You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

619 lines
19KB

  1. /*
  2. * Wing Commander/Xan Video Decoder
  3. * Copyright (C) 2003 the ffmpeg project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Xan video decoder for Wing Commander III computer game
  24. * by Mario Brito (mbrito@student.dei.uc.pt)
  25. * and Mike Melanson (melanson@pcisys.net)
  26. *
  27. * The xan_wc3 decoder outputs PAL8 data.
  28. */
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include "libavutil/intreadwrite.h"
  33. #include "libavutil/mem.h"
  34. #include "avcodec.h"
  35. #include "bytestream.h"
  36. #define BITSTREAM_READER_LE
  37. #include "get_bits.h"
  38. #include "internal.h"
  39. #define RUNTIME_GAMMA 0
  40. #define VGA__TAG MKTAG('V', 'G', 'A', ' ')
  41. #define PALT_TAG MKTAG('P', 'A', 'L', 'T')
  42. #define SHOT_TAG MKTAG('S', 'H', 'O', 'T')
  43. #define PALETTE_COUNT 256
  44. #define PALETTE_SIZE (PALETTE_COUNT * 3)
  45. #define PALETTES_MAX 256
  46. typedef struct XanContext {
  47. AVCodecContext *avctx;
  48. AVFrame last_frame;
  49. const unsigned char *buf;
  50. int size;
  51. /* scratch space */
  52. unsigned char *buffer1;
  53. int buffer1_size;
  54. unsigned char *buffer2;
  55. int buffer2_size;
  56. unsigned *palettes;
  57. int palettes_count;
  58. int cur_palette;
  59. int frame_size;
  60. } XanContext;
  61. static av_cold int xan_decode_init(AVCodecContext *avctx)
  62. {
  63. XanContext *s = avctx->priv_data;
  64. s->avctx = avctx;
  65. s->frame_size = 0;
  66. avctx->pix_fmt = AV_PIX_FMT_PAL8;
  67. s->buffer1_size = avctx->width * avctx->height;
  68. s->buffer1 = av_malloc(s->buffer1_size);
  69. if (!s->buffer1)
  70. return AVERROR(ENOMEM);
  71. s->buffer2_size = avctx->width * avctx->height;
  72. s->buffer2 = av_malloc(s->buffer2_size + 130);
  73. if (!s->buffer2) {
  74. av_freep(&s->buffer1);
  75. return AVERROR(ENOMEM);
  76. }
  77. return 0;
  78. }
  79. static int xan_huffman_decode(unsigned char *dest, int dest_len,
  80. const unsigned char *src, int src_len)
  81. {
  82. unsigned char byte = *src++;
  83. unsigned char ival = byte + 0x16;
  84. const unsigned char * ptr = src + byte*2;
  85. int ptr_len = src_len - 1 - byte*2;
  86. unsigned char val = ival;
  87. unsigned char *dest_end = dest + dest_len;
  88. unsigned char *dest_start = dest;
  89. GetBitContext gb;
  90. if (ptr_len < 0)
  91. return AVERROR_INVALIDDATA;
  92. init_get_bits(&gb, ptr, ptr_len * 8);
  93. while (val != 0x16) {
  94. unsigned idx = val - 0x17 + get_bits1(&gb) * byte;
  95. if (idx >= 2 * byte)
  96. return AVERROR_INVALIDDATA;
  97. val = src[idx];
  98. if (val < 0x16) {
  99. if (dest >= dest_end)
  100. return dest_len;
  101. *dest++ = val;
  102. val = ival;
  103. }
  104. }
  105. return dest - dest_start;
  106. }
  107. /**
  108. * unpack simple compression
  109. *
  110. * @param dest destination buffer of dest_len, must be padded with at least 130 bytes
  111. */
  112. static void xan_unpack(unsigned char *dest, int dest_len,
  113. const unsigned char *src, int src_len)
  114. {
  115. unsigned char opcode;
  116. int size;
