You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1811 lines
63KB

  1. /*
  2. * RV30/40 decoder common data
  3. * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * RV30/40 decoder common data
  24. */
  25. #include "libavutil/internal.h"
  26. #include "avcodec.h"
  27. #include "error_resilience.h"
  28. #include "mpegutils.h"
  29. #include "mpegvideo.h"
  30. #include "golomb.h"
  31. #include "internal.h"
  32. #include "mathops.h"
  33. #include "qpeldsp.h"
  34. #include "rectangle.h"
  35. #include "thread.h"
  36. #include "rv34vlc.h"
  37. #include "rv34data.h"
  38. #include "rv34.h"
  39. static inline void ZERO8x2(void* dst, int stride)
  40. {
  41. fill_rectangle(dst, 1, 2, stride, 0, 4);
  42. fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4);
  43. }
  44. /** translation of RV30/40 macroblock types to lavc ones */
  45. static const int rv34_mb_type_to_lavc[12] = {
  46. MB_TYPE_INTRA,
  47. MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
  48. MB_TYPE_16x16 | MB_TYPE_L0,
  49. MB_TYPE_8x8 | MB_TYPE_L0,
  50. MB_TYPE_16x16 | MB_TYPE_L0,
  51. MB_TYPE_16x16 | MB_TYPE_L1,
  52. MB_TYPE_SKIP,
  53. MB_TYPE_DIRECT2 | MB_TYPE_16x16,
  54. MB_TYPE_16x8 | MB_TYPE_L0,
  55. MB_TYPE_8x16 | MB_TYPE_L0,
  56. MB_TYPE_16x16 | MB_TYPE_L0L1,
  57. MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
  58. };
  59. static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
  60. static int rv34_decode_mv(RV34DecContext *r, int block_type);
  61. /**
  62. * @name RV30/40 VLC generating functions
  63. * @{
  64. */
  65. static const int table_offs[] = {
  66. 0, 1818, 3622, 4144, 4698, 5234, 5804, 5868, 5900, 5932,
  67. 5996, 6252, 6316, 6348, 6380, 7674, 8944, 10274, 11668, 12250,
  68. 14060, 15846, 16372, 16962, 17512, 18148, 18180, 18212, 18244, 18308,
  69. 18564, 18628, 18660, 18692, 20036, 21314, 22648, 23968, 24614, 26384,
  70. 28190, 28736, 29366, 29938, 30608, 30640, 30672, 30704, 30768, 31024,
  71. 31088, 31120, 31184, 32570, 33898, 35236, 36644, 37286, 39020, 40802,
  72. 41368, 42052, 42692, 43348, 43380, 43412, 43444, 43476, 43604, 43668,
  73. 43700, 43732, 45100, 46430, 47778, 49160, 49802, 51550, 53340, 53972,
  74. 54648, 55348, 55994, 56122, 56154, 56186, 56218, 56346, 56410, 56442,
  75. 56474, 57878, 59290, 60636, 62036, 62682, 64460, 64524, 64588, 64716,
  76. 64844, 66076, 67466, 67978, 68542, 69064, 69648, 70296, 72010, 72074,
  77. 72138, 72202, 72330, 73572, 74936, 75454, 76030, 76566, 77176, 77822,
  78. 79582, 79646, 79678, 79742, 79870, 81180, 82536, 83064, 83672, 84242,
  79. 84934, 85576, 87384, 87448, 87480, 87544, 87672, 88982, 90340, 90902,
  80. 91598, 92182, 92846, 93488, 95246, 95278, 95310, 95374, 95502, 96878,
  81. 98266, 98848, 99542, 100234, 100884, 101524, 103320, 103352, 103384, 103416,
  82. 103480, 104874, 106222, 106910, 107584, 108258, 108902, 109544, 111366, 111398,
  83. 111430, 111462, 111494, 112878, 114320, 114988, 115660, 116310, 116950, 117592
  84. };
  85. static VLC_TYPE table_data[117592][2];
  86. /**
  87. * Generate VLC from codeword lengths.
  88. * @param bits codeword lengths (zeroes are accepted)
  89. * @param size length of input data
  90. * @param vlc output VLC
  91. * @param insyms symbols for input codes (NULL for default ones)
  92. * @param num VLC table number (for static initialization)
  93. */
  94. static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms,
  95. const int num)
  96. {
  97. int i;
  98. int counts[17] = {0}, codes[17];
  99. uint16_t cw[MAX_VLC_SIZE], syms[MAX_VLC_SIZE];
  100. uint8_t bits2[MAX_VLC_SIZE];
  101. int maxbits = 0, realsize = 0;
  102. for(i = 0; i < size; i++){
  103. if(bits[i]){
  104. bits2[realsize] = bits[i];
  105. syms[realsize] = insyms ? insyms[i] : i;
  106. realsize++;
  107. maxbits = FFMAX(maxbits, bits[i]);
  108. counts[bits[i]]++;
  109. }
  110. }
  111. codes[0] = 0;
  112. for(i = 0; i < 16; i++)
  113. codes[i+1] = (codes[i] + counts[i]) << 1;
  114. for(i = 0; i < realsize; i++)
  115. cw[i] = codes[bits2[i]]++;
  116. vlc->table = &table_data[table_offs[num]];
  117. vlc->table_allocated = table_offs[num + 1] - table_offs[num];
  118. ff_init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
  119. bits2, 1, 1,
  120. cw, 2, 2,
  121. syms, 2, 2, INIT_VLC_USE_NEW_STATIC);
  122. }
  123. /**
  124. * Initialize all tables.
  125. */
  126. static av_cold void rv34_init_tables(void)
  127. {
  128. int i, j, k;
  129. for(i = 0; i < NUM_INTRA_TABLES; i++){
  130. for(j = 0; j < 2; j++){
  131. rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL, 19*i + 0 + j);
  132. rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL, 19*i + 2 + j);
  133. rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL, 19*i + 4 + j);
  134. for(k = 0; k < 4; k++){
  135. rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code, 19*i + 6 + j*4 + k);
  136. }
  137. }
  138. for(j = 0; j < 4; j++){
  139. rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL, 19*i + 14 + j);
  140. }
  141. rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL, 19*i + 18);
  142. }
  143. for(i = 0; i < NUM_INTER_TABLES; i++){
  144. rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL, i*12 + 95);
  145. for(j = 0; j < 4; j++){
  146. rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code, i*12 + 96 + j);
  147. }
  148. for(j = 0; j < 2; j++){
  149. rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL, i*12 + 100 + j);
  150. rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL, i*12 + 102 + j);
  151. rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL, i*12 + 104 + j);
  152. }
  153. rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL, i*12 + 106);
  154. }
  155. }
  156. /** @} */ // vlc group
  157. /**
  158. * @name RV30/40 4x4 block decoding functions
  159. * @{
  160. */
  161. /**
  162. * Decode coded block pattern.
  163. */
  164. static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
  165. {
  166. int pattern, code, cbp=0;
  167. int ones;
  168. static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
  169. static const int shifts[4] = { 0, 2, 8, 10 };
  170. const int *curshift = shifts;
  171. int i, t, mask;
  172. code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
  173. pattern = code & 0xF;
  174. code >>= 4;
  175. ones = rv34_count_ones[pattern];
  176. for(mask = 8; mask; mask >>= 1, curshift++){
  177. if(pattern & mask)
  178. cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
  179. }
  180. for(i = 0; i < 4; i++){
  181. t = (modulo_three_table[code] >> (6 - 2*i)) & 3;
  182. if(t == 1)
  183. cbp |= cbp_masks[get_bits1(gb)] << i;
  184. if(t == 2)
  185. cbp |= cbp_masks[2] << i;
  186. }
  187. return cbp;
  188. }
  189. /**
  190. * Get one coefficient value from the bistream and store it.
