You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

962 lines
32KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags2 = AV_RL16(extradata+2);
  82. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  83. flags2 = AV_RL16(extradata+4);
  84. }
  85. // for(i=0; i<avctx->extradata_size; i++)
  86. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  87. s->use_exp_vlc = flags2 & 0x0001;
  88. s->use_bit_reservoir = flags2 & 0x0002;
  89. s->use_variable_block_len = flags2 & 0x0004;
  90. if(avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 8){
  91. if(AV_RL16(extradata+4)==0xd && s->use_variable_block_len){
  92. av_log(avctx, AV_LOG_WARNING, "Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
  93. s->use_variable_block_len= 0; // this fixes issue1503
  94. }
  95. }
  96. if(avctx->channels > MAX_CHANNELS){
  97. av_log(avctx, AV_LOG_ERROR, "Invalid number of channels (%d)\n", avctx->channels);
  98. return -1;
  99. }
  100. if(ff_wma_init(avctx, flags2)<0)
  101. return -1;
  102. /* init MDCT */
  103. for(i = 0; i < s->nb_block_sizes; i++)
  104. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  105. if (s->use_noise_coding) {
  106. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  107. ff_wma_hgain_huffbits, 1, 1,
  108. ff_wma_hgain_huffcodes, 2, 2, 0);
  109. }
  110. if (s->use_exp_vlc) {
  111. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  112. ff_aac_scalefactor_bits, 1, 1,
  113. ff_aac_scalefactor_code, 4, 4, 0);
  114. } else {
  115. wma_lsp_to_curve_init(s, s->frame_len);
  116. }
  117. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  118. return 0;
  119. }
  120. /**
  121. * compute x^-0.25 with an exponent and mantissa table. We use linear
  122. * interpolation to reduce the mantissa table size at a small speed
  123. * expense (linear interpolation approximately doubles the number of
  124. * bits of precision).
  125. */
  126. static inline float pow_m1_4(WMACodecContext *s, float x)
  127. {
  128. union {
  129. float f;
  130. unsigned int v;
  131. } u, t;
  132. unsigned int e, m;
  133. float a, b;
  134. u.f = x;
  135. e = u.v >> 23;
  136. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  137. /* build interpolation scale: 1 <= t < 2. */
  138. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  139. a = s->lsp_pow_m_table1[m];
  140. b = s->lsp_pow_m_table2[m];
  141. return s->lsp_pow_e_table[e] * (a + b * t.f);
  142. }
  143. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  144. {
  145. float wdel, a, b;
  146. int i, e, m;
  147. wdel = M_PI / frame_len;
  148. for(i=0;i<frame_len;i++)
  149. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  150. /* tables for x^-0.25 computation */
  151. for(i=0;i<256;i++) {
  152. e = i - 126;
  153. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  154. }
  155. /* NOTE: these two tables are needed to avoid two operations in
  156. pow_m1_4 */
  157. b = 1.0;
  158. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  159. m = (1 << LSP_POW_BITS) + i;
  160. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  161. a = pow(a, -0.25);
  162. s->lsp_pow_m_table1[i] = 2 * a - b;
  163. s->lsp_pow_m_table2[i] = b - a;
  164. b = a;
  165. }
  166. }
  167. /**
  168. * NOTE: We use the same code as Vorbis here
  169. * @todo optimize it further with SSE/3Dnow
  170. */
  171. static void wma_lsp_to_curve(WMACodecContext *s,