  117. unsigned char *dest_org = dest;
  118. unsigned char *dest_end = dest + dest_len;
  119. GetByteContext ctx;
  120. bytestream2_init(&ctx, src, src_len);
  121. while (dest < dest_end && bytestream2_get_bytes_left(&ctx)) {
  122. opcode = bytestream2_get_byte(&ctx);
  123. if (opcode < 0xe0) {
  124. int size2, back;
  125. if ((opcode & 0x80) == 0) {
  126. size = opcode & 3;
  127. back = ((opcode & 0x60) << 3) + bytestream2_get_byte(&ctx) + 1;
  128. size2 = ((opcode & 0x1c) >> 2) + 3;
  129. } else if ((opcode & 0x40) == 0) {
  130. size = bytestream2_peek_byte(&ctx) >> 6;
  131. back = (bytestream2_get_be16(&ctx) & 0x3fff) + 1;
  132. size2 = (opcode & 0x3f) + 4;
  133. } else {
  134. size = opcode & 3;
  135. back = ((opcode & 0x10) << 12) + bytestream2_get_be16(&ctx) + 1;
  136. size2 = ((opcode & 0x0c) << 6) + bytestream2_get_byte(&ctx) + 5;
  137. }
  138. if (dest_end - dest < size + size2 ||
  139. dest + size - dest_org < back ||
  140. bytestream2_get_bytes_left(&ctx) < size)
  141. return;
  142. bytestream2_get_buffer(&ctx, dest, size);
  143. dest += size;
  144. av_memcpy_backptr(dest, back, size2);
  145. dest += size2;
  146. } else {
  147. int finish = opcode >= 0xfc;
  148. size = finish ? opcode & 3 : ((opcode & 0x1f) << 2) + 4;
  149. if (dest_end - dest < size || bytestream2_get_bytes_left(&ctx) < size)
  150. return;
  151. bytestream2_get_buffer(&ctx, dest, size);
  152. dest += size;
  153. if (finish)
  154. return;
  155. }
  156. }
  157. }
  158. static inline void xan_wc3_output_pixel_run(XanContext *s, AVFrame *frame,
  159. const unsigned char *pixel_buffer, int x, int y, int pixel_count)
  160. {
  161. int stride;
  162. int line_inc;
  163. int index;
  164. int current_x;
  165. int width = s->avctx->width;
  166. unsigned char *palette_plane;
  167. palette_plane = frame->data[0];
  168. stride = frame->linesize[0];
  169. line_inc = stride - width;
  170. index = y * stride + x;
  171. current_x = x;
  172. while (pixel_count && index < s->frame_size) {
  173. int count = FFMIN(pixel_count, width - current_x);
  174. memcpy(palette_plane + index, pixel_buffer, count);
  175. pixel_count -= count;
  176. index += count;
  177. pixel_buffer += count;
  178. current_x += count;
  179. if (current_x >= width) {
  180. index += line_inc;
  181. current_x = 0;
  182. }
  183. }
  184. }
  185. static inline void xan_wc3_copy_pixel_run(XanContext *s, AVFrame *frame,
  186. int x, int y,
  187. int pixel_count, int motion_x,
  188. int motion_y)
  189. {
  190. int stride;
  191. int line_inc;
  192. int curframe_index, prevframe_index;
  193. int curframe_x, prevframe_x;
  194. int width = s->avctx->width;
  195. unsigned char *palette_plane, *prev_palette_plane;
  196. if (y + motion_y < 0 || y + motion_y >= s->avctx->height ||
  197. x + motion_x < 0 || x + motion_x >= s->avctx->width)
  198. return;
  199. palette_plane = frame->data[0];
  200. prev_palette_plane = s->last_frame.data[0];
  201. if (!prev_palette_plane)
  202. prev_palette_plane = palette_plane;
  203. stride = frame->linesize[0];
  204. line_inc = stride - width;
  205. curframe_index = y * stride + x;