  191. */
  192. static inline void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC* vlc, int q)
  193. {
  194. if(coef){
  195. if(coef == esc){
  196. coef = get_vlc2(gb, vlc->table, 9, 2);
  197. if(coef > 23){
  198. coef -= 23;
  199. coef = 22 + ((1 << coef) | get_bits(gb, coef));
  200. }
  201. coef += esc;
  202. }
  203. if(get_bits1(gb))
  204. coef = -coef;
  205. *dst = (coef*q + 8) >> 4;
  206. }
  207. }
  208. /**
  209. * Decode 2x2 subblock of coefficients.
  210. */
  211. static inline void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
  212. {
  213. int flags = modulo_three_table[code];
  214. decode_coeff( dst+0*4+0, (flags >> 6) , 3, gb, vlc, q);
  215. if(is_block2){
  216. decode_coeff(dst+1*4+0, (flags >> 4) & 3, 2, gb, vlc, q);
  217. decode_coeff(dst+0*4+1, (flags >> 2) & 3, 2, gb, vlc, q);
  218. }else{
  219. decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q);
  220. decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q);
  221. }
  222. decode_coeff( dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q);
  223. }
  224. /**
  225. * Decode a single coefficient.
  226. */
  227. static inline void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
  228. {
  229. int coeff = modulo_three_table[code] >> 6;
  230. decode_coeff(dst, coeff, 3, gb, vlc, q);
  231. }
  232. static inline void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc,
  233. int q_dc, int q_ac1, int q_ac2)
  234. {
  235. int flags = modulo_three_table[code];
  236. decode_coeff(dst+0*4+0, (flags >> 6) , 3, gb, vlc, q_dc);
  237. decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q_ac1);
  238. decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q_ac1);
  239. decode_coeff(dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q_ac2);
  240. }
  241. /**
  242. * Decode coefficients for 4x4 block.
  243. *
  244. * This is done by filling 2x2 subblocks with decoded coefficients
  245. * in this order (the same for subblocks and subblock coefficients):
  246. * o--o
  247. * /
  248. * /
  249. * o--o
  250. */
  251. static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
  252. {
  253. int code, pattern, has_ac = 1;
  254. code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
  255. pattern = code & 0x7;
  256. code >>= 3;
  257. if (modulo_three_table[code] & 0x3F) {
  258. decode_subblock3(dst, code, gb, &rvlc->coefficient, q_dc, q_ac1, q_ac2);
  259. } else {
  260. decode_subblock1(dst, code, gb, &rvlc->coefficient, q_dc);
  261. if (!pattern)
  262. return 0;
  263. has_ac = 0;
  264. }
  265. if(pattern & 4){
  266. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  267. decode_subblock(dst + 4*0+2, code, 0, gb, &rvlc->coefficient, q_ac2);
  268. }
  269. if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
  270. code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
  271. decode_subblock(dst + 4*2+0, code, 1, gb, &rvlc->coefficient, q_ac2);
  272. }
  273. if(pattern & 1){
  274. code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
  275. decode_subblock(dst + 4*2+2, code, 0, gb, &rvlc->coefficient, q_ac2);
  276. }
  277. return has_ac | pattern;
  278. }
  279. /**
  280. * @name RV30/40 bitstream parsing
  281. * @{
  282. */
  283. /**
  284. * Decode starting slice position.
  285. * @todo Maybe replace with ff_h263_decode_mba() ?
  286. */
  287. int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
  288. {
  289. int i;
  290. for(i = 0; i < 5; i++)
  291. if(rv34_mb_max_sizes[i] >= mb_size - 1)
  292. break;
  293. return rv34_mb_bits_sizes[i];
  294. }
  295. /**
  296. * Select VLC set for decoding from current quantizer, modifier and frame type.
  297. */
  298. static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
  299. {
  300. if(mod == 2 && quant < 19) quant += 10;
  301. else if(mod && quant < 26) quant += 5;
  302. return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
  303. : &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
  304. }
  305. /**
  306. * Decode intra macroblock header and return CBP in case of success, -1 otherwise.
  307. */
  308. static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
  309. {
  310. MpegEncContext *s = &r->s;
  311. GetBitContext *gb = &s->gb;
  312. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  313. int t;
  314. r->is16 = get_bits1(gb);
  315. if(r->is16){
  316. s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA16x16;
  317. r->block_type = RV34_MB_TYPE_INTRA16x16;
  318. t = get_bits(gb, 2);
  319. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
  320. r->luma_vlc = 2;
  321. }else{
  322. if(!r->rv30){
  323. if(!get_bits1(gb))
  324. av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
  325. }
  326. s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA;
  327. r->block_type = RV34_MB_TYPE_INTRA;
  328. if(r->decode_intra_types(r, gb, intra_types) < 0)
  329. return -1;
  330. r->luma_vlc = 1;
  331. }
  332. r->chroma_vlc = 0;
  333. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  334. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  335. }
  336. /**
  337. * Decode inter macroblock header and return CBP in case of success, -1 otherwise.
  338. */
  339. static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
  340. {
  341. MpegEncContext *s = &r->s;
  342. GetBitContext *gb = &s->gb;
  343. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  344. int i, t;
  345. r->block_type = r->decode_mb_info(r);
  346. if(r->block_type == -1)
  347. return -1;
  348. s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
  349. r->mb_type[mb_pos] = r->block_type;
  350. if(r->block_type == RV34_MB_SKIP){
  351. if(s->pict_type == AV_PICTURE_TYPE_P)
  352. r->mb_type[mb_pos] = RV34_MB_P_16x16;
  353. if(s->pict_type == AV_PICTURE_TYPE_B)
  354. r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
  355. }
  356. r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
  357. rv34_decode_mv(r, r->block_type);
  358. if(r->block_type == RV34_MB_SKIP){
  359. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0]));
  360. return 0;
  361. }
  362. r->chroma_vlc = 1;
  363. r->luma_vlc = 0;
  364. if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
  365. if(r->is16){
  366. t = get_bits(gb, 2);
  367. fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
  368. r->luma_vlc = 2;
  369. }else{
  370. if(r->decode_intra_types(r, gb, intra_types) < 0)
  371. return -1;
  372. r->luma_vlc = 1;
  373. }
  374. r->chroma_vlc = 0;
  375. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  376. }else{
  377. for(i = 0; i < 16; i++)
  378. intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0;
  379. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  380. if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
  381. r->is16 = 1;
  382. r->chroma_vlc = 1;
  383. r->luma_vlc = 2;
  384. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
  385. }
  386. }
  387. return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
  388. }
  389. /** @} */ //bitstream functions
  390. /**
  391. * @name motion vector related code (prediction, reconstruction, motion compensation)
  392. * @{
  393. */
  394. /** macroblock partition width in 8x8 blocks */
  395. static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
  396. /** macroblock partition height in 8x8 blocks */
  397. static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
  398. /** availability index for subblocks */
  399. static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 };
  400. /**
  401. * motion vector prediction
  402. *
  403. * Motion prediction performed for the block by using median prediction of
  404. * motion vectors from the left, top and right top blocks but in corner cases
  405. * some other vectors may be used instead.
