 /*max_dec_frame_buffering || max_dec_frame_buffering > 16*/){
  6264. av_log(h->s.avctx, AV_LOG_ERROR, "illegal num_reorder_frames %d\n", num_reorder_frames);
  6265. return -1;
  6266. }
  6267. sps->num_reorder_frames= num_reorder_frames;
  6268. }
  6269. return 0;
  6270. }
  6271. static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
  6272. const uint8_t *jvt_list, const uint8_t *fallback_list){
  6273. MpegEncContext * const s = &h->s;
  6274. int i, last = 8, next = 8;
  6275. const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
  6276. if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
  6277. memcpy(factors, fallback_list, size*sizeof(uint8_t));
  6278. else
  6279. for(i=0;i<size;i++){
  6280. if(next)
  6281. next = (last + get_se_golomb(&s->gb)) & 0xff;
  6282. if(!i && !next){ /* matrix not written, we use the preset one */
  6283. memcpy(factors, jvt_list, size*sizeof(uint8_t));
  6284. break;
  6285. }
  6286. last = factors[scan[i]] = next ? next : last;
  6287. }
  6288. }
  6289. static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
  6290. uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
  6291. MpegEncContext * const s = &h->s;
  6292. int fallback_sps = !is_sps && sps->scaling_matrix_present;
  6293. const uint8_t *fallback[4] = {
  6294. fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
  6295. fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
  6296. fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
  6297. fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
  6298. };
  6299. if(get_bits1(&s->gb)){
  6300. sps->scaling_matrix_present |= is_sps;
  6301. decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
  6302. decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
  6303. decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
  6304. decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
  6305. decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
  6306. decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
  6307. if(is_sps || pps->transform_8x8_mode){
  6308. decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
  6309. decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
  6310. }
  6311. } else if(fallback_sps) {
  6312. memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t));
  6313. memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t));
  6314. }
  6315. }
  6316. /**
  6317. * Returns and optionally allocates SPS / PPS structures in the supplied array 'vec'
  6318. */
  6319. static void *
  6320. alloc_parameter_set(H264Context *h, void **vec, const unsigned int id, const unsigned int max,
  6321. const size_t size, const char *name)
  6322. {
  6323. if(id>=max) {
  6324. av_log(h->s.avctx, AV_LOG_ERROR, "%s_id (%d) out of range\n", name, id);
  6325. return NULL;
  6326. }
  6327. if(!vec[id]) {
  6328. vec[id] = av_mallocz(size);
  6329. if(vec[id] == NULL)
  6330. av_log(h->s.avctx, AV_LOG_ERROR, "cannot allocate memory for %s\n", name);
  6331. }
  6332. return vec[id];
  6333. }
  6334. static inline int decode_seq_parameter_set(H264Context *h){
  6335. MpegEncContext * const s = &h->s;
  6336. int profile_idc, level_idc;
  6337. unsigned int sps_id, tmp, mb_width, mb_height;
  6338. int i;
  6339. SPS *sps;
  6340. profile_idc= get_bits(&s->gb, 8);
  6341. get_bits1(&s->gb); //constraint_set0_flag
  6342. get_bits1(&s->gb); //constraint_set1_flag
  6343. get_bits1(&s->gb); //constraint_set2_flag
  6344. get_bits1(&s->gb); //constraint_set3_flag
  6345. get_bits(&s->gb, 4); // reserved
  6346. level_idc= get_bits(&s->gb, 8);
  6347. sps_id= get_ue_golomb(&s->gb);
  6348. sps = alloc_parameter_set(h, (void **)h->sps_buffers, sps_id, MAX_SPS_COUNT, sizeof(SPS), "sps");
  6349. if(sps == NULL)
  6350. return -1;
  6351. sps->profile_idc= profile_idc;
  6352. sps->level_idc= level_idc;
  6353. if(sps->profile_idc >= 100){ //high profile
  6354. if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc
  6355. get_bits1(&s->gb); //residual_color_transform_flag
  6356. get_ue_golomb(&s->gb); //bit_depth_luma_minus8
  6357. get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
  6358. sps->transform_bypass = get_bits1(&s->gb);