  172. float *out, float *val_max_ptr,
  173. int n, float *lsp)
  174. {
  175. int i, j;
  176. float p, q, w, v, val_max;
  177. val_max = 0;
  178. for(i=0;i<n;i++) {
  179. p = 0.5f;
  180. q = 0.5f;
  181. w = s->lsp_cos_table[i];
  182. for(j=1;j<NB_LSP_COEFS;j+=2){
  183. q *= w - lsp[j - 1];
  184. p *= w - lsp[j];
  185. }
  186. p *= p * (2.0f - w);
  187. q *= q * (2.0f + w);
  188. v = p + q;
  189. v = pow_m1_4(s, v);
  190. if (v > val_max)
  191. val_max = v;
  192. out[i] = v;
  193. }
  194. *val_max_ptr = val_max;
  195. }
  196. /**
  197. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  198. */
  199. static void decode_exp_lsp(WMACodecContext *s, int ch)
  200. {
  201. float lsp_coefs[NB_LSP_COEFS];
  202. int val, i;
  203. for(i = 0; i < NB_LSP_COEFS; i++) {
  204. if (i == 0 || i >= 8)
  205. val = get_bits(&s->gb, 3);
  206. else
  207. val = get_bits(&s->gb, 4);
  208. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  209. }
  210. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  211. s->block_len, lsp_coefs);
  212. }
  213. /** pow(10, i / 16.0) for i in -60..95 */
  214. static const float pow_tab[] = {
  215. 1.7782794100389e-04, 2.0535250264571e-04,
  216. 2.3713737056617e-04, 2.7384196342644e-04,
  217. 3.1622776601684e-04, 3.6517412725484e-04,
  218. 4.2169650342858e-04, 4.8696752516586e-04,
  219. 5.6234132519035e-04, 6.4938163157621e-04,
  220. 7.4989420933246e-04, 8.6596432336006e-04,
  221. 1.0000000000000e-03, 1.1547819846895e-03,
  222. 1.3335214321633e-03, 1.5399265260595e-03,
  223. 1.7782794100389e-03, 2.0535250264571e-03,
  224. 2.3713737056617e-03, 2.7384196342644e-03,
  225. 3.1622776601684e-03, 3.6517412725484e-03,
  226. 4.2169650342858e-03, 4.8696752516586e-03,
  227. 5.6234132519035e-03, 6.4938163157621e-03,
  228. 7.4989420933246e-03, 8.6596432336006e-03,
  229. 1.0000000000000e-02, 1.1547819846895e-02,
  230. 1.3335214321633e-02, 1.5399265260595e-02,
  231. 1.7782794100389e-02, 2.0535250264571e-02,
  232. 2.3713737056617e-02, 2.7384196342644e-02,
  233. 3.1622776601684e-02, 3.6517412725484e-02,
  234. 4.2169650342858e-02, 4.8696752516586e-02,
  235. 5.6234132519035e-02, 6.4938163157621e-02,
  236. 7.4989420933246e-02, 8.6596432336007e-02,
  237. 1.0000000000000e-01, 1.1547819846895e-01,
  238. 1.3335214321633e-01, 1.5399265260595e-01,
  239. 1.7782794100389e-01, 2.0535250264571e-01,
  240. 2.3713737056617e-01, 2.7384196342644e-01,
  241. 3.1622776601684e-01, 3.6517412725484e-01,
  242. 4.2169650342858e-01, 4.8696752516586e-01,
  243. 5.6234132519035e-01, 6.4938163157621e-01,
  244. 7.4989420933246e-01, 8.6596432336007e-01,
  245. 1.0000000000000e+00, 1.1547819846895e+00,
  246. 1.3335214321633e+00, 1.5399265260595e+00,
  247. 1.7782794100389e+00, 2.0535250264571e+00,
  248. 2.3713737056617e+00, 2.7384196342644e+00,
  249. 3.1622776601684e+00, 3.6517412725484e+00,
  250. 4.2169650342858e+00, 4.8696752516586e+00,
  251. 5.6234132519035e+00, 6.4938163157621e+00,
  252. 7.4989420933246e+00, 8.6596432336007e+00,
  253. 1.0000000000000e+01, 1.1547819846895e+01,
  254. 1.3335214321633e+01, 1.5399265260595e+01,
  255. 1.7782794100389e+01, 2.0535250264571e+01,
  256. 2.3713737056617e+01, 2.7384196342644e+01,
  257. 3.1622776601684e+01, 3.6517412725484e+01,
  258. 4.2169650342858e+01, 4.8696752516586e+01,
  259. 5.6234132519035e+01, 6.4938163157621e+01,
  260. 7.4989420933246e+01, 8.6596432336007e+01,
