You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2916 lines
87KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "dsputil.h"
  27. /* Assume that all Intel XScale processors support armv5 edsp instructions */
  28. #if defined(ARCH_ARMV4L) && defined (HAVE_IWMMXT)
  29. #define ARCH_ARM5E
  30. #endif
  31. /*
  32. * TODO:
  33. * - in low precision mode, use more 16 bit multiplies in synth filter
  34. * - test lsf / mpeg25 extensively.
  35. */
  36. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  37. audio decoder */
  38. #ifdef CONFIG_MPEGAUDIO_HP
  39. # define USE_HIGHPRECISION
  40. #endif
  41. #include "mpegaudio.h"
  42. #define FRAC_ONE (1 << FRAC_BITS)
  43. #ifdef ARCH_X86
  44. # define MULL(ra, rb) \
  45. ({ int rt, dummy; asm (\
  46. "imull %3 \n\t"\
  47. "shrdl %4, %%edx, %%eax \n\t"\
  48. : "=a"(rt), "=d"(dummy)\
  49. : "a" (ra), "rm" (rb), "i"(FRAC_BITS));\
  50. rt; })
  51. # define MUL64(ra, rb) \
  52. ({ int64_t rt; asm ("imull %2\n\t" : "=A"(rt) : "a" (ra), "g" (rb)); rt; })
  53. # define MULH(ra, rb) \
  54. ({ int rt, dummy; asm ("imull %3\n\t" : "=d"(rt), "=a"(dummy): "a" (ra), "rm" (rb)); rt; })
  55. #elif defined(ARCH_ARMV4L)
  56. # define MULL(a, b) \
  57. ({ int lo, hi;\
  58. asm("smull %0, %1, %2, %3 \n\t"\
  59. "mov %0, %0, lsr %4\n\t"\
  60. "add %1, %0, %1, lsl %5\n\t"\
  61. : "=&r"(lo), "=&r"(hi)\
  62. : "r"(b), "r"(a), "i"(FRAC_BITS), "i"(32-FRAC_BITS));\
  63. hi; })
  64. # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  65. # define MULH(a, b) ({ int lo, hi; asm ("smull %0, %1, %2, %3" : "=&r"(lo), "=&r"(hi) : "r"(b), "r"(a)); hi; })
  66. #else
  67. # define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  68. # define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  69. //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
  70. static always_inline int MULH(int a, int b){
  71. return ((int64_t)(a) * (int64_t)(b))>>32;
  72. }
  73. #endif
  74. #define FIX(a) ((int)((a) * FRAC_ONE))
  75. /* WARNING: only correct for posititive numbers */
  76. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  77. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  78. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  79. /****************/
  80. #define HEADER_SIZE 4
  81. #define BACKSTEP_SIZE 512
  82. #define EXTRABYTES 24
  83. struct GranuleDef;
  84. typedef struct MPADecodeContext {
  85. DECLARE_ALIGNED_8(uint8_t, last_buf[2*BACKSTEP_SIZE + EXTRABYTES]);
  86. int last_buf_size;
  87. int frame_size;
  88. int free_format_frame_size; /* frame size in case of free format
  89. (zero if currently unknown) */
  90. /* next header (used in free format parsing) */
  91. uint32_t free_format_next_header;
  92. int error_protection;
  93. int layer;
  94. int sample_rate;
  95. int sample_rate_index; /* between 0 and 8 */
  96. int bit_rate;
  97. GetBitContext gb;
  98. GetBitContext in_gb;
  99. int nb_channels;
  100. int mode;
  101. int mode_ext;
  102. int lsf;
  103. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  104. int synth_buf_offset[MPA_MAX_CHANNELS];
  105. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  106. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  107. #ifdef DEBUG
  108. int frame_count;
  109. #endif
  110. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  111. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  112. unsigned int dither_state;
  113. } MPADecodeContext;
  114. /**
  115. * Context for MP3On4 decoder
  116. */
  117. typedef struct MP3On4DecodeContext {
  118. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  119. int chan_cfg; ///< channel config number
  120. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  121. } MP3On4DecodeContext;
  122. /* layer 3 "granule" */
  123. typedef struct GranuleDef {
  124. uint8_t scfsi;
  125. int part2_3_length;
  126. int big_values;
  127. int global_gain;
  128. int scalefac_compress;
  129. uint8_t block_type;
  130. uint8_t switch_point;
  131. int table_select[3];
  132. int subblock_gain[3];
  133. uint8_t scalefac_scale;
  134. uint8_t count1table_select;
  135. int region_size[3]; /* number of huffman codes in each region */
  136. int preflag;
  137. int short_start, long_end; /* long/short band indexes */
  138. uint8_t scale_factors[40];
  139. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  140. } GranuleDef;
  141. #define MODE_EXT_MS_STEREO 2
  142. #define MODE_EXT_I_STEREO 1
  143. /* layer 3 huffman tables */
  144. typedef struct HuffTable {
  145. int xsize;
  146. const uint8_t *bits;
  147. const uint16_t *codes;
  148. } HuffTable;
  149. #include "mpegaudiodectab.h"
  150. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  151. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  152. /* vlc structure for decoding layer 3 huffman tables */
  153. static VLC huff_vlc[16];
  154. static VLC huff_quad_vlc[2];
  155. /* computed from band_size_long */
  156. static uint16_t band_index_long[9][23];
  157. /* XXX: free when all decoders are closed */
  158. #define TABLE_4_3_SIZE (8191 + 16)*4
  159. static int8_t *table_4_3_exp;
  160. static uint32_t *table_4_3_value;
  161. static uint32_t exp_table[512];
  162. static uint32_t expval_table[512][16];
  163. /* intensity stereo coef table */
  164. static int32_t is_table[2][16];
  165. static int32_t is_table_lsf[2][2][16];
  166. static int32_t csa_table[8][4];
  167. static float csa_table_float[8][4];
  168. static int32_t mdct_win[8][36];
  169. /* lower 2 bits: modulo 3, higher bits: shift */
  170. static uint16_t scale_factor_modshift[64];
  171. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  172. static int32_t scale_factor_mult[15][3];
  173. /* mult table for layer 2 group quantization */
  174. #define SCALE_GEN(v) \
  175. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  176. static const int32_t scale_factor_mult2[3][3] = {
  177. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  178. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  179. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  180. };
  181. static MPA_INT window[512] __attribute__((aligned(16)));
  182. /* layer 1 unscaling */
  183. /* n = number of bits of the mantissa minus 1 */
  184. static inline int l1_unscale(int n, int mant, int scale_factor)
  185. {
  186. int shift, mod;
  187. int64_t val;
  188. shift = scale_factor_modshift[scale_factor];
  189. mod = shift & 3;
  190. shift >>= 2;
  191. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  192. shift += n;
  193. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  194. return (int)((val + (1LL << (shift - 1))) >> shift);
  195. }
  196. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  197. {
  198. int shift, mod, val;
  199. shift = scale_factor_modshift[scale_factor];
  200. mod = shift & 3;
  201. shift >>= 2;
  202. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  203. /* NOTE: at this point, 0 <= shift <= 21 */
  204. if (shift > 0)
  205. val = (val + (1 << (shift - 1))) >> shift;
  206. return val;
  207. }
  208. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  209. static inline int l3_unscale(int value, int exponent)
  210. {
  211. unsigned int m;
  212. int e;
  213. e = table_4_3_exp [4*value + (exponent&3)];
  214. m = table_4_3_value[4*value + (exponent&3)];
  215. e -= (exponent >> 2);
  216. assert(e>=1);
  217. if (e > 31)
  218. return 0;
  219. m = (m + (1 << (e-1))) >> e;
  220. return m;
  221. }
  222. /* all integer n^(4/3) computation code */
  223. #define DEV_ORDER 13
  224. #define POW_FRAC_BITS 24
  225. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  226. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  227. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  228. static int dev_4_3_coefs[DEV_ORDER];
  229. #if 0 /* unused */
  230. static int pow_mult3[3] = {
  231. POW_FIX(1.0),
  232. POW_FIX(1.25992104989487316476),
  233. POW_FIX(1.58740105196819947474),
  234. };
  235. #endif
  236. static void int_pow_init(void)
  237. {
  238. int i, a;
  239. a = POW_FIX(1.0);
  240. for(i=0;i<DEV_ORDER;i++) {
  241. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  242. dev_4_3_coefs[i] = a;
  243. }
  244. }
  245. #if 0 /* unused, remove? */
  246. /* return the mantissa and the binary exponent */
  247. static int int_pow(int i, int *exp_ptr)
  248. {
  249. int e, er, eq, j;
  250. int a, a1;
  251. /* renormalize */
  252. a = i;
  253. e = POW_FRAC_BITS;
  254. while (a < (1 << (POW_FRAC_BITS - 1))) {
  255. a = a << 1;
  256. e--;
  257. }
  258. a -= (1 << POW_FRAC_BITS);
  259. a1 = 0;
  260. for(j = DEV_ORDER - 1; j >= 0; j--)
  261. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  262. a = (1 << POW_FRAC_BITS) + a1;
  263. /* exponent compute (exact) */
  264. e = e * 4;
  265. er = e % 3;
  266. eq = e / 3;
  267. a = POW_MULL(a, pow_mult3[er]);
  268. while (a >= 2 * POW_FRAC_ONE) {
  269. a = a >> 1;
  270. eq++;
  271. }
  272. /* convert to float */
  273. while (a < POW_FRAC_ONE) {
  274. a = a << 1;
  275. eq--;
  276. }
  277. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  278. #if POW_FRAC_BITS > FRAC_BITS
  279. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  280. /* correct overflow */
  281. if (a >= 2 * (1 << FRAC_BITS)) {
  282. a = a >> 1;
  283. eq++;
  284. }
  285. #endif
  286. *exp_ptr = eq;
  287. return a;
  288. }
  289. #endif
  290. static int decode_init(AVCodecContext * avctx)
  291. {
  292. MPADecodeContext *s = avctx->priv_data;
  293. static int init=0;
  294. int i, j, k;
  295. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  296. avctx->sample_fmt= SAMPLE_FMT_S32;
  297. #else
  298. avctx->sample_fmt= SAMPLE_FMT_S16;
  299. #endif
  300. if(avctx->antialias_algo != FF_AA_FLOAT)
  301. s->compute_antialias= compute_antialias_integer;
  302. else
  303. s->compute_antialias= compute_antialias_float;
  304. if (!init && !avctx->parse_only) {
  305. /* scale factors table for layer 1/2 */
  306. for(i=0;i<64;i++) {
  307. int shift, mod;
  308. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  309. shift = (i / 3);
  310. mod = i % 3;
  311. scale_factor_modshift[i] = mod | (shift << 2);
  312. }
  313. /* scale factor multiply for layer 1 */
  314. for(i=0;i<15;i++) {
  315. int n, norm;
  316. n = i + 2;
