You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

958 lines
32KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "libavutil/attributes.h"
  35. #include "avcodec.h"
  36. #include "internal.h"
  37. #include "wma.h"
  38. #undef NDEBUG
  39. #include <assert.h>
  40. #define EXPVLCBITS 8
  41. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  42. #define HGAINVLCBITS 9
  43. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  44. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  45. #ifdef TRACE
  46. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  47. {
  48. int i;
  49. tprintf(s->avctx, "%s[%d]:\n", name, n);
  50. for(i=0;i<n;i++) {
  51. if ((i & 7) == 0)
  52. tprintf(s->avctx, "%4d: ", i);
  53. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  54. if ((i & 7) == 7)
  55. tprintf(s->avctx, "\n");
  56. }
  57. if ((i & 7) != 0)
  58. tprintf(s->avctx, "\n");
  59. }
  60. #endif
  61. static av_cold int wma_decode_init(AVCodecContext * avctx)
  62. {
  63. WMACodecContext *s = avctx->priv_data;
  64. int i, flags2;
  65. uint8_t *extradata;
  66. if (!avctx->block_align) {
  67. av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
  68. return AVERROR(EINVAL);
  69. }
  70. s->avctx = avctx;
  71. /* extract flag infos */
  72. flags2 = 0;
  73. extradata = avctx->extradata;
  74. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  75. flags2 = AV_RL16(extradata+2);
  76. } else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  77. flags2 = AV_RL16(extradata+4);
  78. }
  79. s->use_exp_vlc = flags2 & 0x0001;
  80. s->use_bit_reservoir = flags2 & 0x0002;
  81. s->use_variable_block_len = flags2 & 0x0004;
  82. if(ff_wma_init(avctx, flags2)<0)
  83. return -1;
  84. /* init MDCT */
  85. for(i = 0; i < s->nb_block_sizes; i++)
  86. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  87. if (s->use_noise_coding) {
  88. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  89. ff_wma_hgain_huffbits, 1, 1,
  90. ff_wma_hgain_huffcodes, 2, 2, 0);
  91. }
  92. if (s->use_exp_vlc) {
  93. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  94. ff_aac_scalefactor_bits, 1, 1,
  95. ff_aac_scalefactor_code, 4, 4, 0);
  96. } else {
  97. wma_lsp_to_curve_init(s, s->frame_len);
  98. }
  99. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  100. return 0;
  101. }
  102. /**
  103. * compute x^-0.25 with an exponent and mantissa table. We use linear
  104. * interpolation to reduce the mantissa table size at a small speed
  105. * expense (linear interpolation approximately doubles the number of
  106. * bits of precision).
  107. */
  108. static inline float pow_m1_4(WMACodecContext *s, float x)
  109. {
  110. union {
  111. float f;
  112. unsigned int v;
  113. } u, t;
  114. unsigned int e, m;
  115. float a, b;
  116. u.f = x;
  117. e = u.v >> 23;
  118. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  119. /* build interpolation scale: 1 <= t < 2. */
  120. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  121. a = s->lsp_pow_m_table1[m];
  122. b = s->lsp_pow_m_table2[m];
  123. return s->lsp_pow_e_table[e] * (a + b * t.f);
  124. }
  125. static av_cold void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  126. {
  127. float wdel, a, b;
  128. int i, e, m;
  129. wdel = M_PI / frame_len;
  130. for(i=0;i<frame_len;i++)
  131. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  132. /* tables for x^-0.25 computation */
  133. for(i=0;i<256;i++) {
  134. e = i - 126;
  135. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  136. }
  137. /* NOTE: these two tables are needed to avoid two operations in