  406. */
  407. static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
  408. {
  409. MpegEncContext *s = &r->s;
  410. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  411. int A[2] = {0}, B[2], C[2];
  412. int i, j;
  413. int mx, my;
  414. int* avail = r->avail_cache + avail_indexes[subblock_no];
  415. int c_off = part_sizes_w[block_type];
  416. mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
  417. if(subblock_no == 3)
  418. c_off = -1;
  419. if(avail[-1]){
  420. A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
  421. A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
  422. }
  423. if(avail[-4]){
  424. B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
  425. B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
  426. }else{
  427. B[0] = A[0];
  428. B[1] = A[1];
  429. }
  430. if(!avail[c_off-4]){
  431. if(avail[-4] && (avail[-1] || r->rv30)){
  432. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
  433. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
  434. }else{
  435. C[0] = A[0];
  436. C[1] = A[1];
  437. }
  438. }else{
  439. C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
  440. C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
  441. }
  442. mx = mid_pred(A[0], B[0], C[0]);
  443. my = mid_pred(A[1], B[1], C[1]);
  444. mx += r->dmv[dmv_no][0];
  445. my += r->dmv[dmv_no][1];
  446. for(j = 0; j < part_sizes_h[block_type]; j++){
  447. for(i = 0; i < part_sizes_w[block_type]; i++){
  448. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
  449. s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
  450. }
  451. }
  452. }
  453. #define GET_PTS_DIFF(a, b) ((a - b + 8192) & 0x1FFF)
  454. /**
  455. * Calculate motion vector component that should be added for direct blocks.
  456. */
  457. static int calc_add_mv(RV34DecContext *r, int dir, int val)
  458. {
  459. int mul = dir ? -r->mv_weight2 : r->mv_weight1;
  460. return (val * mul + 0x2000) >> 14;
  461. }
  462. /**
  463. * Predict motion vector for B-frame macroblock.
  464. */
  465. static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
  466. int A_avail, int B_avail, int C_avail,
  467. int *mx, int *my)
  468. {
  469. if(A_avail + B_avail + C_avail != 3){
  470. *mx = A[0] + B[0] + C[0];
  471. *my = A[1] + B[1] + C[1];
  472. if(A_avail + B_avail + C_avail == 2){
  473. *mx /= 2;
  474. *my /= 2;
  475. }
  476. }else{
  477. *mx = mid_pred(A[0], B[0], C[0]);
  478. *my = mid_pred(A[1], B[1], C[1]);
  479. }
  480. }
  481. /**
  482. * motion vector prediction for B-frames
  483. */
  484. static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
  485. {
  486. MpegEncContext *s = &r->s;
  487. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  488. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  489. int A[2] = { 0 }, B[2] = { 0 }, C[2] = { 0 };
  490. int has_A = 0, has_B = 0, has_C = 0;
  491. int mx, my;
  492. int i, j;
  493. Picture *cur_pic = s->current_picture_ptr;
  494. const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
  495. int type = cur_pic->mb_type[mb_pos];
  496. if((r->avail_cache[6-1] & type) & mask){
  497. A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
  498. A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
  499. has_A = 1;
  500. }
  501. if((r->avail_cache[6-4] & type) & mask){
  502. B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
  503. B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
  504. has_B = 1;
  505. }
  506. if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){
  507. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
  508. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
  509. has_C = 1;
  510. }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){
  511. C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
  512. C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
  513. has_C = 1;
  514. }
  515. rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
  516. mx += r->dmv[dir][0];
  517. my += r->dmv[dir][1];
  518. for(j = 0; j < 2; j++){
  519. for(i = 0; i < 2; i++){
  520. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
  521. cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
  522. }
  523. }
  524. if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){
  525. ZERO8x2(cur_pic->motion_val[!dir][mv_pos], s->b8_stride);
  526. }
  527. }
  528. /**
  529. * motion vector prediction - RV3 version
  530. */
  531. static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
  532. {
  533. MpegEncContext *s = &r->s;
  534. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  535. int A[2] = {0}, B[2], C[2];
  536. int i, j, k;
  537. int mx, my;
  538. int* avail = r->avail_cache + avail_indexes[0];
  539. if(avail[-1]){
  540. A[0] = s->current_picture_ptr->motion_val[0][mv_pos - 1][0];
  541. A[1] = s->current_picture_ptr->motion_val[0][mv_pos - 1][1];
  542. }
  543. if(avail[-4]){
  544. B[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][0];
  545. B[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][1];
  546. }else{
  547. B[0] = A[0];
  548. B[1] = A[1];
  549. }
  550. if(!avail[-4 + 2]){
  551. if(avail[-4] && (avail[-1])){
  552. C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][0];
  553. C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][1];
  554. }else{
  555. C[0] = A[0];
  556. C[1] = A[1];
  557. }
  558. }else{
  559. C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][0];
  560. C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][1];
  561. }
  562. mx = mid_pred(A[0], B[0], C[0]);
  563. my = mid_pred(A[1], B[1], C[1]);
  564. mx += r->dmv[0][0];
  565. my += r->dmv[0][1];
  566. for(j = 0; j < 2; j++){
  567. for(i = 0; i < 2; i++){
  568. for(k = 0; k < 2; k++){
  569. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
  570. s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
  571. }
  572. }
  573. }
  574. }
  575. static const int chroma_coeffs[3] = { 0, 3, 5 };
  576. /**
  577. * generic motion compensation function
  578. *
  579. * @param r decoder context
  580. * @param block_type type of the current block
  581. * @param xoff horizontal offset from the start of the current block
  582. * @param yoff vertical offset from the start of the current block
  583. * @param mv_off offset to the motion vector information
  584. * @param width width of the current partition in 8x8 blocks
  585. * @param height height of the current partition in 8x8 blocks
  586. * @param dir motion compensation direction (i.e. from the last or the next reference frame)
  587. * @param thirdpel motion vectors are specified in 1/3 of pixel
  588. * @param qpel_mc a set of functions used to perform luma motion compensation
  589. * @param chroma_mc a set of functions used to perform chroma motion compensation
  590. */
  591. static inline void rv34_mc(RV34DecContext *r, const int block_type,
  592. const int xoff, const int yoff, int mv_off,
  593. const int width, const int height, int dir,
  594. const int thirdpel, int weighted,
  595. qpel_mc_func (*qpel_mc)[16],
  596. h264_chroma_mc_func (*chroma_mc))
  597. {
  598. MpegEncContext *s = &r->s;
  599. uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
  600. int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  601. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
  602. int is16x16 = 1;
  603. if(thirdpel){
  604. int chroma_mx, chroma_my;
  605. mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
  606. my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
  607. lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
  608. ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
  609. chroma_mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
  610. chroma_my = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
  611. umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
  612. umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
  613. uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
  614. uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
  615. }else{
  616. int cx, cy;
  617. mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
  618. my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
  619. lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
  620. ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
  621. cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
  622. cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
  623. umx = cx >> 2;
  624. umy = cy >> 2;
  625. uvmx = (cx & 3) << 1;
  626. uvmy = (cy & 3) << 1;
  627. //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
  628. if(uvmx == 6 && uvmy == 6)
  629. uvmx = uvmy = 4;
  630. }
  631. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  632. /* wait for the referenced mb row to be finished */
  633. int mb_row = s->mb_y + ((yoff + my + 5 + 8 * height) >> 4);
  634. ThreadFrame *f = dir ? &s->next_picture_ptr->tf : &s->last_picture_ptr->tf;