  317. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  318. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  319. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  320. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  321. dprintf("%d: norm=%x s=%x %x %x\n",
  322. i, norm,
  323. scale_factor_mult[i][0],
  324. scale_factor_mult[i][1],
  325. scale_factor_mult[i][2]);
  326. }
  327. ff_mpa_synth_init(window);
  328. /* huffman decode tables */
  329. for(i=1;i<16;i++) {
  330. const HuffTable *h = &mpa_huff_tables[i];
  331. int xsize, x, y;
  332. unsigned int n;
  333. uint8_t tmp_bits [512];
  334. uint16_t tmp_codes[512];
  335. memset(tmp_bits , 0, sizeof(tmp_bits ));
  336. memset(tmp_codes, 0, sizeof(tmp_codes));
  337. xsize = h->xsize;
  338. n = xsize * xsize;
  339. j = 0;
  340. for(x=0;x<xsize;x++) {
  341. for(y=0;y<xsize;y++){
  342. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  343. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  344. }
  345. }
  346. /* XXX: fail test */
  347. init_vlc(&huff_vlc[i], 7, 512,
  348. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  349. }
  350. for(i=0;i<2;i++) {
  351. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  352. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  353. }
  354. for(i=0;i<9;i++) {
  355. k = 0;
  356. for(j=0;j<22;j++) {
  357. band_index_long[i][j] = k;
  358. k += band_size_long[i][j];
  359. }
  360. band_index_long[i][22] = k;
  361. }
  362. /* compute n ^ (4/3) and store it in mantissa/exp format */
  363. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  364. if(!table_4_3_exp)
  365. return -1;
  366. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  367. if(!table_4_3_value)
  368. return -1;
  369. int_pow_init();
  370. for(i=1;i<TABLE_4_3_SIZE;i++) {
  371. double f, fm;
  372. int e, m;
  373. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  374. fm = frexp(f, &e);
  375. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  376. e+= FRAC_BITS - 31 + 5 - 100;
  377. /* normalized to FRAC_BITS */
  378. table_4_3_value[i] = m;
  379. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  380. table_4_3_exp[i] = -e;
  381. }
  382. for(i=0; i<512*16; i++){
  383. int exponent= (i>>4);
  384. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  385. expval_table[exponent][i&15]= lrintf(f);
  386. if((i&15)==1)
  387. exp_table[exponent]= lrintf(f);
  388. }
  389. for(i=0;i<7;i++) {
  390. float f;
  391. int v;
  392. if (i != 6) {
  393. f = tan((double)i * M_PI / 12.0);
  394. v = FIXR(f / (1.0 + f));
  395. } else {
  396. v = FIXR(1.0);
  397. }
  398. is_table[0][i] = v;
  399. is_table[1][6 - i] = v;
  400. }
  401. /* invalid values */
  402. for(i=7;i<16;i++)
  403. is_table[0][i] = is_table[1][i] = 0.0;
  404. for(i=0;i<16;i++) {
  405. double f;
  406. int e, k;
  407. for(j=0;j<2;j++) {
  408. e = -(j + 1) * ((i + 1) >> 1);
  409. f = pow(2.0, e / 4.0);
  410. k = i & 1;
  411. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  412. is_table_lsf[j][k][i] = FIXR(1.0);
  413. dprintf("is_table_lsf %d %d: %x %x\n",
  414. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  415. }
  416. }
  417. for(i=0;i<8;i++) {
  418. float ci, cs, ca;
  419. ci = ci_table[i];
  420. cs = 1.0 / sqrt(1.0 + ci * ci);
  421. ca = cs * ci;
  422. csa_table[i][0] = FIXHR(cs/4);
  423. csa_table[i][1] = FIXHR(ca/4);
  424. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  425. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  426. csa_table_float[i][0] = cs;
  427. csa_table_float[i][1] = ca;
  428. csa_table_float[i][2] = ca + cs;
  429. csa_table_float[i][3] = ca - cs;
  430. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  431. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  432. }
  433. /* compute mdct windows */
  434. for(i=0;i<36;i++) {
  435. for(j=0; j<4; j++){
  436. double d;
  437. if(j==2 && i%3 != 1)
  438. continue;
  439. d= sin(M_PI * (i + 0.5) / 36.0);
  440. if(j==1){
  441. if (i>=30) d= 0;
  442. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  443. else if(i>=18) d= 1;
  444. }else if(j==3){
  445. if (i< 6) d= 0;
  446. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  447. else if(i< 18) d= 1;
  448. }
  449. //merge last stage of imdct into the window coefficients
  450. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  451. if(j==2)
  452. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  453. else
  454. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  455. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  456. }
  457. }
  458. /* NOTE: we do frequency inversion adter the MDCT by changing
  459. the sign of the right window coefs */
  460. for(j=0;j<4;j++) {
  461. for(i=0;i<36;i+=2) {
  462. mdct_win[j + 4][i] = mdct_win[j][i];
  463. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  464. }
  465. }
  466. #if defined(DEBUG)
  467. for(j=0;j<8;j++) {
  468. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  469. for(i=0;i<36;i++)
  470. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  471. av_log(avctx, AV_LOG_DEBUG, "\n");
  472. }
  473. #endif
  474. init = 1;
  475. }
  476. #ifdef DEBUG
  477. s->frame_count = 0;
  478. #endif
  479. if (avctx->codec_id == CODEC_ID_MP3ADU)
  480. s->adu_mode = 1;
  481. return 0;
  482. }
  483. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  484. /* cos(i*pi/64) */
  485. #define COS0_0 FIXHR(0.50060299823519630134/2)
  486. #define COS0_1 FIXHR(0.50547095989754365998/2)
  487. #define COS0_2 FIXHR(0.51544730992262454697/2)
  488. #define COS0_3 FIXHR(0.53104259108978417447/2)
  489. #define COS0_4 FIXHR(0.55310389603444452782/2)
  490. #define COS0_5 FIXHR(0.58293496820613387367/2)
  491. #define COS0_6 FIXHR(0.62250412303566481615/2)
  492. #define COS0_7 FIXHR(0.67480834145500574602/2)
  493. #define COS0_8 FIXHR(0.74453627100229844977/2)
  494. #define COS0_9 FIXHR(0.83934964541552703873/2)
  495. #define COS0_10 FIXHR(0.97256823786196069369/2)
  496. #define COS0_11 FIXHR(1.16943993343288495515/4)
  497. #define COS0_12 FIXHR(1.48416461631416627724/4)
  498. #define COS0_13 FIXHR(2.05778100995341155085/8)
  499. #define COS0_14 FIXHR(3.40760841846871878570/8)
  500. #define COS0_15 FIXHR(10.19000812354805681150/32)
  501. #define COS1_0 FIXHR(0.50241928618815570551/2)
  502. #define COS1_1 FIXHR(0.52249861493968888062/2)
  503. #define COS1_2 FIXHR(0.56694403481635770368/2)
  504. #define COS1_3 FIXHR(0.64682178335999012954/2)
  505. #define COS1_4 FIXHR(0.78815462345125022473/2)
  506. #define COS1_5 FIXHR(1.06067768599034747134/4)
  507. #define COS1_6 FIXHR(1.72244709823833392782/4)
  508. #define COS1_7 FIXHR(5.10114861868916385802/16)
  509. #define COS2_0 FIXHR(0.50979557910415916894/2)
  510. #define COS2_1 FIXHR(0.60134488693504528054/2)
  511. #define COS2_2 FIXHR(0.89997622313641570463/2)
  512. #define COS2_3 FIXHR(2.56291544774150617881/8)
  513. #define COS3_0 FIXHR(0.54119610014619698439/2)
  514. #define COS3_1 FIXHR(1.30656296487637652785/4)
  515. #define COS4_0 FIXHR(0.70710678118654752439/2)
  516. /* butterfly operator */
  517. #define BF(a, b, c, s)\
  518. {\
  519. tmp0 = tab[a] + tab[b];\
  520. tmp1 = tab[a] - tab[b];\
  521. tab[a] = tmp0;\
  522. tab[b] = MULH(tmp1<<(s), c);\
  523. }
  524. #define BF1(a, b, c, d)\
  525. {\
  526. BF(a, b, COS4_0, 1);\
  527. BF(c, d,-COS4_0, 1);\
  528. tab[c] += tab[d];\
  529. }
  530. #define BF2(a, b, c, d)\
  531. {\
  532. BF(a, b, COS4_0, 1);\
  533. BF(c, d,-COS4_0, 1);\
  534. tab[c] += tab[d];\
  535. tab[a] += tab[c];\
  536. tab[c] += tab[b];\
  537. tab[b] += tab[d];\
  538. }
  539. #define ADD(a, b) tab[a] += tab[b]
  540. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  541. static void dct32(int32_t *out, int32_t *tab)
  542. {
  543. int tmp0, tmp1;
  544. /* pass 1 */
  545. BF( 0, 31, COS0_0 , 1);
  546. BF(15, 16, COS0_15, 5);
  547. /* pass 2 */
  548. BF( 0, 15, COS1_0 , 1);
  549. BF(16, 31,-COS1_0 , 1);
  550. /* pass 1 */
  551. BF( 7, 24, COS0_7 , 1);
  552. BF( 8, 23, COS0_8 , 1);
  553. /* pass 2 */
  554. BF( 7, 8, COS1_7 , 4);
  555. BF(23, 24,-COS1_7 , 4);
  556. /* pass 3 */
  557. BF( 0, 7, COS2_0 , 1);
  558. BF( 8, 15,-COS2_0 , 1);
  559. BF(16, 23, COS2_0 , 1);
  560. BF(24, 31,-COS2_0 , 1);
  561. /* pass 1 */
  562. BF( 3, 28, COS0_3 , 1);
  563. BF(12, 19, COS0_12, 2);
  564. /* pass 2 */
  565. BF( 3, 12, COS1_3 , 1);
  566. BF(19, 28,-COS1_3 , 1);
  567. /* pass 1 */
  568. BF( 4, 27, COS0_4 , 1);
  569. BF(11, 20, COS0_11, 2);
  570. /* pass 2 */
  571. BF( 4, 11, COS1_4 , 1);
  572. BF(20, 27,-COS1_4 , 1);
  573. /* pass 3 */
  574. BF( 3, 4, COS2_3 , 3);
  575. BF(11, 12,-COS2_3 , 3);
  576. BF(19, 20, COS2_3 , 3);
  577. BF(27, 28,-COS2_3 , 3);
  578. /* pass 4 */
  579. BF( 0, 3, COS3_0 , 1);
  580. BF( 4, 7,-COS3_0 , 1);
  581. BF( 8, 11, COS3_0 , 1);
  582. BF(12, 15,-COS3_0 , 1);
  583. BF(16, 19, COS3_0 , 1);
  584. BF(20, 23,-COS3_0 , 1);
  585. BF(24, 27, COS3_0 , 1);
  586. BF(28, 31,-COS3_0 , 1);
  587. /* pass 1 */
  588. BF( 1, 30, COS0_1 , 1);
  589. BF(14, 17, COS0_14, 3);
  590. /* pass 2 */
  591. BF( 1, 14, COS1_1 , 1);
  592. BF(17, 30,-COS1_1 , 1);
  593. /* pass 1 */
  594. BF( 6, 25, COS0_6 , 1);
  595. BF( 9, 22, COS0_9 , 1);
  596. /* pass 2 */
  597. BF( 6, 9, COS1_6 , 2);
  598. BF(22, 25,-COS1_6 , 2);
  599. /* pass 3 */
  600. BF( 1, 6, COS2_1 , 1);
  601. BF( 9, 14,-COS2_1 , 1);
  602. BF(17, 22, COS2_1 , 1);
  603. BF(25, 30,-COS2_1 , 1);
  604. /* pass 1 */
  605. BF( 2, 29, COS0_2 , 1);
  606. BF(13, 18, COS0_13, 3);
  607. /* pass 2 */
  608. BF( 2, 13, COS1_2 , 1);
  609. BF(18, 29,-COS1_2 , 1);
  610. /* pass 1 */
  611. BF( 5, 26, COS0_5 , 1);
  612. BF(10, 21, COS0_10, 1);
  613. /* pass 2 */
  614. BF( 5, 10, COS1_5 , 2);
  615. BF(21, 26,-COS1_5 , 2);
  616. /* pass 3 */
  617. BF( 2, 5, COS2_2 , 1);
  618. BF(10, 13,-COS2_2 , 1);
  619. BF(18, 21, COS2_2 , 1);
  620. BF(26, 29,-COS2_2 , 1);
  621. /* pass 4 */
  622. BF( 1, 2, COS3_1 , 2);
  623. BF( 5, 6,-COS3_1 , 2);
  624. BF( 9, 10, COS3_1 , 2);
  625. BF(13, 14,-COS3_1 , 2);
  626. BF(17, 18, COS3_1 , 2);
  627. BF(21, 22,-COS3_1 , 2);
  628. BF(25, 26, COS3_1 , 2);
  629. BF(29, 30,-COS3_1 , 2);
  630. /* pass 5 */
  631. BF1( 0, 1, 2, 3);
  632. BF2( 4, 5, 6, 7);
  633. BF1( 8, 9, 10, 11);
  634. BF2(12, 13, 14, 15);
  635. BF1(16, 17, 18, 19);
  636. BF2(20, 21, 22, 23);
  637. BF1(24, 25, 26, 27);
  638. BF2(28, 29, 30, 31);
  639. /* pass 6 */
  640. ADD( 8, 12);
  641. ADD(12, 10);
