You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1236 lines
40KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #define VLC_BITS 11
  31. #ifdef WORDS_BIGENDIAN
  32. #define B 3
  33. #define G 2
  34. #define R 1
  35. #else
  36. #define B 0
  37. #define G 1
  38. #define R 2
  39. #endif
  40. typedef enum Predictor{
  41. LEFT= 0,
  42. PLANE,
  43. MEDIAN,
  44. } Predictor;
  45. typedef struct HYuvContext{
  46. AVCodecContext *avctx;
  47. Predictor predictor;
  48. GetBitContext gb;
  49. PutBitContext pb;
  50. int interlaced;
  51. int decorrelate;
  52. int bitstream_bpp;
  53. int version;
  54. int yuy2; //use yuy2 instead of 422P
  55. int bgr32; //use bgr32 instead of bgr24
  56. int width, height;
  57. int flags;
  58. int context;
  59. int picture_number;
  60. int last_slice_end;
  61. uint8_t __align8 temp[3][2560];
  62. uint64_t stats[3][256];
  63. uint8_t len[3][256];
  64. uint32_t bits[3][256];
  65. VLC vlc[3];
  66. AVFrame picture;
  67. uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
  68. DSPContext dsp;
  69. }HYuvContext;
  70. static const unsigned char classic_shift_luma[] = {
  71. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  72. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  73. 69,68, 0
  74. };
  75. static const unsigned char classic_shift_chroma[] = {
  76. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  77. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  78. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  79. };
  80. static const unsigned char classic_add_luma[256] = {
  81. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  82. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  83. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  84. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  85. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  86. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  87. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  88. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  89. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  90. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  91. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  92. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  93. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  94. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  95. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  96. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  97. };
  98. static const unsigned char classic_add_chroma[256] = {
  99. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  100. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  101. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  102. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  103. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  104. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  105. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  106. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  107. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  108. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  109. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  110. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  111. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  112. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  113. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  114. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  115. };
  116. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  117. int i;
  118. for(i=0; i<w-1; i++){
  119. acc+= src[i];
  120. dst[i]= acc;
  121. i++;
  122. acc+= src[i];
  123. dst[i]= acc;
  124. }
  125. for(; i<w; i++){
  126. acc+= src[i];
  127. dst[i]= acc;
  128. }
  129. return acc;
  130. }
  131. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  132. int i;
  133. uint8_t l, lt;
  134. l= *left;
  135. lt= *left_top;
  136. for(i=0; i<w; i++){
  137. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  138. lt= src1[i];
  139. dst[i]= l;
  140. }
  141. *left= l;
  142. *left_top= lt;
  143. }
  144. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  145. int i;
  146. int r,g,b;
  147. r= *red;
  148. g= *green;
  149. b= *blue;
  150. for(i=0; i<w; i++){
  151. b+= src[4*i+B];
  152. g+= src[4*i+G];
  153. r+= src[4*i+R];
  154. dst[4*i+B]= b;
  155. dst[4*i+G]= g;
  156. dst[4*i+R]= r;
  157. }
  158. *red= r;
  159. *green= g;
  160. *blue= b;