  206. curframe_x = x;
  207. prevframe_index = (y + motion_y) * stride + x + motion_x;
  208. prevframe_x = x + motion_x;
  209. while (pixel_count &&
  210. curframe_index < s->frame_size &&
  211. prevframe_index < s->frame_size) {
  212. int count = FFMIN3(pixel_count, width - curframe_x,
  213. width - prevframe_x);
  214. memcpy(palette_plane + curframe_index,
  215. prev_palette_plane + prevframe_index, count);
  216. pixel_count -= count;
  217. curframe_index += count;
  218. prevframe_index += count;
  219. curframe_x += count;
  220. prevframe_x += count;
  221. if (curframe_x >= width) {
  222. curframe_index += line_inc;
  223. curframe_x = 0;
  224. }
  225. if (prevframe_x >= width) {
  226. prevframe_index += line_inc;
  227. prevframe_x = 0;
  228. }
  229. }
  230. }
  231. static int xan_wc3_decode_frame(XanContext *s, AVFrame *frame)
  232. {
  233. int width = s->avctx->width;
  234. int height = s->avctx->height;
  235. int total_pixels = width * height;
  236. unsigned char opcode;
  237. unsigned char flag = 0;
  238. int size = 0;
  239. int motion_x, motion_y;
  240. int x, y, ret;
  241. unsigned char *opcode_buffer = s->buffer1;
  242. unsigned char *opcode_buffer_end = s->buffer1 + s->buffer1_size;
  243. int opcode_buffer_size = s->buffer1_size;
  244. const unsigned char *imagedata_buffer = s->buffer2;
  245. /* pointers to segments inside the compressed chunk */
  246. const unsigned char *huffman_segment;
  247. GetByteContext size_segment;
  248. GetByteContext vector_segment;
  249. const unsigned char *imagedata_segment;
  250. int huffman_offset, size_offset, vector_offset, imagedata_offset,
  251. imagedata_size;
  252. if (s->size < 8)
  253. return AVERROR_INVALIDDATA;
  254. huffman_offset = AV_RL16(&s->buf[0]);
  255. size_offset = AV_RL16(&s->buf[2]);
  256. vector_offset = AV_RL16(&s->buf[4]);
  257. imagedata_offset = AV_RL16(&s->buf[6]);
  258. if (huffman_offset >= s->size ||
  259. size_offset >= s->size ||
  260. vector_offset >= s->size ||
  261. imagedata_offset >= s->size)
  262. return AVERROR_INVALIDDATA;
  263. huffman_segment = s->buf + huffman_offset;
  264. bytestream2_init(&size_segment, s->buf + size_offset, s->size - size_offset);
  265. bytestream2_init(&vector_segment, s->buf + vector_offset, s->size - vector_offset);
  266. imagedata_segment = s->buf + imagedata_offset;
  267. if ((ret = xan_huffman_decode(opcode_buffer, opcode_buffer_size,
  268. huffman_segment, s->size - huffman_offset)) < 0)
  269. return AVERROR_INVALIDDATA;
  270. opcode_buffer_end = opcode_buffer + ret;
  271. if (imagedata_segment[0] == 2) {
  272. xan_unpack(s->buffer2, s->buffer2_size,
  273. &imagedata_segment[1], s->size - imagedata_offset - 1);
  274. imagedata_size = s->buffer2_size;
  275. } else {
  276. imagedata_size = s->size - imagedata_offset - 1;
  277. imagedata_buffer = &imagedata_segment[1];
  278. }
  279. /* use the decoded data segments to build the frame */
  280. x = y = 0;
  281. while (total_pixels && opcode_buffer < opcode_buffer_end) {
  282. opcode = *opcode_buffer++;
  283. size = 0;
  284. switch (opcode) {
  285. case 0:
  286. flag ^= 1;
  287. continue;
  288. case 1:
  289. case 2:
  290. case 3:
  291. case 4:
  292. case 5:
  293. case 6:
  294. case 7:
  295. case 8:
  296. size = opcode;
  297. break;
  298. case 12:
  299. case 13:
  300. case 14:
  301. case 15:
  302. case 16:
  303. case 17:
  304. case 18:
  305. size += (opcode - 10);
  306. break;
  307. case 9:
  308. case 19:
  309. size = bytestream2_get_byte(&size_segment);
  310. break;
  311. case 10:
  312. case 20:
  313. size = bytestream2_get_be16(&size_segment);
  314. break;
  315. case 11:
  316. case 21:
  317. size = bytestream2_get_be24(&size_segment);
  318. break;
  319. }
  320. if (size > total_pixels)
  321. break;
  322. if (opcode < 12) {
  323. flag ^= 1;
  324. if (flag) {
  325. /* run of (size) pixels is unchanged from last frame */
  326. xan_wc3_copy_pixel_run(s, frame, x, y, size, 0, 0);
  327. } else {
  328. /* output a run of pixels from imagedata_buffer */
  329. if (imagedata_size < size)
  330. break;
  331. xan_wc3_output_pixel_run(s, frame, imagedata_buffer, x, y, size);
  332. imagedata_buffer += size;
  333. imagedata_size -= size;
  334. }
  335. } else {
  336. /* run-based motion compensation from last frame */
  337. uint8_t vector = bytestream2_get_byte(&vector_segment);
  338. motion_x = sign_extend(vector >> 4, 4);
  339. motion_y = sign_extend(vector & 0xF, 4);
  340. /* copy a run of pixels from the previous frame */
  341. xan_wc3_copy_pixel_run(s, frame, x, y, size, motion_x, motion_y);
  342. flag = 0;
  343. }
  344. /* coordinate accounting */
  345. total_pixels -= size;
  346. y += (x + size) / width;
  347. x = (x + size) % width;
  348. }
  349. return 0;
  350. }
  351. #if RUNTIME_GAMMA
  352. static inline unsigned mul(unsigned a, unsigned b)
  353. {
  354. return (a * b) >> 16;
  355. }
  356. static inline unsigned pow4(unsigned a)
  357. {
  358. unsigned square = mul(a, a);
  359. return mul(square, square);
  360. }
  361. static inline unsigned pow5(unsigned a)
  362. {
  363. return mul(pow4(a), a);
  364. }
  365. static uint8_t gamma_corr(uint8_t in) {
  366. unsigned lo, hi = 0xff40, target;
  367. int i = 15;
  368. in = (in << 2) | (in >> 6);
  369. /* equivalent float code:
  370. if (in >= 252)
  371. return 253;
  372. return round(pow(in / 256.0, 0.8) * 256);
  373. */
  374. lo = target = in << 8;
  375. do {
  376. unsigned mid = (lo + hi) >> 1;
  377. unsigned pow = pow5(mid);
  378. if (pow > target) hi = mid;
  379. else lo = mid;
  380. } while (--i);
  381. return (pow4((lo + hi) >> 1) + 0x80) >> 8;
  382. }
  383. #else
  384. /**
  385. * This is a gamma correction that xan3 applies to all palette entries.
  386. *
  387. * There is a peculiarity, namely that the values are clamped to 253 -
  388. * it seems likely that this table was calculated by a buggy fixed-point
  389. * implementation, the one above under RUNTIME_GAMMA behaves like this for
  390. * example.
  391. * The exponent value of 0.8 can be explained by this as well, since 0.8 = 4/5
  392. * and thus pow(x, 0.8) is still easy to calculate.
  393. * Also, the input values are first rotated to the left by 2.