  6359. decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
  6360. }else
  6361. sps->scaling_matrix_present = 0;
  6362. sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
  6363. sps->poc_type= get_ue_golomb(&s->gb);
  6364. if(sps->poc_type == 0){ //FIXME #define
  6365. sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
  6366. } else if(sps->poc_type == 1){//FIXME #define
  6367. sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
  6368. sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
  6369. sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
  6370. tmp= get_ue_golomb(&s->gb);
  6371. if(tmp >= sizeof(sps->offset_for_ref_frame) / sizeof(sps->offset_for_ref_frame[0])){
  6372. av_log(h->s.avctx, AV_LOG_ERROR, "poc_cycle_length overflow %u\n", tmp);
  6373. return -1;
  6374. }
  6375. sps->poc_cycle_length= tmp;
  6376. for(i=0; i<sps->poc_cycle_length; i++)
  6377. sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
  6378. }else if(sps->poc_type != 2){
  6379. av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
  6380. return -1;
  6381. }
  6382. tmp= get_ue_golomb(&s->gb);
  6383. if(tmp > MAX_PICTURE_COUNT-2 || tmp >= 32){
  6384. av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
  6385. return -1;
  6386. }
  6387. sps->ref_frame_count= tmp;
  6388. sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
  6389. mb_width= get_ue_golomb(&s->gb) + 1;
  6390. mb_height= get_ue_golomb(&s->gb) + 1;
  6391. if(mb_width >= INT_MAX/16 || mb_height >= INT_MAX/16 ||
  6392. avcodec_check_dimensions(NULL, 16*mb_width, 16*mb_height)){
  6393. av_log(h->s.avctx, AV_LOG_ERROR, "mb_width/height overflow\n");
  6394. return -1;
  6395. }
  6396. sps->mb_width = mb_width;
  6397. sps->mb_height= mb_height;
  6398. sps->frame_mbs_only_flag= get_bits1(&s->gb);
  6399. if(!sps->frame_mbs_only_flag)
  6400. sps->mb_aff= get_bits1(&s->gb);
  6401. else
  6402. sps->mb_aff= 0;
  6403. sps->direct_8x8_inference_flag= get_bits1(&s->gb);
  6404. #ifndef ALLOW_INTERLACE
  6405. if(sps->mb_aff)
  6406. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF support not included; enable it at compile-time.\n");
  6407. #endif
  6408. if(!sps->direct_8x8_inference_flag && sps->mb_aff)
  6409. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + !direct_8x8_inference is not implemented\n");
  6410. sps->crop= get_bits1(&s->gb);
  6411. if(sps->crop){
  6412. sps->crop_left = get_ue_golomb(&s->gb);
  6413. sps->crop_right = get_ue_golomb(&s->gb);
  6414. sps->crop_top = get_ue_golomb(&s->gb);
  6415. sps->crop_bottom= get_ue_golomb(&s->gb);
  6416. if(sps->crop_left || sps->crop_top){
  6417. av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
  6418. }
  6419. if(sps->crop_right >= 8 || sps->crop_bottom >= (8>> !h->sps.frame_mbs_only_flag)){
  6420. av_log(h->s.avctx, AV_LOG_ERROR, "brainfart cropping not supported, this could look slightly wrong ...\n");
  6421. }
  6422. }else{
  6423. sps->crop_left =
  6424. sps->crop_right =
  6425. sps->crop_top =
  6426. sps->crop_bottom= 0;
  6427. }
  6428. sps->vui_parameters_present_flag= get_bits1(&s->gb);
  6429. if( sps->vui_parameters_present_flag )
  6430. decode_vui_parameters(h, sps);
  6431. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6432. av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
  6433. sps_id, sps->profile_idc, sps->level_idc,
  6434. sps->poc_type,
  6435. sps->ref_frame_count,
  6436. sps->mb_width, sps->mb_height,
  6437. sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
  6438. sps->direct_8x8_inference_flag ? "8B8" : "",
  6439. sps->crop_left, sps->crop_right,
  6440. sps->crop_top, sps->crop_bottom,
  6441. sps->vui_parameters_present_flag ? "VUI" : ""
  6442. );
  6443. }
  6444. return 0;
  6445. }
  6446. static void
  6447. build_qp_table(PPS *pps, int t, int index)
  6448. {
  6449. int i;
  6450. for(i = 0; i < 255; i++)
  6451. pps->chroma_qp_table[t][i & 0xff] = chroma_qp[av_clip(i + index, 0, 51)];
  6452. }
  6453. static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
  6454. MpegEncContext * const s = &h->s;
  6455. unsigned int tmp, pps_id= get_ue_golomb(&s->gb);