  161. }
  162. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  163. int i;
  164. if(w<32){
  165. for(i=0; i<w; i++){
  166. const int temp= src[i];
  167. dst[i]= temp - left;
  168. left= temp;
  169. }
  170. return left;
  171. }else{
  172. for(i=0; i<16; i++){
  173. const int temp= src[i];
  174. dst[i]= temp - left;
  175. left= temp;
  176. }
  177. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  178. return src[w-1];
  179. }
  180. }
  181. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  182. int i, val, repeat;
  183. for(i=0; i<256;){
  184. repeat= get_bits(gb, 3);
  185. val = get_bits(gb, 5);
  186. if(repeat==0)
  187. repeat= get_bits(gb, 8);
  188. //printf("%d %d\n", val, repeat);
  189. while (repeat--)
  190. dst[i++] = val;
  191. }
  192. }
  193. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  194. int len, index;
  195. uint32_t bits=0;
  196. for(len=32; len>0; len--){
  197. for(index=0; index<256; index++){
  198. if(len_table[index]==len)
  199. dst[index]= bits++;
  200. }
  201. if(bits & 1){
  202. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  203. return -1;
  204. }
  205. bits >>= 1;
  206. }
  207. return 0;
  208. }
  209. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  210. uint64_t counts[2*size];
  211. int up[2*size];
  212. int offset, i, next;
  213. for(offset=1; ; offset<<=1){
  214. for(i=0; i<size; i++){
  215. counts[i]= stats[i] + offset - 1;
  216. }
  217. for(next=size; next<size*2; next++){
  218. uint64_t min1, min2;
  219. int min1_i, min2_i;
  220. min1=min2= INT64_MAX;
  221. min1_i= min2_i=-1;
  222. for(i=0; i<next; i++){
  223. if(min2 > counts[i]){
  224. if(min1 > counts[i]){
  225. min2= min1;
  226. min2_i= min1_i;
  227. min1= counts[i];
  228. min1_i= i;
  229. }else{
  230. min2= counts[i];
  231. min2_i= i;
  232. }
  233. }
  234. }
  235. if(min2==INT64_MAX) break;
  236. counts[next]= min1 + min2;
  237. counts[min1_i]=
  238. counts[min2_i]= INT64_MAX;
  239. up[min1_i]=
  240. up[min2_i]= next;
  241. up[next]= -1;
  242. }
  243. for(i=0; i<size; i++){
  244. int len;
  245. int index=i;
  246. for(len=0; up[index] != -1; len++)
  247. index= up[index];
  248. if(len >= 32) break;
  249. dst[i]= len;
  250. }
  251. if(i==size) break;
  252. }
  253. }
  254. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  255. GetBitContext gb;
  256. int i;
  257. init_get_bits(&gb, src, length*8);
  258. for(i=0; i<3; i++){
  259. read_len_table(s->len[i], &gb);
  260. if(generate_bits_table(s->bits[i], s->len[i])<0){
  261. return -1;
  262. }
  263. #if 0
  264. for(j=0; j<256; j++){
  265. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  266. }
  267. #endif
  268. free_vlc(&s->vlc[i]);
  269. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  270. }
  271. return (get_bits_count(&gb)+7)/8;
  272. }
  273. static int read_old_huffman_tables(HYuvContext *s){
  274. #if 1
  275. GetBitContext gb;
  276. int i;
  277. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  278. read_len_table(s->len[0], &gb);
  279. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  280. read_len_table(s->len[1], &gb);
  281. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  282. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  283. if(s->bitstream_bpp >= 24){
  284. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  285. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  286. }
  287. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  288. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  289. for(i=0; i<3; i++){
  290. free_vlc(&s->vlc[i]);
  291. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  292. }
  293. return 0;
  294. #else
  295. fprintf(stderr, "v1 huffyuv is not supported \n");
  296. return -1;
  297. #endif
  298. }
  299. static int decode_init(AVCodecContext *avctx)
  300. {
  301. HYuvContext *s = avctx->priv_data;
  302. int width, height;
  303. s->avctx= avctx;
  304. s->flags= avctx->flags;
  305. dsputil_init(&s->dsp, avctx);
  306. memset(s->vlc, 0, 3*sizeof(VLC));
  307. width= s->width= avctx->width;
  308. height= s->height= avctx->height;
  309. avctx->coded_frame= &s->picture;
  310. s->interlaced= height > 288;
  311. s->bgr32=1;
  312. assert(width && height);
  313. //if(avctx->extradata)
  314. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  315. if(avctx->extradata_size){
  316. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  317. s->version=1; // do such files exist at all?