  138. pow_m1_4 */
  139. b = 1.0;
  140. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  141. m = (1 << LSP_POW_BITS) + i;
  142. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  143. a = pow(a, -0.25);
  144. s->lsp_pow_m_table1[i] = 2 * a - b;
  145. s->lsp_pow_m_table2[i] = b - a;
  146. b = a;
  147. }
  148. }
  149. /**
  150. * NOTE: We use the same code as Vorbis here
  151. * @todo optimize it further with SSE/3Dnow
  152. */
  153. static void wma_lsp_to_curve(WMACodecContext *s,
  154. float *out, float *val_max_ptr,
  155. int n, float *lsp)
  156. {
  157. int i, j;
  158. float p, q, w, v, val_max;
  159. val_max = 0;
  160. for(i=0;i<n;i++) {
  161. p = 0.5f;
  162. q = 0.5f;
  163. w = s->lsp_cos_table[i];
  164. for(j=1;j<NB_LSP_COEFS;j+=2){
  165. q *= w - lsp[j - 1];
  166. p *= w - lsp[j];
  167. }
  168. p *= p * (2.0f - w);
  169. q *= q * (2.0f + w);
  170. v = p + q;
  171. v = pow_m1_4(s, v);
  172. if (v > val_max)
  173. val_max = v;
  174. out[i] = v;
  175. }
  176. *val_max_ptr = val_max;
  177. }
  178. /**
  179. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  180. */
  181. static void decode_exp_lsp(WMACodecContext *s, int ch)
  182. {
  183. float lsp_coefs[NB_LSP_COEFS];
  184. int val, i;
  185. for(i = 0; i < NB_LSP_COEFS; i++) {
  186. if (i == 0 || i >= 8)
  187. val = get_bits(&s->gb, 3);
  188. else
  189. val = get_bits(&s->gb, 4);
  190. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  191. }
  192. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  193. s->block_len, lsp_coefs);
  194. }
  195. /** pow(10, i / 16.0) for i in -60..95 */
  196. static const float pow_tab[] = {
  197. 1.7782794100389e-04, 2.0535250264571e-04,
  198. 2.3713737056617e-04, 2.7384196342644e-04,
  199. 3.1622776601684e-04, 3.6517412725484e-04,
  200. 4.2169650342858e-04, 4.8696752516586e-04,
  201. 5.6234132519035e-04, 6.4938163157621e-04,
  202. 7.4989420933246e-04, 8.6596432336006e-04,
  203. 1.0000000000000e-03, 1.1547819846895e-03,
  204. 1.3335214321633e-03, 1.5399265260595e-03,
  205. 1.7782794100389e-03, 2.0535250264571e-03,
  206. 2.3713737056617e-03, 2.7384196342644e-03,
  207. 3.1622776601684e-03, 3.6517412725484e-03,
  208. 4.2169650342858e-03, 4.8696752516586e-03,
  209. 5.6234132519035e-03, 6.4938163157621e-03,
  210. 7.4989420933246e-03, 8.6596432336006e-03,
  211. 1.0000000000000e-02, 1.1547819846895e-02,
  212. 1.3335214321633e-02, 1.5399265260595e-02,
  213. 1.7782794100389e-02, 2.0535250264571e-02,
  214. 2.3713737056617e-02, 2.7384196342644e-02,
  215. 3.1622776601684e-02, 3.6517412725484e-02,
  216. 4.2169650342858e-02, 4.8696752516586e-02,
  217. 5.6234132519035e-02, 6.4938163157621e-02,
  218. 7.4989420933246e-02, 8.6596432336007e-02,
  219. 1.0000000000000e-01, 1.1547819846895e-01,
  220. 1.3335214321633e-01, 1.5399265260595e-01,
  221. 1.7782794100389e-01, 2.0535250264571e-01,
  222. 2.3713737056617e-01, 2.7384196342644e-01,
  223. 3.1622776601684e-01, 3.6517412725484e-01,
  224. 4.2169650342858e-01, 4.8696752516586e-01,
  225. 5.6234132519035e-01, 6.4938163157621e-01,
  226. 7.4989420933246e-01, 8.6596432336007e-01,
  227. 1.0000000000000e+00, 1.1547819846895e+00,
  228. 1.3335214321633e+00, 1.5399265260595e+00,
  229. 1.7782794100389e+00, 2.0535250264571e+00,
  230. 2.3713737056617e+00, 2.7384196342644e+00,
  231. 3.1622776601684e+00, 3.6517412725484e+00,
  232. 4.2169650342858e+00, 4.8696752516586e+00,
  233. 5.6234132519035e+00, 6.4938163157621e+00,
  234. 7.4989420933246e+00, 8.6596432336007e+00,
  235. 1.0000000000000e+01, 1.1547819846895e+01,
  236. 1.3335214321633e+01, 1.5399265260595e+01,
