You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1456 lines
46KB

  1. /*
  2. * WebP (.webp) image decoder
  3. * Copyright (c) 2013 Aneesh Dogra <aneesh@sugarlabs.org>
  4. * Copyright (c) 2013 Justin Ruggles <justin.ruggles@gmail.com>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * WebP image decoder
  25. *
  26. * @author Aneesh Dogra <aneesh@sugarlabs.org>
  27. * Container and Lossy decoding
  28. *
  29. * @author Justin Ruggles <justin.ruggles@gmail.com>
  30. * Lossless decoder
  31. * Compressed alpha for lossy
  32. *
  33. * Unimplemented:
  34. * - Animation
  35. * - ICC profile
  36. * - Exif and XMP metadata
  37. */
  38. #define BITSTREAM_READER_LE
  39. #include "libavutil/imgutils.h"
  40. #include "avcodec.h"
  41. #include "bytestream.h"
  42. #include "internal.h"
  43. #include "get_bits.h"
  44. #include "thread.h"
  45. #include "vp8.h"
  46. #define VP8X_FLAG_ANIMATION 0x02
  47. #define VP8X_FLAG_XMP_METADATA 0x04
  48. #define VP8X_FLAG_EXIF_METADATA 0x08
  49. #define VP8X_FLAG_ALPHA 0x10
  50. #define VP8X_FLAG_ICC 0x20
  51. #define MAX_PALETTE_SIZE 256
  52. #define MAX_CACHE_BITS 11
  53. #define NUM_CODE_LENGTH_CODES 19
  54. #define HUFFMAN_CODES_PER_META_CODE 5
  55. #define NUM_LITERAL_CODES 256
  56. #define NUM_LENGTH_CODES 24
  57. #define NUM_DISTANCE_CODES 40
  58. #define NUM_SHORT_DISTANCES 120
  59. #define MAX_HUFFMAN_CODE_LENGTH 15
  60. static const uint16_t alphabet_sizes[HUFFMAN_CODES_PER_META_CODE] = {
  61. NUM_LITERAL_CODES + NUM_LENGTH_CODES,
  62. NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
  63. NUM_DISTANCE_CODES
  64. };
  65. static const uint8_t code_length_code_order[NUM_CODE_LENGTH_CODES] = {
  66. 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
  67. };
  68. static const int8_t lz77_distance_offsets[NUM_SHORT_DISTANCES][2] = {
  69. { 0, 1 }, { 1, 0 }, { 1, 1 }, { -1, 1 }, { 0, 2 }, { 2, 0 }, { 1, 2 }, { -1, 2 },
  70. { 2, 1 }, { -2, 1 }, { 2, 2 }, { -2, 2 }, { 0, 3 }, { 3, 0 }, { 1, 3 }, { -1, 3 },
  71. { 3, 1 }, { -3, 1 }, { 2, 3 }, { -2, 3 }, { 3, 2 }, { -3, 2 }, { 0, 4 }, { 4, 0 },
  72. { 1, 4 }, { -1, 4 }, { 4, 1 }, { -4, 1 }, { 3, 3 }, { -3, 3 }, { 2, 4 }, { -2, 4 },
  73. { 4, 2 }, { -4, 2 }, { 0, 5 }, { 3, 4 }, { -3, 4 }, { 4, 3 }, { -4, 3 }, { 5, 0 },
  74. { 1, 5 }, { -1, 5 }, { 5, 1 }, { -5, 1 }, { 2, 5 }, { -2, 5 }, { 5, 2 }, { -5, 2 },
  75. { 4, 4 }, { -4, 4 }, { 3, 5 }, { -3, 5 }, { 5, 3 }, { -5, 3 }, { 0, 6 }, { 6, 0 },
  76. { 1, 6 }, { -1, 6 }, { 6, 1 }, { -6, 1 }, { 2, 6 }, { -2, 6 }, { 6, 2 }, { -6, 2 },
  77. { 4, 5 }, { -4, 5 }, { 5, 4 }, { -5, 4 }, { 3, 6 }, { -3, 6 }, { 6, 3 }, { -6, 3 },
  78. { 0, 7 }, { 7, 0 }, { 1, 7 }, { -1, 7 }, { 5, 5 }, { -5, 5 }, { 7, 1 }, { -7, 1 },
  79. { 4, 6 }, { -4, 6 }, { 6, 4 }, { -6, 4 }, { 2, 7 }, { -2, 7 }, { 7, 2 }, { -7, 2 },
  80. { 3, 7 }, { -3, 7 }, { 7, 3 }, { -7, 3 }, { 5, 6 }, { -5, 6 }, { 6, 5 }, { -6, 5 },
  81. { 8, 0 }, { 4, 7 }, { -4, 7 }, { 7, 4 }, { -7, 4 }, { 8, 1 }, { 8, 2 }, { 6, 6 },
  82. { -6, 6 }, { 8, 3 }, { 5, 7 }, { -5, 7 }, { 7, 5 }, { -7, 5 }, { 8, 4 }, { 6, 7 },
  83. { -6, 7 }, { 7, 6 }, { -7, 6 }, { 8, 5 }, { 7, 7 }, { -7, 7 }, { 8, 6 }, { 8, 7 }
  84. };
  85. enum AlphaCompression {
  86. ALPHA_COMPRESSION_NONE,
  87. ALPHA_COMPRESSION_VP8L,
  88. };
  89. enum AlphaFilter {
  90. ALPHA_FILTER_NONE,
  91. ALPHA_FILTER_HORIZONTAL,