  318. else
  319. s->version=2;
  320. }else
  321. s->version=0;
  322. if(s->version==2){
  323. int method, interlace;
  324. method= ((uint8_t*)avctx->extradata)[0];
  325. s->decorrelate= method&64 ? 1 : 0;
  326. s->predictor= method&63;
  327. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  328. if(s->bitstream_bpp==0)
  329. s->bitstream_bpp= avctx->bits_per_sample&~7;
  330. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  331. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  332. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  333. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  334. return -1;
  335. }else{
  336. switch(avctx->bits_per_sample&7){
  337. case 1:
  338. s->predictor= LEFT;
  339. s->decorrelate= 0;
  340. break;
  341. case 2:
  342. s->predictor= LEFT;
  343. s->decorrelate= 1;
  344. break;
  345. case 3:
  346. s->predictor= PLANE;
  347. s->decorrelate= avctx->bits_per_sample >= 24;
  348. break;
  349. case 4:
  350. s->predictor= MEDIAN;
  351. s->decorrelate= 0;
  352. break;
  353. default:
  354. s->predictor= LEFT; //OLD
  355. s->decorrelate= 0;
  356. break;
  357. }
  358. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  359. s->context= 0;
  360. if(read_old_huffman_tables(s) < 0)
  361. return -1;
  362. }
  363. switch(s->bitstream_bpp){
  364. case 12:
  365. avctx->pix_fmt = PIX_FMT_YUV420P;
  366. break;
  367. case 16:
  368. if(s->yuy2){
  369. avctx->pix_fmt = PIX_FMT_YUV422;
  370. }else{
  371. avctx->pix_fmt = PIX_FMT_YUV422P;
  372. }
  373. break;
  374. case 24:
  375. case 32:
  376. if(s->bgr32){
  377. avctx->pix_fmt = PIX_FMT_RGBA32;
  378. }else{
  379. avctx->pix_fmt = PIX_FMT_BGR24;
  380. }
  381. break;
  382. default:
  383. assert(0);
  384. }
  385. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  386. return 0;
  387. }
  388. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  389. int i;
  390. int index= 0;
  391. for(i=0; i<256;){
  392. int val= len[i];
  393. int repeat=0;
  394. for(; i<256 && len[i]==val && repeat<255; i++)
  395. repeat++;
  396. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  397. if(repeat>7){
  398. buf[index++]= val;
  399. buf[index++]= repeat;
  400. }else{
  401. buf[index++]= val | (repeat<<5);
  402. }
  403. }
  404. return index;
  405. }
  406. static int encode_init(AVCodecContext *avctx)
  407. {
  408. HYuvContext *s = avctx->priv_data;
  409. int i, j, width, height;
  410. s->avctx= avctx;
  411. s->flags= avctx->flags;
  412. dsputil_init(&s->dsp, avctx);
  413. width= s->width= avctx->width;
  414. height= s->height= avctx->height;
  415. assert(width && height);
  416. avctx->extradata= av_mallocz(1024*30);
  417. avctx->stats_out= av_mallocz(1024*30);
  418. s->version=2;
  419. avctx->coded_frame= &s->picture;
  420. switch(avctx->pix_fmt){
  421. case PIX_FMT_YUV420P:
  422. s->bitstream_bpp= 12;
  423. break;
  424. case PIX_FMT_YUV422P:
  425. s->bitstream_bpp= 16;
  426. break;
  427. default:
  428. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  429. return -1;
  430. }
  431. avctx->bits_per_sample= s->bitstream_bpp;
  432. s->decorrelate= s->bitstream_bpp >= 24;
  433. s->predictor= avctx->prediction_method;
  434. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  435. if(avctx->context_model==1){
  436. s->context= avctx->context_model;
  437. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  438. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  439. return -1;
  440. }
  441. }else s->context= 0;
  442. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  443. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  444. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  445. return -1;
  446. }
  447. if(avctx->context_model){
  448. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  449. return -1;
  450. }
  451. if(s->interlaced != ( height > 288 ))
  452. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  453. }else if(avctx->strict_std_compliance>=0){
  454. av_log(avctx, AV_LOG_ERROR, "This codec is under development; files encoded with it may not be decodeable with future versions!!! Set vstrict=-1 to use it anyway.\n");
  455. return -1;
  456. }
  457. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  458. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  459. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  460. if(s->context)
  461. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  462. ((uint8_t*)avctx->extradata)[3]= 0;
  463. s->avctx->extradata_size= 4;
  464. if(avctx->stats_in){
  465. char *p= avctx->stats_in;
  466. for(i=0; i<3; i++)
  467. for(j=0; j<256; j++)
  468. s->stats[i][j]= 1;
  469. for(;;){
  470. for(i=0; i<3; i++){
  471. char *next;
  472. for(j=0; j<256; j++){
  473. s->stats[i][j]+= strtol(p, &next, 0);
  474. if(next==p) return -1;
  475. p=next;