  237. 1.7782794100389e+01, 2.0535250264571e+01,
  238. 2.3713737056617e+01, 2.7384196342644e+01,
  239. 3.1622776601684e+01, 3.6517412725484e+01,
  240. 4.2169650342858e+01, 4.8696752516586e+01,
  241. 5.6234132519035e+01, 6.4938163157621e+01,
  242. 7.4989420933246e+01, 8.6596432336007e+01,
  243. 1.0000000000000e+02, 1.1547819846895e+02,
  244. 1.3335214321633e+02, 1.5399265260595e+02,
  245. 1.7782794100389e+02, 2.0535250264571e+02,
  246. 2.3713737056617e+02, 2.7384196342644e+02,
  247. 3.1622776601684e+02, 3.6517412725484e+02,
  248. 4.2169650342858e+02, 4.8696752516586e+02,
  249. 5.6234132519035e+02, 6.4938163157621e+02,
  250. 7.4989420933246e+02, 8.6596432336007e+02,
  251. 1.0000000000000e+03, 1.1547819846895e+03,
  252. 1.3335214321633e+03, 1.5399265260595e+03,
  253. 1.7782794100389e+03, 2.0535250264571e+03,
  254. 2.3713737056617e+03, 2.7384196342644e+03,
  255. 3.1622776601684e+03, 3.6517412725484e+03,
  256. 4.2169650342858e+03, 4.8696752516586e+03,
  257. 5.6234132519035e+03, 6.4938163157621e+03,
  258. 7.4989420933246e+03, 8.6596432336007e+03,
  259. 1.0000000000000e+04, 1.1547819846895e+04,
  260. 1.3335214321633e+04, 1.5399265260595e+04,
  261. 1.7782794100389e+04, 2.0535250264571e+04,
  262. 2.3713737056617e+04, 2.7384196342644e+04,
  263. 3.1622776601684e+04, 3.6517412725484e+04,
  264. 4.2169650342858e+04, 4.8696752516586e+04,
  265. 5.6234132519035e+04, 6.4938163157621e+04,
  266. 7.4989420933246e+04, 8.6596432336007e+04,
  267. 1.0000000000000e+05, 1.1547819846895e+05,
  268. 1.3335214321633e+05, 1.5399265260595e+05,
  269. 1.7782794100389e+05, 2.0535250264571e+05,
  270. 2.3713737056617e+05, 2.7384196342644e+05,
  271. 3.1622776601684e+05, 3.6517412725484e+05,
  272. 4.2169650342858e+05, 4.8696752516586e+05,
  273. 5.6234132519035e+05, 6.4938163157621e+05,
  274. 7.4989420933246e+05, 8.6596432336007e+05,
  275. };
  276. /**
  277. * decode exponents coded with VLC codes
  278. */
  279. static int decode_exp_vlc(WMACodecContext *s, int ch)
  280. {
  281. int last_exp, n, code;
  282. const uint16_t *ptr;
  283. float v, max_scale;
  284. uint32_t *q, *q_end, iv;
  285. const float *ptab = pow_tab + 60;
  286. const uint32_t *iptab = (const uint32_t*)ptab;
  287. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  288. q = (uint32_t *)s->exponents[ch];
  289. q_end = q + s->block_len;
  290. max_scale = 0;
  291. if (s->version == 1) {
  292. last_exp = get_bits(&s->gb, 5) + 10;
  293. v = ptab[last_exp];
  294. iv = iptab[last_exp];
  295. max_scale = v;
  296. n = *ptr++;
  297. switch (n & 3) do {
  298. case 0: *q++ = iv;
  299. case 3: *q++ = iv;
  300. case 2: *q++ = iv;
  301. case 1: *q++ = iv;
  302. } while ((n -= 4) > 0);
  303. }else
  304. last_exp = 36;
  305. while (q < q_end) {
  306. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  307. if (code < 0){
  308. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  309. return -1;
  310. }
  311. /* NOTE: this offset is the same as MPEG4 AAC ! */
  312. last_exp += code - 60;
  313. if ((unsigned)last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  314. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  315. last_exp);
  316. return -1;
  317. }
  318. v = ptab[last_exp];
  319. iv = iptab[last_exp];
  320. if (v > max_scale)
  321. max_scale = v;
  322. n = *ptr++;
  323. switch (n & 3) do {
  324. case 0: *q++ = iv;
  325. case 3: *q++ = iv;
  326. case 2: *q++ = iv;
  327. case 1: *q++ = iv;
  328. } while ((n -= 4) > 0);
  329. }
  330. s->max_exponent[ch] = max_scale;
  331. return 0;
  332. }
  333. /**
  334. * Apply MDCT window and add into output.