  635. ff_thread_await_progress(f, mb_row, 0);
  636. }
  637. dxy = ly*4 + lx;
  638. srcY = dir ? s->next_picture_ptr->f->data[0] : s->last_picture_ptr->f->data[0];
  639. srcU = dir ? s->next_picture_ptr->f->data[1] : s->last_picture_ptr->f->data[1];
  640. srcV = dir ? s->next_picture_ptr->f->data[2] : s->last_picture_ptr->f->data[2];
  641. src_x = s->mb_x * 16 + xoff + mx;
  642. src_y = s->mb_y * 16 + yoff + my;
  643. uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
  644. uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
  645. srcY += src_y * s->linesize + src_x;
  646. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  647. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  648. if(s->h_edge_pos - (width << 3) < 6 || s->v_edge_pos - (height << 3) < 6 ||
  649. (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4 ||
  650. (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4) {
  651. uint8_t *uvbuf = s->edge_emu_buffer + 22 * s->linesize;
  652. srcY -= 2 + 2*s->linesize;
  653. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY,
  654. s->linesize, s->linesize,
  655. (width << 3) + 6, (height << 3) + 6,
  656. src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
  657. srcY = s->edge_emu_buffer + 2 + 2*s->linesize;
  658. s->vdsp.emulated_edge_mc(uvbuf, srcU,
  659. s->uvlinesize,s->uvlinesize,
  660. (width << 2) + 1, (height << 2) + 1,
  661. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  662. s->vdsp.emulated_edge_mc(uvbuf + 16, srcV,
  663. s->uvlinesize, s->uvlinesize,
  664. (width << 2) + 1, (height << 2) + 1,
  665. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  666. srcU = uvbuf;
  667. srcV = uvbuf + 16;
  668. }
  669. if(!weighted){
  670. Y = s->dest[0] + xoff + yoff *s->linesize;
  671. U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  672. V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  673. }else{
  674. Y = r->tmp_b_block_y [dir] + xoff + yoff *s->linesize;
  675. U = r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  676. V = r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
  677. }
  678. if(block_type == RV34_MB_P_16x8){
  679. qpel_mc[1][dxy](Y, srcY, s->linesize);
  680. Y += 8;
  681. srcY += 8;
  682. }else if(block_type == RV34_MB_P_8x16){
  683. qpel_mc[1][dxy](Y, srcY, s->linesize);
  684. Y += 8 * s->linesize;
  685. srcY += 8 * s->linesize;
  686. }
  687. is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
  688. qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
  689. chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
  690. chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
  691. }
  692. static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
  693. const int xoff, const int yoff, int mv_off,
  694. const int width, const int height, int dir)
  695. {
  696. rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30, 0,
  697. r->rdsp.put_pixels_tab,
  698. r->rdsp.put_chroma_pixels_tab);
  699. }
  700. static void rv4_weight(RV34DecContext *r)
  701. {
  702. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][0](r->s.dest[0],
  703. r->tmp_b_block_y[0],
  704. r->tmp_b_block_y[1],
  705. r->weight1,
  706. r->weight2,
  707. r->s.linesize);
  708. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[1],
  709. r->tmp_b_block_uv[0],
  710. r->tmp_b_block_uv[2],
  711. r->weight1,
  712. r->weight2,
  713. r->s.uvlinesize);
  714. r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[2],
  715. r->tmp_b_block_uv[1],
  716. r->tmp_b_block_uv[3],
  717. r->weight1,
  718. r->weight2,
  719. r->s.uvlinesize);
  720. }
  721. static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
  722. {
  723. int weighted = !r->rv30 && block_type != RV34_MB_B_BIDIR && r->weight1 != 8192;
  724. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30, weighted,
  725. r->rdsp.put_pixels_tab,
  726. r->rdsp.put_chroma_pixels_tab);
  727. if(!weighted){
  728. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 0,
  729. r->rdsp.avg_pixels_tab,
  730. r->rdsp.avg_chroma_pixels_tab);
  731. }else{
  732. rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 1,
  733. r->rdsp.put_pixels_tab,
  734. r->rdsp.put_chroma_pixels_tab);
  735. rv4_weight(r);
  736. }
  737. }
  738. static void rv34_mc_2mv_skip(RV34DecContext *r)
  739. {
  740. int i, j;
  741. int weighted = !r->rv30 && r->weight1 != 8192;
  742. for(j = 0; j < 2; j++)
  743. for(i = 0; i < 2; i++){
  744. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
  745. weighted,
  746. r->rdsp.put_pixels_tab,
  747. r->rdsp.put_chroma_pixels_tab);
  748. rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
  749. weighted,
  750. weighted ? r->rdsp.put_pixels_tab : r->rdsp.avg_pixels_tab,
  751. weighted ? r->rdsp.put_chroma_pixels_tab : r->rdsp.avg_chroma_pixels_tab);
  752. }
  753. if(weighted)
  754. rv4_weight(r);
  755. }
  756. /** number of motion vectors in each macroblock type */
  757. static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
  758. /**
  759. * Decode motion vector differences
  760. * and perform motion vector reconstruction and motion compensation.
  761. */
  762. static int rv34_decode_mv(RV34DecContext *r, int block_type)
  763. {
  764. MpegEncContext *s = &r->s;
  765. GetBitContext *gb = &s->gb;
  766. int i, j, k, l;
  767. int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  768. int next_bt;
  769. memset(r->dmv, 0, sizeof(r->dmv));
  770. for(i = 0; i < num_mvs[block_type]; i++){
  771. r->dmv[i][0] = svq3_get_se_golomb(gb);
  772. r->dmv[i][1] = svq3_get_se_golomb(gb);
  773. }
  774. switch(block_type){
  775. case RV34_MB_TYPE_INTRA:
  776. case RV34_MB_TYPE_INTRA16x16:
  777. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  778. return 0;
  779. case RV34_MB_SKIP:
  780. if(s->pict_type == AV_PICTURE_TYPE_P){
  781. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  782. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  783. break;
  784. }
  785. case RV34_MB_B_DIRECT:
  786. //surprisingly, it uses motion scheme from next reference frame
  787. /* wait for the current mb row to be finished */
  788. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  789. ff_thread_await_progress(&s->next_picture_ptr->tf, FFMAX(0, s->mb_y-1), 0);
  790. next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
  791. if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
  792. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  793. ZERO8x2(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  794. }else
  795. for(j = 0; j < 2; j++)
  796. for(i = 0; i < 2; i++)
  797. for(k = 0; k < 2; k++)
  798. for(l = 0; l < 2; l++)
  799. s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
  800. if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
  801. rv34_mc_2mv(r, block_type);
  802. else
  803. rv34_mc_2mv_skip(r);
  804. ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
  805. break;
  806. case RV34_MB_P_16x16:
  807. case RV34_MB_P_MIX16x16:
  808. rv34_pred_mv(r, block_type, 0, 0);
  809. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
  810. break;
  811. case RV34_MB_B_FORWARD:
  812. case RV34_MB_B_BACKWARD:
  813. r->dmv[1][0] = r->dmv[0][0];
  814. r->dmv[1][1] = r->dmv[0][1];
  815. if(r->rv30)
  816. rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
  817. else
  818. rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
  819. rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
  820. break;
  821. case RV34_MB_P_16x8:
  822. case RV34_MB_P_8x16:
  823. rv34_pred_mv(r, block_type, 0, 0);
  824. rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
  825. if(block_type == RV34_MB_P_16x8){
  826. rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
  827. rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
  828. }
  829. if(block_type == RV34_MB_P_8x16){
  830. rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
  831. rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
  832. }
  833. break;
  834. case RV34_MB_B_BIDIR:
  835. rv34_pred_mv_b (r, block_type, 0);
  836. rv34_pred_mv_b (r, block_type, 1);
  837. rv34_mc_2mv (r, block_type);
  838. break;
  839. case RV34_MB_P_8x8:
  840. for(i=0;i< 4;i++){
  841. rv34_pred_mv(r, block_type, i, i);
  842. rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
  843. }
  844. break;
  845. }
  846. return 0;
  847. }
  848. /** @} */ // mv group
  849. /**
  850. * @name Macroblock reconstruction functions
  851. * @{
  852. */
  853. /** mapping of RV30/40 intra prediction types to standard H.264 types */
  854. static const int ittrans[9] = {
  855. DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
  856. VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
  857. };
  858. /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
  859. static const int ittrans16[4] = {
  860. DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
  861. };
  862. /**
  863. * Perform 4x4 intra prediction.