  476. }
  477. }
  478. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  479. }
  480. }else{
  481. for(i=0; i<3; i++)
  482. for(j=0; j<256; j++){
  483. int d= FFMIN(j, 256-j);
  484. s->stats[i][j]= 100000000/(d+1);
  485. }
  486. }
  487. for(i=0; i<3; i++){
  488. generate_len_table(s->len[i], s->stats[i], 256);
  489. if(generate_bits_table(s->bits[i], s->len[i])<0){
  490. return -1;
  491. }
  492. s->avctx->extradata_size+=
  493. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  494. }
  495. if(s->context){
  496. for(i=0; i<3; i++){
  497. int pels = width*height / (i?40:10);
  498. for(j=0; j<256; j++){
  499. int d= FFMIN(j, 256-j);
  500. s->stats[i][j]= pels/(d+1);
  501. }
  502. }
  503. }else{
  504. for(i=0; i<3; i++)
  505. for(j=0; j<256; j++)
  506. s->stats[i][j]= 0;
  507. }
  508. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  509. s->picture_number=0;
  510. return 0;
  511. }
  512. static void decode_422_bitstream(HYuvContext *s, int count){
  513. int i;
  514. count/=2;
  515. for(i=0; i<count; i++){
  516. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  517. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  518. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  519. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  520. }
  521. }
  522. static void decode_gray_bitstream(HYuvContext *s, int count){
  523. int i;
  524. count/=2;
  525. for(i=0; i<count; i++){
  526. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  527. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  528. }
  529. }
  530. static void encode_422_bitstream(HYuvContext *s, int count){
  531. int i;
  532. count/=2;
  533. if(s->flags&CODEC_FLAG_PASS1){
  534. for(i=0; i<count; i++){
  535. s->stats[0][ s->temp[0][2*i ] ]++;
  536. s->stats[1][ s->temp[1][ i ] ]++;
  537. s->stats[0][ s->temp[0][2*i+1] ]++;
  538. s->stats[2][ s->temp[2][ i ] ]++;
  539. }
  540. }else if(s->context){
  541. for(i=0; i<count; i++){
  542. s->stats[0][ s->temp[0][2*i ] ]++;
  543. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  544. s->stats[1][ s->temp[1][ i ] ]++;
  545. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  546. s->stats[0][ s->temp[0][2*i+1] ]++;
  547. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  548. s->stats[2][ s->temp[2][ i ] ]++;
  549. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  550. }
  551. }else{
  552. for(i=0; i<count; i++){
  553. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  554. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  555. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  556. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  557. }
  558. }
  559. }
  560. static void encode_gray_bitstream(HYuvContext *s, int count){
  561. int i;
  562. count/=2;
  563. if(s->flags&CODEC_FLAG_PASS1){
  564. for(i=0; i<count; i++){
  565. s->stats[0][ s->temp[0][2*i ] ]++;
  566. s->stats[0][ s->temp[0][2*i+1] ]++;
  567. }
  568. }else if(s->context){
  569. for(i=0; i<count; i++){
  570. s->stats[0][ s->temp[0][2*i ] ]++;
  571. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  572. s->stats[0][ s->temp[0][2*i+1] ]++;
  573. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  574. }
  575. }else{
  576. for(i=0; i<count; i++){
  577. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  578. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  579. }
  580. }
  581. }
  582. static void decode_bgr_bitstream(HYuvContext *s, int count){
  583. int i;
  584. if(s->decorrelate){
  585. if(s->bitstream_bpp==24){
  586. for(i=0; i<count; i++){
  587. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  588. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  589. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  590. }
  591. }else{
  592. for(i=0; i<count; i++){
  593. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  594. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  595. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  596. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  597. }
  598. }
  599. }else{
  600. if(s->bitstream_bpp==24){
  601. for(i=0; i<count; i++){
  602. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  603. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  604. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  605. }
  606. }else{
  607. for(i=0; i<count; i++){
  608. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  609. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  610. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  611. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  612. }
  613. }
  614. }
  615. }
  616. static void draw_slice(HYuvContext *s, int y){
  617. int h, cy;
  618. int offset[4];
  619. if(s->avctx->draw_horiz_band==NULL)
  620. return;
  621. h= y - s->last_slice_end;
  622. y -= h;