  335. *
  336. * We ensure that when the windows overlap their squared sum
  337. * is always 1 (MDCT reconstruction rule).
  338. */
  339. static void wma_window(WMACodecContext *s, float *out)
  340. {
  341. float *in = s->output;
  342. int block_len, bsize, n;
  343. /* left part */
  344. if (s->block_len_bits <= s->prev_block_len_bits) {
  345. block_len = s->block_len;
  346. bsize = s->frame_len_bits - s->block_len_bits;
  347. s->fdsp.vector_fmul_add(out, in, s->windows[bsize],
  348. out, block_len);
  349. } else {
  350. block_len = 1 << s->prev_block_len_bits;
  351. n = (s->block_len - block_len) / 2;
  352. bsize = s->frame_len_bits - s->prev_block_len_bits;
  353. s->fdsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  354. out+n, block_len);
  355. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  356. }
  357. out += s->block_len;
  358. in += s->block_len;
  359. /* right part */
  360. if (s->block_len_bits <= s->next_block_len_bits) {
  361. block_len = s->block_len;
  362. bsize = s->frame_len_bits - s->block_len_bits;
  363. s->fdsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  364. } else {
  365. block_len = 1 << s->next_block_len_bits;
  366. n = (s->block_len - block_len) / 2;
  367. bsize = s->frame_len_bits - s->next_block_len_bits;
  368. memcpy(out, in, n*sizeof(float));
  369. s->fdsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  370. memset(out+n+block_len, 0, n*sizeof(float));
  371. }
  372. }
  373. /**
  374. * @return 0 if OK. 1 if last block of frame. return -1 if
  375. * unrecorrable error.
  376. */
  377. static int wma_decode_block(WMACodecContext *s)
  378. {
  379. int n, v, a, ch, bsize;
  380. int coef_nb_bits, total_gain;
  381. int nb_coefs[MAX_CHANNELS];
  382. float mdct_norm;
  383. FFTContext *mdct;
  384. #ifdef TRACE
  385. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  386. #endif
  387. /* compute current block length */
  388. if (s->use_variable_block_len) {
  389. n = av_log2(s->nb_block_sizes - 1) + 1;
  390. if (s->reset_block_lengths) {
  391. s->reset_block_lengths = 0;
  392. v = get_bits(&s->gb, n);
  393. if (v >= s->nb_block_sizes){
  394. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  395. return -1;
  396. }
  397. s->prev_block_len_bits = s->frame_len_bits - v;
  398. v = get_bits(&s->gb, n);
  399. if (v >= s->nb_block_sizes){
  400. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  401. return -1;
  402. }
  403. s->block_len_bits = s->frame_len_bits - v;
  404. } else {
  405. /* update block lengths */
  406. s->prev_block_len_bits = s->block_len_bits;
  407. s->block_len_bits = s->next_block_len_bits;
  408. }
  409. v = get_bits(&s->gb, n);
  410. if (v >= s->nb_block_sizes){
  411. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  412. return -1;
  413. }
  414. s->next_block_len_bits = s->frame_len_bits - v;
  415. } else {
  416. /* fixed block len */
  417. s->next_block_len_bits = s->frame_len_bits;
  418. s->prev_block_len_bits = s->frame_len_bits;
  419. s->block_len_bits = s->frame_len_bits;
  420. }
  421. /* now check if the block length is coherent with the frame length */
  422. s->block_len = 1 << s->block_len_bits;
  423. if ((s->block_pos + s->block_len) > s->frame_len){
  424. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  425. return -1;
  426. }
  427. if (s->avctx->channels == 2) {
  428. s->ms_stereo = get_bits1(&s->gb);
  429. }
  430. v = 0;
  431. for(ch = 0; ch < s->avctx->channels; ch++) {
  432. a = get_bits1(&s->gb);
  433. s->channel_coded[ch] = a;
