|
- /*
- * Copyright (c) 2012 Andrew D'Addesio
- * Copyright (c) 2013-2014 Mozilla Corporation
- * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * Opus CELT decoder
- */
-
- #include "opus_celt.h"
- #include "opustab.h"
- #include "opus_pvq.h"
-
- /* Use the 2D z-transform to apply prediction in both the time domain (alpha)
- * and the frequency domain (beta) */
- static void celt_decode_coarse_energy(CeltFrame *f, OpusRangeCoder *rc)
- {
- int i, j;
- float prev[2] = { 0 };
- float alpha = ff_celt_alpha_coef[f->size];
- float beta = ff_celt_beta_coef[f->size];
- const uint8_t *model = ff_celt_coarse_energy_dist[f->size][0];
-
- /* intra frame */
- if (opus_rc_tell(rc) + 3 <= f->framebits && ff_opus_rc_dec_log(rc, 3)) {
- alpha = 0.0f;
- beta = 1.0f - (4915.0f/32768.0f);
- model = ff_celt_coarse_energy_dist[f->size][1];
- }
-
- for (i = 0; i < CELT_MAX_BANDS; i++) {
- for (j = 0; j < f->channels; j++) {
- CeltBlock *block = &f->block[j];
- float value;
- int available;
-
- if (i < f->start_band || i >= f->end_band) {
- block->energy[i] = 0.0;
- continue;
- }
-
- available = f->framebits - opus_rc_tell(rc);
- if (available >= 15) {
- /* decode using a Laplace distribution */
- int k = FFMIN(i, 20) << 1;
- value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6);
- } else if (available >= 2) {
- int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small);
- value = (x>>1) ^ -(x&1);
- } else if (available >= 1) {
- value = -(float)ff_opus_rc_dec_log(rc, 1);
- } else value = -1;
-
- block->energy[i] = FFMAX(-9.0f, block->energy[i]) * alpha + prev[j] + value;
- prev[j] += beta * value;
- }
- }
- }
-
- static void celt_decode_fine_energy(CeltFrame *f, OpusRangeCoder *rc)
- {
- int i;
- for (i = f->start_band; i < f->end_band; i++) {
- int j;
- if (!f->fine_bits[i])
- continue;
-
- for (j = 0; j < f->channels; j++) {
- CeltBlock *block = &f->block[j];
- int q2;
- float offset;
- q2 = ff_opus_rc_get_raw(rc, f->fine_bits[i]);
- offset = (q2 + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f - 0.5f;
- block->energy[i] += offset;
- }
- }
- }
-
- static void celt_decode_final_energy(CeltFrame *f, OpusRangeCoder *rc)
- {
- int priority, i, j;
- int bits_left = f->framebits - opus_rc_tell(rc);
-
- for (priority = 0; priority < 2; priority++) {
- for (i = f->start_band; i < f->end_band && bits_left >= f->channels; i++) {
- if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
- continue;
-
- for (j = 0; j < f->channels; j++) {
- int q2;
- float offset;
- q2 = ff_opus_rc_get_raw(rc, 1);
- offset = (q2 - 0.5f) * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
- f->block[j].energy[i] += offset;
- bits_left--;
- }
- }
- }
- }
-
- static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc)
- {
- int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
- int consumed, bits = f->transient ? 2 : 4;
-
- consumed = opus_rc_tell(rc);
- tf_select_bit = (f->size != 0 && consumed+bits+1 <= f->framebits);
-
- for (i = f->start_band; i < f->end_band; i++) {
- if (consumed+bits+tf_select_bit <= f->framebits) {
- diff ^= ff_opus_rc_dec_log(rc, bits);
- consumed = opus_rc_tell(rc);
- tf_changed |= diff;
- }
- f->tf_change[i] = diff;
- bits = f->transient ? 4 : 5;
- }
-
- if (tf_select_bit && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
- ff_celt_tf_select[f->size][f->transient][1][tf_changed])
- tf_select = ff_opus_rc_dec_log(rc, 1);
-
- for (i = f->start_band; i < f->end_band; i++) {
- f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
- }
- }
-
- static void celt_decode_allocation(CeltFrame *f, OpusRangeCoder *rc)
- {
- // approx. maximum bit allocation for each band before boost/trim
- int cap[CELT_MAX_BANDS];