  92. ALPHA_FILTER_VERTICAL,
  93. ALPHA_FILTER_GRADIENT,
  94. };
  95. enum TransformType {
  96. PREDICTOR_TRANSFORM = 0,
  97. COLOR_TRANSFORM = 1,
  98. SUBTRACT_GREEN = 2,
  99. COLOR_INDEXING_TRANSFORM = 3,
  100. };
  101. enum PredictionMode {
  102. PRED_MODE_BLACK,
  103. PRED_MODE_L,
  104. PRED_MODE_T,
  105. PRED_MODE_TR,
  106. PRED_MODE_TL,
  107. PRED_MODE_AVG_T_AVG_L_TR,
  108. PRED_MODE_AVG_L_TL,
  109. PRED_MODE_AVG_L_T,
  110. PRED_MODE_AVG_TL_T,
  111. PRED_MODE_AVG_T_TR,
  112. PRED_MODE_AVG_AVG_L_TL_AVG_T_TR,
  113. PRED_MODE_SELECT,
  114. PRED_MODE_ADD_SUBTRACT_FULL,
  115. PRED_MODE_ADD_SUBTRACT_HALF,
  116. };
  117. enum HuffmanIndex {
  118. HUFF_IDX_GREEN = 0,
  119. HUFF_IDX_RED = 1,
  120. HUFF_IDX_BLUE = 2,
  121. HUFF_IDX_ALPHA = 3,
  122. HUFF_IDX_DIST = 4
  123. };
  124. /* The structure of WebP lossless is an optional series of transformation data,
  125. * followed by the primary image. The primary image also optionally contains
  126. * an entropy group mapping if there are multiple entropy groups. There is a
  127. * basic image type called an "entropy coded image" that is used for all of
  128. * these. The type of each entropy coded image is referred to by the
  129. * specification as its role. */
  130. enum ImageRole {
  131. /* Primary Image: Stores the actual pixels of the image. */
  132. IMAGE_ROLE_ARGB,
  133. /* Entropy Image: Defines which Huffman group to use for different areas of
  134. * the primary image. */
  135. IMAGE_ROLE_ENTROPY,
  136. /* Predictors: Defines which predictor type to use for different areas of
  137. * the primary image. */
  138. IMAGE_ROLE_PREDICTOR,
  139. /* Color Transform Data: Defines the color transformation for different
  140. * areas of the primary image. */
  141. IMAGE_ROLE_COLOR_TRANSFORM,
  142. /* Color Index: Stored as an image of height == 1. */
  143. IMAGE_ROLE_COLOR_INDEXING,
  144. IMAGE_ROLE_NB,
  145. };
  146. typedef struct HuffReader {
  147. VLC vlc; /* Huffman decoder context */
  148. int simple; /* whether to use simple mode */
  149. int nb_symbols; /* number of coded symbols */
  150. uint16_t simple_symbols[2]; /* symbols for simple mode */
  151. } HuffReader;
  152. typedef struct ImageContext {
  153. enum ImageRole role; /* role of this image */
  154. AVFrame *frame; /* AVFrame for data */
  155. int color_cache_bits; /* color cache size, log2 */
  156. uint32_t *color_cache; /* color cache data */
  157. int nb_huffman_groups; /* number of huffman groups */
  158. HuffReader *huffman_groups; /* reader for each huffman group */
  159. int size_reduction; /* relative size compared to primary image, log2 */
  160. int is_alpha_primary;
  161. } ImageContext;
  162. typedef struct WebPContext {
  163. VP8Context v; /* VP8 Context used for lossy decoding */
  164. GetBitContext gb; /* bitstream reader for main image chunk */
  165. AVFrame *alpha_frame; /* AVFrame for alpha data decompressed from VP8L */
  166. AVCodecContext *avctx; /* parent AVCodecContext */
  167. int initialized; /* set once the VP8 context is initialized */
  168. int has_alpha; /* has a separate alpha chunk */
  169. enum AlphaCompression alpha_compression; /* compression type for alpha chunk */
  170. enum AlphaFilter alpha_filter; /* filtering method for alpha chunk */
  171. uint8_t *alpha_data; /* alpha chunk data */