  6456. PPS *pps;
  6457. pps = alloc_parameter_set(h, (void **)h->pps_buffers, pps_id, MAX_PPS_COUNT, sizeof(PPS), "pps");
  6458. if(pps == NULL)
  6459. return -1;
  6460. tmp= get_ue_golomb(&s->gb);
  6461. if(tmp>=MAX_SPS_COUNT || h->sps_buffers[tmp] == NULL){
  6462. av_log(h->s.avctx, AV_LOG_ERROR, "sps_id out of range\n");
  6463. return -1;
  6464. }
  6465. pps->sps_id= tmp;
  6466. pps->cabac= get_bits1(&s->gb);
  6467. pps->pic_order_present= get_bits1(&s->gb);
  6468. pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
  6469. if(pps->slice_group_count > 1 ){
  6470. pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
  6471. av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
  6472. switch(pps->mb_slice_group_map_type){
  6473. case 0:
  6474. #if 0
  6475. | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
  6476. | run_length[ i ] |1 |ue(v) |
  6477. #endif
  6478. break;
  6479. case 2:
  6480. #if 0
  6481. | for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
  6482. |{ | | |
  6483. | top_left_mb[ i ] |1 |ue(v) |
  6484. | bottom_right_mb[ i ] |1 |ue(v) |
  6485. | } | | |
  6486. #endif
  6487. break;
  6488. case 3:
  6489. case 4:
  6490. case 5:
  6491. #if 0
  6492. | slice_group_change_direction_flag |1 |u(1) |
  6493. | slice_group_change_rate_minus1 |1 |ue(v) |
  6494. #endif
  6495. break;
  6496. case 6:
  6497. #if 0
  6498. | slice_group_id_cnt_minus1 |1 |ue(v) |
  6499. | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
  6500. |) | | |
  6501. | slice_group_id[ i ] |1 |u(v) |
  6502. #endif
  6503. break;
  6504. }
  6505. }
  6506. pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  6507. pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  6508. if(pps->ref_count[0]-1 > 32-1 || pps->ref_count[1]-1 > 32-1){
  6509. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
  6510. pps->ref_count[0]= pps->ref_count[1]= 1;
  6511. return -1;
  6512. }
  6513. pps->weighted_pred= get_bits1(&s->gb);
  6514. pps->weighted_bipred_idc= get_bits(&s->gb, 2);
  6515. pps->init_qp= get_se_golomb(&s->gb) + 26;
  6516. pps->init_qs= get_se_golomb(&s->gb) + 26;
  6517. pps->chroma_qp_index_offset[0]= get_se_golomb(&s->gb);
  6518. pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
  6519. pps->constrained_intra_pred= get_bits1(&s->gb);
  6520. pps->redundant_pic_cnt_present = get_bits1(&s->gb);
  6521. pps->transform_8x8_mode= 0;
  6522. h->dequant_coeff_pps= -1; //contents of sps/pps can change even if id doesn't, so reinit
  6523. memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  6524. memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  6525. if(get_bits_count(&s->gb) < bit_length){
  6526. pps->transform_8x8_mode= get_bits1(&s->gb);
  6527. decode_scaling_matrices(h, h->sps_buffers[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
  6528. pps->chroma_qp_index_offset[1]= get_se_golomb(&s->gb); //second_chroma_qp_index_offset
  6529. } else {
  6530. pps->chroma_qp_index_offset[1]= pps->chroma_qp_index_offset[0];
  6531. }
  6532. build_qp_table(pps, 0, pps->chroma_qp_index_offset[0]);
  6533. if(pps->chroma_qp_index_offset[0] != pps->chroma_qp_index_offset[1]) {
  6534. build_qp_table(pps, 1, pps->chroma_qp_index_offset[1]);
  6535. h->pps.chroma_qp_diff= 1;
  6536. } else
  6537. memcpy(pps->chroma_qp_table[1], pps->chroma_qp_table[0], 256);
  6538. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6539. av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%u sps:%u %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d/%d %s %s %s %s\n",
  6540. pps_id, pps->sps_id,
  6541. pps->cabac ? "CABAC" : "CAVLC",
  6542. pps->slice_group_count,
  6543. pps->ref_count[0], pps->ref_count[1],
  6544. pps->weighted_pred ? "weighted" : "",
  6545. pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset[0], pps->chroma_qp_index_offset[1],
  6546. pps->deblocking_filter_parameters_present ? "LPAR" : "",
  6547. pps->constrained_intra_pred ? "CONSTR" : "",
  6548. pps->redundant_pic_cnt_present ? "REDU" : "",
  6549. pps->transform_8x8_mode ? "8x8DCT" : ""
  6550. );
  6551. }
  6552. return 0;
  6553. }
  6554. /**
  6555. * Call decode_slice() for each context.