  642. ADD(10, 14);
  643. ADD(14, 9);
  644. ADD( 9, 13);
  645. ADD(13, 11);
  646. ADD(11, 15);
  647. out[ 0] = tab[0];
  648. out[16] = tab[1];
  649. out[ 8] = tab[2];
  650. out[24] = tab[3];
  651. out[ 4] = tab[4];
  652. out[20] = tab[5];
  653. out[12] = tab[6];
  654. out[28] = tab[7];
  655. out[ 2] = tab[8];
  656. out[18] = tab[9];
  657. out[10] = tab[10];
  658. out[26] = tab[11];
  659. out[ 6] = tab[12];
  660. out[22] = tab[13];
  661. out[14] = tab[14];
  662. out[30] = tab[15];
  663. ADD(24, 28);
  664. ADD(28, 26);
  665. ADD(26, 30);
  666. ADD(30, 25);
  667. ADD(25, 29);
  668. ADD(29, 27);
  669. ADD(27, 31);
  670. out[ 1] = tab[16] + tab[24];
  671. out[17] = tab[17] + tab[25];
  672. out[ 9] = tab[18] + tab[26];
  673. out[25] = tab[19] + tab[27];
  674. out[ 5] = tab[20] + tab[28];
  675. out[21] = tab[21] + tab[29];
  676. out[13] = tab[22] + tab[30];
  677. out[29] = tab[23] + tab[31];
  678. out[ 3] = tab[24] + tab[20];
  679. out[19] = tab[25] + tab[21];
  680. out[11] = tab[26] + tab[22];
  681. out[27] = tab[27] + tab[23];
  682. out[ 7] = tab[28] + tab[18];
  683. out[23] = tab[29] + tab[19];
  684. out[15] = tab[30] + tab[17];
  685. out[31] = tab[31];
  686. }
  687. #if FRAC_BITS <= 15
  688. static inline int round_sample(int *sum)
  689. {
  690. int sum1;
  691. sum1 = (*sum) >> OUT_SHIFT;
  692. *sum &= (1<<OUT_SHIFT)-1;
  693. if (sum1 < OUT_MIN)
  694. sum1 = OUT_MIN;
  695. else if (sum1 > OUT_MAX)
  696. sum1 = OUT_MAX;
  697. return sum1;
  698. }
  699. # if defined(ARCH_POWERPC_405)
  700. /* signed 16x16 -> 32 multiply add accumulate */
  701. # define MACS(rt, ra, rb) \
  702. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  703. /* signed 16x16 -> 32 multiply */
  704. # define MULS(ra, rb) \
  705. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  706. # elif defined(ARCH_ARM5E)
  707. /* signed 16x16 -> 32 multiply add accumulate */
  708. # define MACS(rt, ra, rb) \
  709. asm ("smlabb %0, %2, %3, %0" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  710. /* signed 16x16 -> 32 multiply */
  711. # define MULS(ra, rb) \
  712. ({ int __rt; asm ("smulbb %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  713. # else
  714. /* signed 16x16 -> 32 multiply add accumulate */
  715. # define MACS(rt, ra, rb) rt += (ra) * (rb)
  716. /* signed 16x16 -> 32 multiply */
  717. # define MULS(ra, rb) ((ra) * (rb))
  718. # endif
  719. #else
  720. static inline int round_sample(int64_t *sum)
  721. {
  722. int sum1;
  723. sum1 = (int)((*sum) >> OUT_SHIFT);
  724. *sum &= (1<<OUT_SHIFT)-1;
  725. if (sum1 < OUT_MIN)
  726. sum1 = OUT_MIN;
  727. else if (sum1 > OUT_MAX)
  728. sum1 = OUT_MAX;
  729. return sum1;
  730. }
  731. # define MULS(ra, rb) MUL64(ra, rb)
  732. #endif
  733. #define SUM8(sum, op, w, p) \
  734. { \
  735. sum op MULS((w)[0 * 64], p[0 * 64]);\
  736. sum op MULS((w)[1 * 64], p[1 * 64]);\
  737. sum op MULS((w)[2 * 64], p[2 * 64]);\
  738. sum op MULS((w)[3 * 64], p[3 * 64]);\
  739. sum op MULS((w)[4 * 64], p[4 * 64]);\
  740. sum op MULS((w)[5 * 64], p[5 * 64]);\
  741. sum op MULS((w)[6 * 64], p[6 * 64]);\
  742. sum op MULS((w)[7 * 64], p[7 * 64]);\
  743. }
  744. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  745. { \
  746. int tmp;\
  747. tmp = p[0 * 64];\
  748. sum1 op1 MULS((w1)[0 * 64], tmp);\
  749. sum2 op2 MULS((w2)[0 * 64], tmp);\
  750. tmp = p[1 * 64];\
  751. sum1 op1 MULS((w1)[1 * 64], tmp);\
  752. sum2 op2 MULS((w2)[1 * 64], tmp);\
  753. tmp = p[2 * 64];\
  754. sum1 op1 MULS((w1)[2 * 64], tmp);\
  755. sum2 op2 MULS((w2)[2 * 64], tmp);\
  756. tmp = p[3 * 64];\
  757. sum1 op1 MULS((w1)[3 * 64], tmp);\
  758. sum2 op2 MULS((w2)[3 * 64], tmp);\
  759. tmp = p[4 * 64];\
  760. sum1 op1 MULS((w1)[4 * 64], tmp);\
  761. sum2 op2 MULS((w2)[4 * 64], tmp);\
  762. tmp = p[5 * 64];\
  763. sum1 op1 MULS((w1)[5 * 64], tmp);\
  764. sum2 op2 MULS((w2)[5 * 64], tmp);\
  765. tmp = p[6 * 64];\
  766. sum1 op1 MULS((w1)[6 * 64], tmp);\
  767. sum2 op2 MULS((w2)[6 * 64], tmp);\
  768. tmp = p[7 * 64];\
  769. sum1 op1 MULS((w1)[7 * 64], tmp);\
  770. sum2 op2 MULS((w2)[7 * 64], tmp);\
  771. }
  772. void ff_mpa_synth_init(MPA_INT *window)
  773. {
  774. int i;
  775. /* max = 18760, max sum over all 16 coefs : 44736 */
  776. for(i=0;i<257;i++) {
  777. int v;
  778. v = mpa_enwindow[i];
  779. #if WFRAC_BITS < 16
  780. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  781. #endif
  782. window[i] = v;
  783. if ((i & 63) != 0)
  784. v = -v;
  785. if (i != 0)
  786. window[512 - i] = v;
  787. }
  788. }
  789. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  790. 32 samples. */
  791. /* XXX: optimize by avoiding ring buffer usage */
  792. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  793. MPA_INT *window, int *dither_state,
  794. OUT_INT *samples, int incr,
  795. int32_t sb_samples[SBLIMIT])
  796. {
  797. int32_t tmp[32];
  798. register MPA_INT *synth_buf;
  799. register const MPA_INT *w, *w2, *p;
  800. int j, offset, v;
  801. OUT_INT *samples2;
  802. #if FRAC_BITS <= 15
  803. int sum, sum2;
  804. #else
  805. int64_t sum, sum2;
  806. #endif
  807. dct32(tmp, sb_samples);
  808. offset = *synth_buf_offset;
  809. synth_buf = synth_buf_ptr + offset;
  810. for(j=0;j<32;j++) {
  811. v = tmp[j];
  812. #if FRAC_BITS <= 15
  813. /* NOTE: can cause a loss in precision if very high amplitude
  814. sound */
  815. if (v > 32767)
  816. v = 32767;
  817. else if (v < -32768)
  818. v = -32768;
  819. #endif
  820. synth_buf[j] = v;
  821. }
  822. /* copy to avoid wrap */
  823. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  824. samples2 = samples + 31 * incr;
  825. w = window;
  826. w2 = window + 31;
  827. sum = *dither_state;
  828. p = synth_buf + 16;
  829. SUM8(sum, +=, w, p);
  830. p = synth_buf + 48;
  831. SUM8(sum, -=, w + 32, p);
  832. *samples = round_sample(&sum);
  833. samples += incr;
  834. w++;
  835. /* we calculate two samples at the same time to avoid one memory
  836. access per two sample */
  837. for(j=1;j<16;j++) {
  838. sum2 = 0;
  839. p = synth_buf + 16 + j;
  840. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  841. p = synth_buf + 48 - j;
  842. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  843. *samples = round_sample(&sum);
  844. samples += incr;
  845. sum += sum2;
  846. *samples2 = round_sample(&sum);
  847. samples2 -= incr;
  848. w++;
  849. w2--;
  850. }
  851. p = synth_buf + 32;
  852. SUM8(sum, -=, w + 32, p);
  853. *samples = round_sample(&sum);
  854. *dither_state= sum;
  855. offset = (offset - 32) & 511;
  856. *synth_buf_offset = offset;
  857. }
  858. #define C3 FIXHR(0.86602540378443864676/2)
  859. /* 0.5 / cos(pi*(2*i+1)/36) */
  860. static const int icos36[9] = {
  861. FIXR(0.50190991877167369479),
  862. FIXR(0.51763809020504152469), //0
  863. FIXR(0.55168895948124587824),
  864. FIXR(0.61038729438072803416),
  865. FIXR(0.70710678118654752439), //1
  866. FIXR(0.87172339781054900991),
  867. FIXR(1.18310079157624925896),
  868. FIXR(1.93185165257813657349), //2
  869. FIXR(5.73685662283492756461),
  870. };
  871. /* 0.5 / cos(pi*(2*i+1)/36) */
  872. static const int icos36h[9] = {
  873. FIXHR(0.50190991877167369479/2),
  874. FIXHR(0.51763809020504152469/2), //0
  875. FIXHR(0.55168895948124587824/2),
  876. FIXHR(0.61038729438072803416/2),
  877. FIXHR(0.70710678118654752439/2), //1
  878. FIXHR(0.87172339781054900991/2),
  879. FIXHR(1.18310079157624925896/4),
  880. FIXHR(1.93185165257813657349/4), //2
  881. // FIXHR(5.73685662283492756461),
  882. };
  883. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  884. cases. */
  885. static void imdct12(int *out, int *in)
  886. {
  887. int in0, in1, in2, in3, in4, in5, t1, t2;
  888. in0= in[0*3];
  889. in1= in[1*3] + in[0*3];
  890. in2= in[2*3] + in[1*3];
  891. in3= in[3*3] + in[2*3];
  892. in4= in[4*3] + in[3*3];
  893. in5= in[5*3] + in[4*3];
  894. in5 += in3;
  895. in3 += in1;
  896. in2= MULH(2*in2, C3);
  897. in3= MULH(4*in3, C3);
  898. t1 = in0 - in4;
  899. t2 = MULH(2*(in1 - in5), icos36h[4]);
  900. out[ 7]=
  901. out[10]= t1 + t2;
  902. out[ 1]=
  903. out[ 4]= t1 - t2;
  904. in0 += in4>>1;
  905. in4 = in0 + in2;
  906. in5 += 2*in1;
  907. in1 = MULH(in5 + in3, icos36h[1]);
  908. out[ 8]=
  909. out[ 9]= in4 + in1;
  910. out[ 2]=
  911. out[ 3]= in4 - in1;
  912. in0 -= in2;
  913. in5 = MULH(2*(in5 - in3), icos36h[7]);
  914. out[ 0]=
  915. out[ 5]= in0 - in5;
  916. out[ 6]=
  917. out[11]= in0 + in5;
  918. }
  919. /* cos(pi*i/18) */
  920. #define C1 FIXHR(0.98480775301220805936/2)
  921. #define C2 FIXHR(0.93969262078590838405/2)
  922. #define C3 FIXHR(0.86602540378443864676/2)
  923. #define C4 FIXHR(0.76604444311897803520/2)
  924. #define C5 FIXHR(0.64278760968653932632/2)
  925. #define C6 FIXHR(0.5/2)
  926. #define C7 FIXHR(0.34202014332566873304/2)
  927. #define C8 FIXHR(0.17364817766693034885/2)
  928. /* using Lee like decomposition followed by hand coded 9 points DCT */
  929. static void imdct36(int *out, int *buf, int *in, int *win)
  930. {
  931. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  932. int tmp[18], *tmp1, *in1;
  933. for(i=17;i>=1;i--)
  934. in[i] += in[i-1];
  935. for(i=17;i>=3;i-=2)
  936. in[i] += in[i-2];
  937. for(j=0;j<2;j++) {
  938. tmp1 = tmp + j;
  939. in1 = in + j;
  940. #if 0
  941. //more accurate but slower
  942. int64_t t0, t1, t2, t3;
  943. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  944. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  945. t1 = in1[2*0] - in1[2*6];
  946. tmp1[ 6] = t1 - (t2>>1);
  947. tmp1[16] = t1 + t2;
  948. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  949. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  950. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  951. tmp1[10] = (t3 - t0 - t2) >> 32;
  952. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  953. tmp1[14] = (t3 + t2 - t1) >> 32;
  954. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  955. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  956. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  957. t0 = MUL64(2*in1[2*3], C3);
  958. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  959. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  960. tmp1[12] = (t2 + t1 - t0) >> 32;
  961. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  962. #else