  864. */
  865. static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
  866. {
  867. uint8_t *prev = dst - stride + 4;
  868. uint32_t topleft;
  869. if(!up && !left)
  870. itype = DC_128_PRED;
  871. else if(!up){
  872. if(itype == VERT_PRED) itype = HOR_PRED;
  873. if(itype == DC_PRED) itype = LEFT_DC_PRED;
  874. }else if(!left){
  875. if(itype == HOR_PRED) itype = VERT_PRED;
  876. if(itype == DC_PRED) itype = TOP_DC_PRED;
  877. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  878. }
  879. if(!down){
  880. if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
  881. if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
  882. if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
  883. }
  884. if(!right && up){
  885. topleft = dst[-stride + 3] * 0x01010101u;
  886. prev = (uint8_t*)&topleft;
  887. }
  888. r->h.pred4x4[itype](dst, prev, stride);
  889. }
  890. static inline int adjust_pred16(int itype, int up, int left)
  891. {
  892. if(!up && !left)
  893. itype = DC_128_PRED8x8;
  894. else if(!up){
  895. if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
  896. if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
  897. if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
  898. }else if(!left){
  899. if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
  900. if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
  901. if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
  902. }
  903. return itype;
  904. }
  905. static inline void rv34_process_block(RV34DecContext *r,
  906. uint8_t *pdst, int stride,
  907. int fc, int sc, int q_dc, int q_ac)
  908. {
  909. MpegEncContext *s = &r->s;
  910. int16_t *ptr = s->block[0];
  911. int has_ac = rv34_decode_block(ptr, &s->gb, r->cur_vlcs,
  912. fc, sc, q_dc, q_ac, q_ac);
  913. if(has_ac){
  914. r->rdsp.rv34_idct_add(pdst, stride, ptr);
  915. }else{
  916. r->rdsp.rv34_idct_dc_add(pdst, stride, ptr[0]);
  917. ptr[0] = 0;
  918. }
  919. }
  920. static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
  921. {
  922. LOCAL_ALIGNED_16(int16_t, block16, [16]);
  923. MpegEncContext *s = &r->s;
  924. GetBitContext *gb = &s->gb;
  925. int q_dc = rv34_qscale_tab[ r->luma_dc_quant_i[s->qscale] ],
  926. q_ac = rv34_qscale_tab[s->qscale];
  927. uint8_t *dst = s->dest[0];
  928. int16_t *ptr = s->block[0];
  929. int i, j, itype, has_ac;
  930. memset(block16, 0, 16 * sizeof(*block16));
  931. has_ac = rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac);
  932. if(has_ac)
  933. r->rdsp.rv34_inv_transform(block16);
  934. else
  935. r->rdsp.rv34_inv_transform_dc(block16);
  936. itype = ittrans16[intra_types[0]];
  937. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  938. r->h.pred16x16[itype](dst, s->linesize);
  939. for(j = 0; j < 4; j++){
  940. for(i = 0; i < 4; i++, cbp >>= 1){
  941. int dc = block16[i + j*4];
  942. if(cbp & 1){
  943. has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
  944. }else
  945. has_ac = 0;
  946. if(has_ac){
  947. ptr[0] = dc;
  948. r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
  949. }else
  950. r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
  951. }
  952. dst += 4*s->linesize;
  953. }
  954. itype = ittrans16[intra_types[0]];
  955. if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
  956. itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
  957. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  958. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  959. for(j = 1; j < 3; j++){
  960. dst = s->dest[j];
  961. r->h.pred8x8[itype](dst, s->uvlinesize);
  962. for(i = 0; i < 4; i++, cbp >>= 1){
  963. uint8_t *pdst;
  964. if(!(cbp & 1)) continue;
  965. pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
  966. rv34_process_block(r, pdst, s->uvlinesize,
  967. r->chroma_vlc, 1, q_dc, q_ac);
  968. }
  969. }
  970. }
  971. static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
  972. {
  973. MpegEncContext *s = &r->s;
  974. uint8_t *dst = s->dest[0];
  975. int avail[6*8] = {0};
  976. int i, j, k;
  977. int idx, q_ac, q_dc;
  978. // Set neighbour information.
  979. if(r->avail_cache[1])
  980. avail[0] = 1;
  981. if(r->avail_cache[2])
  982. avail[1] = avail[2] = 1;
  983. if(r->avail_cache[3])
  984. avail[3] = avail[4] = 1;
  985. if(r->avail_cache[4])
  986. avail[5] = 1;
  987. if(r->avail_cache[5])
  988. avail[8] = avail[16] = 1;
  989. if(r->avail_cache[9])
  990. avail[24] = avail[32] = 1;
  991. q_ac = rv34_qscale_tab[s->qscale];
  992. for(j = 0; j < 4; j++){
  993. idx = 9 + j*8;
  994. for(i = 0; i < 4; i++, cbp >>= 1, dst += 4, idx++){
  995. rv34_pred_4x4_block(r, dst, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
  996. avail[idx] = 1;
  997. if(!(cbp & 1)) continue;
  998. rv34_process_block(r, dst, s->linesize,
  999. r->luma_vlc, 0, q_ac, q_ac);
  1000. }
  1001. dst += s->linesize * 4 - 4*4;
  1002. intra_types += r->intra_types_stride;
  1003. }
  1004. intra_types -= r->intra_types_stride * 4;
  1005. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  1006. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  1007. for(k = 0; k < 2; k++){
  1008. dst = s->dest[1+k];
  1009. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4);
  1010. for(j = 0; j < 2; j++){
  1011. int* acache = r->avail_cache + 6 + j*4;
  1012. for(i = 0; i < 2; i++, cbp >>= 1, acache++){
  1013. int itype = ittrans[intra_types[i*2+j*2*r->intra_types_stride]];
  1014. rv34_pred_4x4_block(r, dst+4*i, s->uvlinesize, itype, acache[-4], acache[-1], !i && !j, acache[-3]);
  1015. acache[0] = 1;
  1016. if(!(cbp&1)) continue;
  1017. rv34_process_block(r, dst + 4*i, s->uvlinesize,
  1018. r->chroma_vlc, 1, q_dc, q_ac);
  1019. }
  1020. dst += 4*s->uvlinesize;
  1021. }
  1022. }
  1023. }
  1024. static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
  1025. {
  1026. int d;
  1027. d = motion_val[0][0] - motion_val[-step][0];
  1028. if(d < -3 || d > 3)
  1029. return 1;
  1030. d = motion_val[0][1] - motion_val[-step][1];
  1031. if(d < -3 || d > 3)
  1032. return 1;
  1033. return 0;
  1034. }
  1035. static int rv34_set_deblock_coef(RV34DecContext *r)
  1036. {
  1037. MpegEncContext *s = &r->s;
  1038. int hmvmask = 0, vmvmask = 0, i, j;
  1039. int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
  1040. int16_t (*motion_val)[2] = &s->current_picture_ptr->motion_val[0][midx];
  1041. for(j = 0; j < 16; j += 8){
  1042. for(i = 0; i < 2; i++){
  1043. if(is_mv_diff_gt_3(motion_val + i, 1))
  1044. vmvmask |= 0x11 << (j + i*2);
  1045. if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
  1046. hmvmask |= 0x03 << (j + i*2);
  1047. }
  1048. motion_val += s->b8_stride;