  394. */
  395. static const uint8_t gamma_lookup[256] = {
  396. 0x00, 0x09, 0x10, 0x16, 0x1C, 0x21, 0x27, 0x2C,
  397. 0x31, 0x35, 0x3A, 0x3F, 0x43, 0x48, 0x4C, 0x50,
  398. 0x54, 0x59, 0x5D, 0x61, 0x65, 0x69, 0x6D, 0x71,
  399. 0x75, 0x79, 0x7D, 0x80, 0x84, 0x88, 0x8C, 0x8F,
  400. 0x93, 0x97, 0x9A, 0x9E, 0xA2, 0xA5, 0xA9, 0xAC,
  401. 0xB0, 0xB3, 0xB7, 0xBA, 0xBE, 0xC1, 0xC5, 0xC8,
  402. 0xCB, 0xCF, 0xD2, 0xD5, 0xD9, 0xDC, 0xDF, 0xE3,
  403. 0xE6, 0xE9, 0xED, 0xF0, 0xF3, 0xF6, 0xFA, 0xFD,
  404. 0x03, 0x0B, 0x12, 0x18, 0x1D, 0x23, 0x28, 0x2D,
  405. 0x32, 0x36, 0x3B, 0x40, 0x44, 0x49, 0x4D, 0x51,
  406. 0x56, 0x5A, 0x5E, 0x62, 0x66, 0x6A, 0x6E, 0x72,
  407. 0x76, 0x7A, 0x7D, 0x81, 0x85, 0x89, 0x8D, 0x90,
  408. 0x94, 0x98, 0x9B, 0x9F, 0xA2, 0xA6, 0xAA, 0xAD,
  409. 0xB1, 0xB4, 0xB8, 0xBB, 0xBF, 0xC2, 0xC5, 0xC9,
  410. 0xCC, 0xD0, 0xD3, 0xD6, 0xDA, 0xDD, 0xE0, 0xE4,
  411. 0xE7, 0xEA, 0xED, 0xF1, 0xF4, 0xF7, 0xFA, 0xFD,
  412. 0x05, 0x0D, 0x13, 0x19, 0x1F, 0x24, 0x29, 0x2E,
  413. 0x33, 0x38, 0x3C, 0x41, 0x45, 0x4A, 0x4E, 0x52,
  414. 0x57, 0x5B, 0x5F, 0x63, 0x67, 0x6B, 0x6F, 0x73,
  415. 0x77, 0x7B, 0x7E, 0x82, 0x86, 0x8A, 0x8D, 0x91,
  416. 0x95, 0x99, 0x9C, 0xA0, 0xA3, 0xA7, 0xAA, 0xAE,
  417. 0xB2, 0xB5, 0xB9, 0xBC, 0xBF, 0xC3, 0xC6, 0xCA,
  418. 0xCD, 0xD0, 0xD4, 0xD7, 0xDA, 0xDE, 0xE1, 0xE4,
  419. 0xE8, 0xEB, 0xEE, 0xF1, 0xF5, 0xF8, 0xFB, 0xFD,
  420. 0x07, 0x0E, 0x15, 0x1A, 0x20, 0x25, 0x2A, 0x2F,
  421. 0x34, 0x39, 0x3D, 0x42, 0x46, 0x4B, 0x4F, 0x53,
  422. 0x58, 0x5C, 0x60, 0x64, 0x68, 0x6C, 0x70, 0x74,
  423. 0x78, 0x7C, 0x7F, 0x83, 0x87, 0x8B, 0x8E, 0x92,
  424. 0x96, 0x99, 0x9D, 0xA1, 0xA4, 0xA8, 0xAB, 0xAF,
  425. 0xB2, 0xB6, 0xB9, 0xBD, 0xC0, 0xC4, 0xC7, 0xCB,
  426. 0xCE, 0xD1, 0xD5, 0xD8, 0xDB, 0xDF, 0xE2, 0xE5,
  427. 0xE9, 0xEC, 0xEF, 0xF2, 0xF6, 0xF9, 0xFC, 0xFD
  428. };
  429. #endif
  430. static int xan_decode_frame(AVCodecContext *avctx,
  431. void *data, int *got_frame,
  432. AVPacket *avpkt)
  433. {
  434. AVFrame *frame = data;
  435. const uint8_t *buf = avpkt->data;
  436. int ret, buf_size = avpkt->size;
  437. XanContext *s = avctx->priv_data;
  438. GetByteContext ctx;
  439. int tag = 0;
  440. bytestream2_init(&ctx, buf, buf_size);
  441. while (bytestream2_get_bytes_left(&ctx) > 8 && tag != VGA__TAG) {
  442. unsigned *tmpptr;
  443. uint32_t new_pal;
  444. int size;
  445. int i;
  446. tag = bytestream2_get_le32(&ctx);
  447. size = bytestream2_get_be32(&ctx);
  448. size = FFMIN(size, bytestream2_get_bytes_left(&ctx));
  449. switch (tag) {
  450. case PALT_TAG:
  451. if (size < PALETTE_SIZE)
  452. return AVERROR_INVALIDDATA;
  453. if (s->palettes_count >= PALETTES_MAX)
  454. return AVERROR_INVALIDDATA;
  455. tmpptr = av_realloc(s->palettes,