  963. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  964. t3 = in1[2*0] + (in1[2*6]>>1);
  965. t1 = in1[2*0] - in1[2*6];
  966. tmp1[ 6] = t1 - (t2>>1);
  967. tmp1[16] = t1 + t2;
  968. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  969. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  970. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  971. tmp1[10] = t3 - t0 - t2;
  972. tmp1[ 2] = t3 + t0 + t1;
  973. tmp1[14] = t3 + t2 - t1;
  974. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  975. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  976. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  977. t0 = MULH(2*in1[2*3], C3);
  978. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  979. tmp1[ 0] = t2 + t3 + t0;
  980. tmp1[12] = t2 + t1 - t0;
  981. tmp1[ 8] = t3 - t1 - t0;
  982. #endif
  983. }
  984. i = 0;
  985. for(j=0;j<4;j++) {
  986. t0 = tmp[i];
  987. t1 = tmp[i + 2];
  988. s0 = t1 + t0;
  989. s2 = t1 - t0;
  990. t2 = tmp[i + 1];
  991. t3 = tmp[i + 3];
  992. s1 = MULH(2*(t3 + t2), icos36h[j]);
  993. s3 = MULL(t3 - t2, icos36[8 - j]);
  994. t0 = s0 + s1;
  995. t1 = s0 - s1;
  996. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  997. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  998. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  999. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  1000. t0 = s2 + s3;
  1001. t1 = s2 - s3;
  1002. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  1003. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  1004. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  1005. buf[ + j] = MULH(t0, win[18 + j]);
  1006. i += 4;
  1007. }
  1008. s0 = tmp[16];
  1009. s1 = MULH(2*tmp[17], icos36h[4]);
  1010. t0 = s0 + s1;
  1011. t1 = s0 - s1;
  1012. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  1013. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  1014. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  1015. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  1016. }
  1017. /* header decoding. MUST check the header before because no
  1018. consistency check is done there. Return 1 if free format found and
  1019. that the frame size must be computed externally */
  1020. static int decode_header(MPADecodeContext *s, uint32_t header)
  1021. {
  1022. int sample_rate, frame_size, mpeg25, padding;
  1023. int sample_rate_index, bitrate_index;
  1024. if (header & (1<<20)) {
  1025. s->lsf = (header & (1<<19)) ? 0 : 1;
  1026. mpeg25 = 0;
  1027. } else {
  1028. s->lsf = 1;
  1029. mpeg25 = 1;
  1030. }
  1031. s->layer = 4 - ((header >> 17) & 3);
  1032. /* extract frequency */
  1033. sample_rate_index = (header >> 10) & 3;
  1034. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  1035. sample_rate_index += 3 * (s->lsf + mpeg25);
  1036. s->sample_rate_index = sample_rate_index;
  1037. s->error_protection = ((header >> 16) & 1) ^ 1;
  1038. s->sample_rate = sample_rate;
  1039. bitrate_index = (header >> 12) & 0xf;
  1040. padding = (header >> 9) & 1;
  1041. //extension = (header >> 8) & 1;
  1042. s->mode = (header >> 6) & 3;
  1043. s->mode_ext = (header >> 4) & 3;
  1044. //copyright = (header >> 3) & 1;
  1045. //original = (header >> 2) & 1;
  1046. //emphasis = header & 3;
  1047. if (s->mode == MPA_MONO)
  1048. s->nb_channels = 1;
  1049. else
  1050. s->nb_channels = 2;
  1051. if (bitrate_index != 0) {
  1052. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1053. s->bit_rate = frame_size * 1000;
  1054. switch(s->layer) {
  1055. case 1:
  1056. frame_size = (frame_size * 12000) / sample_rate;
  1057. frame_size = (frame_size + padding) * 4;
  1058. break;
  1059. case 2:
  1060. frame_size = (frame_size * 144000) / sample_rate;
  1061. frame_size += padding;
  1062. break;
  1063. default:
  1064. case 3:
  1065. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1066. frame_size += padding;
  1067. break;
  1068. }
  1069. s->frame_size = frame_size;
  1070. } else {
  1071. /* if no frame size computed, signal it */
  1072. if (!s->free_format_frame_size)
  1073. return 1;
  1074. /* free format: compute bitrate and real frame size from the
  1075. frame size we extracted by reading the bitstream */
  1076. s->frame_size = s->free_format_frame_size;
  1077. switch(s->layer) {
  1078. case 1:
  1079. s->frame_size += padding * 4;
  1080. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1081. break;
  1082. case 2:
  1083. s->frame_size += padding;
  1084. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1085. break;
  1086. default:
  1087. case 3:
  1088. s->frame_size += padding;
  1089. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1090. break;
  1091. }
  1092. }
  1093. #if defined(DEBUG)
  1094. dprintf("layer%d, %d Hz, %d kbits/s, ",
  1095. s->layer, s->sample_rate, s->bit_rate);
  1096. if (s->nb_channels == 2) {
  1097. if (s->layer == 3) {
  1098. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1099. dprintf("ms-");
  1100. if (s->mode_ext & MODE_EXT_I_STEREO)
  1101. dprintf("i-");
  1102. }
  1103. dprintf("stereo");
  1104. } else {
  1105. dprintf("mono");
  1106. }
  1107. dprintf("\n");
  1108. #endif
  1109. return 0;
  1110. }
  1111. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1112. header, otherwise the coded frame size in bytes */
  1113. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1114. {
  1115. MPADecodeContext s1, *s = &s1;
  1116. if (ff_mpa_check_header(head) != 0)
  1117. return -1;
  1118. if (decode_header(s, head) != 0) {
  1119. return -1;
  1120. }
  1121. switch(s->layer) {
  1122. case 1:
  1123. avctx->frame_size = 384;
  1124. break;
  1125. case 2:
  1126. avctx->frame_size = 1152;
  1127. break;
  1128. default:
  1129. case 3:
  1130. if (s->lsf)
  1131. avctx->frame_size = 576;
  1132. else
  1133. avctx->frame_size = 1152;
  1134. break;
  1135. }
  1136. avctx->sample_rate = s->sample_rate;
  1137. avctx->channels = s->nb_channels;
  1138. avctx->bit_rate = s->bit_rate;
  1139. avctx->sub_id = s->layer;
  1140. return s->frame_size;
  1141. }
  1142. /* return the number of decoded frames */
  1143. static int mp_decode_layer1(MPADecodeContext *s)
  1144. {
  1145. int bound, i, v, n, ch, j, mant;
  1146. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1147. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1148. if (s->mode == MPA_JSTEREO)
  1149. bound = (s->mode_ext + 1) * 4;
  1150. else
  1151. bound = SBLIMIT;
  1152. /* allocation bits */
  1153. for(i=0;i<bound;i++) {
  1154. for(ch=0;ch<s->nb_channels;ch++) {
  1155. allocation[ch][i] = get_bits(&s->gb, 4);
  1156. }
  1157. }
  1158. for(i=bound;i<SBLIMIT;i++) {
  1159. allocation[0][i] = get_bits(&s->gb, 4);
  1160. }
  1161. /* scale factors */
  1162. for(i=0;i<bound;i++) {
  1163. for(ch=0;ch<s->nb_channels;ch++) {
  1164. if (allocation[ch][i])
  1165. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1166. }
  1167. }
  1168. for(i=bound;i<SBLIMIT;i++) {
  1169. if (allocation[0][i]) {
  1170. scale_factors[0][i] = get_bits(&s->gb, 6);
  1171. scale_factors[1][i] = get_bits(&s->gb, 6);
  1172. }
  1173. }
  1174. /* compute samples */
  1175. for(j=0;j<12;j++) {
  1176. for(i=0;i<bound;i++) {
  1177. for(ch=0;ch<s->nb_channels;ch++) {
  1178. n = allocation[ch][i];
  1179. if (n) {
  1180. mant = get_bits(&s->gb, n + 1);
  1181. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1182. } else {
  1183. v = 0;
  1184. }
  1185. s->sb_samples[ch][j][i] = v;
  1186. }
  1187. }
  1188. for(i=bound;i<SBLIMIT;i++) {
  1189. n = allocation[0][i];
  1190. if (n) {
  1191. mant = get_bits(&s->gb, n + 1);
  1192. v = l1_unscale(n, mant, scale_factors[0][i]);
  1193. s->sb_samples[0][j][i] = v;
  1194. v = l1_unscale(n, mant, scale_factors[1][i]);
  1195. s->sb_samples[1][j][i] = v;
  1196. } else {
  1197. s->sb_samples[0][j][i] = 0;
  1198. s->sb_samples[1][j][i] = 0;
  1199. }
  1200. }
  1201. }
  1202. return 12;
  1203. }
  1204. /* bitrate is in kb/s */
  1205. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1206. {
  1207. int ch_bitrate, table;
  1208. ch_bitrate = bitrate / nb_channels;
  1209. if (!lsf) {
  1210. if ((freq == 48000 && ch_bitrate >= 56) ||
  1211. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1212. table = 0;
  1213. else if (freq != 48000 && ch_bitrate >= 96)
  1214. table = 1;
  1215. else if (freq != 32000 && ch_bitrate <= 48)
  1216. table = 2;
  1217. else
  1218. table = 3;
  1219. } else {
  1220. table = 4;
  1221. }
  1222. return table;
  1223. }
  1224. static int mp_decode_layer2(MPADecodeContext *s)
  1225. {
  1226. int sblimit; /* number of used subbands */
  1227. const unsigned char *alloc_table;
  1228. int table, bit_alloc_bits, i, j, ch, bound, v;
  1229. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1230. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1231. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1232. int scale, qindex, bits, steps, k, l, m, b;
  1233. /* select decoding table */
  1234. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1235. s->sample_rate, s->lsf);
  1236. sblimit = sblimit_table[table];
  1237. alloc_table = alloc_tables[table];
  1238. if (s->mode == MPA_JSTEREO)
  1239. bound = (s->mode_ext + 1) * 4;
  1240. else
  1241. bound = sblimit;
  1242. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1243. /* sanity check */
  1244. if( bound > sblimit ) bound = sblimit;
  1245. /* parse bit allocation */
  1246. j = 0;
  1247. for(i=0;i<bound;i++) {
  1248. bit_alloc_bits = alloc_table[j];
  1249. for(ch=0;ch<s->nb_channels;ch++) {
  1250. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1251. }
  1252. j += 1 << bit_alloc_bits;
  1253. }
  1254. for(i=bound;i<sblimit;i++) {
  1255. bit_alloc_bits = alloc_table[j];
  1256. v = get_bits(&s->gb, bit_alloc_bits);
  1257. bit_alloc[0][i] = v;
  1258. bit_alloc[1][i] = v;
  1259. j += 1 << bit_alloc_bits;
  1260. }
  1261. #ifdef DEBUG
  1262. {
  1263. for(ch=0;ch<s->nb_channels;ch++) {
  1264. for(i=0;i<sblimit;i++)
  1265. dprintf(" %d", bit_alloc[ch][i]);
  1266. dprintf("\n");
  1267. }
  1268. }
  1269. #endif
  1270. /* scale codes */
  1271. for(i=0;i<sblimit;i++) {
  1272. for(ch=0;ch<s->nb_channels;ch++) {
  1273. if (bit_alloc[ch][i])
  1274. scale_code[ch][i] = get_bits(&s->gb, 2);
  1275. }
  1276. }
  1277. /* scale factors */
  1278. for(i=0;i<sblimit;i++) {
  1279. for(ch=0;ch<s->nb_channels;ch++) {
  1280. if (bit_alloc[ch][i]) {