  434. v |= a;
  435. }
  436. bsize = s->frame_len_bits - s->block_len_bits;
  437. /* if no channel coded, no need to go further */
  438. /* XXX: fix potential framing problems */
  439. if (!v)
  440. goto next;
  441. /* read total gain and extract corresponding number of bits for
  442. coef escape coding */
  443. total_gain = 1;
  444. for(;;) {
  445. a = get_bits(&s->gb, 7);
  446. total_gain += a;
  447. if (a != 127)
  448. break;
  449. }
  450. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  451. /* compute number of coefficients */
  452. n = s->coefs_end[bsize] - s->coefs_start;
  453. for(ch = 0; ch < s->avctx->channels; ch++)
  454. nb_coefs[ch] = n;
  455. /* complex coding */
  456. if (s->use_noise_coding) {
  457. for(ch = 0; ch < s->avctx->channels; ch++) {
  458. if (s->channel_coded[ch]) {
  459. int i, n, a;
  460. n = s->exponent_high_sizes[bsize];
  461. for(i=0;i<n;i++) {
  462. a = get_bits1(&s->gb);
  463. s->high_band_coded[ch][i] = a;
  464. /* if noise coding, the coefficients are not transmitted */
  465. if (a)
  466. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  467. }
  468. }
  469. }
  470. for(ch = 0; ch < s->avctx->channels; ch++) {
  471. if (s->channel_coded[ch]) {
  472. int i, n, val, code;
  473. n = s->exponent_high_sizes[bsize];
  474. val = (int)0x80000000;
  475. for(i=0;i<n;i++) {
  476. if (s->high_band_coded[ch][i]) {
  477. if (val == (int)0x80000000) {
  478. val = get_bits(&s->gb, 7) - 19;
  479. } else {
  480. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  481. if (code < 0){
  482. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  483. return -1;
  484. }
  485. val += code - 18;
  486. }
  487. s->high_band_values[ch][i] = val;
  488. }
  489. }
  490. }
  491. }
  492. }
  493. /* exponents can be reused in short blocks. */
  494. if ((s->block_len_bits == s->frame_len_bits) ||
  495. get_bits1(&s->gb)) {
  496. for(ch = 0; ch < s->avctx->channels; ch++) {
  497. if (s->channel_coded[ch]) {
  498. if (s->use_exp_vlc) {
  499. if (decode_exp_vlc(s, ch) < 0)
  500. return -1;
  501. } else {
  502. decode_exp_lsp(s, ch);
  503. }
  504. s->exponents_bsize[ch] = bsize;
  505. }
  506. }
  507. }
  508. /* parse spectral coefficients : just RLE encoding */
  509. for (ch = 0; ch < s->avctx->channels; ch++) {
  510. if (s->channel_coded[ch]) {
  511. int tindex;
  512. WMACoef* ptr = &s->coefs1[ch][0];
  513. /* special VLC tables are used for ms stereo because
  514. there is potentially less energy there */
  515. tindex = (ch == 1 && s->ms_stereo);
  516. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  517. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  518. s->level_table[tindex], s->run_table[tindex],
  519. 0, ptr, 0, nb_coefs[ch],
  520. s->block_len, s->frame_len_bits, coef_nb_bits);
  521. }
  522. if (s->version == 1 && s->avctx->channels >= 2) {
  523. align_get_bits(&s->gb);
  524. }
  525. }
  526. /* normalize */
  527. {
  528. int n4 = s->block_len / 2;
  529. mdct_norm = 1.0 / (float)n4;
  530. if (s->version == 1) {
  531. mdct_norm *= sqrt(n4);
  532. }
  533. }
  534. /* finally compute the MDCT coefficients */
  535. for (ch = 0; ch < s->avctx->channels; ch++) {
  536. if (s->channel_coded[ch]) {
  537. WMACoef *coefs1;
  538. float *coefs, *exponents, mult, mult1, noise;
  539. int i, j, n, n1, last_high_band, esize;
  540. float exp_power[HIGH_BAND_MAX_SIZE];
  541. coefs1 = s->coefs1[ch];
  542. exponents = s->exponents[ch];
  543. esize = s->exponents_bsize[ch];