  623. if(s->bitstream_bpp==12){
  624. cy= y>>1;
  625. }else{
  626. cy= y;
  627. }
  628. offset[0] = s->picture.linesize[0]*y;
  629. offset[1] = s->picture.linesize[1]*cy;
  630. offset[2] = s->picture.linesize[2]*cy;
  631. offset[3] = 0;
  632. emms_c();
  633. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  634. s->last_slice_end= y + h;
  635. }
  636. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  637. HYuvContext *s = avctx->priv_data;
  638. const int width= s->width;
  639. const int width2= s->width>>1;
  640. const int height= s->height;
  641. int fake_ystride, fake_ustride, fake_vstride;
  642. AVFrame * const p= &s->picture;
  643. int table_size= 0;
  644. AVFrame *picture = data;
  645. /* no supplementary picture */
  646. if (buf_size == 0)
  647. return 0;
  648. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  649. if(p->data[0])
  650. avctx->release_buffer(avctx, p);
  651. p->reference= 0;
  652. if(avctx->get_buffer(avctx, p) < 0){
  653. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  654. return -1;
  655. }
  656. if(s->context){
  657. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  658. if(table_size < 0)
  659. return -1;
  660. }
  661. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  662. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  663. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  664. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  665. s->last_slice_end= 0;
  666. if(s->bitstream_bpp<24){
  667. int y, cy;
  668. int lefty, leftu, leftv;
  669. int lefttopy, lefttopu, lefttopv;
  670. if(s->yuy2){
  671. p->data[0][3]= get_bits(&s->gb, 8);
  672. p->data[0][2]= get_bits(&s->gb, 8);
  673. p->data[0][1]= get_bits(&s->gb, 8);
  674. p->data[0][0]= get_bits(&s->gb, 8);
  675. av_log(avctx, AV_LOG_ERROR, "YUY2 output isnt implemenetd yet\n");
  676. return -1;
  677. }else{
  678. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  679. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  680. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  681. p->data[0][0]= get_bits(&s->gb, 8);
  682. switch(s->predictor){
  683. case LEFT:
  684. case PLANE:
  685. decode_422_bitstream(s, width-2);
  686. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  687. if(!(s->flags&CODEC_FLAG_GRAY)){
  688. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  689. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  690. }
  691. for(cy=y=1; y<s->height; y++,cy++){
  692. uint8_t *ydst, *udst, *vdst;
  693. if(s->bitstream_bpp==12){
  694. decode_gray_bitstream(s, width);
  695. ydst= p->data[0] + p->linesize[0]*y;
  696. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  697. if(s->predictor == PLANE){
  698. if(y>s->interlaced)
  699. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  700. }
  701. y++;
  702. if(y>=s->height) break;
  703. }
  704. draw_slice(s, y);
  705. ydst= p->data[0] + p->linesize[0]*y;
  706. udst= p->data[1] + p->linesize[1]*cy;
  707. vdst= p->data[2] + p->linesize[2]*cy;
  708. decode_422_bitstream(s, width);
  709. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  710. if(!(s->flags&CODEC_FLAG_GRAY)){
  711. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  712. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  713. }
  714. if(s->predictor == PLANE){
  715. if(cy>s->interlaced){
  716. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  717. if(!(s->flags&CODEC_FLAG_GRAY)){
  718. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  719. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  720. }
  721. }
  722. }
  723. }
  724. draw_slice(s, height);
  725. break;
  726. case MEDIAN:
  727. /* first line except first 2 pixels is left predicted */
  728. decode_422_bitstream(s, width-2);
  729. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  730. if(!(s->flags&CODEC_FLAG_GRAY)){
  731. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  732. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  733. }
  734. cy=y=1;
  735. /* second line is left predicted for interlaced case */
  736. if(s->interlaced){
  737. decode_422_bitstream(s, width);
  738. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  739. if(!(s->flags&CODEC_FLAG_GRAY)){
  740. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  741. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  742. }
  743. y++; cy++;
  744. }
  745. /* next 4 pixels are left predicted too */
  746. decode_422_bitstream(s, 4);
  747. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  748. if(!(s->flags&CODEC_FLAG_GRAY)){
  749. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  750. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  751. }
  752. /* next line except the first 4 pixels is median predicted */
  753. lefttopy= p->data[0][3];
  754. decode_422_bitstream(s, width-4);