  6556. *
  6557. * @param h h264 master context
  6558. * @param context_count number of contexts to execute
  6559. */
  6560. static void execute_decode_slices(H264Context *h, int context_count){
  6561. MpegEncContext * const s = &h->s;
  6562. AVCodecContext * const avctx= s->avctx;
  6563. H264Context *hx;
  6564. int i;
  6565. if(context_count == 1) {
  6566. decode_slice(avctx, h);
  6567. } else {
  6568. for(i = 1; i < context_count; i++) {
  6569. hx = h->thread_context[i];
  6570. hx->s.error_resilience = avctx->error_resilience;
  6571. hx->s.error_count = 0;
  6572. }
  6573. avctx->execute(avctx, (void *)decode_slice,
  6574. (void **)h->thread_context, NULL, context_count);
  6575. /* pull back stuff from slices to master context */
  6576. hx = h->thread_context[context_count - 1];
  6577. s->mb_x = hx->s.mb_x;
  6578. s->mb_y = hx->s.mb_y;
  6579. s->dropable = hx->s.dropable;
  6580. s->picture_structure = hx->s.picture_structure;
  6581. for(i = 1; i < context_count; i++)
  6582. h->s.error_count += h->thread_context[i]->s.error_count;
  6583. }
  6584. }
  6585. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  6586. MpegEncContext * const s = &h->s;
  6587. AVCodecContext * const avctx= s->avctx;
  6588. int buf_index=0;
  6589. H264Context *hx; ///< thread context
  6590. int context_count = 0;
  6591. h->max_contexts = avctx->thread_count;
  6592. #if 0
  6593. int i;
  6594. for(i=0; i<50; i++){
  6595. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  6596. }
  6597. #endif
  6598. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  6599. h->current_slice = 0;
  6600. if (!s->first_field)
  6601. s->current_picture_ptr= NULL;
  6602. }
  6603. for(;;){
  6604. int consumed;
  6605. int dst_length;
  6606. int bit_length;
  6607. const uint8_t *ptr;
  6608. int i, nalsize = 0;
  6609. int err;
  6610. if(h->is_avc) {
  6611. if(buf_index >= buf_size) break;
  6612. nalsize = 0;
  6613. for(i = 0; i < h->nal_length_size; i++)
  6614. nalsize = (nalsize << 8) | buf[buf_index++];
  6615. if(nalsize <= 1 || (nalsize+buf_index > buf_size)){
  6616. if(nalsize == 1){
  6617. buf_index++;
  6618. continue;
  6619. }else{
  6620. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  6621. break;
  6622. }
  6623. }
  6624. } else {
  6625. // start code prefix search
  6626. for(; buf_index + 3 < buf_size; buf_index++){
  6627. // This should always succeed in the first iteration.
  6628. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  6629. break;
  6630. }
  6631. if(buf_index+3 >= buf_size) break;
  6632. buf_index+=3;
  6633. }
  6634. hx = h->thread_context[context_count];
  6635. ptr= decode_nal(hx, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
  6636. if (ptr==NULL || dst_length < 0){
  6637. return -1;
  6638. }
  6639. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  6640. dst_length--;
  6641. bit_length= !dst_length ? 0 : (8*dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1));
  6642. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  6643. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
  6644. }
  6645. if (h->is_avc && (nalsize != consumed)){
  6646. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  6647. consumed= nalsize;
  6648. }
  6649. buf_index += consumed;
  6650. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  6651. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  6652. continue;
  6653. again:
  6654. err = 0;
  6655. switch(hx->nal_unit_type){
  6656. case NAL_IDR_SLICE:
  6657. if (h->nal_unit_type != NAL_IDR_SLICE) {
  6658. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  6659. return -1;
  6660. }
  6661. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  6662. case NAL_SLICE:
  6663. init_get_bits(&hx->s.gb, ptr, bit_length);
  6664. hx->intra_gb_ptr=
  6665. hx->inter_gb_ptr= &hx->s.gb;
  6666. hx->s.data_partitioning = 0;