  261. 1.0000000000000e+02, 1.1547819846895e+02,
  262. 1.3335214321633e+02, 1.5399265260595e+02,
  263. 1.7782794100389e+02, 2.0535250264571e+02,
  264. 2.3713737056617e+02, 2.7384196342644e+02,
  265. 3.1622776601684e+02, 3.6517412725484e+02,
  266. 4.2169650342858e+02, 4.8696752516586e+02,
  267. 5.6234132519035e+02, 6.4938163157621e+02,
  268. 7.4989420933246e+02, 8.6596432336007e+02,
  269. 1.0000000000000e+03, 1.1547819846895e+03,
  270. 1.3335214321633e+03, 1.5399265260595e+03,
  271. 1.7782794100389e+03, 2.0535250264571e+03,
  272. 2.3713737056617e+03, 2.7384196342644e+03,
  273. 3.1622776601684e+03, 3.6517412725484e+03,
  274. 4.2169650342858e+03, 4.8696752516586e+03,
  275. 5.6234132519035e+03, 6.4938163157621e+03,
  276. 7.4989420933246e+03, 8.6596432336007e+03,
  277. 1.0000000000000e+04, 1.1547819846895e+04,
  278. 1.3335214321633e+04, 1.5399265260595e+04,
  279. 1.7782794100389e+04, 2.0535250264571e+04,
  280. 2.3713737056617e+04, 2.7384196342644e+04,
  281. 3.1622776601684e+04, 3.6517412725484e+04,
  282. 4.2169650342858e+04, 4.8696752516586e+04,
  283. 5.6234132519035e+04, 6.4938163157621e+04,
  284. 7.4989420933246e+04, 8.6596432336007e+04,
  285. 1.0000000000000e+05, 1.1547819846895e+05,
  286. 1.3335214321633e+05, 1.5399265260595e+05,
  287. 1.7782794100389e+05, 2.0535250264571e+05,
  288. 2.3713737056617e+05, 2.7384196342644e+05,
  289. 3.1622776601684e+05, 3.6517412725484e+05,
  290. 4.2169650342858e+05, 4.8696752516586e+05,
  291. 5.6234132519035e+05, 6.4938163157621e+05,
  292. 7.4989420933246e+05, 8.6596432336007e+05,
  293. };
  294. /**
  295. * decode exponents coded with VLC codes
  296. */
  297. static int decode_exp_vlc(WMACodecContext *s, int ch)
  298. {
  299. int last_exp, n, code;
  300. const uint16_t *ptr;
  301. float v, max_scale;
  302. uint32_t *q, *q_end, iv;
  303. const float *ptab = pow_tab + 60;
  304. const uint32_t *iptab = (const uint32_t*)ptab;
  305. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  306. q = (uint32_t *)s->exponents[ch];
  307. q_end = q + s->block_len;
  308. max_scale = 0;
  309. if (s->version == 1) {
  310. last_exp = get_bits(&s->gb, 5) + 10;
  311. v = ptab[last_exp];
  312. iv = iptab[last_exp];
  313. max_scale = v;
  314. n = *ptr++;
  315. switch (n & 3) do {
  316. case 0: *q++ = iv;
  317. case 3: *q++ = iv;
  318. case 2: *q++ = iv;
  319. case 1: *q++ = iv;
  320. } while ((n -= 4) > 0);
  321. }else
  322. last_exp = 36;
  323. while (q < q_end) {
  324. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  325. if (code < 0){
  326. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  327. return -1;
  328. }
  329. /* NOTE: this offset is the same as MPEG4 AAC ! */
  330. last_exp += code - 60;
  331. if ((unsigned)last_exp + 60 > FF_ARRAY_ELEMS(pow_tab)) {
  332. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  333. last_exp);
  334. return -1;
  335. }
  336. v = ptab[last_exp];
  337. iv = iptab[last_exp];
  338. if (v > max_scale)
  339. max_scale = v;
  340. n = *ptr++;
  341. switch (n & 3) do {
  342. case 0: *q++ = iv;
  343. case 3: *q++ = iv;
  344. case 2: *q++ = iv;
  345. case 1: *q++ = iv;
  346. } while ((n -= 4) > 0);
  347. }
  348. s->max_exponent[ch] = max_scale;
  349. return 0;
  350. }
  351. /**
  352. * Apply MDCT window and add into output.
  353. *
  354. * We ensure that when the windows overlap their squared sum
  355. * is always 1 (MDCT reconstruction rule).