  1049. }
  1050. if(s->first_slice_line)
  1051. hmvmask &= ~0x000F;
  1052. if(!s->mb_x)
  1053. vmvmask &= ~0x1111;
  1054. if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
  1055. vmvmask |= (vmvmask & 0x4444) >> 1;
  1056. hmvmask |= (hmvmask & 0x0F00) >> 4;
  1057. if(s->mb_x)
  1058. r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
  1059. if(!s->first_slice_line)
  1060. r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
  1061. }
  1062. return hmvmask | vmvmask;
  1063. }
  1064. static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
  1065. {
  1066. MpegEncContext *s = &r->s;
  1067. GetBitContext *gb = &s->gb;
  1068. uint8_t *dst = s->dest[0];
  1069. int16_t *ptr = s->block[0];
  1070. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1071. int cbp, cbp2;
  1072. int q_dc, q_ac, has_ac;
  1073. int i, j;
  1074. int dist;
  1075. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1076. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1077. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
  1078. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1079. if(s->mb_x && dist)
  1080. r->avail_cache[5] =
  1081. r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
  1082. if(dist >= s->mb_width)
  1083. r->avail_cache[2] =
  1084. r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
  1085. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1086. r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
  1087. if(s->mb_x && dist > s->mb_width)
  1088. r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
  1089. s->qscale = r->si.quant;
  1090. cbp = cbp2 = rv34_decode_inter_mb_header(r, intra_types);
  1091. r->cbp_luma [mb_pos] = cbp;
  1092. r->cbp_chroma[mb_pos] = cbp >> 16;
  1093. r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
  1094. s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
  1095. if(cbp == -1)
  1096. return -1;
  1097. if (IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
  1098. if(r->is16) rv34_output_i16x16(r, intra_types, cbp);
  1099. else rv34_output_intra(r, intra_types, cbp);
  1100. return 0;
  1101. }
  1102. if(r->is16){
  1103. // Only for RV34_MB_P_MIX16x16
  1104. LOCAL_ALIGNED_16(int16_t, block16, [16]);
  1105. memset(block16, 0, 16 * sizeof(*block16));
  1106. q_dc = rv34_qscale_tab[ r->luma_dc_quant_p[s->qscale] ];
  1107. q_ac = rv34_qscale_tab[s->qscale];
  1108. if (rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac))
  1109. r->rdsp.rv34_inv_transform(block16);
  1110. else
  1111. r->rdsp.rv34_inv_transform_dc(block16);
  1112. q_ac = rv34_qscale_tab[s->qscale];
  1113. for(j = 0; j < 4; j++){
  1114. for(i = 0; i < 4; i++, cbp >>= 1){
  1115. int dc = block16[i + j*4];
  1116. if(cbp & 1){
  1117. has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
  1118. }else
  1119. has_ac = 0;
  1120. if(has_ac){
  1121. ptr[0] = dc;
  1122. r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
  1123. }else
  1124. r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
  1125. }
  1126. dst += 4*s->linesize;
  1127. }
  1128. r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
  1129. }else{
  1130. q_ac = rv34_qscale_tab[s->qscale];
  1131. for(j = 0; j < 4; j++){
  1132. for(i = 0; i < 4; i++, cbp >>= 1){
  1133. if(!(cbp & 1)) continue;
  1134. rv34_process_block(r, dst + 4*i, s->linesize,
  1135. r->luma_vlc, 0, q_ac, q_ac);
  1136. }
  1137. dst += 4*s->linesize;
  1138. }
  1139. }
  1140. q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
  1141. q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
  1142. for(j = 1; j < 3; j++){
  1143. dst = s->dest[j];
  1144. for(i = 0; i < 4; i++, cbp >>= 1){
  1145. uint8_t *pdst;
  1146. if(!(cbp & 1)) continue;
  1147. pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
  1148. rv34_process_block(r, pdst, s->uvlinesize,
  1149. r->chroma_vlc, 1, q_dc, q_ac);
  1150. }
  1151. }
  1152. return 0;
  1153. }
  1154. static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
  1155. {
  1156. MpegEncContext *s = &r->s;
  1157. int cbp, dist;
  1158. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1159. // Calculate which neighbours are available. Maybe it's worth optimizing too.
  1160. memset(r->avail_cache, 0, sizeof(r->avail_cache));
  1161. fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
  1162. dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
  1163. if(s->mb_x && dist)
  1164. r->avail_cache[5] =
  1165. r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
  1166. if(dist >= s->mb_width)
  1167. r->avail_cache[2] =
  1168. r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
  1169. if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
  1170. r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
  1171. if(s->mb_x && dist > s->mb_width)
  1172. r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
  1173. s->qscale = r->si.quant;
  1174. cbp = rv34_decode_intra_mb_header(r, intra_types);
  1175. r->cbp_luma [mb_pos] = cbp;
  1176. r->cbp_chroma[mb_pos] = cbp >> 16;
  1177. r->deblock_coefs[mb_pos] = 0xFFFF;
  1178. s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
  1179. if(cbp == -1)
  1180. return -1;
  1181. if(r->is16){
  1182. rv34_output_i16x16(r, intra_types, cbp);
  1183. return 0;
  1184. }
  1185. rv34_output_intra(r, intra_types, cbp);
  1186. return 0;
  1187. }
  1188. static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
  1189. {
  1190. int bits;
  1191. if(s->mb_y >= s->mb_height)
  1192. return 1;
  1193. if(!s->mb_num_left)
  1194. return 1;
  1195. if(r->s.mb_skip_run > 1)
  1196. return 0;
  1197. bits = get_bits_left(&s->gb);
  1198. if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
  1199. return 1;
  1200. return 0;
  1201. }
  1202. static void rv34_decoder_free(RV34DecContext *r)
  1203. {
  1204. av_freep(&r->intra_types_hist);
  1205. r->intra_types = NULL;
  1206. av_freep(&r->tmp_b_block_base);
  1207. av_freep(&r->mb_type);
  1208. av_freep(&r->cbp_luma);
  1209. av_freep(&r->cbp_chroma);
  1210. av_freep(&r->deblock_coefs);
  1211. }
  1212. static int rv34_decoder_alloc(RV34DecContext *r)
  1213. {
  1214. r->intra_types_stride = r->s.mb_width * 4 + 4;
  1215. r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height *
  1216. sizeof(*r->cbp_chroma));
  1217. r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height *
  1218. sizeof(*r->cbp_luma));
  1219. r->deblock_coefs = av_malloc(r->s.mb_stride * r->s.mb_height *
  1220. sizeof(*r->deblock_coefs));
  1221. r->intra_types_hist = av_malloc(r->intra_types_stride * 4 * 2 *
  1222. sizeof(*r->intra_types_hist));
  1223. r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height *
  1224. sizeof(*r->mb_type));