  172. int alpha_data_size; /* alpha chunk data size */
  173. int width; /* image width */
  174. int height; /* image height */
  175. int lossless; /* indicates lossless or lossy */
  176. int nb_transforms; /* number of transforms */
  177. enum TransformType transforms[4]; /* transformations used in the image, in order */
  178. int reduced_width; /* reduced width for index image, if applicable */
  179. int nb_huffman_groups; /* number of huffman groups in the primary image */
  180. ImageContext image[IMAGE_ROLE_NB]; /* image context for each role */
  181. } WebPContext;
  182. #define GET_PIXEL(frame, x, y) \
  183. ((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x))
  184. #define GET_PIXEL_COMP(frame, x, y, c) \
  185. (*((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x) + c))
  186. static void image_ctx_free(ImageContext *img)
  187. {
  188. int i, j;
  189. av_free(img->color_cache);
  190. if (img->role != IMAGE_ROLE_ARGB && !img->is_alpha_primary)
  191. av_frame_free(&img->frame);
  192. if (img->huffman_groups) {
  193. for (i = 0; i < img->nb_huffman_groups; i++) {
  194. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++)
  195. ff_free_vlc(&img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE + j].vlc);
  196. }
  197. av_free(img->huffman_groups);
  198. }
  199. memset(img, 0, sizeof(*img));
  200. }
  201. /* Differs from get_vlc2() in the following ways:
  202. * - codes are bit-reversed
  203. * - assumes 8-bit table to make reversal simpler
  204. * - assumes max depth of 2 since the max code length for WebP is 15
  205. */
  206. static av_always_inline int webp_get_vlc(GetBitContext *gb, VLC_TYPE (*table)[2])
  207. {
  208. int n, nb_bits;
  209. unsigned int index;
  210. int code;
  211. OPEN_READER(re, gb);
  212. UPDATE_CACHE(re, gb);
  213. index = SHOW_UBITS(re, gb, 8);
  214. index = ff_reverse[index];
  215. code = table[index][0];
  216. n = table[index][1];
  217. if (n < 0) {
  218. LAST_SKIP_BITS(re, gb, 8);
  219. UPDATE_CACHE(re, gb);
  220. nb_bits = -n;
  221. index = SHOW_UBITS(re, gb, nb_bits);
  222. index = (ff_reverse[index] >> (8 - nb_bits)) + code;
  223. code = table[index][0];
  224. n = table[index][1];
  225. }
  226. SKIP_BITS(re, gb, n);
  227. CLOSE_READER(re, gb);
  228. return code;
  229. }
  230. static int huff_reader_get_symbol(HuffReader *r, GetBitContext *gb)
  231. {
  232. if (r->simple) {
  233. if (r->nb_symbols == 1)
  234. return r->simple_symbols[0];
  235. else
  236. return r->simple_symbols[get_bits1(gb)];
  237. } else
  238. return webp_get_vlc(gb, r->vlc.table);
  239. }
  240. static int huff_reader_build_canonical(HuffReader *r, int *code_lengths,
  241. int alphabet_size)
  242. {
  243. int len, sym, code, ret;
  244. int max_code_length = 0;
  245. uint16_t *codes;
  246. for (sym = 0; sym < alphabet_size; sym++)
  247. max_code_length = FFMAX(max_code_length, code_lengths[sym]);
  248. if (max_code_length == 0 || max_code_length > MAX_HUFFMAN_CODE_LENGTH)
  249. return AVERROR(EINVAL);
  250. codes = av_malloc(alphabet_size * sizeof(*codes));
  251. if (!codes)
  252. return AVERROR(ENOMEM);
  253. code = 0;
  254. r->nb_symbols = 0;
  255. for (len = 1; len <= max_code_length; len++) {
  256. for (sym = 0; sym < alphabet_size; sym++) {
  257. if (code_lengths[sym] != len)
  258. continue;