  755. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  756. if(!(s->flags&CODEC_FLAG_GRAY)){
  757. lefttopu= p->data[1][1];
  758. lefttopv= p->data[2][1];
  759. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  760. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  761. }
  762. y++; cy++;
  763. for(; y<height; y++,cy++){
  764. uint8_t *ydst, *udst, *vdst;
  765. if(s->bitstream_bpp==12){
  766. while(2*cy > y){
  767. decode_gray_bitstream(s, width);
  768. ydst= p->data[0] + p->linesize[0]*y;
  769. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  770. y++;
  771. }
  772. if(y>=height) break;
  773. }
  774. draw_slice(s, y);
  775. decode_422_bitstream(s, width);
  776. ydst= p->data[0] + p->linesize[0]*y;
  777. udst= p->data[1] + p->linesize[1]*cy;
  778. vdst= p->data[2] + p->linesize[2]*cy;
  779. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  780. if(!(s->flags&CODEC_FLAG_GRAY)){
  781. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  782. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  783. }
  784. }
  785. draw_slice(s, height);
  786. break;
  787. }
  788. }
  789. }else{
  790. int y;
  791. int leftr, leftg, leftb;
  792. const int last_line= (height-1)*p->linesize[0];
  793. if(s->bitstream_bpp==32){
  794. skip_bits(&s->gb, 8);
  795. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  796. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  797. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  798. }else{
  799. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  800. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  801. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  802. skip_bits(&s->gb, 8);
  803. }
  804. if(s->bgr32){
  805. switch(s->predictor){
  806. case LEFT:
  807. case PLANE:
  808. decode_bgr_bitstream(s, width-1);
  809. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  810. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  811. decode_bgr_bitstream(s, width);
  812. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  813. if(s->predictor == PLANE){
  814. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  815. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  816. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  817. }
  818. }
  819. }
  820. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  821. break;
  822. default:
  823. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  824. }
  825. }else{
  826. av_log(avctx, AV_LOG_ERROR, "BGR24 output isnt implemenetd yet\n");
  827. return -1;
  828. }
  829. }
  830. emms_c();
  831. *picture= *p;
  832. *data_size = sizeof(AVFrame);
  833. return (get_bits_count(&s->gb)+31)/32*4;
  834. }
  835. static int decode_end(AVCodecContext *avctx)
  836. {
  837. HYuvContext *s = avctx->priv_data;
  838. int i;
  839. for(i=0; i<3; i++){
  840. free_vlc(&s->vlc[i]);
  841. }
  842. return 0;
  843. }
  844. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  845. HYuvContext *s = avctx->priv_data;
  846. AVFrame *pict = data;
  847. const int width= s->width;
  848. const int width2= s->width>>1;
  849. const int height= s->height;
  850. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  851. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  852. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  853. AVFrame * const p= &s->picture;
  854. int i, j, size=0;
  855. *p = *pict;
  856. p->pict_type= FF_I_TYPE;
  857. p->key_frame= 1;
  858. if(s->context){
  859. for(i=0; i<3; i++){
  860. generate_len_table(s->len[i], s->stats[i], 256);
  861. if(generate_bits_table(s->bits[i], s->len[i])<0)
  862. return -1;
  863. size+= store_table(s, s->len[i], &buf[size]);
  864. }
  865. for(i=0; i<3; i++)
  866. for(j=0; j<256; j++)
  867. s->stats[i][j] >>= 1;
  868. }
  869. init_put_bits(&s->pb, buf+size, buf_size-size);
  870. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  871. int lefty, leftu, leftv, y, cy;
  872. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  873. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  874. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  875. put_bits(&s->pb, 8, p->data[0][0]);
  876. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  877. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  878. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  879. encode_422_bitstream(s, width-2);
  880. if(s->predictor==MEDIAN){
  881. int lefttopy, lefttopu, lefttopv;
  882. cy=y=1;
  883. if(s->interlaced){
  884. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  885. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  886. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  887. encode_422_bitstream(s, width);
  888. y++; cy++;
  889. }
  890. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  891. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  892. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  893. encode_422_bitstream(s, 4);