  1225. if (!(r->cbp_chroma && r->cbp_luma && r->deblock_coefs &&
  1226. r->intra_types_hist && r->mb_type)) {
  1227. rv34_decoder_free(r);
  1228. return AVERROR(ENOMEM);
  1229. }
  1230. r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
  1231. return 0;
  1232. }
  1233. static int rv34_decoder_realloc(RV34DecContext *r)
  1234. {
  1235. rv34_decoder_free(r);
  1236. return rv34_decoder_alloc(r);
  1237. }
  1238. static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
  1239. {
  1240. MpegEncContext *s = &r->s;
  1241. GetBitContext *gb = &s->gb;
  1242. int mb_pos, slice_type;
  1243. int res;
  1244. init_get_bits(&r->s.gb, buf, buf_size*8);
  1245. res = r->parse_slice_header(r, gb, &r->si);
  1246. if(res < 0){
  1247. av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
  1248. return -1;
  1249. }
  1250. slice_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
  1251. if (slice_type != s->pict_type) {
  1252. av_log(s->avctx, AV_LOG_ERROR, "Slice type mismatch\n");
  1253. return AVERROR_INVALIDDATA;
  1254. }
  1255. r->si.end = end;
  1256. s->qscale = r->si.quant;
  1257. s->mb_num_left = r->si.end - r->si.start;
  1258. r->s.mb_skip_run = 0;
  1259. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  1260. if(r->si.start != mb_pos){
  1261. av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
  1262. s->mb_x = r->si.start % s->mb_width;
  1263. s->mb_y = r->si.start / s->mb_width;
  1264. }
  1265. memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
  1266. s->first_slice_line = 1;
  1267. s->resync_mb_x = s->mb_x;
  1268. s->resync_mb_y = s->mb_y;
  1269. ff_init_block_index(s);
  1270. while(!check_slice_end(r, s)) {
  1271. ff_update_block_index(s);
  1272. if(r->si.type)
  1273. res = rv34_decode_inter_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
  1274. else
  1275. res = rv34_decode_intra_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
  1276. if(res < 0){
  1277. ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_ERROR);
  1278. return -1;
  1279. }
  1280. if (++s->mb_x == s->mb_width) {
  1281. s->mb_x = 0;
  1282. s->mb_y++;
  1283. ff_init_block_index(s);
  1284. memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1285. memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
  1286. if(r->loop_filter && s->mb_y >= 2)
  1287. r->loop_filter(r, s->mb_y - 2);
  1288. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  1289. ff_thread_report_progress(&s->current_picture_ptr->tf,
  1290. s->mb_y - 2, 0);
  1291. }
  1292. if(s->mb_x == s->resync_mb_x)
  1293. s->first_slice_line=0;
  1294. s->mb_num_left--;
  1295. }
  1296. ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_END);
  1297. return s->mb_y == s->mb_height;
  1298. }
  1299. /** @} */ // recons group end
  1300. /**
  1301. * Initialize decoder.
  1302. */
  1303. av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
  1304. {
  1305. RV34DecContext *r = avctx->priv_data;
  1306. MpegEncContext *s = &r->s;
  1307. int ret;
  1308. ff_MPV_decode_defaults(s);
  1309. s->avctx = avctx;
  1310. s->out_format = FMT_H263;
  1311. s->codec_id = avctx->codec_id;
  1312. s->width = avctx->width;
  1313. s->height = avctx->height;
  1314. r->s.avctx = avctx;
  1315. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  1316. avctx->has_b_frames = 1;
  1317. s->low_delay = 0;
  1318. if ((ret = ff_MPV_common_init(s)) < 0)
  1319. return ret;
  1320. ff_h264_pred_init(&r->h, AV_CODEC_ID_RV40, 8, 1);
  1321. #if CONFIG_RV30_DECODER
  1322. if (avctx->codec_id == AV_CODEC_ID_RV30)
  1323. ff_rv30dsp_init(&r->rdsp);
  1324. #endif
  1325. #if CONFIG_RV40_DECODER
  1326. if (avctx->codec_id == AV_CODEC_ID_RV40)
  1327. ff_rv40dsp_init(&r->rdsp);
  1328. #endif
  1329. if ((ret = rv34_decoder_alloc(r)) < 0) {
  1330. ff_MPV_common_end(&r->s);
  1331. return ret;
  1332. }
  1333. if(!intra_vlcs[0].cbppattern[0].bits)
  1334. rv34_init_tables();
  1335. avctx->internal->allocate_progress = 1;
  1336. return 0;
  1337. }
  1338. int ff_rv34_decode_init_thread_copy(AVCodecContext *avctx)
  1339. {
  1340. int err;
  1341. RV34DecContext *r = avctx->priv_data;
  1342. r->s.avctx = avctx;
  1343. if (avctx->internal->is_copy) {
  1344. r->tmp_b_block_base = NULL;
  1345. if ((err = ff_MPV_common_init(&r->s)) < 0)
  1346. return err;
  1347. if ((err = rv34_decoder_alloc(r)) < 0) {
  1348. ff_MPV_common_end(&r->s);
  1349. return err;
  1350. }
  1351. }
  1352. return 0;
  1353. }
  1354. int ff_rv34_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
  1355. {
  1356. RV34DecContext *r = dst->priv_data, *r1 = src->priv_data;
  1357. MpegEncContext * const s = &r->s, * const s1 = &r1->s;
  1358. int err;
  1359. if (dst == src || !s1->context_initialized)
  1360. return 0;
  1361. if (s->height != s1->height || s->width != s1->width) {
  1362. s->height = s1->height;
  1363. s->width = s1->width;
  1364. if ((err = ff_MPV_common_frame_size_change(s)) < 0)
  1365. return err;
  1366. if ((err = rv34_decoder_realloc(r)) < 0)
  1367. return err;
  1368. }
  1369. if ((err = ff_mpeg_update_thread_context(dst, src)))
  1370. return err;
  1371. r->cur_pts = r1->cur_pts;
  1372. r->last_pts = r1->last_pts;
  1373. r->next_pts = r1->next_pts;
  1374. memset(&r->si, 0, sizeof(r->si));
  1375. return 0;
  1376. }
  1377. static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n)
  1378. {
  1379. if(avctx->slice_count) return avctx->slice_offset[n];
  1380. else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
  1381. }
  1382. static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
  1383. {
  1384. RV34DecContext *r = avctx->priv_data;
  1385. MpegEncContext *s = &r->s;
  1386. int got_picture = 0, ret;
  1387. ff_er_frame_end(&s->er);
  1388. ff_MPV_frame_end(s);
  1389. s->mb_num_left = 0;
  1390. if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  1391. ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
  1392. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  1393. if ((ret = av_frame_ref(pict, s->current_picture_ptr->f)) < 0)
  1394. return ret;
  1395. ff_print_debug_info(s, s->current_picture_ptr);
  1396. got_picture = 1;
  1397. } else if (s->last_picture_ptr != NULL) {
  1398. if ((ret = av_frame_ref(pict, s->last_picture_ptr->f)) < 0)
  1399. return ret;
  1400. ff_print_debug_info(s, s->last_picture_ptr);
  1401. got_picture = 1;
  1402. }
  1403. return got_picture;
  1404. }
  1405. int ff_rv34_decode_frame(AVCodecContext *avctx,
  1406. void *data, int *got_picture_ptr,
  1407. AVPacket *avpkt)
  1408. {
  1409. const uint8_t *buf = avpkt->data;
  1410. int buf_size = avpkt->size;
  1411. RV34DecContext *r = avctx->priv_data;