  259. codes[sym] = code++;
  260. r->nb_symbols++;
  261. }
  262. code <<= 1;
  263. }
  264. if (!r->nb_symbols) {
  265. av_free(codes);
  266. return AVERROR_INVALIDDATA;
  267. }
  268. ret = init_vlc(&r->vlc, 8, alphabet_size,
  269. code_lengths, sizeof(*code_lengths), sizeof(*code_lengths),
  270. codes, sizeof(*codes), sizeof(*codes), 0);
  271. if (ret < 0) {
  272. av_free(codes);
  273. return ret;
  274. }
  275. r->simple = 0;
  276. av_free(codes);
  277. return 0;
  278. }
  279. static void read_huffman_code_simple(WebPContext *s, HuffReader *hc)
  280. {
  281. hc->nb_symbols = get_bits1(&s->gb) + 1;
  282. if (get_bits1(&s->gb))
  283. hc->simple_symbols[0] = get_bits(&s->gb, 8);
  284. else
  285. hc->simple_symbols[0] = get_bits1(&s->gb);
  286. if (hc->nb_symbols == 2)
  287. hc->simple_symbols[1] = get_bits(&s->gb, 8);
  288. hc->simple = 1;
  289. }
  290. static int read_huffman_code_normal(WebPContext *s, HuffReader *hc,
  291. int alphabet_size)
  292. {
  293. HuffReader code_len_hc = { { 0 }, 0, 0, { 0 } };
  294. int *code_lengths = NULL;
  295. int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
  296. int i, symbol, max_symbol, prev_code_len, ret;
  297. int num_codes = 4 + get_bits(&s->gb, 4);
  298. if (num_codes > NUM_CODE_LENGTH_CODES)
  299. return AVERROR_INVALIDDATA;
  300. for (i = 0; i < num_codes; i++)
  301. code_length_code_lengths[code_length_code_order[i]] = get_bits(&s->gb, 3);
  302. ret = huff_reader_build_canonical(&code_len_hc, code_length_code_lengths,
  303. NUM_CODE_LENGTH_CODES);
  304. if (ret < 0)
  305. goto finish;
  306. code_lengths = av_mallocz_array(alphabet_size, sizeof(*code_lengths));
  307. if (!code_lengths) {
  308. ret = AVERROR(ENOMEM);
  309. goto finish;
  310. }
  311. if (get_bits1(&s->gb)) {
  312. int bits = 2 + 2 * get_bits(&s->gb, 3);
  313. max_symbol = 2 + get_bits(&s->gb, bits);
  314. if (max_symbol > alphabet_size) {
  315. av_log(s->avctx, AV_LOG_ERROR, "max symbol %d > alphabet size %d\n",
  316. max_symbol, alphabet_size);
  317. ret = AVERROR_INVALIDDATA;
  318. goto finish;
  319. }
  320. } else {
  321. max_symbol = alphabet_size;
  322. }
  323. prev_code_len = 8;
  324. symbol = 0;
  325. while (symbol < alphabet_size) {
  326. int code_len;
  327. if (!max_symbol--)
  328. break;
  329. code_len = huff_reader_get_symbol(&code_len_hc, &s->gb);
  330. if (code_len < 16) {
  331. /* Code length code [0..15] indicates literal code lengths. */
  332. code_lengths[symbol++] = code_len;
  333. if (code_len)
  334. prev_code_len = code_len;
  335. } else {
  336. int repeat = 0, length = 0;
  337. switch (code_len) {
  338. case 16:
  339. /* Code 16 repeats the previous non-zero value [3..6] times,
  340. * i.e., 3 + ReadBits(2) times. If code 16 is used before a
  341. * non-zero value has been emitted, a value of 8 is repeated. */
  342. repeat = 3 + get_bits(&s->gb, 2);
  343. length = prev_code_len;
  344. break;
  345. case 17:
  346. /* Code 17 emits a streak of zeros [3..10], i.e.,
  347. * 3 + ReadBits(3) times. */
  348. repeat = 3 + get_bits(&s->gb, 3);
  349. break;
  350. case 18:
  351. /* Code 18 emits a streak of zeros of length [11..138], i.e.,
  352. * 11 + ReadBits(7) times. */
  353. repeat = 11 + get_bits(&s->gb, 7);
  354. break;
  355. }
  356. if (symbol + repeat > alphabet_size) {