- int boost[CELT_MAX_BANDS];
- int threshold[CELT_MAX_BANDS];
- int bits1[CELT_MAX_BANDS];
- int bits2[CELT_MAX_BANDS];
- int trim_offset[CELT_MAX_BANDS];
-
- int skip_start_band = f->start_band;
- int dynalloc = 6;
- int alloctrim = 5;
- int extrabits = 0;
-
- int skip_bit = 0;
- int intensity_stereo_bit = 0;
- int dual_stereo_bit = 0;
-
- int remaining, bandbits;
- int low, high, total, done;
- int totalbits;
- int consumed;
- int i, j;
-
- consumed = opus_rc_tell(rc);
-
- /* obtain spread flag */
- f->spread = CELT_SPREAD_NORMAL;
- if (consumed + 4 <= f->framebits)
- f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
-
- /* generate static allocation caps */
- for (i = 0; i < CELT_MAX_BANDS; i++) {
- cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64)
- * ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2;
- }
-
- /* obtain band boost */
- totalbits = f->framebits << 3; // convert to 1/8 bits
- consumed = opus_rc_tell_frac(rc);
- for (i = f->start_band; i < f->end_band; i++) {
- int quanta, band_dynalloc;
-
- boost[i] = 0;
-
- quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
- quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
- band_dynalloc = dynalloc;
- while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) {
- int add = ff_opus_rc_dec_log(rc, band_dynalloc);
- consumed = opus_rc_tell_frac(rc);
- if (!add)
- break;
-
- boost[i] += quanta;
- totalbits -= quanta;
- band_dynalloc = 1;
- }
- /* dynalloc is more likely to occur if it's already been used for earlier bands */
- if (boost[i])
- dynalloc = FFMAX(2, dynalloc - 1);
- }
-
- /* obtain allocation trim */
- if (consumed + (6 << 3) <= totalbits)
- alloctrim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
-
- /* anti-collapse bit reservation */
- totalbits = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
- f->anticollapse_needed = 0;
- if (f->blocks > 1 && f->size >= 2 &&
- totalbits >= ((f->size + 2) << 3))
- f->anticollapse_needed = 1 << 3;
- totalbits -= f->anticollapse_needed;
-
- /* band skip bit reservation */
- if (totalbits >= 1 << 3)
- skip_bit = 1 << 3;
- totalbits -= skip_bit;
-
- /* intensity/dual stereo bit reservation */
- if (f->channels == 2) {
- intensity_stereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
- if (intensity_stereo_bit <= totalbits) {
- totalbits -= intensity_stereo_bit;
- if (totalbits >= 1 << 3) {
- dual_stereo_bit = 1 << 3;
- totalbits -= 1 << 3;
- }
- } else
- intensity_stereo_bit = 0;
- }
-
- for (i = f->start_band; i < f->end_band; i++) {
- int trim = alloctrim - 5 - f->size;
- int band = ff_celt_freq_range[i] * (f->end_band - i - 1);
- int duration = f->size + 3;
- int scale = duration + f->channels - 1;
-
- /* PVQ minimum allocation threshold, below this value the band is
- * skipped */
- threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
- f->channels << 3);
-
- trim_offset[i] = trim * (band << scale) >> 6;
-
- if (ff_celt_freq_range[i] << f->size == 1)
- trim_offset[i] -= f->channels << 3;
- }
-
- /* bisection */
- low = 1;
- high = CELT_VECTORS - 1;
- while (low <= high) {
- int center = (low + high) >> 1;
- done = total = 0;
-
- for (i = f->end_band - 1; i >= f->start_band; i--) {
- bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]
- << (f->channels - 1) << f->size >> 2;
-
- if (bandbits)
- bandbits = FFMAX(0, bandbits + trim_offset[i]);
- bandbits += boost[i];
-
- if (bandbits >= threshold[i] || done) {
- done = 1;
- total += FFMIN(bandbits, cap[i]);
- } else if (bandbits >= f->channels << 3)
- total += f->channels << 3;
- }
-
- if (total > totalbits)
- high = center - 1;
- else
- low = center + 1;
- }
- high = low--;
-
- for (i = f->start_band; i < f->end_band; i++) {
- bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]
- << (f->channels - 1) << f->size >> 2;
- bits2[i] = high >= CELT_VECTORS ? cap[i] :
- ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]
- << (f->channels - 1) << f->size >> 2;
-
- if (bits1[i])
- bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
- if (bits2[i])
- bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
- if (low)
- bits1[i] += boost[i];
- bits2[i] += boost[i];
-
- if (boost[i])
- skip_start_band = i;
- bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
- }
-
- /* bisection */
- low = 0;
- high = 1 << CELT_ALLOC_STEPS;
- for (i = 0; i < CELT_ALLOC_STEPS; i++) {
- int center = (low + high) >> 1;
- done = total = 0;
-
- for (j = f->end_band - 1; j >= f->start_band; j--) {
- bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
-
- if (bandbits >= threshold[j] || done) {
- done = 1;
- total += FFMIN(bandbits, cap[j]);
- } else if (bandbits >= f->channels << 3)
- total += f->channels << 3;
- }
- if (total > totalbits)
- high = center;
- else
- low = center;
- }
-
- done = total = 0;
- for (i = f->end_band - 1; i >= f->start_band; i--) {
- bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
-
- if (bandbits >= threshold[i] || done)
- done = 1;
- else
- bandbits = (bandbits >= f->channels << 3) ?
- f->channels << 3 : 0;
-
- bandbits = FFMIN(bandbits, cap[i]);
- f->pulses[i] = bandbits;
- total += bandbits;
- }
-
- /* band skipping */
- for (f->coded_bands = f->end_band; ; f->coded_bands--) {
- int allocation;
- j = f->coded_bands - 1;
-
- if (j == skip_start_band) {
- /* all remaining bands are not skipped */
- totalbits += skip_bit;
- break;
- }
-
- /* determine the number of bits available for coding "do not skip" markers */
- remaining = totalbits - total;
- bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
- remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
- allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j]
- + FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]));
-
- /* a "do not skip" marker is only coded if the allocation is
- above the chosen threshold */
- if (allocation >= FFMAX(threshold[j], (f->channels + 1) <<3 )) {
- if (ff_opus_rc_dec_log(rc, 1))
- break;
-
- total += 1 << 3;
- allocation -= 1 << 3;
- }
-
- /* the band is skipped, so reclaim its bits */
- total -= f->pulses[j];
- if (intensity_stereo_bit) {
- total -= intensity_stereo_bit;
- intensity_stereo_bit = ff_celt_log2_frac[j - f->start_band];
- total += intensity_stereo_bit;
- }
-
- total += f->pulses[j] = (allocation >= f->channels << 3) ?
- f->channels << 3 : 0;
- }
-
- /* obtain stereo flags */
- f->intensity_stereo = 0;
- f->dual_stereo = 0;
- if (intensity_stereo_bit)
- f->intensity_stereo = f->start_band +
- ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
- if (f->intensity_stereo <= f->start_band)
- totalbits += dual_stereo_bit; /* no intensity stereo means no dual stereo */
- else if (dual_stereo_bit)
- f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
-
- /* supply the remaining bits in this frame to lower bands */
- remaining = totalbits - total;
- bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
- remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
- for (i = f->start_band; i < f->coded_bands; i++) {
- int bits = FFMIN(remaining, ff_celt_freq_range[i]);
-
- f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
- remaining -= bits;
- }
-
- for (i = f->start_band; i < f->coded_bands; i++) {
- int N = ff_celt_freq_range[i] << f->size;
- int prev_extra = extrabits;
- f->pulses[i] += extrabits;
-
- if (N > 1) {
- int dof; // degrees of freedom
- int temp; // dof * channels * log(dof)
- int offset; // fine energy quantization offset, i.e.