  6667. if((err = decode_slice_header(hx, h)))
  6668. break;
  6669. s->current_picture_ptr->key_frame|= (hx->nal_unit_type == NAL_IDR_SLICE);
  6670. if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
  6671. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6672. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type!=FF_B_TYPE)
  6673. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type==FF_I_TYPE)
  6674. && avctx->skip_frame < AVDISCARD_ALL)
  6675. context_count++;
  6676. break;
  6677. case NAL_DPA:
  6678. init_get_bits(&hx->s.gb, ptr, bit_length);
  6679. hx->intra_gb_ptr=
  6680. hx->inter_gb_ptr= NULL;
  6681. hx->s.data_partitioning = 1;
  6682. err = decode_slice_header(hx, h);
  6683. break;
  6684. case NAL_DPB:
  6685. init_get_bits(&hx->intra_gb, ptr, bit_length);
  6686. hx->intra_gb_ptr= &hx->intra_gb;
  6687. break;
  6688. case NAL_DPC:
  6689. init_get_bits(&hx->inter_gb, ptr, bit_length);
  6690. hx->inter_gb_ptr= &hx->inter_gb;
  6691. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  6692. && s->context_initialized
  6693. && s->hurry_up < 5
  6694. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6695. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type!=FF_B_TYPE)
  6696. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type==FF_I_TYPE)
  6697. && avctx->skip_frame < AVDISCARD_ALL)
  6698. context_count++;
  6699. break;
  6700. case NAL_SEI:
  6701. init_get_bits(&s->gb, ptr, bit_length);
  6702. decode_sei(h);
  6703. break;
  6704. case NAL_SPS:
  6705. init_get_bits(&s->gb, ptr, bit_length);
  6706. decode_seq_parameter_set(h);
  6707. if(s->flags& CODEC_FLAG_LOW_DELAY)
  6708. s->low_delay=1;
  6709. if(avctx->has_b_frames < 2)
  6710. avctx->has_b_frames= !s->low_delay;
  6711. break;
  6712. case NAL_PPS:
  6713. init_get_bits(&s->gb, ptr, bit_length);
  6714. decode_picture_parameter_set(h, bit_length);
  6715. break;
  6716. case NAL_AUD:
  6717. case NAL_END_SEQUENCE:
  6718. case NAL_END_STREAM:
  6719. case NAL_FILLER_DATA:
  6720. case NAL_SPS_EXT:
  6721. case NAL_AUXILIARY_SLICE:
  6722. break;
  6723. default:
  6724. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", h->nal_unit_type, bit_length);
  6725. }
  6726. if(context_count == h->max_contexts) {
  6727. execute_decode_slices(h, context_count);
  6728. context_count = 0;
  6729. }
  6730. if (err < 0)
  6731. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6732. else if(err == 1) {
  6733. /* Slice could not be decoded in parallel mode, copy down
  6734. * NAL unit stuff to context 0 and restart. Note that
  6735. * rbsp_buffer is not transfered, but since we no longer
  6736. * run in parallel mode this should not be an issue. */
  6737. h->nal_unit_type = hx->nal_unit_type;
  6738. h->nal_ref_idc = hx->nal_ref_idc;
  6739. hx = h;
  6740. goto again;
  6741. }
  6742. }
  6743. if(context_count)
  6744. execute_decode_slices(h, context_count);
  6745. return buf_index;
  6746. }
  6747. /**
  6748. * returns the number of bytes consumed for building the current frame
  6749. */
  6750. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  6751. if(s->flags&CODEC_FLAG_TRUNCATED){
  6752. pos -= s->parse_context.last_index;
  6753. if(pos<0) pos=0; // FIXME remove (unneeded?)
  6754. return pos;
  6755. }else{
  6756. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  6757. if(pos+10>buf_size) pos=buf_size; // oops ;)
  6758. return pos;
  6759. }
  6760. }
  6761. static int decode_frame(AVCodecContext *avctx,
  6762. void *data, int *data_size,
  6763. const uint8_t *buf, int buf_size)
  6764. {
  6765. H264Context *h = avctx->priv_data;
  6766. MpegEncContext *s = &h->s;
  6767. AVFrame *pict = data;
  6768. int buf_index;
  6769. s->flags= avctx->flags;
  6770. s->flags2= avctx->flags2;
  6771. /* no supplementary picture */
  6772. if (buf_size == 0) {
  6773. Picture *out;
  6774. int i, out_idx;
