You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

443 lines
14KB

  1. /*
  2. * WMA compatible encoder
  3. * Copyright (c) 2007 Michael Niedermayer
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/attributes.h"
  22. #include "avcodec.h"
  23. #include "internal.h"
  24. #include "wma.h"
  25. #undef NDEBUG
  26. #include <assert.h>
  27. static av_cold int encode_init(AVCodecContext *avctx)
  28. {
  29. WMACodecContext *s = avctx->priv_data;
  30. int i, flags1, flags2, block_align;
  31. uint8_t *extradata;
  32. s->avctx = avctx;
  33. if(avctx->channels > MAX_CHANNELS) {
  34. av_log(avctx, AV_LOG_ERROR, "too many channels: got %i, need %i or fewer",
  35. avctx->channels, MAX_CHANNELS);
  36. return AVERROR(EINVAL);
  37. }
  38. if (avctx->sample_rate > 48000) {
  39. av_log(avctx, AV_LOG_ERROR, "sample rate is too high: %d > 48kHz",
  40. avctx->sample_rate);
  41. return AVERROR(EINVAL);
  42. }
  43. if(avctx->bit_rate < 24*1000) {
  44. av_log(avctx, AV_LOG_ERROR, "bitrate too low: got %i, need 24000 or higher\n",
  45. avctx->bit_rate);
  46. return AVERROR(EINVAL);
  47. }
  48. /* extract flag infos */
  49. flags1 = 0;
  50. flags2 = 1;
  51. if (avctx->codec->id == AV_CODEC_ID_WMAV1) {
  52. extradata= av_malloc(4);
  53. avctx->extradata_size= 4;
  54. AV_WL16(extradata, flags1);
  55. AV_WL16(extradata+2, flags2);
  56. } else if (avctx->codec->id == AV_CODEC_ID_WMAV2) {
  57. extradata= av_mallocz(10);
  58. avctx->extradata_size= 10;
  59. AV_WL32(extradata, flags1);
  60. AV_WL16(extradata+4, flags2);
  61. }else
  62. assert(0);
  63. avctx->extradata= extradata;
  64. s->use_exp_vlc = flags2 & 0x0001;
  65. s->use_bit_reservoir = flags2 & 0x0002;
  66. s->use_variable_block_len = flags2 & 0x0004;
  67. if (avctx->channels == 2)
  68. s->ms_stereo = 1;
  69. ff_wma_init(avctx, flags2);
  70. /* init MDCT */
  71. for(i = 0; i < s->nb_block_sizes; i++)
  72. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 0, 1.0);
  73. block_align = avctx->bit_rate * (int64_t)s->frame_len /
  74. (avctx->sample_rate * 8);
  75. block_align = FFMIN(block_align, MAX_CODED_SUPERFRAME_SIZE);
  76. avctx->block_align = block_align;
  77. avctx->bit_rate = avctx->block_align * 8LL * avctx->sample_rate /
  78. s->frame_len;
  79. avctx->frame_size = avctx->delay = s->frame_len;
  80. return 0;
  81. }
  82. static void apply_window_and_mdct(AVCodecContext * avctx, const AVFrame *frame)
  83. {
  84. WMACodecContext *s = avctx->priv_data;
  85. float **audio = (float **)frame->extended_data;
  86. int len = frame->nb_samples;
  87. int window_index= s->frame_len_bits - s->block_len_bits;
  88. FFTContext *mdct = &s->mdct_ctx[window_index];
  89. int ch;
  90. const float * win = s->windows[window_index];
  91. int window_len = 1 << s->block_len_bits;
  92. float n = 2.0 * 32768.0 / window_len;
  93. for (ch = 0; ch < avctx->channels; ch++) {
  94. memcpy(s->output, s->frame_out[ch], window_len * sizeof(*s->output));
  95. s->fdsp.vector_fmul_scalar(s->frame_out[ch], audio[ch], n, len);
  96. s->fdsp.vector_fmul_reverse(&s->output[window_len], s->frame_out[ch], win, len);
  97. s->fdsp.vector_fmul(s->frame_out[ch], s->frame_out[ch], win, len);