- // extra bits assigned over the standard
- // totalbits/dof
- int fine_bits, max_bits;
-
- extrabits = FFMAX(0, f->pulses[i] - cap[i]);
- f->pulses[i] -= extrabits;
-
- /* intensity stereo makes use of an extra degree of freedom */
- dof = N * f->channels
- + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
- temp = dof * (ff_celt_log_freq_range[i] + (f->size<<3));
- offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
- if (N == 2) /* dof=2 is the only case that doesn't fit the model */
- offset += dof<<1;
-
- /* grant an additional bias for the first and second pulses */
- if (f->pulses[i] + offset < 2 * (dof << 3))
- offset += temp >> 2;
- else if (f->pulses[i] + offset < 3 * (dof << 3))
- offset += temp >> 3;
-
- fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
- max_bits = FFMIN((f->pulses[i]>>3) >> (f->channels - 1),
- CELT_MAX_FINE_BITS);
-
- max_bits = FFMAX(max_bits, 0);
-
- f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
-
- /* if fine_bits was rounded down or capped,
- give priority for the final fine energy pass */
- f->fine_priority[i] = (f->fine_bits[i] * (dof<<3) >= f->pulses[i] + offset);
-
- /* the remaining bits are assigned to PVQ */
- f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
- } else {
- /* all bits go to fine energy except for the sign bit */
- extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3));
- f->pulses[i] -= extrabits;
- f->fine_bits[i] = 0;
- f->fine_priority[i] = 1;
- }
-
- /* hand back a limited number of extra fine energy bits to this band */
- if (extrabits > 0) {
- int fineextra = FFMIN(extrabits >> (f->channels + 2),
- CELT_MAX_FINE_BITS - f->fine_bits[i]);
- f->fine_bits[i] += fineextra;
-
- fineextra <<= f->channels + 2;
- f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
- extrabits -= fineextra;
- }
- }
- f->remaining = extrabits;
-
- /* skipped bands dedicate all of their bits for fine energy */
- for (; i < f->end_band; i++) {
- f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3;
- f->pulses[i] = 0;
- f->fine_priority[i] = f->fine_bits[i] < 1;
- }
- }
-
- static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data)
- {
- int i, j;
-
- for (i = f->start_band; i < f->end_band; i++) {
- float *dst = data + (ff_celt_freq_bands[i] << f->size);
- float log_norm = block->energy[i] + ff_celt_mean_energy[i];
- float norm = exp2f(FFMIN(log_norm, 32.0f));
-
- for (j = 0; j < ff_celt_freq_range[i] << f->size; j++)
- dst[j] *= norm;
- }
- }
-
- static void celt_postfilter_apply_transition(CeltBlock *block, float *data)
- {
- const int T0 = block->pf_period_old;
- const int T1 = block->pf_period;
-
- float g00, g01, g02;
- float g10, g11, g12;
-
- float x0, x1, x2, x3, x4;
-
- int i;
-
- if (block->pf_gains[0] == 0.0 &&
- block->pf_gains_old[0] == 0.0)
- return;
-
- g00 = block->pf_gains_old[0];
- g01 = block->pf_gains_old[1];
- g02 = block->pf_gains_old[2];
- g10 = block->pf_gains[0];
- g11 = block->pf_gains[1];
- g12 = block->pf_gains[2];
-
- x1 = data[-T1 + 1];
- x2 = data[-T1];
- x3 = data[-T1 - 1];
- x4 = data[-T1 - 2];
-
- for (i = 0; i < CELT_OVERLAP; i++) {
- float w = ff_celt_window2[i];
- x0 = data[i - T1 + 2];
-
- data[i] += (1.0 - w) * g00 * data[i - T0] +
- (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
- (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
- w * g10 * x2 +
- w * g11 * (x1 + x3) +
- w * g12 * (x0 + x4);
- x4 = x3;
- x3 = x2;
- x2 = x1;
- x1 = x0;
- }
- }
-
- static void celt_postfilter_apply(CeltBlock *block, float *data, int len)
- {
- const int T = block->pf_period;