  1281. sf = scale_factors[ch][i];
  1282. switch(scale_code[ch][i]) {
  1283. default:
  1284. case 0:
  1285. sf[0] = get_bits(&s->gb, 6);
  1286. sf[1] = get_bits(&s->gb, 6);
  1287. sf[2] = get_bits(&s->gb, 6);
  1288. break;
  1289. case 2:
  1290. sf[0] = get_bits(&s->gb, 6);
  1291. sf[1] = sf[0];
  1292. sf[2] = sf[0];
  1293. break;
  1294. case 1:
  1295. sf[0] = get_bits(&s->gb, 6);
  1296. sf[2] = get_bits(&s->gb, 6);
  1297. sf[1] = sf[0];
  1298. break;
  1299. case 3:
  1300. sf[0] = get_bits(&s->gb, 6);
  1301. sf[2] = get_bits(&s->gb, 6);
  1302. sf[1] = sf[2];
  1303. break;
  1304. }
  1305. }
  1306. }
  1307. }
  1308. #ifdef DEBUG
  1309. for(ch=0;ch<s->nb_channels;ch++) {
  1310. for(i=0;i<sblimit;i++) {
  1311. if (bit_alloc[ch][i]) {
  1312. sf = scale_factors[ch][i];
  1313. dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
  1314. } else {
  1315. dprintf(" -");
  1316. }
  1317. }
  1318. dprintf("\n");
  1319. }
  1320. #endif
  1321. /* samples */
  1322. for(k=0;k<3;k++) {
  1323. for(l=0;l<12;l+=3) {
  1324. j = 0;
  1325. for(i=0;i<bound;i++) {
  1326. bit_alloc_bits = alloc_table[j];
  1327. for(ch=0;ch<s->nb_channels;ch++) {
  1328. b = bit_alloc[ch][i];
  1329. if (b) {
  1330. scale = scale_factors[ch][i][k];
  1331. qindex = alloc_table[j+b];
  1332. bits = quant_bits[qindex];
  1333. if (bits < 0) {
  1334. /* 3 values at the same time */
  1335. v = get_bits(&s->gb, -bits);
  1336. steps = quant_steps[qindex];
  1337. s->sb_samples[ch][k * 12 + l + 0][i] =
  1338. l2_unscale_group(steps, v % steps, scale);
  1339. v = v / steps;
  1340. s->sb_samples[ch][k * 12 + l + 1][i] =
  1341. l2_unscale_group(steps, v % steps, scale);
  1342. v = v / steps;
  1343. s->sb_samples[ch][k * 12 + l + 2][i] =
  1344. l2_unscale_group(steps, v, scale);
  1345. } else {
  1346. for(m=0;m<3;m++) {
  1347. v = get_bits(&s->gb, bits);
  1348. v = l1_unscale(bits - 1, v, scale);
  1349. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1350. }
  1351. }
  1352. } else {
  1353. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1354. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1355. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1356. }
  1357. }
  1358. /* next subband in alloc table */
  1359. j += 1 << bit_alloc_bits;
  1360. }
  1361. /* XXX: find a way to avoid this duplication of code */
  1362. for(i=bound;i<sblimit;i++) {
  1363. bit_alloc_bits = alloc_table[j];
  1364. b = bit_alloc[0][i];
  1365. if (b) {
  1366. int mant, scale0, scale1;
  1367. scale0 = scale_factors[0][i][k];
  1368. scale1 = scale_factors[1][i][k];
  1369. qindex = alloc_table[j+b];
  1370. bits = quant_bits[qindex];
  1371. if (bits < 0) {
  1372. /* 3 values at the same time */
  1373. v = get_bits(&s->gb, -bits);
  1374. steps = quant_steps[qindex];
  1375. mant = v % steps;
  1376. v = v / steps;
  1377. s->sb_samples[0][k * 12 + l + 0][i] =
  1378. l2_unscale_group(steps, mant, scale0);
  1379. s->sb_samples[1][k * 12 + l + 0][i] =
  1380. l2_unscale_group(steps, mant, scale1);
  1381. mant = v % steps;
  1382. v = v / steps;
  1383. s->sb_samples[0][k * 12 + l + 1][i] =
  1384. l2_unscale_group(steps, mant, scale0);
  1385. s->sb_samples[1][k * 12 + l + 1][i] =
  1386. l2_unscale_group(steps, mant, scale1);
  1387. s->sb_samples[0][k * 12 + l + 2][i] =
  1388. l2_unscale_group(steps, v, scale0);
  1389. s->sb_samples[1][k * 12 + l + 2][i] =
  1390. l2_unscale_group(steps, v, scale1);
  1391. } else {
  1392. for(m=0;m<3;m++) {
  1393. mant = get_bits(&s->gb, bits);
  1394. s->sb_samples[0][k * 12 + l + m][i] =
  1395. l1_unscale(bits - 1, mant, scale0);
  1396. s->sb_samples[1][k * 12 + l + m][i] =
  1397. l1_unscale(bits - 1, mant, scale1);
  1398. }
  1399. }
  1400. } else {
  1401. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1402. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1403. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1404. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1405. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1406. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1407. }
  1408. /* next subband in alloc table */
  1409. j += 1 << bit_alloc_bits;
  1410. }
  1411. /* fill remaining samples to zero */
  1412. for(i=sblimit;i<SBLIMIT;i++) {
  1413. for(ch=0;ch<s->nb_channels;ch++) {
  1414. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1415. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1416. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1417. }
  1418. }
  1419. }
  1420. }
  1421. return 3 * 12;
  1422. }
  1423. static inline void lsf_sf_expand(int *slen,
  1424. int sf, int n1, int n2, int n3)
  1425. {
  1426. if (n3) {
  1427. slen[3] = sf % n3;
  1428. sf /= n3;
  1429. } else {
  1430. slen[3] = 0;
  1431. }
  1432. if (n2) {
  1433. slen[2] = sf % n2;
  1434. sf /= n2;
  1435. } else {
  1436. slen[2] = 0;
  1437. }
  1438. slen[1] = sf % n1;
  1439. sf /= n1;
  1440. slen[0] = sf;
  1441. }
  1442. static void exponents_from_scale_factors(MPADecodeContext *s,
  1443. GranuleDef *g,
  1444. int16_t *exponents)
  1445. {
  1446. const uint8_t *bstab, *pretab;
  1447. int len, i, j, k, l, v0, shift, gain, gains[3];
  1448. int16_t *exp_ptr;
  1449. exp_ptr = exponents;
  1450. gain = g->global_gain - 210;
  1451. shift = g->scalefac_scale + 1;
  1452. bstab = band_size_long[s->sample_rate_index];
  1453. pretab = mpa_pretab[g->preflag];
  1454. for(i=0;i<g->long_end;i++) {
  1455. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1456. len = bstab[i];
  1457. for(j=len;j>0;j--)
  1458. *exp_ptr++ = v0;
  1459. }
  1460. if (g->short_start < 13) {
  1461. bstab = band_size_short[s->sample_rate_index];
  1462. gains[0] = gain - (g->subblock_gain[0] << 3);
  1463. gains[1] = gain - (g->subblock_gain[1] << 3);
  1464. gains[2] = gain - (g->subblock_gain[2] << 3);
  1465. k = g->long_end;
  1466. for(i=g->short_start;i<13;i++) {
  1467. len = bstab[i];
  1468. for(l=0;l<3;l++) {
  1469. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1470. for(j=len;j>0;j--)
  1471. *exp_ptr++ = v0;
  1472. }
  1473. }
  1474. }
  1475. }
  1476. /* handle n = 0 too */
  1477. static inline int get_bitsz(GetBitContext *s, int n)
  1478. {
  1479. if (n == 0)
  1480. return 0;
  1481. else
  1482. return get_bits(s, n);
  1483. }
  1484. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1485. int16_t *exponents, int end_pos2)
  1486. {
  1487. int s_index;
  1488. int i;
  1489. int last_pos, bits_left;
  1490. VLC *vlc;
  1491. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1492. /* low frequencies (called big values) */
  1493. s_index = 0;
  1494. for(i=0;i<3;i++) {
  1495. int j, k, l, linbits;
  1496. j = g->region_size[i];
  1497. if (j == 0)
  1498. continue;
  1499. /* select vlc table */
  1500. k = g->table_select[i];
  1501. l = mpa_huff_data[k][0];
  1502. linbits = mpa_huff_data[k][1];
  1503. vlc = &huff_vlc[l];
  1504. if(!l){
  1505. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1506. s_index += 2*j;
  1507. continue;
  1508. }
  1509. /* read huffcode and compute each couple */
  1510. for(;j>0;j--) {
  1511. int exponent, x, y, v;
  1512. int pos= get_bits_count(&s->gb);
  1513. if (pos >= end_pos){
  1514. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1515. if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
  1516. s->gb= s->in_gb;
  1517. s->in_gb.buffer=NULL;
  1518. assert((get_bits_count(&s->gb) & 7) == 0);
  1519. skip_bits_long(&s->gb, pos - end_pos);
  1520. end_pos2=
  1521. end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
  1522. pos= get_bits_count(&s->gb);
  1523. }
  1524. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1525. if(pos >= end_pos)
  1526. break;
  1527. }
  1528. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1529. if(!y){
  1530. g->sb_hybrid[s_index ] =
  1531. g->sb_hybrid[s_index+1] = 0;
  1532. s_index += 2;
  1533. continue;
  1534. }
  1535. exponent= exponents[s_index];
  1536. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1537. i, g->region_size[i] - j, x, y, exponent);
  1538. if(y&16){
  1539. x = y >> 5;
  1540. y = y & 0x0f;
  1541. if (x < 15){
  1542. v = expval_table[ exponent ][ x ];
  1543. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1544. }else{
  1545. x += get_bitsz(&s->gb, linbits);
  1546. v = l3_unscale(x, exponent);
  1547. }
  1548. if (get_bits1(&s->gb))
  1549. v = -v;
  1550. g->sb_hybrid[s_index] = v;
  1551. if (y < 15){
  1552. v = expval_table[ exponent ][ y ];
  1553. }else{
  1554. y += get_bitsz(&s->gb, linbits);
  1555. v = l3_unscale(y, exponent);
  1556. }
  1557. if (get_bits1(&s->gb))
  1558. v = -v;
  1559. g->sb_hybrid[s_index+1] = v;
  1560. }else{
  1561. x = y >> 5;
  1562. y = y & 0x0f;
  1563. x += y;
  1564. if (x < 15){
  1565. v = expval_table[ exponent ][ x ];
  1566. }else{
  1567. x += get_bitsz(&s->gb, linbits);
  1568. v = l3_unscale(x, exponent);
  1569. }
  1570. if (get_bits1(&s->gb))
  1571. v = -v;
  1572. g->sb_hybrid[s_index+!!y] = v;
  1573. g->sb_hybrid[s_index+ !y] = 0;
  1574. }
  1575. s_index+=2;
  1576. }
  1577. }
  1578. /* high frequencies */
  1579. vlc = &huff_quad_vlc[g->count1table_select];
  1580. last_pos=0;
  1581. while (s_index <= 572) {
  1582. int pos, code;
  1583. pos = get_bits_count(&s->gb);
  1584. if (pos >= end_pos) {
  1585. if (pos > end_pos2 && last_pos){
  1586. /* some encoders generate an incorrect size for this
  1587. part. We must go back into the data */
  1588. s_index -= 4;
  1589. skip_bits_long(&s->gb, last_pos - pos);
  1590. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1591. break;
  1592. }
  1593. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1594. if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
  1595. s->gb= s->in_gb;
  1596. s->in_gb.buffer=NULL;
  1597. assert((get_bits_count(&s->gb) & 7) == 0);
  1598. skip_bits_long(&s->gb, pos - end_pos);
  1599. end_pos2=
  1600. end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
  1601. pos= get_bits_count(&s->gb);
  1602. }
  1603. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1604. if(pos >= end_pos)
  1605. break;
  1606. }
  1607. last_pos= pos;
  1608. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1609. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1610. g->sb_hybrid[s_index+0]=
  1611. g->sb_hybrid[s_index+1]=
  1612. g->sb_hybrid[s_index+2]=
  1613. g->sb_hybrid[s_index+3]= 0;