  98. mdct->mdct_calc(mdct, s->coefs[ch], s->output);
  99. }
  100. }
  101. //FIXME use for decoding too
  102. static void init_exp(WMACodecContext *s, int ch, const int *exp_param){
  103. int n;
  104. const uint16_t *ptr;
  105. float v, *q, max_scale, *q_end;
  106. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  107. q = s->exponents[ch];
  108. q_end = q + s->block_len;
  109. max_scale = 0;
  110. while (q < q_end) {
  111. /* XXX: use a table */
  112. v = pow(10, *exp_param++ * (1.0 / 16.0));
  113. max_scale= FFMAX(max_scale, v);
  114. n = *ptr++;
  115. do {
  116. *q++ = v;
  117. } while (--n);
  118. }
  119. s->max_exponent[ch] = max_scale;
  120. }
  121. static void encode_exp_vlc(WMACodecContext *s, int ch, const int *exp_param){
  122. int last_exp;
  123. const uint16_t *ptr;
  124. float *q, *q_end;
  125. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  126. q = s->exponents[ch];
  127. q_end = q + s->block_len;
  128. if (s->version == 1) {
  129. last_exp= *exp_param++;
  130. assert(last_exp-10 >= 0 && last_exp-10 < 32);
  131. put_bits(&s->pb, 5, last_exp - 10);
  132. q+= *ptr++;
  133. }else
  134. last_exp = 36;
  135. while (q < q_end) {
  136. int exp = *exp_param++;
  137. int code = exp - last_exp + 60;
  138. assert(code >= 0 && code < 120);
  139. put_bits(&s->pb, ff_aac_scalefactor_bits[code], ff_aac_scalefactor_code[code]);
  140. /* XXX: use a table */
  141. q+= *ptr++;
  142. last_exp= exp;
  143. }
  144. }
  145. static int encode_block(WMACodecContext *s, float (*src_coefs)[BLOCK_MAX_SIZE], int total_gain){
  146. int v, bsize, ch, coef_nb_bits, parse_exponents;
  147. float mdct_norm;
  148. int nb_coefs[MAX_CHANNELS];
  149. static const int fixed_exp[25]={20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20};
  150. //FIXME remove duplication relative to decoder
  151. if (s->use_variable_block_len) {
  152. assert(0); //FIXME not implemented
  153. }else{
  154. /* fixed block len */
  155. s->next_block_len_bits = s->frame_len_bits;
  156. s->prev_block_len_bits = s->frame_len_bits;
  157. s->block_len_bits = s->frame_len_bits;
  158. }
  159. s->block_len = 1 << s->block_len_bits;
  160. // assert((s->block_pos + s->block_len) <= s->frame_len);
  161. bsize = s->frame_len_bits - s->block_len_bits;
  162. //FIXME factor
  163. v = s->coefs_end[bsize] - s->coefs_start;
  164. for (ch = 0; ch < s->avctx->channels; ch++)
  165. nb_coefs[ch] = v;
  166. {
  167. int n4 = s->block_len / 2;
  168. mdct_norm = 1.0 / (float)n4;
  169. if (s->version == 1) {
  170. mdct_norm *= sqrt(n4);
  171. }
  172. }
  173. if (s->avctx->channels == 2) {
  174. put_bits(&s->pb, 1, !!s->ms_stereo);
  175. }
  176. for (ch = 0; ch < s->avctx->channels; ch++) {
  177. s->channel_coded[ch] = 1; //FIXME only set channel_coded when needed, instead of always
  178. if (s->channel_coded[ch]) {
  179. init_exp(s, ch, fixed_exp);
  180. }
  181. }
  182. for (ch = 0; ch < s->avctx->channels; ch++) {
  183. if (s->channel_coded[ch]) {
  184. WMACoef *coefs1;
  185. float *coefs, *exponents, mult;
  186. int i, n;
  187. coefs1 = s->coefs1[ch];
  188. exponents = s->exponents[ch];
  189. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  190. mult *= mdct_norm;