  356. */
  357. static void wma_window(WMACodecContext *s, float *out)
  358. {
  359. float *in = s->output;
  360. int block_len, bsize, n;
  361. /* left part */
  362. if (s->block_len_bits <= s->prev_block_len_bits) {
  363. block_len = s->block_len;
  364. bsize = s->frame_len_bits - s->block_len_bits;
  365. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  366. out, block_len);
  367. } else {
  368. block_len = 1 << s->prev_block_len_bits;
  369. n = (s->block_len - block_len) / 2;
  370. bsize = s->frame_len_bits - s->prev_block_len_bits;
  371. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  372. out+n, block_len);
  373. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  374. }
  375. out += s->block_len;
  376. in += s->block_len;
  377. /* right part */
  378. if (s->block_len_bits <= s->next_block_len_bits) {
  379. block_len = s->block_len;
  380. bsize = s->frame_len_bits - s->block_len_bits;
  381. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  382. } else {
  383. block_len = 1 << s->next_block_len_bits;
  384. n = (s->block_len - block_len) / 2;
  385. bsize = s->frame_len_bits - s->next_block_len_bits;
  386. memcpy(out, in, n*sizeof(float));
  387. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  388. memset(out+n+block_len, 0, n*sizeof(float));
  389. }
  390. }
  391. /**
  392. * @return 0 if OK. 1 if last block of frame. return -1 if
  393. * unrecorrable error.
  394. */
  395. static int wma_decode_block(WMACodecContext *s)
  396. {
  397. int n, v, a, ch, bsize;
  398. int coef_nb_bits, total_gain;
  399. int nb_coefs[MAX_CHANNELS];
  400. float mdct_norm;
  401. FFTContext *mdct;
  402. #ifdef TRACE
  403. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  404. #endif
  405. /* compute current block length */
  406. if (s->use_variable_block_len) {
  407. n = av_log2(s->nb_block_sizes - 1) + 1;
  408. if (s->reset_block_lengths) {
  409. s->reset_block_lengths = 0;
  410. v = get_bits(&s->gb, n);
  411. if (v >= s->nb_block_sizes){
  412. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  413. return -1;
  414. }
  415. s->prev_block_len_bits = s->frame_len_bits - v;
  416. v = get_bits(&s->gb, n);
  417. if (v >= s->nb_block_sizes){
  418. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  419. return -1;
  420. }
  421. s->block_len_bits = s->frame_len_bits - v;
  422. } else {
  423. /* update block lengths */
  424. s->prev_block_len_bits = s->block_len_bits;
  425. s->block_len_bits = s->next_block_len_bits;
  426. }
  427. v = get_bits(&s->gb, n);
  428. if (v >= s->nb_block_sizes){
  429. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  430. return -1;
  431. }
  432. s->next_block_len_bits = s->frame_len_bits - v;
  433. } else {
  434. /* fixed block len */
  435. s->next_block_len_bits = s->frame_len_bits;
  436. s->prev_block_len_bits = s->frame_len_bits;
  437. s->block_len_bits = s->frame_len_bits;
  438. }
  439. if (s->frame_len_bits - s->block_len_bits >= s->nb_block_sizes){
  440. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits not initialized to a valid value\n");
  441. return -1;
  442. }
  443. /* now check if the block length is coherent with the frame length */
  444. s->block_len = 1 << s->block_len_bits;
  445. if ((s->block_pos + s->block_len) > s->frame_len){
  446. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  447. return -1;
  448. }
  449. if (s->nb_channels == 2) {
  450. s->ms_stereo = get_bits1(&s->gb);
  451. }
  452. v = 0;
  453. for(ch = 0; ch < s->nb_channels; ch++) {
  454. a = get_bits1(&s->gb);
  455. s->channel_coded[ch] = a;
  456. v |= a;
  457. }
  458. bsize = s->frame_len_bits - s->block_len_bits;
  459. /* if no channel coded, no need to go further */
  460. /* XXX: fix potential framing problems */
  461. if (!v)
  462. goto next;
  463. /* read total gain and extract corresponding number of bits for
  464. coef escape coding */
  465. total_gain = 1;
  466. for(;;) {
  467. a = get_bits(&s->gb, 7);
  468. total_gain += a;
  469. if (a != 127)
  470. break;
  471. }
  472. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  473. /* compute number of coefficients */
  474. n = s->coefs_end[bsize] - s->coefs_start;