- float g0, g1, g2;
- float x0, x1, x2, x3, x4;
- int i;
-
- if (block->pf_gains[0] == 0.0 || len <= 0)
- return;
-
- g0 = block->pf_gains[0];
- g1 = block->pf_gains[1];
- g2 = block->pf_gains[2];
-
- x4 = data[-T - 2];
- x3 = data[-T - 1];
- x2 = data[-T];
- x1 = data[-T + 1];
-
- for (i = 0; i < len; i++) {
- x0 = data[i - T + 2];
- data[i] += g0 * x2 +
- g1 * (x1 + x3) +
- g2 * (x0 + x4);
- x4 = x3;
- x3 = x2;
- x2 = x1;
- x1 = x0;
- }
- }
-
- static void celt_postfilter(CeltFrame *f, CeltBlock *block)
- {
- int len = f->blocksize * f->blocks;
-
- celt_postfilter_apply_transition(block, block->buf + 1024);
-
- block->pf_period_old = block->pf_period;
- memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
-
- block->pf_period = block->pf_period_new;
- memcpy(block->pf_gains, block->pf_gains_new, sizeof(block->pf_gains));
-
- if (len > CELT_OVERLAP) {
- celt_postfilter_apply_transition(block, block->buf + 1024 + CELT_OVERLAP);
- celt_postfilter_apply(block, block->buf + 1024 + 2 * CELT_OVERLAP,
- len - 2 * CELT_OVERLAP);
-
- block->pf_period_old = block->pf_period;
- memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
- }
-
- memmove(block->buf, block->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
- }
-
- static int parse_postfilter(CeltFrame *f, OpusRangeCoder *rc, int consumed)
- {
- int i;
-
- memset(f->block[0].pf_gains_new, 0, sizeof(f->block[0].pf_gains_new));
- memset(f->block[1].pf_gains_new, 0, sizeof(f->block[1].pf_gains_new));
-
- if (f->start_band == 0 && consumed + 16 <= f->framebits) {
- int has_postfilter = ff_opus_rc_dec_log(rc, 1);
- if (has_postfilter) {
- float gain;
- int tapset, octave, period;
-
- octave = ff_opus_rc_dec_uint(rc, 6);
- period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1;
- gain = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1);
- tapset = (opus_rc_tell(rc) + 2 <= f->framebits) ?
- ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0;
-
- for (i = 0; i < 2; i++) {
- CeltBlock *block = &f->block[i];
-
- block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
- block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0];
- block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1];
- block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2];
- }
- }
-
- consumed = opus_rc_tell(rc);
- }
-
- return consumed;
- }
-
- static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X)
- {
- int i, j, k;
-
- for (i = f->start_band; i < f->end_band; i++) {
- int renormalize = 0;
- float *xptr;
- float prev[2];
- float Ediff, r;
- float thresh, sqrt_1;
- int depth;
-
- /* depth in 1/8 bits */
- depth = (1 + f->pulses[i]) / (ff_celt_freq_range[i] << f->size);
- thresh = exp2f(-1.0 - 0.125f * depth);
- sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << f->size);
-
- xptr = X + (ff_celt_freq_bands[i] << f->size);
-
- prev[0] = block->prev_energy[0][i];
- prev[1] = block->prev_energy[1][i];
- if (f->channels == 1) {
- CeltBlock *block1 = &f->block[1];
-
- prev[0] = FFMAX(prev[0], block1->prev_energy[0][i]);
- prev[1] = FFMAX(prev[1], block1->prev_energy[1][i]);
- }
- Ediff = block->energy[i] - FFMIN(prev[0], prev[1]);
- Ediff = FFMAX(0, Ediff);
-
- /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
- short blocks don't have the same energy as long */
- r = exp2f(1 - Ediff);
- if (f->size == 3)
- r *= M_SQRT2;
- r = FFMIN(thresh, r) * sqrt_1;
- for (k = 0; k < 1 << f->size; k++) {
- /* Detect collapse */
- if (!(block->collapse_masks[i] & 1 << k)) {
- /* Fill with noise */
- for (j = 0; j < ff_celt_freq_range[i]; j++)