  191. coefs = src_coefs[ch];
  192. if (s->use_noise_coding && 0) {
  193. assert(0); //FIXME not implemented
  194. } else {
  195. coefs += s->coefs_start;
  196. n = nb_coefs[ch];
  197. for(i = 0;i < n; i++){
  198. double t= *coefs++ / (exponents[i] * mult);
  199. if(t<-32768 || t>32767)
  200. return -1;
  201. coefs1[i] = lrint(t);
  202. }
  203. }
  204. }
  205. }
  206. v = 0;
  207. for (ch = 0; ch < s->avctx->channels; ch++) {
  208. int a = s->channel_coded[ch];
  209. put_bits(&s->pb, 1, a);
  210. v |= a;
  211. }
  212. if (!v)
  213. return 1;
  214. for(v= total_gain-1; v>=127; v-= 127)
  215. put_bits(&s->pb, 7, 127);
  216. put_bits(&s->pb, 7, v);
  217. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  218. if (s->use_noise_coding) {
  219. for (ch = 0; ch < s->avctx->channels; ch++) {
  220. if (s->channel_coded[ch]) {
  221. int i, n;
  222. n = s->exponent_high_sizes[bsize];
  223. for(i=0;i<n;i++) {
  224. put_bits(&s->pb, 1, s->high_band_coded[ch][i]= 0);
  225. if (0)
  226. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  227. }
  228. }
  229. }
  230. }
  231. parse_exponents = 1;
  232. if (s->block_len_bits != s->frame_len_bits) {
  233. put_bits(&s->pb, 1, parse_exponents);
  234. }
  235. if (parse_exponents) {
  236. for (ch = 0; ch < s->avctx->channels; ch++) {
  237. if (s->channel_coded[ch]) {
  238. if (s->use_exp_vlc) {
  239. encode_exp_vlc(s, ch, fixed_exp);
  240. } else {
  241. assert(0); //FIXME not implemented
  242. // encode_exp_lsp(s, ch);
  243. }
  244. }
  245. }
  246. } else {
  247. assert(0); //FIXME not implemented
  248. }
  249. for (ch = 0; ch < s->avctx->channels; ch++) {
  250. if (s->channel_coded[ch]) {
  251. int run, tindex;
  252. WMACoef *ptr, *eptr;
  253. tindex = (ch == 1 && s->ms_stereo);
  254. ptr = &s->coefs1[ch][0];
  255. eptr = ptr + nb_coefs[ch];
  256. run=0;
  257. for(;ptr < eptr; ptr++){
  258. if(*ptr){
  259. int level= *ptr;
  260. int abs_level= FFABS(level);
  261. int code= 0;
  262. if(abs_level <= s->coef_vlcs[tindex]->max_level){
  263. if(run < s->coef_vlcs[tindex]->levels[abs_level-1])
  264. code= run + s->int_table[tindex][abs_level-1];
  265. }
  266. assert(code < s->coef_vlcs[tindex]->n);
  267. put_bits(&s->pb, s->coef_vlcs[tindex]->huffbits[code], s->coef_vlcs[tindex]->huffcodes[code]);
  268. if(code == 0){
  269. if(1<<coef_nb_bits <= abs_level)
  270. return -1;
  271. put_bits(&s->pb, coef_nb_bits, abs_level);
  272. put_bits(&s->pb, s->frame_len_bits, run);
  273. }
  274. put_bits(&s->pb, 1, level < 0); //FIXME the sign is fliped somewhere
  275. run=0;
  276. }else{
  277. run++;
  278. }
  279. }
  280. if(run)
  281. put_bits(&s->pb, s->coef_vlcs[tindex]->huffbits[1], s->coef_vlcs[tindex]->huffcodes[1]);
  282. }
  283. if (s->version == 1 && s->avctx->channels >= 2) {
  284. avpriv_align_put_bits(&s->pb);
  285. }
  286. }
  287. return 0;
  288. }
  289. static int encode_frame(WMACodecContext *s, float (*src_coefs)[BLOCK_MAX_SIZE], uint8_t *buf, int buf_size, int total_gain){
  290. init_put_bits(&s->pb, buf, buf_size);
  291. if (s->use_bit_reservoir) {
  292. assert(0);//FIXME not implemented