  475. for(ch = 0; ch < s->nb_channels; ch++)
  476. nb_coefs[ch] = n;
  477. /* complex coding */
  478. if (s->use_noise_coding) {
  479. for(ch = 0; ch < s->nb_channels; ch++) {
  480. if (s->channel_coded[ch]) {
  481. int i, n, a;
  482. n = s->exponent_high_sizes[bsize];
  483. for(i=0;i<n;i++) {
  484. a = get_bits1(&s->gb);
  485. s->high_band_coded[ch][i] = a;
  486. /* if noise coding, the coefficients are not transmitted */
  487. if (a)
  488. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  489. }
  490. }
  491. }
  492. for(ch = 0; ch < s->nb_channels; ch++) {
  493. if (s->channel_coded[ch]) {
  494. int i, n, val, code;
  495. n = s->exponent_high_sizes[bsize];
  496. val = (int)0x80000000;
  497. for(i=0;i<n;i++) {
  498. if (s->high_band_coded[ch][i]) {
  499. if (val == (int)0x80000000) {
  500. val = get_bits(&s->gb, 7) - 19;
  501. } else {
  502. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  503. if (code < 0){
  504. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  505. return -1;
  506. }
  507. val += code - 18;
  508. }
  509. s->high_band_values[ch][i] = val;
  510. }
  511. }
  512. }
  513. }
  514. }
  515. /* exponents can be reused in short blocks. */
  516. if ((s->block_len_bits == s->frame_len_bits) ||
  517. get_bits1(&s->gb)) {
  518. for(ch = 0; ch < s->nb_channels; ch++) {
  519. if (s->channel_coded[ch]) {
  520. if (s->use_exp_vlc) {
  521. if (decode_exp_vlc(s, ch) < 0)
  522. return -1;
  523. } else {
  524. decode_exp_lsp(s, ch);
  525. }
  526. s->exponents_bsize[ch] = bsize;
  527. }
  528. }
  529. }
  530. /* parse spectral coefficients : just RLE encoding */
  531. for(ch = 0; ch < s->nb_channels; ch++) {
  532. if (s->channel_coded[ch]) {
  533. int tindex;
  534. WMACoef* ptr = &s->coefs1[ch][0];
  535. /* special VLC tables are used for ms stereo because
  536. there is potentially less energy there */
  537. tindex = (ch == 1 && s->ms_stereo);
  538. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  539. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  540. s->level_table[tindex], s->run_table[tindex],
  541. 0, ptr, 0, nb_coefs[ch],
  542. s->block_len, s->frame_len_bits, coef_nb_bits);
  543. }
  544. if (s->version == 1 && s->nb_channels >= 2) {
  545. align_get_bits(&s->gb);
  546. }
  547. }
  548. /* normalize */
  549. {
  550. int n4 = s->block_len / 2;
  551. mdct_norm = 1.0 / (float)n4;
  552. if (s->version == 1) {
  553. mdct_norm *= sqrt(n4);
  554. }
  555. }
  556. /* finally compute the MDCT coefficients */
  557. for(ch = 0; ch < s->nb_channels; ch++) {
  558. if (s->channel_coded[ch]) {
  559. WMACoef *coefs1;
  560. float *coefs, *exponents, mult, mult1, noise;
  561. int i, j, n, n1, last_high_band, esize;
  562. float exp_power[HIGH_BAND_MAX_SIZE];
  563. coefs1 = s->coefs1[ch];
  564. exponents = s->exponents[ch];
  565. esize = s->exponents_bsize[ch];
  566. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  567. mult *= mdct_norm;
  568. coefs = s->coefs[ch];
  569. if (s->use_noise_coding) {
  570. mult1 = mult;
  571. /* very low freqs : noise */
  572. for(i = 0;i < s->coefs_start; i++) {
  573. *coefs++ = s->noise_table[s->noise_index] *
  574. exponents[i<<bsize>>esize] * mult1;
  575. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  576. }
  577. n1 = s->exponent_high_sizes[bsize];
  578. /* compute power of high bands */
  579. exponents = s->exponents[ch] +
  580. (s->high_band_start[bsize]<<bsize>>esize);
  581. last_high_band = 0; /* avoid warning */
  582. for(j=0;j<n1;j++) {
  583. n = s->exponent_high_bands[s->frame_len_bits -
  584. s->block_len_bits][j];
  585. if (s->high_band_coded[ch][j]) {
  586. float e2, v;
  587. e2 = 0;
  588. for(i = 0;i < n; i++) {
  589. v = exponents[i<<bsize>>esize];
  590. e2 += v * v;
  591. }
  592. exp_power[j] = e2 / n;
  593. last_high_band = j;
  594. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  595. }
  596. exponents += n<<bsize>>esize;
  597. }
  598. /* main freqs and high freqs */
  599. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  600. for(j=-1;j<n1;j++) {
  601. if (j < 0) {
  602. n = s->high_band_start[bsize] -
  603. s->coefs_start;
  604. } else {
  605. n = s->exponent_high_bands[s->frame_len_bits -