  357. av_log(s->avctx, AV_LOG_ERROR,
  358. "invalid symbol %d + repeat %d > alphabet size %d\n",
  359. symbol, repeat, alphabet_size);
  360. ret = AVERROR_INVALIDDATA;
  361. goto finish;
  362. }
  363. while (repeat-- > 0)
  364. code_lengths[symbol++] = length;
  365. }
  366. }
  367. ret = huff_reader_build_canonical(hc, code_lengths, alphabet_size);
  368. finish:
  369. ff_free_vlc(&code_len_hc.vlc);
  370. av_free(code_lengths);
  371. return ret;
  372. }
  373. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  374. int w, int h);
  375. #define PARSE_BLOCK_SIZE(w, h) do { \
  376. block_bits = get_bits(&s->gb, 3) + 2; \
  377. blocks_w = FFALIGN((w), 1 << block_bits) >> block_bits; \
  378. blocks_h = FFALIGN((h), 1 << block_bits) >> block_bits; \
  379. } while (0)
  380. static int decode_entropy_image(WebPContext *s)
  381. {
  382. ImageContext *img;
  383. int ret, block_bits, width, blocks_w, blocks_h, x, y, max;
  384. width = s->width;
  385. if (s->reduced_width > 0)
  386. width = s->reduced_width;
  387. PARSE_BLOCK_SIZE(width, s->height);
  388. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ENTROPY, blocks_w, blocks_h);
  389. if (ret < 0)
  390. return ret;
  391. img = &s->image[IMAGE_ROLE_ENTROPY];
  392. img->size_reduction = block_bits;
  393. /* the number of huffman groups is determined by the maximum group number
  394. * coded in the entropy image */
  395. max = 0;
  396. for (y = 0; y < img->frame->height; y++) {
  397. for (x = 0; x < img->frame->width; x++) {
  398. int p = GET_PIXEL_COMP(img->frame, x, y, 2);
  399. max = FFMAX(max, p);
  400. }
  401. }
  402. s->nb_huffman_groups = max + 1;
  403. return 0;
  404. }
  405. static int parse_transform_predictor(WebPContext *s)
  406. {
  407. int block_bits, blocks_w, blocks_h, ret;
  408. PARSE_BLOCK_SIZE(s->width, s->height);
  409. ret = decode_entropy_coded_image(s, IMAGE_ROLE_PREDICTOR, blocks_w,
  410. blocks_h);
  411. if (ret < 0)
  412. return ret;
  413. s->image[IMAGE_ROLE_PREDICTOR].size_reduction = block_bits;
  414. return 0;
  415. }
  416. static int parse_transform_color(WebPContext *s)
  417. {
  418. int block_bits, blocks_w, blocks_h, ret;
  419. PARSE_BLOCK_SIZE(s->width, s->height);
  420. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_TRANSFORM, blocks_w,
  421. blocks_h);
  422. if (ret < 0)
  423. return ret;
  424. s->image[IMAGE_ROLE_COLOR_TRANSFORM].size_reduction = block_bits;
  425. return 0;
  426. }
  427. static int parse_transform_color_indexing(WebPContext *s)
  428. {
  429. ImageContext *img;
  430. int width_bits, index_size, ret, x;
  431. uint8_t *ct;
  432. index_size = get_bits(&s->gb, 8) + 1;
  433. if (index_size <= 2)
  434. width_bits = 3;
  435. else if (index_size <= 4)
  436. width_bits = 2;
  437. else if (index_size <= 16)
  438. width_bits = 1;
  439. else
  440. width_bits = 0;
  441. ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_INDEXING,
  442. index_size, 1);
  443. if (ret < 0)
  444. return ret;
  445. img = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  446. img->size_reduction = width_bits;
  447. if (width_bits > 0)
  448. s->reduced_width = (s->width + ((1 << width_bits) - 1)) >> width_bits;
  449. /* color index values are delta-coded */
  450. ct = img->frame->data[0] + 4;
  451. for (x = 4; x < img->frame->width * 4; x++, ct++)