  544. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  545. mult *= mdct_norm;
  546. coefs = s->coefs[ch];
  547. if (s->use_noise_coding) {
  548. mult1 = mult;
  549. /* very low freqs : noise */
  550. for(i = 0;i < s->coefs_start; i++) {
  551. *coefs++ = s->noise_table[s->noise_index] *
  552. exponents[i<<bsize>>esize] * mult1;
  553. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  554. }
  555. n1 = s->exponent_high_sizes[bsize];
  556. /* compute power of high bands */
  557. exponents = s->exponents[ch] +
  558. (s->high_band_start[bsize]<<bsize>>esize);
  559. last_high_band = 0; /* avoid warning */
  560. for(j=0;j<n1;j++) {
  561. n = s->exponent_high_bands[s->frame_len_bits -
  562. s->block_len_bits][j];
  563. if (s->high_band_coded[ch][j]) {
  564. float e2, v;
  565. e2 = 0;
  566. for(i = 0;i < n; i++) {
  567. v = exponents[i<<bsize>>esize];
  568. e2 += v * v;
  569. }
  570. exp_power[j] = e2 / n;
  571. last_high_band = j;
  572. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  573. }
  574. exponents += n<<bsize>>esize;
  575. }
  576. /* main freqs and high freqs */
  577. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  578. for(j=-1;j<n1;j++) {
  579. if (j < 0) {
  580. n = s->high_band_start[bsize] -
  581. s->coefs_start;
  582. } else {
  583. n = s->exponent_high_bands[s->frame_len_bits -
  584. s->block_len_bits][j];
  585. }
  586. if (j >= 0 && s->high_band_coded[ch][j]) {
  587. /* use noise with specified power */
  588. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  589. /* XXX: use a table */
  590. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  591. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  592. mult1 *= mdct_norm;
  593. for(i = 0;i < n; i++) {
  594. noise = s->noise_table[s->noise_index];
  595. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  596. *coefs++ = noise *
  597. exponents[i<<bsize>>esize] * mult1;
  598. }
  599. exponents += n<<bsize>>esize;
  600. } else {
  601. /* coded values + small noise */
  602. for(i = 0;i < n; i++) {
  603. noise = s->noise_table[s->noise_index];
  604. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  605. *coefs++ = ((*coefs1++) + noise) *
  606. exponents[i<<bsize>>esize] * mult;
  607. }
  608. exponents += n<<bsize>>esize;
  609. }
  610. }
  611. /* very high freqs : noise */
  612. n = s->block_len - s->coefs_end[bsize];
  613. mult1 = mult * exponents[((-1<<bsize))>>esize];
  614. for(i = 0; i < n; i++) {
  615. *coefs++ = s->noise_table[s->noise_index] * mult1;
  616. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  617. }
  618. } else {
  619. /* XXX: optimize more */
  620. for(i = 0;i < s->coefs_start; i++)
  621. *coefs++ = 0.0;
  622. n = nb_coefs[ch];
  623. for(i = 0;i < n; i++) {
  624. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  625. }
  626. n = s->block_len - s->coefs_end[bsize];
  627. for(i = 0;i < n; i++)
  628. *coefs++ = 0.0;
  629. }
  630. }
  631. }
  632. #ifdef TRACE
  633. for (ch = 0; ch < s->avctx->channels; ch++) {
  634. if (s->channel_coded[ch]) {
  635. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  636. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  637. }
  638. }
  639. #endif
  640. if (s->ms_stereo && s->channel_coded[1]) {
  641. /* nominal case for ms stereo: we do it before mdct */
  642. /* no need to optimize this case because it should almost
  643. never happen */
  644. if (!s->channel_coded[0]) {
  645. tprintf(s->avctx, "rare ms-stereo case happened\n");
  646. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  647. s->channel_coded[0] = 1;