  6775. //FIXME factorize this with the output code below
  6776. out = h->delayed_pic[0];
  6777. out_idx = 0;
  6778. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
  6779. if(h->delayed_pic[i]->poc < out->poc){
  6780. out = h->delayed_pic[i];
  6781. out_idx = i;
  6782. }
  6783. for(i=out_idx; h->delayed_pic[i]; i++)
  6784. h->delayed_pic[i] = h->delayed_pic[i+1];
  6785. if(out){
  6786. *data_size = sizeof(AVFrame);
  6787. *pict= *(AVFrame*)out;
  6788. }
  6789. return 0;
  6790. }
  6791. if(s->flags&CODEC_FLAG_TRUNCATED){
  6792. int next= ff_h264_find_frame_end(h, buf, buf_size);
  6793. if( ff_combine_frame(&s->parse_context, next, (const uint8_t **)&buf, &buf_size) < 0 )
  6794. return buf_size;
  6795. //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
  6796. }
  6797. if(h->is_avc && !h->got_avcC) {
  6798. int i, cnt, nalsize;
  6799. unsigned char *p = avctx->extradata;
  6800. if(avctx->extradata_size < 7) {
  6801. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  6802. return -1;
  6803. }
  6804. if(*p != 1) {
  6805. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  6806. return -1;
  6807. }
  6808. /* sps and pps in the avcC always have length coded with 2 bytes,
  6809. so put a fake nal_length_size = 2 while parsing them */
  6810. h->nal_length_size = 2;
  6811. // Decode sps from avcC
  6812. cnt = *(p+5) & 0x1f; // Number of sps
  6813. p += 6;
  6814. for (i = 0; i < cnt; i++) {
  6815. nalsize = AV_RB16(p) + 2;
  6816. if(decode_nal_units(h, p, nalsize) < 0) {
  6817. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  6818. return -1;
  6819. }
  6820. p += nalsize;
  6821. }
  6822. // Decode pps from avcC
  6823. cnt = *(p++); // Number of pps
  6824. for (i = 0; i < cnt; i++) {
  6825. nalsize = AV_RB16(p) + 2;
  6826. if(decode_nal_units(h, p, nalsize) != nalsize) {
  6827. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  6828. return -1;
  6829. }
  6830. p += nalsize;
  6831. }
  6832. // Now store right nal length size, that will be use to parse all other nals
  6833. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  6834. // Do not reparse avcC
  6835. h->got_avcC = 1;
  6836. }
  6837. if(avctx->frame_number==0 && !h->is_avc && s->avctx->extradata_size){
  6838. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  6839. return -1;
  6840. }
  6841. buf_index=decode_nal_units(h, buf, buf_size);
  6842. if(buf_index < 0)
  6843. return -1;
  6844. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  6845. if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
  6846. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  6847. return -1;
  6848. }
  6849. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  6850. Picture *out = s->current_picture_ptr;
  6851. Picture *cur = s->current_picture_ptr;
  6852. Picture *prev = h->delayed_output_pic;
  6853. int i, pics, cross_idr, out_of_order, out_idx;
  6854. s->mb_y= 0;
  6855. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  6856. s->current_picture_ptr->pict_type= s->pict_type;
  6857. h->prev_frame_num_offset= h->frame_num_offset;
  6858. h->prev_frame_num= h->frame_num;
  6859. if(!s->dropable) {
  6860. h->prev_poc_msb= h->poc_msb;
  6861. h->prev_poc_lsb= h->poc_lsb;
  6862. execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  6863. }
  6864. /*
  6865. * FIXME: Error handling code does not seem to support interlaced
  6866. * when slices span multiple rows
  6867. * The ff_er_add_slice calls don't work right for bottom
  6868. * fields; they cause massive erroneous error concealing
  6869. * Error marking covers both fields (top and bottom).
  6870. * This causes a mismatched s->error_count
  6871. * and a bad error table. Further, the error count goes to
  6872. * INT_MAX when called for bottom field, because mb_y is
  6873. * past end by one (callers fault) and resync_mb_y != 0
  6874. * causes problems for the first MB line, too.