  606. s->block_len_bits][j];
  607. }
  608. if (j >= 0 && s->high_band_coded[ch][j]) {
  609. /* use noise with specified power */
  610. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  611. /* XXX: use a table */
  612. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  613. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  614. mult1 *= mdct_norm;
  615. for(i = 0;i < n; i++) {
  616. noise = s->noise_table[s->noise_index];
  617. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  618. *coefs++ = noise *
  619. exponents[i<<bsize>>esize] * mult1;
  620. }
  621. exponents += n<<bsize>>esize;
  622. } else {
  623. /* coded values + small noise */
  624. for(i = 0;i < n; i++) {
  625. noise = s->noise_table[s->noise_index];
  626. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  627. *coefs++ = ((*coefs1++) + noise) *
  628. exponents[i<<bsize>>esize] * mult;
  629. }
  630. exponents += n<<bsize>>esize;
  631. }
  632. }
  633. /* very high freqs : noise */
  634. n = s->block_len - s->coefs_end[bsize];
  635. mult1 = mult * exponents[((-1<<bsize))>>esize];
  636. for(i = 0; i < n; i++) {
  637. *coefs++ = s->noise_table[s->noise_index] * mult1;
  638. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  639. }
  640. } else {
  641. /* XXX: optimize more */
  642. for(i = 0;i < s->coefs_start; i++)
  643. *coefs++ = 0.0;
  644. n = nb_coefs[ch];
  645. for(i = 0;i < n; i++) {
  646. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  647. }
  648. n = s->block_len - s->coefs_end[bsize];
  649. for(i = 0;i < n; i++)
  650. *coefs++ = 0.0;
  651. }
  652. }
  653. }
  654. #ifdef TRACE
  655. for(ch = 0; ch < s->nb_channels; ch++) {
  656. if (s->channel_coded[ch]) {
  657. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  658. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  659. }
  660. }
  661. #endif
  662. if (s->ms_stereo && s->channel_coded[1]) {
  663. /* nominal case for ms stereo: we do it before mdct */
  664. /* no need to optimize this case because it should almost
  665. never happen */
  666. if (!s->channel_coded[0]) {
  667. tprintf(s->avctx, "rare ms-stereo case happened\n");
  668. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  669. s->channel_coded[0] = 1;
  670. }
  671. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  672. }
  673. next:
  674. mdct = &s->mdct_ctx[bsize];
  675. for(ch = 0; ch < s->nb_channels; ch++) {
  676. int n4, index;
  677. n4 = s->block_len / 2;
  678. if(s->channel_coded[ch]){
  679. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  680. }else if(!(s->ms_stereo && ch==1))
  681. memset(s->output, 0, sizeof(s->output));
  682. /* multiply by the window and add in the frame */
  683. index = (s->frame_len / 2) + s->block_pos - n4;
  684. wma_window(s, &s->frame_out[ch][index]);
  685. }
  686. /* update block number */
  687. s->block_num++;
  688. s->block_pos += s->block_len;
  689. if (s->block_pos >= s->frame_len)
  690. return 1;
  691. else
  692. return 0;
  693. }
  694. /* decode a frame of frame_len samples */
  695. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  696. {
  697. int ret, n, ch, incr;
  698. const float *output[MAX_CHANNELS];
  699. #ifdef TRACE
  700. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  701. #endif
  702. /* read each block */
  703. s->block_num = 0;
  704. s->block_pos = 0;
  705. for(;;) {
  706. ret = wma_decode_block(s);
  707. if (ret < 0)
  708. return -1;
  709. if (ret)
  710. break;
  711. }
  712. /* convert frame to integer */
  713. n = s->frame_len;
  714. incr = s->nb_channels;
  715. for (ch = 0; ch < MAX_CHANNELS; ch++)
  716. output[ch] = s->frame_out[ch];
  717. s->fmt_conv.float_to_int16_interleave(samples, output, n, incr);
  718. for (ch = 0; ch < incr; ch++) {
  719. /* prepare for next block */
  720. memmove(&s->frame_out[ch][0], &s->frame_out[ch][n], n * sizeof(float));
  721. }
  722. #ifdef TRACE
  723. dump_shorts(s, "samples", samples, n * s->nb_channels);
  724. #endif
  725. return 0;
  726. }
  727. static int wma_decode_superframe(AVCodecContext *avctx,
  728. void *data, int *data_size,
  729. AVPacket *avpkt)
  730. {
  731. const uint8_t *buf = avpkt->data;