  452. ct[0] += ct[-4];
  453. return 0;
  454. }
  455. static HuffReader *get_huffman_group(WebPContext *s, ImageContext *img,
  456. int x, int y)
  457. {
  458. ImageContext *gimg = &s->image[IMAGE_ROLE_ENTROPY];
  459. int group = 0;
  460. if (gimg->size_reduction > 0) {
  461. int group_x = x >> gimg->size_reduction;
  462. int group_y = y >> gimg->size_reduction;
  463. group = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 2);
  464. }
  465. return &img->huffman_groups[group * HUFFMAN_CODES_PER_META_CODE];
  466. }
  467. static av_always_inline void color_cache_put(ImageContext *img, uint32_t c)
  468. {
  469. uint32_t cache_idx = (0x1E35A7BD * c) >> (32 - img->color_cache_bits);
  470. img->color_cache[cache_idx] = c;
  471. }
  472. static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
  473. int w, int h)
  474. {
  475. ImageContext *img;
  476. HuffReader *hg;
  477. int i, j, ret, x, y, width;
  478. img = &s->image[role];
  479. img->role = role;
  480. if (!img->frame) {
  481. img->frame = av_frame_alloc();
  482. if (!img->frame)
  483. return AVERROR(ENOMEM);
  484. }
  485. img->frame->format = AV_PIX_FMT_ARGB;
  486. img->frame->width = w;
  487. img->frame->height = h;
  488. if (role == IMAGE_ROLE_ARGB && !img->is_alpha_primary) {
  489. ThreadFrame pt = { .f = img->frame };
  490. ret = ff_thread_get_buffer(s->avctx, &pt, 0);
  491. } else
  492. ret = av_frame_get_buffer(img->frame, 1);
  493. if (ret < 0)
  494. return ret;
  495. if (get_bits1(&s->gb)) {
  496. img->color_cache_bits = get_bits(&s->gb, 4);
  497. if (img->color_cache_bits < 1 || img->color_cache_bits > 11) {
  498. av_log(s->avctx, AV_LOG_ERROR, "invalid color cache bits: %d\n",
  499. img->color_cache_bits);
  500. return AVERROR_INVALIDDATA;
  501. }
  502. img->color_cache = av_mallocz_array(1 << img->color_cache_bits,
  503. sizeof(*img->color_cache));
  504. if (!img->color_cache)
  505. return AVERROR(ENOMEM);
  506. } else {
  507. img->color_cache_bits = 0;
  508. }
  509. img->nb_huffman_groups = 1;
  510. if (role == IMAGE_ROLE_ARGB && get_bits1(&s->gb)) {
  511. ret = decode_entropy_image(s);
  512. if (ret < 0)
  513. return ret;
  514. img->nb_huffman_groups = s->nb_huffman_groups;
  515. }
  516. img->huffman_groups = av_mallocz_array(img->nb_huffman_groups *
  517. HUFFMAN_CODES_PER_META_CODE,
  518. sizeof(*img->huffman_groups));
  519. if (!img->huffman_groups)
  520. return AVERROR(ENOMEM);
  521. for (i = 0; i < img->nb_huffman_groups; i++) {
  522. hg = &img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE];
  523. for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++) {
  524. int alphabet_size = alphabet_sizes[j];
  525. if (!j && img->color_cache_bits > 0)
  526. alphabet_size += 1 << img->color_cache_bits;
  527. if (get_bits1(&s->gb)) {
  528. read_huffman_code_simple(s, &hg[j]);
  529. } else {
  530. ret = read_huffman_code_normal(s, &hg[j], alphabet_size);
  531. if (ret < 0)
  532. return ret;
  533. }
  534. }
  535. }
  536. width = img->frame->width;
  537. if (role == IMAGE_ROLE_ARGB && s->reduced_width > 0)
  538. width = s->reduced_width;
  539. x = 0; y = 0;
  540. while (y < img->frame->height) {
  541. int v;
  542. hg = get_huffman_group(s, img, x, y);
  543. v = huff_reader_get_symbol(&hg[HUFF_IDX_GREEN], &s->gb);
  544. if (v < NUM_LITERAL_CODES) {