  6875. */
  6876. if (!FIELD_PICTURE)
  6877. ff_er_frame_end(s);
  6878. MPV_frame_end(s);
  6879. if (s->first_field) {
  6880. /* Wait for second field. */
  6881. *data_size = 0;
  6882. } else {
  6883. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  6884. /* Derive top_field_first from field pocs. */
  6885. cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
  6886. //FIXME do something with unavailable reference frames
  6887. #if 0 //decode order
  6888. *data_size = sizeof(AVFrame);
  6889. #else
  6890. /* Sort B-frames into display order */
  6891. if(h->sps.bitstream_restriction_flag
  6892. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  6893. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  6894. s->low_delay = 0;
  6895. }
  6896. pics = 0;
  6897. while(h->delayed_pic[pics]) pics++;
  6898. assert(pics+1 < sizeof(h->delayed_pic) / sizeof(h->delayed_pic[0]));
  6899. h->delayed_pic[pics++] = cur;
  6900. if(cur->reference == 0)
  6901. cur->reference = DELAYED_PIC_REF;
  6902. cross_idr = 0;
  6903. for(i=0; h->delayed_pic[i]; i++)
  6904. if(h->delayed_pic[i]->key_frame || h->delayed_pic[i]->poc==0)
  6905. cross_idr = 1;
  6906. out = h->delayed_pic[0];
  6907. out_idx = 0;
  6908. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
  6909. if(h->delayed_pic[i]->poc < out->poc){
  6910. out = h->delayed_pic[i];
  6911. out_idx = i;
  6912. }
  6913. out_of_order = !cross_idr && prev && out->poc < prev->poc;
  6914. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  6915. { }
  6916. else if(prev && pics <= s->avctx->has_b_frames)
  6917. out = prev;
  6918. else if((out_of_order && pics-1 == s->avctx->has_b_frames && pics < 15)
  6919. || (s->low_delay &&
  6920. ((!cross_idr && prev && out->poc > prev->poc + 2)
  6921. || cur->pict_type == FF_B_TYPE)))
  6922. {
  6923. s->low_delay = 0;
  6924. s->avctx->has_b_frames++;
  6925. out = prev;
  6926. }
  6927. else if(out_of_order)
  6928. out = prev;
  6929. if(out_of_order || pics > s->avctx->has_b_frames){
  6930. for(i=out_idx; h->delayed_pic[i]; i++)
  6931. h->delayed_pic[i] = h->delayed_pic[i+1];
  6932. }
  6933. if(prev == out)
  6934. *data_size = 0;
  6935. else
  6936. *data_size = sizeof(AVFrame);
  6937. if(prev && prev != out && prev->reference == DELAYED_PIC_REF)
  6938. prev->reference = 0;
  6939. h->delayed_output_pic = out;
  6940. #endif
  6941. if(out)
  6942. *pict= *(AVFrame*)out;
  6943. else
  6944. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  6945. }
  6946. }
  6947. assert(pict->data[0] || !*data_size);
  6948. ff_print_debug_info(s, pict);
  6949. //printf("out %d\n", (int)pict->data[0]);
  6950. #if 0 //?
  6951. /* Return the Picture timestamp as the frame number */
  6952. /* we subtract 1 because it is added on utils.c */
  6953. avctx->frame_number = s->picture_number - 1;
  6954. #endif
  6955. return get_consumed_bytes(s, buf_index, buf_size);
  6956. }
  6957. #if 0
  6958. static inline void fill_mb_avail(H264Context *h){
  6959. MpegEncContext * const s = &h->s;
  6960. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  6961. if(s->mb_y){
  6962. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  6963. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  6964. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  6965. }else{
  6966. h->mb_avail[0]=
  6967. h->mb_avail[1]=
  6968. h->mb_avail[2]= 0;
  6969. }
  6970. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  6971. h->mb_avail[4]= 1; //FIXME move out
  6972. h->mb_avail[5]= 0; //FIXME move out
  6973. }
  6974. #endif
  6975. #ifdef TEST
  6976. #undef printf
  6977. #undef random
  6978. #define COUNT 8000
  6979. #define SIZE (COUNT*40)
  6980. int main(void){
  6981. int i;
  6982. uint8_t temp[SIZE];
  6983. PutBitContext pb;
  6984. GetBitContext gb;
  6985. // int int_temp[10000];
  6986. DSPContext dsp;
  6987. AVCodecContext avctx;
  6988. dsputil_init(&dsp, &avctx);
  6989. init_put_bits(&pb, temp, SIZE);
  6990. printf("testing unsigned exp golomb\n");
  6991. for(i=0; i<COUNT; i++){
  6992. START_TIMER
  6993. set_ue_golomb(&pb, i);
  6994. STOP_TIMER("set_ue_golomb");
  6995. }
  6996. flush_put_bits(&pb);
  6997. init_get_bits(&gb, temp, 8*SIZE);