  648. }
  649. s->fdsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  650. }
  651. next:
  652. mdct = &s->mdct_ctx[bsize];
  653. for (ch = 0; ch < s->avctx->channels; ch++) {
  654. int n4, index;
  655. n4 = s->block_len / 2;
  656. if(s->channel_coded[ch]){
  657. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  658. }else if(!(s->ms_stereo && ch==1))
  659. memset(s->output, 0, sizeof(s->output));
  660. /* multiply by the window and add in the frame */
  661. index = (s->frame_len / 2) + s->block_pos - n4;
  662. wma_window(s, &s->frame_out[ch][index]);
  663. }
  664. /* update block number */
  665. s->block_num++;
  666. s->block_pos += s->block_len;
  667. if (s->block_pos >= s->frame_len)
  668. return 1;
  669. else
  670. return 0;
  671. }
  672. /* decode a frame of frame_len samples */
  673. static int wma_decode_frame(WMACodecContext *s, float **samples,
  674. int samples_offset)
  675. {
  676. int ret, ch;
  677. #ifdef TRACE
  678. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  679. #endif
  680. /* read each block */
  681. s->block_num = 0;
  682. s->block_pos = 0;
  683. for(;;) {
  684. ret = wma_decode_block(s);
  685. if (ret < 0)
  686. return -1;
  687. if (ret)
  688. break;
  689. }
  690. for (ch = 0; ch < s->avctx->channels; ch++) {
  691. /* copy current block to output */
  692. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  693. s->frame_len * sizeof(*s->frame_out[ch]));
  694. /* prepare for next block */
  695. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  696. s->frame_len * sizeof(*s->frame_out[ch]));
  697. #ifdef TRACE
  698. dump_floats(s, "samples", 6, samples[ch] + samples_offset, s->frame_len);
  699. #endif
  700. }
  701. return 0;
  702. }
  703. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  704. int *got_frame_ptr, AVPacket *avpkt)
  705. {
  706. AVFrame *frame = data;
  707. const uint8_t *buf = avpkt->data;
  708. int buf_size = avpkt->size;
  709. WMACodecContext *s = avctx->priv_data;
  710. int nb_frames, bit_offset, i, pos, len, ret;
  711. uint8_t *q;
  712. float **samples;
  713. int samples_offset;
  714. tprintf(avctx, "***decode_superframe:\n");
  715. if(buf_size==0){
  716. s->last_superframe_len = 0;
  717. return 0;
  718. }
  719. if (buf_size < avctx->block_align) {
  720. av_log(avctx, AV_LOG_ERROR,
  721. "Input packet size too small (%d < %d)\n",
  722. buf_size, avctx->block_align);
  723. return AVERROR_INVALIDDATA;
  724. }
  725. buf_size = avctx->block_align;
  726. init_get_bits(&s->gb, buf, buf_size*8);
  727. if (s->use_bit_reservoir) {
  728. /* read super frame header */
  729. skip_bits(&s->gb, 4); /* super frame index */
  730. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  731. } else {
  732. nb_frames = 1;
  733. }
  734. /* get output buffer */
  735. frame->nb_samples = nb_frames * s->frame_len;
  736. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  737. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  738. return ret;
  739. }
  740. samples = (float **)frame->extended_data;
  741. samples_offset = 0;
  742. if (s->use_bit_reservoir) {
  743. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  744. if (bit_offset > get_bits_left(&s->gb)) {
  745. av_log(avctx, AV_LOG_ERROR,
  746. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  747. bit_offset, get_bits_left(&s->gb), buf_size);
  748. goto fail;
  749. }
  750. if (s->last_superframe_len > 0) {
  751. /* add bit_offset bits to last frame */
  752. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  753. MAX_CODED_SUPERFRAME_SIZE)