  545. /* literal pixel values */
  546. uint8_t *p = GET_PIXEL(img->frame, x, y);
  547. p[2] = v;
  548. p[1] = huff_reader_get_symbol(&hg[HUFF_IDX_RED], &s->gb);
  549. p[3] = huff_reader_get_symbol(&hg[HUFF_IDX_BLUE], &s->gb);
  550. p[0] = huff_reader_get_symbol(&hg[HUFF_IDX_ALPHA], &s->gb);
  551. if (img->color_cache_bits)
  552. color_cache_put(img, AV_RB32(p));
  553. x++;
  554. if (x == width) {
  555. x = 0;
  556. y++;
  557. }
  558. } else if (v < NUM_LITERAL_CODES + NUM_LENGTH_CODES) {
  559. /* LZ77 backwards mapping */
  560. int prefix_code, length, distance, ref_x, ref_y;
  561. /* parse length and distance */
  562. prefix_code = v - NUM_LITERAL_CODES;
  563. if (prefix_code < 4) {
  564. length = prefix_code + 1;
  565. } else {
  566. int extra_bits = (prefix_code - 2) >> 1;
  567. int offset = 2 + (prefix_code & 1) << extra_bits;
  568. length = offset + get_bits(&s->gb, extra_bits) + 1;
  569. }
  570. prefix_code = huff_reader_get_symbol(&hg[HUFF_IDX_DIST], &s->gb);
  571. if (prefix_code < 4) {
  572. distance = prefix_code + 1;
  573. } else {
  574. int extra_bits = prefix_code - 2 >> 1;
  575. int offset = 2 + (prefix_code & 1) << extra_bits;
  576. distance = offset + get_bits(&s->gb, extra_bits) + 1;
  577. }
  578. /* find reference location */
  579. if (distance <= NUM_SHORT_DISTANCES) {
  580. int xi = lz77_distance_offsets[distance - 1][0];
  581. int yi = lz77_distance_offsets[distance - 1][1];
  582. distance = FFMAX(1, xi + yi * width);
  583. } else {
  584. distance -= NUM_SHORT_DISTANCES;
  585. }
  586. ref_x = x;
  587. ref_y = y;
  588. if (distance <= x) {
  589. ref_x -= distance;
  590. distance = 0;
  591. } else {
  592. ref_x = 0;
  593. distance -= x;
  594. }
  595. while (distance >= width) {
  596. ref_y--;
  597. distance -= width;
  598. }
  599. if (distance > 0) {
  600. ref_x = width - distance;
  601. ref_y--;
  602. }
  603. ref_x = FFMAX(0, ref_x);
  604. ref_y = FFMAX(0, ref_y);
  605. /* copy pixels
  606. * source and dest regions can overlap and wrap lines, so just
  607. * copy per-pixel */
  608. for (i = 0; i < length; i++) {
  609. uint8_t *p_ref = GET_PIXEL(img->frame, ref_x, ref_y);
  610. uint8_t *p = GET_PIXEL(img->frame, x, y);
  611. AV_COPY32(p, p_ref);
  612. if (img->color_cache_bits)
  613. color_cache_put(img, AV_RB32(p));
  614. x++;
  615. ref_x++;
  616. if (x == width) {
  617. x = 0;
  618. y++;
  619. }
  620. if (ref_x == width) {
  621. ref_x = 0;
  622. ref_y++;
  623. }
  624. if (y == img->frame->height || ref_y == img->frame->height)
  625. break;
  626. }
  627. } else {
  628. /* read from color cache */
  629. uint8_t *p = GET_PIXEL(img->frame, x, y);
  630. int cache_idx = v - (NUM_LITERAL_CODES + NUM_LENGTH_CODES);
  631. if (!img->color_cache_bits) {
  632. av_log(s->avctx, AV_LOG_ERROR, "color cache not found\n");
  633. return AVERROR_INVALIDDATA;
  634. }
  635. if (cache_idx >= 1 << img->color_cache_bits) {
  636. av_log(s->avctx, AV_LOG_ERROR,
  637. "color cache index out-of-bounds\n");
  638. return AVERROR_INVALIDDATA;
  639. }
  640. AV_WB32(p, img->color_cache[cache_idx]);
  641. x++;
  642. if (x == width) {
  643. x = 0;
  644. y++;
  645. }
  646. }
  647. }
  648. return 0;
  649. }
  650. /* PRED_MODE_BLACK */
  651. static void inv_predict_0(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  652. const uint8_t *p_t, const uint8_t *p_tr)