  6998. for(i=0; i<COUNT; i++){
  6999. int j, s;
  7000. s= show_bits(&gb, 24);
  7001. START_TIMER
  7002. j= get_ue_golomb(&gb);
  7003. if(j != i){
  7004. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7005. // return -1;
  7006. }
  7007. STOP_TIMER("get_ue_golomb");
  7008. }
  7009. init_put_bits(&pb, temp, SIZE);
  7010. printf("testing signed exp golomb\n");
  7011. for(i=0; i<COUNT; i++){
  7012. START_TIMER
  7013. set_se_golomb(&pb, i - COUNT/2);
  7014. STOP_TIMER("set_se_golomb");
  7015. }
  7016. flush_put_bits(&pb);
  7017. init_get_bits(&gb, temp, 8*SIZE);
  7018. for(i=0; i<COUNT; i++){
  7019. int j, s;
  7020. s= show_bits(&gb, 24);
  7021. START_TIMER
  7022. j= get_se_golomb(&gb);
  7023. if(j != i - COUNT/2){
  7024. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7025. // return -1;
  7026. }
  7027. STOP_TIMER("get_se_golomb");
  7028. }
  7029. #if 0
  7030. printf("testing 4x4 (I)DCT\n");
  7031. DCTELEM block[16];
  7032. uint8_t src[16], ref[16];
  7033. uint64_t error= 0, max_error=0;
  7034. for(i=0; i<COUNT; i++){
  7035. int j;
  7036. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  7037. for(j=0; j<16; j++){
  7038. ref[j]= random()%255;
  7039. src[j]= random()%255;
  7040. }
  7041. h264_diff_dct_c(block, src, ref, 4);
  7042. //normalize
  7043. for(j=0; j<16; j++){
  7044. // printf("%d ", block[j]);
  7045. block[j]= block[j]*4;
  7046. if(j&1) block[j]= (block[j]*4 + 2)/5;
  7047. if(j&4) block[j]= (block[j]*4 + 2)/5;
  7048. }
  7049. // printf("\n");
  7050. s->dsp.h264_idct_add(ref, block, 4);
  7051. /* for(j=0; j<16; j++){
  7052. printf("%d ", ref[j]);
  7053. }
  7054. printf("\n");*/
  7055. for(j=0; j<16; j++){
  7056. int diff= FFABS(src[j] - ref[j]);
  7057. error+= diff*diff;
  7058. max_error= FFMAX(max_error, diff);
  7059. }
  7060. }
  7061. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  7062. printf("testing quantizer\n");
  7063. for(qp=0; qp<52; qp++){
  7064. for(i=0; i<16; i++)
  7065. src1_block[i]= src2_block[i]= random()%255;
  7066. }
  7067. printf("Testing NAL layer\n");
  7068. uint8_t bitstream[COUNT];
  7069. uint8_t nal[COUNT*2];
  7070. H264Context h;
  7071. memset(&h, 0, sizeof(H264Context));
  7072. for(i=0; i<COUNT; i++){
  7073. int zeros= i;
  7074. int nal_length;
  7075. int consumed;
  7076. int out_length;
  7077. uint8_t *out;
  7078. int j;
  7079. for(j=0; j<COUNT; j++){
  7080. bitstream[j]= (random() % 255) + 1;
  7081. }
  7082. for(j=0; j<zeros; j++){
  7083. int pos= random() % COUNT;
  7084. while(bitstream[pos] == 0){
  7085. pos++;
  7086. pos %= COUNT;
  7087. }
  7088. bitstream[pos]=0;
  7089. }
  7090. START_TIMER
  7091. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  7092. if(nal_length<0){
  7093. printf("encoding failed\n");
  7094. return -1;
  7095. }
  7096. out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
  7097. STOP_TIMER("NAL")
  7098. if(out_length != COUNT){
  7099. printf("incorrect length %d %d\n", out_length, COUNT);
  7100. return -1;
  7101. }
  7102. if(consumed != nal_length){
  7103. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  7104. return -1;
  7105. }
  7106. if(memcmp(bitstream, out, COUNT)){
  7107. printf("mismatch\n");
  7108. return -1;
  7109. }
  7110. }
  7111. #endif
  7112. printf("Testing RBSP\n");
  7113. return 0;
  7114. }
  7115. #endif /* TEST */
  7116. static av_cold int decode_end(AVCodecContext *avctx)
  7117. {
  7118. H264Context *h = avctx->priv_data;
  7119. MpegEncContext *s = &h->s;
  7120. av_freep(&h->rbsp_buffer[0]);
  7121. av_freep(&h->rbsp_buffer[1]);
  7122. free_tables(h); //FIXME cleanup init stuff perhaps
  7123. MPV_common_end(s);
  7124. // memset(h, 0, sizeof(H264Context));
  7125. return 0;
  7126. }
  7127. AVCodec h264_decoder = {
  7128. "h264",
  7129. CODEC_TYPE_VIDEO,
  7130. CODEC_ID_H264,
  7131. sizeof(H264Context),
  7132. decode_init,
  7133. NULL,
  7134. decode_end,
  7135. decode_frame,
  7136. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED | CODEC_CAP_DELAY,
  7137. .flush= flush_dpb,
  7138. .long_name = "H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10",
  7139. };
  7140. #include "svq3.c"