  1614. while(code){
  1615. const static int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1616. int v;
  1617. int pos= s_index+idxtab[code];
  1618. code ^= 8>>idxtab[code];
  1619. v = exp_table[ exponents[pos] ];
  1620. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1621. if(get_bits1(&s->gb))
  1622. v = -v;
  1623. g->sb_hybrid[pos] = v;
  1624. }
  1625. s_index+=4;
  1626. }
  1627. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1628. /* skip extension bits */
  1629. bits_left = end_pos - get_bits_count(&s->gb);
  1630. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1631. if (bits_left < 0) {
  1632. dprintf("bits_left=%d\n", bits_left);
  1633. return -1;
  1634. }
  1635. skip_bits_long(&s->gb, bits_left);
  1636. return 0;
  1637. }
  1638. /* Reorder short blocks from bitstream order to interleaved order. It
  1639. would be faster to do it in parsing, but the code would be far more
  1640. complicated */
  1641. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1642. {
  1643. int i, j, len;
  1644. int32_t *ptr, *dst, *ptr1;
  1645. int32_t tmp[576];
  1646. if (g->block_type != 2)
  1647. return;
  1648. if (g->switch_point) {
  1649. if (s->sample_rate_index != 8) {
  1650. ptr = g->sb_hybrid + 36;
  1651. } else {
  1652. ptr = g->sb_hybrid + 48;
  1653. }
  1654. } else {
  1655. ptr = g->sb_hybrid;
  1656. }
  1657. for(i=g->short_start;i<13;i++) {
  1658. len = band_size_short[s->sample_rate_index][i];
  1659. ptr1 = ptr;
  1660. dst = tmp;
  1661. for(j=len;j>0;j--) {
  1662. *dst++ = ptr[0*len];
  1663. *dst++ = ptr[1*len];
  1664. *dst++ = ptr[2*len];
  1665. ptr++;
  1666. }
  1667. ptr+=2*len;
  1668. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1669. }
  1670. }
  1671. #define ISQRT2 FIXR(0.70710678118654752440)
  1672. static void compute_stereo(MPADecodeContext *s,
  1673. GranuleDef *g0, GranuleDef *g1)
  1674. {
  1675. int i, j, k, l;
  1676. int32_t v1, v2;
  1677. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1678. int32_t (*is_tab)[16];
  1679. int32_t *tab0, *tab1;
  1680. int non_zero_found_short[3];
  1681. /* intensity stereo */
  1682. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1683. if (!s->lsf) {
  1684. is_tab = is_table;
  1685. sf_max = 7;
  1686. } else {
  1687. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1688. sf_max = 16;
  1689. }
  1690. tab0 = g0->sb_hybrid + 576;
  1691. tab1 = g1->sb_hybrid + 576;
  1692. non_zero_found_short[0] = 0;
  1693. non_zero_found_short[1] = 0;
  1694. non_zero_found_short[2] = 0;
  1695. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1696. for(i = 12;i >= g1->short_start;i--) {
  1697. /* for last band, use previous scale factor */
  1698. if (i != 11)
  1699. k -= 3;
  1700. len = band_size_short[s->sample_rate_index][i];
  1701. for(l=2;l>=0;l--) {
  1702. tab0 -= len;
  1703. tab1 -= len;
  1704. if (!non_zero_found_short[l]) {
  1705. /* test if non zero band. if so, stop doing i-stereo */
  1706. for(j=0;j<len;j++) {
  1707. if (tab1[j] != 0) {
  1708. non_zero_found_short[l] = 1;
  1709. goto found1;
  1710. }
  1711. }
  1712. sf = g1->scale_factors[k + l];
  1713. if (sf >= sf_max)
  1714. goto found1;
  1715. v1 = is_tab[0][sf];
  1716. v2 = is_tab[1][sf];
  1717. for(j=0;j<len;j++) {
  1718. tmp0 = tab0[j];
  1719. tab0[j] = MULL(tmp0, v1);
  1720. tab1[j] = MULL(tmp0, v2);
  1721. }
  1722. } else {
  1723. found1:
  1724. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1725. /* lower part of the spectrum : do ms stereo
  1726. if enabled */
  1727. for(j=0;j<len;j++) {
  1728. tmp0 = tab0[j];
  1729. tmp1 = tab1[j];
  1730. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1731. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1732. }
  1733. }
  1734. }
  1735. }
  1736. }
  1737. non_zero_found = non_zero_found_short[0] |
  1738. non_zero_found_short[1] |
  1739. non_zero_found_short[2];
  1740. for(i = g1->long_end - 1;i >= 0;i--) {
  1741. len = band_size_long[s->sample_rate_index][i];
  1742. tab0 -= len;
  1743. tab1 -= len;
  1744. /* test if non zero band. if so, stop doing i-stereo */
  1745. if (!non_zero_found) {
  1746. for(j=0;j<len;j++) {
  1747. if (tab1[j] != 0) {
  1748. non_zero_found = 1;
  1749. goto found2;
  1750. }
  1751. }
  1752. /* for last band, use previous scale factor */
  1753. k = (i == 21) ? 20 : i;
  1754. sf = g1->scale_factors[k];
  1755. if (sf >= sf_max)
  1756. goto found2;
  1757. v1 = is_tab[0][sf];
  1758. v2 = is_tab[1][sf];
  1759. for(j=0;j<len;j++) {
  1760. tmp0 = tab0[j];
  1761. tab0[j] = MULL(tmp0, v1);
  1762. tab1[j] = MULL(tmp0, v2);
  1763. }
  1764. } else {
  1765. found2:
  1766. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1767. /* lower part of the spectrum : do ms stereo
  1768. if enabled */
  1769. for(j=0;j<len;j++) {
  1770. tmp0 = tab0[j];
  1771. tmp1 = tab1[j];
  1772. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1773. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1774. }
  1775. }
  1776. }
  1777. }
  1778. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1779. /* ms stereo ONLY */
  1780. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1781. global gain */
  1782. tab0 = g0->sb_hybrid;
  1783. tab1 = g1->sb_hybrid;
  1784. for(i=0;i<576;i++) {
  1785. tmp0 = tab0[i];
  1786. tmp1 = tab1[i];
  1787. tab0[i] = tmp0 + tmp1;
  1788. tab1[i] = tmp0 - tmp1;
  1789. }
  1790. }
  1791. }
  1792. static void compute_antialias_integer(MPADecodeContext *s,
  1793. GranuleDef *g)
  1794. {
  1795. int32_t *ptr, *csa;
  1796. int n, i;
  1797. /* we antialias only "long" bands */
  1798. if (g->block_type == 2) {
  1799. if (!g->switch_point)
  1800. return;
  1801. /* XXX: check this for 8000Hz case */
  1802. n = 1;
  1803. } else {
  1804. n = SBLIMIT - 1;
  1805. }
  1806. ptr = g->sb_hybrid + 18;
  1807. for(i = n;i > 0;i--) {
  1808. int tmp0, tmp1, tmp2;
  1809. csa = &csa_table[0][0];
  1810. #define INT_AA(j) \
  1811. tmp0 = ptr[-1-j];\
  1812. tmp1 = ptr[ j];\
  1813. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1814. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1815. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1816. INT_AA(0)
  1817. INT_AA(1)
  1818. INT_AA(2)
  1819. INT_AA(3)
  1820. INT_AA(4)
  1821. INT_AA(5)
  1822. INT_AA(6)
  1823. INT_AA(7)
  1824. ptr += 18;
  1825. }
  1826. }
  1827. static void compute_antialias_float(MPADecodeContext *s,
  1828. GranuleDef *g)
  1829. {
  1830. int32_t *ptr;
  1831. int n, i;
  1832. /* we antialias only "long" bands */
  1833. if (g->block_type == 2) {
  1834. if (!g->switch_point)
  1835. return;
  1836. /* XXX: check this for 8000Hz case */
  1837. n = 1;
  1838. } else {
  1839. n = SBLIMIT - 1;
  1840. }
  1841. ptr = g->sb_hybrid + 18;
  1842. for(i = n;i > 0;i--) {
  1843. float tmp0, tmp1;
  1844. float *csa = &csa_table_float[0][0];
  1845. #define FLOAT_AA(j)\
  1846. tmp0= ptr[-1-j];\
  1847. tmp1= ptr[ j];\
  1848. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1849. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1850. FLOAT_AA(0)
  1851. FLOAT_AA(1)
  1852. FLOAT_AA(2)
  1853. FLOAT_AA(3)
  1854. FLOAT_AA(4)
  1855. FLOAT_AA(5)
  1856. FLOAT_AA(6)
  1857. FLOAT_AA(7)
  1858. ptr += 18;
  1859. }
  1860. }
  1861. static void compute_imdct(MPADecodeContext *s,
  1862. GranuleDef *g,
  1863. int32_t *sb_samples,
  1864. int32_t *mdct_buf)
  1865. {
  1866. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1867. int32_t out2[12];
  1868. int i, j, mdct_long_end, v, sblimit;
  1869. /* find last non zero block */
  1870. ptr = g->sb_hybrid + 576;
  1871. ptr1 = g->sb_hybrid + 2 * 18;
  1872. while (ptr >= ptr1) {
  1873. ptr -= 6;
  1874. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1875. if (v != 0)
  1876. break;
  1877. }
  1878. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1879. if (g->block_type == 2) {
  1880. /* XXX: check for 8000 Hz */
  1881. if (g->switch_point)
  1882. mdct_long_end = 2;
  1883. else
  1884. mdct_long_end = 0;
  1885. } else {
  1886. mdct_long_end = sblimit;
  1887. }
  1888. buf = mdct_buf;
  1889. ptr = g->sb_hybrid;
  1890. for(j=0;j<mdct_long_end;j++) {
  1891. /* apply window & overlap with previous buffer */
  1892. out_ptr = sb_samples + j;
  1893. /* select window */
  1894. if (g->switch_point && j < 2)
  1895. win1 = mdct_win[0];
  1896. else
  1897. win1 = mdct_win[g->block_type];
  1898. /* select frequency inversion */
  1899. win = win1 + ((4 * 36) & -(j & 1));
  1900. imdct36(out_ptr, buf, ptr, win);
  1901. out_ptr += 18*SBLIMIT;
  1902. ptr += 18;
  1903. buf += 18;
  1904. }
  1905. for(j=mdct_long_end;j<sblimit;j++) {
  1906. /* select frequency inversion */
  1907. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1908. out_ptr = sb_samples + j;
  1909. for(i=0; i<6; i++){
  1910. *out_ptr = buf[i];
  1911. out_ptr += SBLIMIT;
  1912. }
  1913. imdct12(out2, ptr + 0);
  1914. for(i=0;i<6;i++) {
  1915. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1916. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1917. out_ptr += SBLIMIT;
  1918. }
  1919. imdct12(out2, ptr + 1);
  1920. for(i=0;i<6;i++) {
  1921. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1922. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1923. out_ptr += SBLIMIT;
  1924. }
  1925. imdct12(out2, ptr + 2);
  1926. for(i=0;i<6;i++) {
  1927. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1928. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1929. buf[i + 6*2] = 0;
  1930. }
  1931. ptr += 18;
  1932. buf += 18;
  1933. }
  1934. /* zero bands */
  1935. for(j=sblimit;j<SBLIMIT;j++) {
  1936. /* overlap */
  1937. out_ptr = sb_samples + j;
  1938. for(i=0;i<18;i++) {
  1939. *out_ptr = buf[i];
  1940. buf[i] = 0;
  1941. out_ptr += SBLIMIT;
  1942. }
  1943. buf += 18;
  1944. }
  1945. }
  1946. #if defined(DEBUG)
  1947. void sample_dump(int fnum, int32_t *tab, int n)
  1948. {
  1949. static FILE *files[16], *f;
  1950. char buf[512];
  1951. int i;
  1952. int32_t v;
  1953. f = files[fnum];
  1954. if (!f) {
  1955. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1956. fnum,
  1957. #ifdef USE_HIGHPRECISION
  1958. "hp"
  1959. #else
  1960. "lp"
  1961. #endif
  1962. );
  1963. f = fopen(buf, "w");
  1964. if (!f)
  1965. return;
  1966. files[fnum] = f;
  1967. }
  1968. if (fnum == 0) {
  1969. static int pos = 0;
  1970. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1971. for(i=0;i<n;i++) {