  1412. MpegEncContext *s = &r->s;
  1413. AVFrame *pict = data;
  1414. SliceInfo si;
  1415. int i, ret;
  1416. int slice_count;
  1417. const uint8_t *slices_hdr = NULL;
  1418. int last = 0;
  1419. /* no supplementary picture */
  1420. if (buf_size == 0) {
  1421. /* special case for last picture */
  1422. if (s->low_delay==0 && s->next_picture_ptr) {
  1423. if ((ret = av_frame_ref(pict, s->next_picture_ptr->f)) < 0)
  1424. return ret;
  1425. s->next_picture_ptr = NULL;
  1426. *got_picture_ptr = 1;
  1427. }
  1428. return 0;
  1429. }
  1430. if(!avctx->slice_count){
  1431. slice_count = (*buf++) + 1;
  1432. slices_hdr = buf + 4;
  1433. buf += 8 * slice_count;
  1434. buf_size -= 1 + 8 * slice_count;
  1435. }else
  1436. slice_count = avctx->slice_count;
  1437. //parse first slice header to check whether this frame can be decoded
  1438. if(get_slice_offset(avctx, slices_hdr, 0) < 0 ||
  1439. get_slice_offset(avctx, slices_hdr, 0) > buf_size){
  1440. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1441. return AVERROR_INVALIDDATA;
  1442. }
  1443. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, 0), (buf_size-get_slice_offset(avctx, slices_hdr, 0))*8);
  1444. if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
  1445. av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
  1446. return AVERROR_INVALIDDATA;
  1447. }
  1448. if ((!s->last_picture_ptr || !s->last_picture_ptr->f->data[0]) &&
  1449. si.type == AV_PICTURE_TYPE_B) {
  1450. av_log(avctx, AV_LOG_ERROR, "Invalid decoder state: B-frame without "
  1451. "reference data.\n");
  1452. return AVERROR_INVALIDDATA;
  1453. }
  1454. if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B)
  1455. || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I)
  1456. || avctx->skip_frame >= AVDISCARD_ALL)
  1457. return avpkt->size;
  1458. /* first slice */
  1459. if (si.start == 0) {
  1460. if (s->mb_num_left > 0) {
  1461. av_log(avctx, AV_LOG_ERROR, "New frame but still %d MB left.",
  1462. s->mb_num_left);
  1463. ff_er_frame_end(&s->er);
  1464. ff_MPV_frame_end(s);
  1465. }
  1466. if (s->width != si.width || s->height != si.height) {
  1467. int err;
  1468. av_log(s->avctx, AV_LOG_WARNING, "Changing dimensions to %dx%d\n",
  1469. si.width, si.height);
  1470. s->width = si.width;
  1471. s->height = si.height;
  1472. err = ff_set_dimensions(s->avctx, s->width, s->height);
  1473. if (err < 0)
  1474. return err;
  1475. if ((err = ff_MPV_common_frame_size_change(s)) < 0)
  1476. return err;
  1477. if ((err = rv34_decoder_realloc(r)) < 0)
  1478. return err;
  1479. }
  1480. s->pict_type = si.type ? si.type : AV_PICTURE_TYPE_I;
  1481. if (ff_MPV_frame_start(s, s->avctx) < 0)
  1482. return -1;
  1483. ff_mpeg_er_frame_start(s);
  1484. if (!r->tmp_b_block_base) {
  1485. int i;
  1486. r->tmp_b_block_base = av_malloc(s->linesize * 48);
  1487. for (i = 0; i < 2; i++)
  1488. r->tmp_b_block_y[i] = r->tmp_b_block_base
  1489. + i * 16 * s->linesize;
  1490. for (i = 0; i < 4; i++)
  1491. r->tmp_b_block_uv[i] = r->tmp_b_block_base + 32 * s->linesize
  1492. + (i >> 1) * 8 * s->uvlinesize
  1493. + (i & 1) * 16;
  1494. }
  1495. r->cur_pts = si.pts;
  1496. if (s->pict_type != AV_PICTURE_TYPE_B) {
  1497. r->last_pts = r->next_pts;
  1498. r->next_pts = r->cur_pts;
  1499. } else {
  1500. int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
  1501. int dist0 = GET_PTS_DIFF(r->cur_pts, r->last_pts);
  1502. int dist1 = GET_PTS_DIFF(r->next_pts, r->cur_pts);
  1503. if(!refdist){
  1504. r->mv_weight1 = r->mv_weight2 = r->weight1 = r->weight2 = 8192;
  1505. r->scaled_weight = 0;
  1506. }else{
  1507. r->mv_weight1 = (dist0 << 14) / refdist;
  1508. r->mv_weight2 = (dist1 << 14) / refdist;
  1509. if((r->mv_weight1|r->mv_weight2) & 511){
  1510. r->weight1 = r->mv_weight1;
  1511. r->weight2 = r->mv_weight2;
  1512. r->scaled_weight = 0;
  1513. }else{
  1514. r->weight1 = r->mv_weight1 >> 9;
  1515. r->weight2 = r->mv_weight2 >> 9;
  1516. r->scaled_weight = 1;
  1517. }
  1518. }
  1519. }
  1520. s->mb_x = s->mb_y = 0;
  1521. ff_thread_finish_setup(s->avctx);
  1522. } else if (HAVE_THREADS &&
  1523. (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  1524. av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames in frame "
  1525. "multithreading mode (start MB is %d).\n", si.start);
  1526. return AVERROR_INVALIDDATA;
  1527. }
  1528. for(i = 0; i < slice_count; i++){
  1529. int offset = get_slice_offset(avctx, slices_hdr, i);
  1530. int size;
  1531. if(i+1 == slice_count)
  1532. size = buf_size - offset;
  1533. else
  1534. size = get_slice_offset(avctx, slices_hdr, i+1) - offset;
  1535. if(offset < 0 || offset > buf_size){
  1536. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1537. break;
  1538. }
  1539. r->si.end = s->mb_width * s->mb_height;
  1540. s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
  1541. if(i+1 < slice_count){
  1542. if (get_slice_offset(avctx, slices_hdr, i+1) < 0 ||
  1543. get_slice_offset(avctx, slices_hdr, i+1) > buf_size) {
  1544. av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
  1545. break;
  1546. }
  1547. init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
  1548. if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
  1549. if(i+2 < slice_count)
  1550. size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
  1551. else
  1552. size = buf_size - offset;
  1553. }else
  1554. r->si.end = si.start;
  1555. }
  1556. if (size < 0 || size > buf_size - offset) {
  1557. av_log(avctx, AV_LOG_ERROR, "Slice size is invalid\n");
  1558. break;
  1559. }
  1560. last = rv34_decode_slice(r, r->si.end, buf + offset, size);
  1561. if(last)
  1562. break;
  1563. }
  1564. if (s->current_picture_ptr) {
  1565. if (last) {
  1566. if(r->loop_filter)
  1567. r->loop_filter(r, s->mb_height - 1);
  1568. ret = finish_frame(avctx, pict);
  1569. if (ret < 0)
  1570. return ret;
  1571. *got_picture_ptr = ret;
  1572. } else if (HAVE_THREADS &&
  1573. (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
  1574. av_log(avctx, AV_LOG_INFO, "marking unfished frame as finished\n");
  1575. /* always mark the current frame as finished, frame-mt supports
  1576. * only complete frames */
  1577. ff_er_frame_end(&s->er);
  1578. ff_MPV_frame_end(s);
  1579. s->mb_num_left = 0;
  1580. ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
  1581. return AVERROR_INVALIDDATA;
  1582. }
  1583. }
  1584. return avpkt->size;
  1585. }
  1586. av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
  1587. {
  1588. RV34DecContext *r = avctx->priv_data;
  1589. ff_MPV_common_end(&r->s);
  1590. rv34_decoder_free(r);
  1591. return 0;
  1592. }