- xptr[(j << f->size) + k] = (celt_rng(f) & 0x8000) ? r : -r;
- renormalize = 1;
- }
- }
-
- /* We just added some energy, so we need to renormalize */
- if (renormalize)
- celt_renormalize_vector(xptr, ff_celt_freq_range[i] << f->size, 1.0f);
- }
- }
-
- int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc,
- float **output, int channels, int frame_size,
- int start_band, int end_band)
- {
- int i, j, downmix = 0;
- int consumed; // bits of entropy consumed thus far for this frame
- MDCT15Context *imdct;
-
- if (channels != 1 && channels != 2) {
- av_log(f->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
- channels);
- return AVERROR_INVALIDDATA;
- }
- if (start_band < 0 || start_band > end_band || end_band > CELT_MAX_BANDS) {
- av_log(f->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
- start_band, end_band);
- return AVERROR_INVALIDDATA;
- }
-
- f->silence = 0;
- f->transient = 0;
- f->anticollapse = 0;
- f->flushed = 0;
- f->channels = channels;
- f->start_band = start_band;
- f->end_band = end_band;
- f->framebits = rc->rb.bytes * 8;
-
- f->size = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
- if (f->size > CELT_MAX_LOG_BLOCKS ||
- frame_size != CELT_SHORT_BLOCKSIZE * (1 << f->size)) {
- av_log(f->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
- frame_size);
- return AVERROR_INVALIDDATA;
- }
-
- if (!f->output_channels)
- f->output_channels = channels;
-
- for (i = 0; i < f->channels; i++) {
- memset(f->block[i].coeffs, 0, sizeof(f->block[i].coeffs));
- memset(f->block[i].collapse_masks, 0, sizeof(f->block[i].collapse_masks));
- }
-
- consumed = opus_rc_tell(rc);
-
- /* obtain silence flag */
- if (consumed >= f->framebits)
- f->silence = 1;
- else if (consumed == 1)
- f->silence = ff_opus_rc_dec_log(rc, 15);
-
-
- if (f->silence) {
- consumed = f->framebits;
- rc->total_bits += f->framebits - opus_rc_tell(rc);
- }
-
- /* obtain post-filter options */
- consumed = parse_postfilter(f, rc, consumed);
-
- /* obtain transient flag */
- if (f->size != 0 && consumed+3 <= f->framebits)
- f->transient = ff_opus_rc_dec_log(rc, 3);
-
- f->blocks = f->transient ? 1 << f->size : 1;
- f->blocksize = frame_size / f->blocks;
-
- imdct = f->imdct[f->transient ? 0 : f->size];
-
- if (channels == 1) {
- for (i = 0; i < CELT_MAX_BANDS; i++)
- f->block[0].energy[i] = FFMAX(f->block[0].energy[i], f->block[1].energy[i]);
- }
-
- celt_decode_coarse_energy(f, rc);
- celt_decode_tf_changes (f, rc);
- celt_decode_allocation (f, rc);
- celt_decode_fine_energy (f, rc);
- ff_celt_quant_bands (f, rc);
-
- if (f->anticollapse_needed)
- f->anticollapse = ff_opus_rc_get_raw(rc, 1);
-
- celt_decode_final_energy(f, rc);
-
- /* apply anti-collapse processing and denormalization to
- * each coded channel */
- for (i = 0; i < f->channels; i++) {
- CeltBlock *block = &f->block[i];
-
- if (f->anticollapse)
- process_anticollapse(f, block, f->block[i].coeffs);
-
- celt_denormalize(f, block, f->block[i].coeffs);
- }
-
- /* stereo -> mono downmix */
- if (f->output_channels < f->channels) {
- f->dsp->vector_fmac_scalar(f->block[0].coeffs, f->block[1].coeffs, 1.0, FFALIGN(frame_size, 16));
- downmix = 1;
- } else if (f->output_channels > f->channels)
- memcpy(f->block[1].coeffs, f->block[0].coeffs, frame_size * sizeof(float));
-
- if (f->silence) {
- for (i = 0; i < 2; i++) {
- CeltBlock *block = &f->block[i];
-
- for (j = 0; j < FF_ARRAY_ELEMS(block->energy); j++)
- block->energy[j] = CELT_ENERGY_SILENCE;
- }
- memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs));