  732. int buf_size = avpkt->size;
  733. WMACodecContext *s = avctx->priv_data;
  734. int nb_frames, bit_offset, i, pos, len, out_size;
  735. uint8_t *q;
  736. int16_t *samples;
  737. tprintf(avctx, "***decode_superframe:\n");
  738. if(buf_size==0){
  739. s->last_superframe_len = 0;
  740. return 0;
  741. }
  742. if (buf_size < s->block_align)
  743. return AVERROR(EINVAL);
  744. if(s->block_align)
  745. buf_size = s->block_align;
  746. samples = data;
  747. init_get_bits(&s->gb, buf, buf_size*8);
  748. if (s->use_bit_reservoir) {
  749. /* read super frame header */
  750. skip_bits(&s->gb, 4); /* super frame index */
  751. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  752. } else {
  753. nb_frames = 1;
  754. }
  755. out_size = nb_frames * s->frame_len * s->nb_channels *
  756. av_get_bytes_per_sample(avctx->sample_fmt);
  757. if (*data_size < out_size) {
  758. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  759. goto fail;
  760. }
  761. if (s->use_bit_reservoir) {
  762. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  763. if (s->last_superframe_len > 0) {
  764. // printf("skip=%d\n", s->last_bitoffset);
  765. /* add bit_offset bits to last frame */
  766. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  767. MAX_CODED_SUPERFRAME_SIZE)
  768. goto fail;
  769. q = s->last_superframe + s->last_superframe_len;
  770. len = bit_offset;
  771. while (len > 7) {
  772. *q++ = (get_bits)(&s->gb, 8);
  773. len -= 8;
  774. }
  775. if (len > 0) {
  776. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  777. }
  778. /* XXX: bit_offset bits into last frame */
  779. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  780. /* skip unused bits */
  781. if (s->last_bitoffset > 0)
  782. skip_bits(&s->gb, s->last_bitoffset);
  783. /* this frame is stored in the last superframe and in the
  784. current one */
  785. if (wma_decode_frame(s, samples) < 0)
  786. goto fail;
  787. samples += s->nb_channels * s->frame_len;
  788. nb_frames--;
  789. }
  790. /* read each frame starting from bit_offset */
  791. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  792. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  793. len = pos & 7;
  794. if (len > 0)
  795. skip_bits(&s->gb, len);
  796. s->reset_block_lengths = 1;
  797. for(i=0;i<nb_frames;i++) {
  798. if (wma_decode_frame(s, samples) < 0)
  799. goto fail;
  800. samples += s->nb_channels * s->frame_len;
  801. }
  802. /* we copy the end of the frame in the last frame buffer */
  803. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  804. s->last_bitoffset = pos & 7;
  805. pos >>= 3;
  806. len = buf_size - pos;
  807. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  808. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  809. goto fail;
  810. }
  811. s->last_superframe_len = len;
  812. memcpy(s->last_superframe, buf + pos, len);
  813. } else {
  814. /* single frame decode */
  815. if (wma_decode_frame(s, samples) < 0)
  816. goto fail;
  817. samples += s->nb_channels * s->frame_len;
  818. }
  819. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  820. *data_size = out_size;
  821. return buf_size;
  822. fail:
  823. /* when error, we reset the bit reservoir */
  824. s->last_superframe_len = 0;
  825. return -1;
  826. }
  827. static av_cold void flush(AVCodecContext *avctx)
  828. {
  829. WMACodecContext *s = avctx->priv_data;
  830. s->last_bitoffset=
  831. s->last_superframe_len= 0;
  832. }
  833. AVCodec ff_wmav1_decoder = {
  834. .name = "wmav1",
  835. .type = AVMEDIA_TYPE_AUDIO,
  836. .id = CODEC_ID_WMAV1,
  837. .priv_data_size = sizeof(WMACodecContext),
  838. .init = wma_decode_init,
  839. .close = ff_wma_end,
  840. .decode = wma_decode_superframe,
  841. .flush = flush,
  842. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  843. };
  844. AVCodec ff_wmav2_decoder = {
  845. .name = "wmav2",
  846. .type = AVMEDIA_TYPE_AUDIO,
  847. .id = CODEC_ID_WMAV2,
  848. .priv_data_size = sizeof(WMACodecContext),
  849. .init = wma_decode_init,
  850. .close = ff_wma_end,
  851. .decode = wma_decode_superframe,
  852. .flush = flush,
  853. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  854. };