  1972. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1973. if ((i % 18) == 17)
  1974. av_log(NULL, AV_LOG_DEBUG, "\n");
  1975. }
  1976. pos += n;
  1977. }
  1978. for(i=0;i<n;i++) {
  1979. /* normalize to 23 frac bits */
  1980. v = tab[i] << (23 - FRAC_BITS);
  1981. fwrite(&v, 1, sizeof(int32_t), f);
  1982. }
  1983. }
  1984. #endif
  1985. /* main layer3 decoding function */
  1986. static int mp_decode_layer3(MPADecodeContext *s)
  1987. {
  1988. int nb_granules, main_data_begin, private_bits;
  1989. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1990. GranuleDef granules[2][2], *g;
  1991. int16_t exponents[576];
  1992. /* read side info */
  1993. if (s->lsf) {
  1994. main_data_begin = get_bits(&s->gb, 8);
  1995. private_bits = get_bits(&s->gb, s->nb_channels);
  1996. nb_granules = 1;
  1997. } else {
  1998. main_data_begin = get_bits(&s->gb, 9);
  1999. if (s->nb_channels == 2)
  2000. private_bits = get_bits(&s->gb, 3);
  2001. else
  2002. private_bits = get_bits(&s->gb, 5);
  2003. nb_granules = 2;
  2004. for(ch=0;ch<s->nb_channels;ch++) {
  2005. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  2006. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  2007. }
  2008. }
  2009. for(gr=0;gr<nb_granules;gr++) {
  2010. for(ch=0;ch<s->nb_channels;ch++) {
  2011. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  2012. g = &granules[ch][gr];
  2013. g->part2_3_length = get_bits(&s->gb, 12);
  2014. g->big_values = get_bits(&s->gb, 9);
  2015. g->global_gain = get_bits(&s->gb, 8);
  2016. /* if MS stereo only is selected, we precompute the
  2017. 1/sqrt(2) renormalization factor */
  2018. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  2019. MODE_EXT_MS_STEREO)
  2020. g->global_gain -= 2;
  2021. if (s->lsf)
  2022. g->scalefac_compress = get_bits(&s->gb, 9);
  2023. else
  2024. g->scalefac_compress = get_bits(&s->gb, 4);
  2025. blocksplit_flag = get_bits(&s->gb, 1);
  2026. if (blocksplit_flag) {
  2027. g->block_type = get_bits(&s->gb, 2);
  2028. if (g->block_type == 0)
  2029. return -1;
  2030. g->switch_point = get_bits(&s->gb, 1);
  2031. for(i=0;i<2;i++)
  2032. g->table_select[i] = get_bits(&s->gb, 5);
  2033. for(i=0;i<3;i++)
  2034. g->subblock_gain[i] = get_bits(&s->gb, 3);
  2035. /* compute huffman coded region sizes */
  2036. if (g->block_type == 2)
  2037. g->region_size[0] = (36 / 2);
  2038. else {
  2039. if (s->sample_rate_index <= 2)
  2040. g->region_size[0] = (36 / 2);
  2041. else if (s->sample_rate_index != 8)
  2042. g->region_size[0] = (54 / 2);
  2043. else
  2044. g->region_size[0] = (108 / 2);
  2045. }
  2046. g->region_size[1] = (576 / 2);
  2047. } else {
  2048. int region_address1, region_address2, l;
  2049. g->block_type = 0;
  2050. g->switch_point = 0;
  2051. for(i=0;i<3;i++)
  2052. g->table_select[i] = get_bits(&s->gb, 5);
  2053. /* compute huffman coded region sizes */
  2054. region_address1 = get_bits(&s->gb, 4);
  2055. region_address2 = get_bits(&s->gb, 3);
  2056. dprintf("region1=%d region2=%d\n",
  2057. region_address1, region_address2);
  2058. g->region_size[0] =
  2059. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  2060. l = region_address1 + region_address2 + 2;
  2061. /* should not overflow */
  2062. if (l > 22)
  2063. l = 22;
  2064. g->region_size[1] =
  2065. band_index_long[s->sample_rate_index][l] >> 1;
  2066. }
  2067. /* convert region offsets to region sizes and truncate
  2068. size to big_values */
  2069. g->region_size[2] = (576 / 2);
  2070. j = 0;
  2071. for(i=0;i<3;i++) {
  2072. k = FFMIN(g->region_size[i], g->big_values);
  2073. g->region_size[i] = k - j;
  2074. j = k;
  2075. }
  2076. /* compute band indexes */
  2077. if (g->block_type == 2) {
  2078. if (g->switch_point) {
  2079. /* if switched mode, we handle the 36 first samples as
  2080. long blocks. For 8000Hz, we handle the 48 first
  2081. exponents as long blocks (XXX: check this!) */
  2082. if (s->sample_rate_index <= 2)
  2083. g->long_end = 8;
  2084. else if (s->sample_rate_index != 8)
  2085. g->long_end = 6;
  2086. else
  2087. g->long_end = 4; /* 8000 Hz */
  2088. g->short_start = 2 + (s->sample_rate_index != 8);
  2089. } else {
  2090. g->long_end = 0;
  2091. g->short_start = 0;
  2092. }
  2093. } else {
  2094. g->short_start = 13;
  2095. g->long_end = 22;
  2096. }
  2097. g->preflag = 0;
  2098. if (!s->lsf)
  2099. g->preflag = get_bits(&s->gb, 1);
  2100. g->scalefac_scale = get_bits(&s->gb, 1);
  2101. g->count1table_select = get_bits(&s->gb, 1);
  2102. dprintf("block_type=%d switch_point=%d\n",
  2103. g->block_type, g->switch_point);
  2104. }
  2105. }
  2106. if (!s->adu_mode) {
  2107. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  2108. assert((get_bits_count(&s->gb) & 7) == 0);
  2109. /* now we get bits from the main_data_begin offset */
  2110. dprintf("seekback: %d\n", main_data_begin);
  2111. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2112. if(main_data_begin > s->last_buf_size){
  2113. av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2114. s->last_buf_size= main_data_begin;
  2115. }
  2116. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  2117. s->in_gb= s->gb;
  2118. init_get_bits(&s->gb, s->last_buf + s->last_buf_size - main_data_begin, main_data_begin*8);
  2119. }
  2120. for(gr=0;gr<nb_granules;gr++) {
  2121. for(ch=0;ch<s->nb_channels;ch++) {
  2122. g = &granules[ch][gr];
  2123. bits_pos = get_bits_count(&s->gb);
  2124. if (!s->lsf) {
  2125. uint8_t *sc;
  2126. int slen, slen1, slen2;
  2127. /* MPEG1 scale factors */
  2128. slen1 = slen_table[0][g->scalefac_compress];
  2129. slen2 = slen_table[1][g->scalefac_compress];
  2130. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2131. if (g->block_type == 2) {
  2132. n = g->switch_point ? 17 : 18;
  2133. j = 0;
  2134. if(slen1){
  2135. for(i=0;i<n;i++)
  2136. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  2137. }else{
  2138. for(i=0;i<n;i++)
  2139. g->scale_factors[j++] = 0;
  2140. }
  2141. if(slen2){
  2142. for(i=0;i<18;i++)
  2143. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  2144. for(i=0;i<3;i++)
  2145. g->scale_factors[j++] = 0;
  2146. }else{
  2147. for(i=0;i<21;i++)
  2148. g->scale_factors[j++] = 0;
  2149. }
  2150. } else {
  2151. sc = granules[ch][0].scale_factors;
  2152. j = 0;
  2153. for(k=0;k<4;k++) {
  2154. n = (k == 0 ? 6 : 5);
  2155. if ((g->scfsi & (0x8 >> k)) == 0) {
  2156. slen = (k < 2) ? slen1 : slen2;
  2157. if(slen){
  2158. for(i=0;i<n;i++)
  2159. g->scale_factors[j++] = get_bits(&s->gb, slen);
  2160. }else{
  2161. for(i=0;i<n;i++)
  2162. g->scale_factors[j++] = 0;
  2163. }
  2164. } else {
  2165. /* simply copy from last granule */
  2166. for(i=0;i<n;i++) {
  2167. g->scale_factors[j] = sc[j];
  2168. j++;
  2169. }
  2170. }
  2171. }
  2172. g->scale_factors[j++] = 0;
  2173. }
  2174. #if defined(DEBUG)
  2175. {
  2176. dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2177. g->scfsi, gr, ch);
  2178. for(i=0;i<j;i++)
  2179. dprintf(" %d", g->scale_factors[i]);
  2180. dprintf("\n");
  2181. }
  2182. #endif
  2183. } else {
  2184. int tindex, tindex2, slen[4], sl, sf;
  2185. /* LSF scale factors */
  2186. if (g->block_type == 2) {
  2187. tindex = g->switch_point ? 2 : 1;
  2188. } else {
  2189. tindex = 0;
  2190. }
  2191. sf = g->scalefac_compress;
  2192. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2193. /* intensity stereo case */
  2194. sf >>= 1;
  2195. if (sf < 180) {
  2196. lsf_sf_expand(slen, sf, 6, 6, 0);
  2197. tindex2 = 3;
  2198. } else if (sf < 244) {
  2199. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2200. tindex2 = 4;
  2201. } else {
  2202. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2203. tindex2 = 5;
  2204. }
  2205. } else {
  2206. /* normal case */
  2207. if (sf < 400) {
  2208. lsf_sf_expand(slen, sf, 5, 4, 4);
  2209. tindex2 = 0;
  2210. } else if (sf < 500) {
  2211. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2212. tindex2 = 1;
  2213. } else {
  2214. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2215. tindex2 = 2;
  2216. g->preflag = 1;
  2217. }
  2218. }
  2219. j = 0;
  2220. for(k=0;k<4;k++) {
  2221. n = lsf_nsf_table[tindex2][tindex][k];
  2222. sl = slen[k];
  2223. if(sl){
  2224. for(i=0;i<n;i++)
  2225. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2226. }else{
  2227. for(i=0;i<n;i++)
  2228. g->scale_factors[j++] = 0;
  2229. }
  2230. }
  2231. /* XXX: should compute exact size */
  2232. for(;j<40;j++)
  2233. g->scale_factors[j] = 0;
  2234. #if defined(DEBUG)
  2235. {
  2236. dprintf("gr=%d ch=%d scale_factors:\n",
  2237. gr, ch);
  2238. for(i=0;i<40;i++)
  2239. dprintf(" %d", g->scale_factors[i]);
  2240. dprintf("\n");
  2241. }
  2242. #endif
  2243. }
  2244. exponents_from_scale_factors(s, g, exponents);
  2245. /* read Huffman coded residue */
  2246. if (huffman_decode(s, g, exponents,
  2247. bits_pos + g->part2_3_length) < 0)
  2248. return -1;
  2249. #if defined(DEBUG)
  2250. sample_dump(0, g->sb_hybrid, 576);
  2251. #endif
  2252. } /* ch */
  2253. if (s->nb_channels == 2)
  2254. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2255. for(ch=0;ch<s->nb_channels;ch++) {
  2256. g = &granules[ch][gr];
  2257. reorder_block(s, g);
  2258. #if defined(DEBUG)
  2259. sample_dump(0, g->sb_hybrid, 576);
  2260. #endif
  2261. s->compute_antialias(s, g);
  2262. #if defined(DEBUG)
  2263. sample_dump(1, g->sb_hybrid, 576);
  2264. #endif
  2265. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2266. #if defined(DEBUG)
  2267. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2268. #endif
  2269. }
  2270. } /* gr */
  2271. return nb_granules * 18;
  2272. }
  2273. static int mp_decode_frame(MPADecodeContext *s,
  2274. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2275. {
  2276. int i, nb_frames, ch;
  2277. OUT_INT *samples_ptr;
  2278. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2279. /* skip error protection field */
  2280. if (s->error_protection)
  2281. get_bits(&s->gb, 16);
  2282. dprintf("frame %d:\n", s->frame_count);
  2283. switch(s->layer) {
  2284. case 1:
  2285. nb_frames = mp_decode_layer1(s);
  2286. break;
  2287. case 2:
  2288. nb_frames = mp_decode_layer2(s);
  2289. break;
  2290. case 3:
  2291. default:
  2292. nb_frames = mp_decode_layer3(s);
  2293. s->last_buf_size=0;