  894. lefttopy= p->data[0][3];
  895. lefttopu= p->data[1][1];
  896. lefttopv= p->data[2][1];
  897. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  898. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  899. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  900. encode_422_bitstream(s, width-4);
  901. y++; cy++;
  902. for(; y<height; y++,cy++){
  903. uint8_t *ydst, *udst, *vdst;
  904. if(s->bitstream_bpp==12){
  905. while(2*cy > y){
  906. ydst= p->data[0] + p->linesize[0]*y;
  907. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  908. encode_gray_bitstream(s, width);
  909. y++;
  910. }
  911. if(y>=height) break;
  912. }
  913. ydst= p->data[0] + p->linesize[0]*y;
  914. udst= p->data[1] + p->linesize[1]*cy;
  915. vdst= p->data[2] + p->linesize[2]*cy;
  916. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  917. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  918. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  919. encode_422_bitstream(s, width);
  920. }
  921. }else{
  922. for(cy=y=1; y<height; y++,cy++){
  923. uint8_t *ydst, *udst, *vdst;
  924. /* encode a luma only line & y++ */
  925. if(s->bitstream_bpp==12){
  926. ydst= p->data[0] + p->linesize[0]*y;
  927. if(s->predictor == PLANE && s->interlaced < y){
  928. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  929. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  930. }else{
  931. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  932. }
  933. encode_gray_bitstream(s, width);
  934. y++;
  935. if(y>=height) break;
  936. }
  937. ydst= p->data[0] + p->linesize[0]*y;
  938. udst= p->data[1] + p->linesize[1]*cy;
  939. vdst= p->data[2] + p->linesize[2]*cy;
  940. if(s->predictor == PLANE && s->interlaced < cy){
  941. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  942. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  943. s->dsp.diff_bytes(s->temp[2] + 1250, vdst, vdst - fake_vstride, width2);
  944. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  945. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  946. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + 1250, width2, leftv);
  947. }else{
  948. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  949. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  950. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  951. }
  952. encode_422_bitstream(s, width);
  953. }
  954. }
  955. }else{
  956. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  957. }
  958. emms_c();
  959. size+= (put_bits_count(&s->pb)+31)/8;
  960. size/= 4;
  961. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  962. int j;
  963. char *p= avctx->stats_out;
  964. for(i=0; i<3; i++){
  965. for(j=0; j<256; j++){
  966. sprintf(p, "%llu ", s->stats[i][j]);
  967. p+= strlen(p);
  968. s->stats[i][j]= 0;
  969. }
  970. sprintf(p, "\n");
  971. p++;
  972. }
  973. }else{
  974. flush_put_bits(&s->pb);
  975. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  976. avctx->stats_out[0] = '\0';
  977. }
  978. s->picture_number++;
  979. return size*4;
  980. }
  981. static int encode_end(AVCodecContext *avctx)
  982. {
  983. // HYuvContext *s = avctx->priv_data;
  984. av_freep(&avctx->extradata);
  985. av_freep(&avctx->stats_out);
  986. return 0;
  987. }
  988. static const AVOption huffyuv_options[] =
  989. {
  990. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  991. AVOPTION_END()
  992. };
  993. static const AVOption ffvhuff_options[] =
  994. {
  995. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  996. AVOPTION_CODEC_INT("context_model", "context_model", context_model, 0, 2, 0),
  997. AVOPTION_END()
  998. };
  999. AVCodec huffyuv_decoder = {
  1000. "huffyuv",
  1001. CODEC_TYPE_VIDEO,
  1002. CODEC_ID_HUFFYUV,
  1003. sizeof(HYuvContext),
  1004. decode_init,
  1005. NULL,
  1006. decode_end,
  1007. decode_frame,
  1008. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1009. NULL
  1010. };
  1011. AVCodec ffvhuff_decoder = {
  1012. "ffvhuff",
  1013. CODEC_TYPE_VIDEO,
  1014. CODEC_ID_FFVHUFF,
  1015. sizeof(HYuvContext),
  1016. decode_init,
  1017. NULL,
  1018. decode_end,
  1019. decode_frame,
  1020. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1021. NULL
  1022. };
  1023. #ifdef CONFIG_ENCODERS
  1024. AVCodec huffyuv_encoder = {
  1025. "huffyuv",
  1026. CODEC_TYPE_VIDEO,
  1027. CODEC_ID_HUFFYUV,
  1028. sizeof(HYuvContext),
  1029. encode_init,
  1030. encode_frame,
  1031. encode_end,
  1032. .options = huffyuv_options,
  1033. };
  1034. AVCodec ffvhuff_encoder = {
  1035. "ffvhuff",
  1036. CODEC_TYPE_VIDEO,
  1037. CODEC_ID_FFVHUFF,
  1038. sizeof(HYuvContext),
  1039. encode_init,
  1040. encode_frame,
  1041. encode_end,
  1042. .options = ffvhuff_options,
  1043. };
  1044. #endif //CONFIG_ENCODERS