  456. (s->palettes_count + 1) * AVPALETTE_SIZE);
  457. if (!tmpptr)
  458. return AVERROR(ENOMEM);
  459. s->palettes = tmpptr;
  460. tmpptr += s->palettes_count * AVPALETTE_COUNT;
  461. for (i = 0; i < PALETTE_COUNT; i++) {
  462. #if RUNTIME_GAMMA
  463. int r = gamma_corr(bytestream2_get_byteu(&ctx));
  464. int g = gamma_corr(bytestream2_get_byteu(&ctx));
  465. int b = gamma_corr(bytestream2_get_byteu(&ctx));
  466. #else
  467. int r = gamma_lookup[bytestream2_get_byteu(&ctx)];
  468. int g = gamma_lookup[bytestream2_get_byteu(&ctx)];
  469. int b = gamma_lookup[bytestream2_get_byteu(&ctx)];
  470. #endif
  471. *tmpptr++ = (r << 16) | (g << 8) | b;
  472. }
  473. s->palettes_count++;
  474. break;
  475. case SHOT_TAG:
  476. if (size < 4)
  477. return AVERROR_INVALIDDATA;
  478. new_pal = bytestream2_get_le32(&ctx);
  479. if (new_pal < s->palettes_count) {
  480. s->cur_palette = new_pal;
  481. } else
  482. av_log(avctx, AV_LOG_ERROR, "Invalid palette selected\n");
  483. break;
  484. case VGA__TAG:
  485. break;
  486. default:
  487. bytestream2_skip(&ctx, size);
  488. break;
  489. }
  490. }
  491. buf_size = bytestream2_get_bytes_left(&ctx);
  492. if (s->palettes_count <= 0) {
  493. av_log(s->avctx, AV_LOG_ERROR, "No palette found\n");
  494. return AVERROR_INVALIDDATA;
  495. }
  496. if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF))) {
  497. av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  498. return ret;
  499. }
  500. if (!s->frame_size)
  501. s->frame_size = frame->linesize[0] * s->avctx->height;
  502. memcpy(frame->data[1],
  503. s->palettes + s->cur_palette * AVPALETTE_COUNT, AVPALETTE_SIZE);
  504. s->buf = ctx.buffer;
  505. s->size = buf_size;
  506. if (xan_wc3_decode_frame(s, frame) < 0)
  507. return AVERROR_INVALIDDATA;
  508. av_frame_unref(&s->last_frame);
  509. if ((ret = av_frame_ref(&s->last_frame, frame)) < 0)
  510. return ret;
  511. *got_frame = 1;
  512. /* always report that the buffer was completely consumed */
  513. return buf_size;
  514. }
  515. static av_cold int xan_decode_end(AVCodecContext *avctx)
  516. {
  517. XanContext *s = avctx->priv_data;
  518. av_frame_unref(&s->last_frame);
  519. av_freep(&s->buffer1);
  520. av_freep(&s->buffer2);
  521. av_freep(&s->palettes);
  522. return 0;
  523. }
  524. AVCodec ff_xan_wc3_decoder = {
  525. .name = "xan_wc3",
  526. .long_name = NULL_IF_CONFIG_SMALL("Wing Commander III / Xan"),
  527. .type = AVMEDIA_TYPE_VIDEO,
  528. .id = AV_CODEC_ID_XAN_WC3,
  529. .priv_data_size = sizeof(XanContext),
  530. .init = xan_decode_init,
  531. .close = xan_decode_end,
  532. .decode = xan_decode_frame,
  533. .capabilities = CODEC_CAP_DR1,
  534. };