  293. }else{
  294. if(encode_block(s, src_coefs, total_gain) < 0)
  295. return INT_MAX;
  296. }
  297. avpriv_align_put_bits(&s->pb);
  298. return put_bits_count(&s->pb) / 8 - s->avctx->block_align;
  299. }
  300. static int encode_superframe(AVCodecContext *avctx, AVPacket *avpkt,
  301. const AVFrame *frame, int *got_packet_ptr)
  302. {
  303. WMACodecContext *s = avctx->priv_data;
  304. int i, total_gain, ret;
  305. s->block_len_bits= s->frame_len_bits; //required by non variable block len
  306. s->block_len = 1 << s->block_len_bits;
  307. apply_window_and_mdct(avctx, frame);
  308. if (s->ms_stereo) {
  309. float a, b;
  310. int i;
  311. for(i = 0; i < s->block_len; i++) {
  312. a = s->coefs[0][i]*0.5;
  313. b = s->coefs[1][i]*0.5;
  314. s->coefs[0][i] = a + b;
  315. s->coefs[1][i] = a - b;
  316. }
  317. }
  318. if ((ret = ff_alloc_packet(avpkt, 2 * MAX_CODED_SUPERFRAME_SIZE))) {
  319. av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
  320. return ret;
  321. }
  322. #if 1
  323. total_gain= 128;
  324. for(i=64; i; i>>=1){
  325. int error = encode_frame(s, s->coefs, avpkt->data, avpkt->size,
  326. total_gain - i);
  327. if(error<0)
  328. total_gain-= i;
  329. }
  330. #else
  331. total_gain= 90;
  332. best = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain);
  333. for(i=32; i; i>>=1){
  334. int scoreL = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain - i);
  335. int scoreR = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain + i);
  336. av_log(NULL, AV_LOG_ERROR, "%d %d %d (%d)\n", scoreL, best, scoreR, total_gain);
  337. if(scoreL < FFMIN(best, scoreR)){
  338. best = scoreL;
  339. total_gain -= i;
  340. }else if(scoreR < best){
  341. best = scoreR;
  342. total_gain += i;
  343. }
  344. }
  345. #endif
  346. if ((i = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain)) >= 0) {
  347. av_log(avctx, AV_LOG_ERROR, "required frame size too large. please "
  348. "use a higher bit rate.\n");
  349. return AVERROR(EINVAL);
  350. }
  351. assert((put_bits_count(&s->pb) & 7) == 0);
  352. while (i++)
  353. put_bits(&s->pb, 8, 'N');
  354. flush_put_bits(&s->pb);
  355. if (frame->pts != AV_NOPTS_VALUE)
  356. avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
  357. avpkt->size = avctx->block_align;
  358. *got_packet_ptr = 1;
  359. return 0;
  360. }
  361. AVCodec ff_wmav1_encoder = {
  362. .name = "wmav1",
  363. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  364. .type = AVMEDIA_TYPE_AUDIO,
  365. .id = AV_CODEC_ID_WMAV1,
  366. .priv_data_size = sizeof(WMACodecContext),
  367. .init = encode_init,
  368. .encode2 = encode_superframe,
  369. .close = ff_wma_end,
  370. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
  371. AV_SAMPLE_FMT_NONE },
  372. };
  373. AVCodec ff_wmav2_encoder = {
  374. .name = "wmav2",
  375. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  376. .type = AVMEDIA_TYPE_AUDIO,
  377. .id = AV_CODEC_ID_WMAV2,
  378. .priv_data_size = sizeof(WMACodecContext),
  379. .init = encode_init,
  380. .encode2 = encode_superframe,
  381. .close = ff_wma_end,
  382. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
  383. AV_SAMPLE_FMT_NONE },
  384. };