- memset(f->block[1].coeffs, 0, sizeof(f->block[1].coeffs));
- }
-
- /* transform and output for each output channel */
- for (i = 0; i < f->output_channels; i++) {
- CeltBlock *block = &f->block[i];
- float m = block->emph_coeff;
-
- /* iMDCT and overlap-add */
- for (j = 0; j < f->blocks; j++) {
- float *dst = block->buf + 1024 + j * f->blocksize;
-
- imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, f->block[i].coeffs + j,
- f->blocks);
- f->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
- ff_celt_window, CELT_OVERLAP / 2);
- }
-
- if (downmix)
- f->dsp->vector_fmul_scalar(&block->buf[1024], &block->buf[1024], 0.5f, frame_size);
-
- /* postfilter */
- celt_postfilter(f, block);
-
- /* deemphasis and output scaling */
- for (j = 0; j < frame_size; j++) {
- const float tmp = block->buf[1024 - frame_size + j] + m;
- m = tmp * CELT_EMPH_COEFF;
- output[i][j] = tmp;
- }
-
- block->emph_coeff = m;
- }
-
- if (channels == 1)
- memcpy(f->block[1].energy, f->block[0].energy, sizeof(f->block[0].energy));
-
- for (i = 0; i < 2; i++ ) {
- CeltBlock *block = &f->block[i];
-
- if (!f->transient) {
- memcpy(block->prev_energy[1], block->prev_energy[0], sizeof(block->prev_energy[0]));
- memcpy(block->prev_energy[0], block->energy, sizeof(block->prev_energy[0]));
- } else {
- for (j = 0; j < CELT_MAX_BANDS; j++)
- block->prev_energy[0][j] = FFMIN(block->prev_energy[0][j], block->energy[j]);
- }
-
- for (j = 0; j < f->start_band; j++) {
- block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
- block->energy[j] = 0.0;
- }
- for (j = f->end_band; j < CELT_MAX_BANDS; j++) {
- block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
- block->energy[j] = 0.0;
- }
- }
-
- f->seed = rc->range;
-
- return 0;
- }
-
- void ff_celt_flush(CeltFrame *f)
- {
- int i, j;
-
- if (f->flushed)
- return;
-
- for (i = 0; i < 2; i++) {
- CeltBlock *block = &f->block[i];
-
- for (j = 0; j < CELT_MAX_BANDS; j++)
- block->prev_energy[0][j] = block->prev_energy[1][j] = CELT_ENERGY_SILENCE;
-
- memset(block->energy, 0, sizeof(block->energy));
- memset(block->buf, 0, sizeof(block->buf));
-
- memset(block->pf_gains, 0, sizeof(block->pf_gains));
- memset(block->pf_gains_old, 0, sizeof(block->pf_gains_old));
- memset(block->pf_gains_new, 0, sizeof(block->pf_gains_new));
-
- block->emph_coeff = 0.0;
- }
- f->seed = 0;
-
- f->flushed = 1;
- }
-
- void ff_celt_free(CeltFrame **f)
- {
- CeltFrame *frm = *f;
- int i;
-
- if (!frm)
- return;
-
- for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
- ff_mdct15_uninit(&frm->imdct[i]);
-
- ff_celt_pvq_uninit(&frm->pvq);
-
- av_freep(&frm->dsp);
- av_freep(f);
- }
-
- int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels,
- int apply_phase_inv)
- {
- CeltFrame *frm;
- int i, ret;
-
- if (output_channels != 1 && output_channels != 2) {
- av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
- output_channels);
- return AVERROR(EINVAL);
- }
-
- frm = av_mallocz(sizeof(*frm));
- if (!frm)
- return AVERROR(ENOMEM);
-
- frm->avctx = avctx;
- frm->output_channels = output_channels;
- frm->apply_phase_inv = apply_phase_inv;
-
- for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
- if ((ret = ff_mdct15_init(&frm->imdct[i], 1, i + 3, -1.0f/32768)) < 0)
- goto fail;
-
- if ((ret = ff_celt_pvq_init(&frm->pvq, 0)) < 0)
- goto fail;
-
- frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
- if (!frm->dsp) {
- ret = AVERROR(ENOMEM);
- goto fail;
- }
-
- ff_celt_flush(frm);
-
- *f = frm;
-
- return 0;
- fail:
- ff_celt_free(&frm);
- return ret;
- }
|