  2294. if(s->in_gb.buffer){
  2295. align_get_bits(&s->gb);
  2296. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2297. if(i >= 0 && i <= BACKSTEP_SIZE){
  2298. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2299. s->last_buf_size=i;
  2300. }else
  2301. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2302. s->gb= s->in_gb;
  2303. }
  2304. align_get_bits(&s->gb);
  2305. assert((get_bits_count(&s->gb) & 7) == 0);
  2306. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2307. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2308. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2309. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2310. }
  2311. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2312. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2313. s->last_buf_size += i;
  2314. break;
  2315. }
  2316. #if defined(DEBUG)
  2317. for(i=0;i<nb_frames;i++) {
  2318. for(ch=0;ch<s->nb_channels;ch++) {
  2319. int j;
  2320. dprintf("%d-%d:", i, ch);
  2321. for(j=0;j<SBLIMIT;j++)
  2322. dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2323. dprintf("\n");
  2324. }
  2325. }
  2326. #endif
  2327. /* apply the synthesis filter */
  2328. for(ch=0;ch<s->nb_channels;ch++) {
  2329. samples_ptr = samples + ch;
  2330. for(i=0;i<nb_frames;i++) {
  2331. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2332. window, &s->dither_state,
  2333. samples_ptr, s->nb_channels,
  2334. s->sb_samples[ch][i]);
  2335. samples_ptr += 32 * s->nb_channels;
  2336. }
  2337. }
  2338. #ifdef DEBUG
  2339. s->frame_count++;
  2340. #endif
  2341. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2342. }
  2343. static int decode_frame(AVCodecContext * avctx,
  2344. void *data, int *data_size,
  2345. uint8_t * buf, int buf_size)
  2346. {
  2347. MPADecodeContext *s = avctx->priv_data;
  2348. uint32_t header;
  2349. int out_size;
  2350. OUT_INT *out_samples = data;
  2351. retry:
  2352. if(buf_size < HEADER_SIZE)
  2353. return -1;
  2354. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
  2355. if(ff_mpa_check_header(header) < 0){
  2356. buf++;
  2357. // buf_size--;
  2358. av_log(avctx, AV_LOG_ERROR, "header missing skiping one byte\n");
  2359. goto retry;
  2360. }
  2361. if (decode_header(s, header) == 1) {
  2362. /* free format: prepare to compute frame size */
  2363. s->frame_size = -1;
  2364. return -1;
  2365. }
  2366. /* update codec info */
  2367. avctx->sample_rate = s->sample_rate;
  2368. avctx->channels = s->nb_channels;
  2369. avctx->bit_rate = s->bit_rate;
  2370. avctx->sub_id = s->layer;
  2371. switch(s->layer) {
  2372. case 1:
  2373. avctx->frame_size = 384;
  2374. break;
  2375. case 2:
  2376. avctx->frame_size = 1152;
  2377. break;
  2378. case 3:
  2379. if (s->lsf)
  2380. avctx->frame_size = 576;
  2381. else
  2382. avctx->frame_size = 1152;
  2383. break;
  2384. }
  2385. if(s->frame_size<=0 || s->frame_size > buf_size){
  2386. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2387. return -1;
  2388. }else if(s->frame_size < buf_size){
  2389. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2390. }
  2391. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2392. if(out_size>=0)
  2393. *data_size = out_size;
  2394. else
  2395. av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed
  2396. s->frame_size = 0;
  2397. return buf_size;
  2398. }
  2399. static int decode_frame_adu(AVCodecContext * avctx,
  2400. void *data, int *data_size,
  2401. uint8_t * buf, int buf_size)
  2402. {
  2403. MPADecodeContext *s = avctx->priv_data;
  2404. uint32_t header;
  2405. int len, out_size;
  2406. OUT_INT *out_samples = data;
  2407. len = buf_size;
  2408. // Discard too short frames
  2409. if (buf_size < HEADER_SIZE) {
  2410. *data_size = 0;
  2411. return buf_size;
  2412. }
  2413. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2414. len = MPA_MAX_CODED_FRAME_SIZE;
  2415. // Get header and restore sync word
  2416. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3] | 0xffe00000;
  2417. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2418. *data_size = 0;
  2419. return buf_size;
  2420. }
  2421. decode_header(s, header);
  2422. /* update codec info */
  2423. avctx->sample_rate = s->sample_rate;
  2424. avctx->channels = s->nb_channels;
  2425. avctx->bit_rate = s->bit_rate;
  2426. avctx->sub_id = s->layer;
  2427. avctx->frame_size=s->frame_size = len;
  2428. if (avctx->parse_only) {
  2429. out_size = buf_size;
  2430. } else {
  2431. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2432. }
  2433. *data_size = out_size;
  2434. return buf_size;
  2435. }
  2436. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2437. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2438. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2439. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2440. static int chan_offset[9][5] = {
  2441. {0},
  2442. {0}, // C
  2443. {0}, // FLR
  2444. {2,0}, // C FLR
  2445. {2,0,3}, // C FLR BS
  2446. {4,0,2}, // C FLR BLRS
  2447. {4,0,2,5}, // C FLR BLRS LFE
  2448. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2449. {0,2} // FLR BLRS
  2450. };
  2451. static int decode_init_mp3on4(AVCodecContext * avctx)
  2452. {
  2453. MP3On4DecodeContext *s = avctx->priv_data;
  2454. int i;
  2455. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2456. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2457. return -1;
  2458. }
  2459. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2460. s->frames = mp3Frames[s->chan_cfg];
  2461. if(!s->frames) {
  2462. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2463. return -1;
  2464. }
  2465. avctx->channels = mp3Channels[s->chan_cfg];
  2466. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2467. * We replace avctx->priv_data with the context of the first decoder so that
  2468. * decode_init() does not have to be changed.
  2469. * Other decoders will be inited here copying data from the first context
  2470. */
  2471. // Allocate zeroed memory for the first decoder context
  2472. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2473. // Put decoder context in place to make init_decode() happy
  2474. avctx->priv_data = s->mp3decctx[0];
  2475. decode_init(avctx);
  2476. // Restore mp3on4 context pointer
  2477. avctx->priv_data = s;
  2478. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2479. /* Create a separate codec/context for each frame (first is already ok).
  2480. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2481. */
  2482. for (i = 1; i < s->frames; i++) {
  2483. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2484. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2485. s->mp3decctx[i]->adu_mode = 1;
  2486. }
  2487. return 0;
  2488. }
  2489. static int decode_close_mp3on4(AVCodecContext * avctx)
  2490. {
  2491. MP3On4DecodeContext *s = avctx->priv_data;
  2492. int i;
  2493. for (i = 0; i < s->frames; i++)
  2494. if (s->mp3decctx[i])
  2495. av_free(s->mp3decctx[i]);
  2496. return 0;
  2497. }
  2498. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2499. void *data, int *data_size,
  2500. uint8_t * buf, int buf_size)
  2501. {
  2502. MP3On4DecodeContext *s = avctx->priv_data;
  2503. MPADecodeContext *m;
  2504. int len, out_size = 0;
  2505. uint32_t header;
  2506. OUT_INT *out_samples = data;
  2507. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2508. OUT_INT *outptr, *bp;
  2509. int fsize;
  2510. unsigned char *start2 = buf, *start;
  2511. int fr, i, j, n;
  2512. int off = avctx->channels;
  2513. int *coff = chan_offset[s->chan_cfg];
  2514. len = buf_size;
  2515. // Discard too short frames
  2516. if (buf_size < HEADER_SIZE) {
  2517. *data_size = 0;
  2518. return buf_size;
  2519. }
  2520. // If only one decoder interleave is not needed
  2521. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2522. for (fr = 0; fr < s->frames; fr++) {
  2523. start = start2;
  2524. fsize = (start[0] << 4) | (start[1] >> 4);
  2525. start2 += fsize;
  2526. if (fsize > len)
  2527. fsize = len;
  2528. len -= fsize;
  2529. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2530. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2531. m = s->mp3decctx[fr];
  2532. assert (m != NULL);
  2533. // Get header
  2534. header = (start[0] << 24) | (start[1] << 16) | (start[2] << 8) | start[3] | 0xfff00000;
  2535. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2536. *data_size = 0;
  2537. return buf_size;
  2538. }
  2539. decode_header(m, header);
  2540. mp_decode_frame(m, decoded_buf, start, fsize);
  2541. n = MPA_FRAME_SIZE * m->nb_channels;
  2542. out_size += n * sizeof(OUT_INT);
  2543. if(s->frames > 1) {
  2544. /* interleave output data */
  2545. bp = out_samples + coff[fr];
  2546. if(m->nb_channels == 1) {
  2547. for(j = 0; j < n; j++) {
  2548. *bp = decoded_buf[j];
  2549. bp += off;
  2550. }
  2551. } else {
  2552. for(j = 0; j < n; j++) {
  2553. bp[0] = decoded_buf[j++];
  2554. bp[1] = decoded_buf[j];
  2555. bp += off;
  2556. }
  2557. }
  2558. }
  2559. }
  2560. /* update codec info */
  2561. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2562. avctx->frame_size= buf_size;
  2563. avctx->bit_rate = 0;
  2564. for (i = 0; i < s->frames; i++)
  2565. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2566. *data_size = out_size;
  2567. return buf_size;
  2568. }
  2569. AVCodec mp2_decoder =
  2570. {
  2571. "mp2",
  2572. CODEC_TYPE_AUDIO,
  2573. CODEC_ID_MP2,
  2574. sizeof(MPADecodeContext),
  2575. decode_init,
  2576. NULL,
  2577. NULL,
  2578. decode_frame,
  2579. CODEC_CAP_PARSE_ONLY,
  2580. };
  2581. AVCodec mp3_decoder =
  2582. {
  2583. "mp3",
  2584. CODEC_TYPE_AUDIO,
  2585. CODEC_ID_MP3,
  2586. sizeof(MPADecodeContext),
  2587. decode_init,
  2588. NULL,
  2589. NULL,
  2590. decode_frame,
  2591. CODEC_CAP_PARSE_ONLY,
  2592. };
  2593. AVCodec mp3adu_decoder =
  2594. {
  2595. "mp3adu",
  2596. CODEC_TYPE_AUDIO,
  2597. CODEC_ID_MP3ADU,
  2598. sizeof(MPADecodeContext),
  2599. decode_init,
  2600. NULL,
  2601. NULL,
  2602. decode_frame_adu,
  2603. CODEC_CAP_PARSE_ONLY,
  2604. };
  2605. AVCodec mp3on4_decoder =
  2606. {
  2607. "mp3on4",
  2608. CODEC_TYPE_AUDIO,
  2609. CODEC_ID_MP3ON4,
  2610. sizeof(MP3On4DecodeContext),
  2611. decode_init_mp3on4,
  2612. NULL,
  2613. decode_close_mp3on4,
  2614. decode_frame_mp3on4,
  2615. 0
  2616. };