  754. goto fail;
  755. q = s->last_superframe + s->last_superframe_len;
  756. len = bit_offset;
  757. while (len > 7) {
  758. *q++ = (get_bits)(&s->gb, 8);
  759. len -= 8;
  760. }
  761. if (len > 0) {
  762. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  763. }
  764. memset(q, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  765. /* XXX: bit_offset bits into last frame */
  766. init_get_bits(&s->gb, s->last_superframe, s->last_superframe_len * 8 + bit_offset);
  767. /* skip unused bits */
  768. if (s->last_bitoffset > 0)
  769. skip_bits(&s->gb, s->last_bitoffset);
  770. /* this frame is stored in the last superframe and in the
  771. current one */
  772. if (wma_decode_frame(s, samples, samples_offset) < 0)
  773. goto fail;
  774. samples_offset += s->frame_len;
  775. nb_frames--;
  776. }
  777. /* read each frame starting from bit_offset */
  778. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  779. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  780. return AVERROR_INVALIDDATA;
  781. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3))*8);
  782. len = pos & 7;
  783. if (len > 0)
  784. skip_bits(&s->gb, len);
  785. s->reset_block_lengths = 1;
  786. for(i=0;i<nb_frames;i++) {
  787. if (wma_decode_frame(s, samples, samples_offset) < 0)
  788. goto fail;
  789. samples_offset += s->frame_len;
  790. }
  791. /* we copy the end of the frame in the last frame buffer */
  792. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  793. s->last_bitoffset = pos & 7;
  794. pos >>= 3;
  795. len = buf_size - pos;
  796. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  797. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  798. goto fail;
  799. }
  800. s->last_superframe_len = len;
  801. memcpy(s->last_superframe, buf + pos, len);
  802. } else {
  803. /* single frame decode */
  804. if (wma_decode_frame(s, samples, samples_offset) < 0)
  805. goto fail;
  806. samples_offset += s->frame_len;
  807. }
  808. av_dlog(s->avctx, "%d %d %d %d outbytes:%td eaten:%d\n",
  809. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  810. (int8_t *)samples - (int8_t *)data, avctx->block_align);
  811. *got_frame_ptr = 1;
  812. return avctx->block_align;
  813. fail:
  814. /* when error, we reset the bit reservoir */
  815. s->last_superframe_len = 0;
  816. return -1;
  817. }
  818. static av_cold void flush(AVCodecContext *avctx)
  819. {
  820. WMACodecContext *s = avctx->priv_data;
  821. s->last_bitoffset=
  822. s->last_superframe_len= 0;
  823. }
  824. AVCodec ff_wmav1_decoder = {
  825. .name = "wmav1",
  826. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  827. .type = AVMEDIA_TYPE_AUDIO,
  828. .id = AV_CODEC_ID_WMAV1,
  829. .priv_data_size = sizeof(WMACodecContext),
  830. .init = wma_decode_init,
  831. .close = ff_wma_end,
  832. .decode = wma_decode_superframe,
  833. .flush = flush,
  834. .capabilities = CODEC_CAP_DR1,
  835. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  836. AV_SAMPLE_FMT_NONE },
  837. };
  838. AVCodec ff_wmav2_decoder = {
  839. .name = "wmav2",
  840. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  841. .type = AVMEDIA_TYPE_AUDIO,
  842. .id = AV_CODEC_ID_WMAV2,
  843. .priv_data_size = sizeof(WMACodecContext),
  844. .init = wma_decode_init,
  845. .close = ff_wma_end,
  846. .decode = wma_decode_superframe,
  847. .flush = flush,
  848. .capabilities = CODEC_CAP_DR1,
  849. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  850. AV_SAMPLE_FMT_NONE },
  851. };