  653. {
  654. AV_WB32(p, 0xFF000000);
  655. }
  656. /* PRED_MODE_L */
  657. static void inv_predict_1(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  658. const uint8_t *p_t, const uint8_t *p_tr)
  659. {
  660. AV_COPY32(p, p_l);
  661. }
  662. /* PRED_MODE_T */
  663. static void inv_predict_2(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  664. const uint8_t *p_t, const uint8_t *p_tr)
  665. {
  666. AV_COPY32(p, p_t);
  667. }
  668. /* PRED_MODE_TR */
  669. static void inv_predict_3(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  670. const uint8_t *p_t, const uint8_t *p_tr)
  671. {
  672. AV_COPY32(p, p_tr);
  673. }
  674. /* PRED_MODE_TL */
  675. static void inv_predict_4(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  676. const uint8_t *p_t, const uint8_t *p_tr)
  677. {
  678. AV_COPY32(p, p_tl);
  679. }
  680. /* PRED_MODE_AVG_T_AVG_L_TR */
  681. static void inv_predict_5(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  682. const uint8_t *p_t, const uint8_t *p_tr)
  683. {
  684. p[0] = p_t[0] + (p_l[0] + p_tr[0] >> 1) >> 1;
  685. p[1] = p_t[1] + (p_l[1] + p_tr[1] >> 1) >> 1;
  686. p[2] = p_t[2] + (p_l[2] + p_tr[2] >> 1) >> 1;
  687. p[3] = p_t[3] + (p_l[3] + p_tr[3] >> 1) >> 1;
  688. }
  689. /* PRED_MODE_AVG_L_TL */
  690. static void inv_predict_6(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  691. const uint8_t *p_t, const uint8_t *p_tr)
  692. {
  693. p[0] = p_l[0] + p_tl[0] >> 1;
  694. p[1] = p_l[1] + p_tl[1] >> 1;
  695. p[2] = p_l[2] + p_tl[2] >> 1;
  696. p[3] = p_l[3] + p_tl[3] >> 1;
  697. }
  698. /* PRED_MODE_AVG_L_T */
  699. static void inv_predict_7(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  700. const uint8_t *p_t, const uint8_t *p_tr)
  701. {
  702. p[0] = p_l[0] + p_t[0] >> 1;
  703. p[1] = p_l[1] + p_t[1] >> 1;
  704. p[2] = p_l[2] + p_t[2] >> 1;
  705. p[3] = p_l[3] + p_t[3] >> 1;
  706. }
  707. /* PRED_MODE_AVG_TL_T */
  708. static void inv_predict_8(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  709. const uint8_t *p_t, const uint8_t *p_tr)
  710. {
  711. p[0] = p_tl[0] + p_t[0] >> 1;
  712. p[1] = p_tl[1] + p_t[1] >> 1;
  713. p[2] = p_tl[2] + p_t[2] >> 1;
  714. p[3] = p_tl[3] + p_t[3] >> 1;
  715. }
  716. /* PRED_MODE_AVG_T_TR */
  717. static void inv_predict_9(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  718. const uint8_t *p_t, const uint8_t *p_tr)
  719. {
  720. p[0] = p_t[0] + p_tr[0] >> 1;
  721. p[1] = p_t[1] + p_tr[1] >> 1;
  722. p[2] = p_t[2] + p_tr[2] >> 1;
  723. p[3] = p_t[3] + p_tr[3] >> 1;
  724. }
  725. /* PRED_MODE_AVG_AVG_L_TL_AVG_T_TR */
  726. static void inv_predict_10(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  727. const uint8_t *p_t, const uint8_t *p_tr)
  728. {
  729. p[0] = (p_l[0] + p_tl[0] >> 1) + (p_t[0] + p_tr[0] >> 1) >> 1;
  730. p[1] = (p_l[1] + p_tl[1] >> 1) + (p_t[1] + p_tr[1] >> 1) >> 1;
  731. p[2] = (p_l[2] + p_tl[2] >> 1) + (p_t[2] + p_tr[2] >> 1) >> 1;
  732. p[3] = (p_l[3] + p_tl[3] >> 1) + (p_t[3] + p_tr[3] >> 1) >> 1;
  733. }
  734. /* PRED_MODE_SELECT */
  735. static void inv_predict_11(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  736. const uint8_t *p_t, const uint8_t *p_tr)
  737. {
  738. int diff = (FFABS(p_l[0] - p_tl[0]) - FFABS(p_t[0] - p_tl[0])) +
  739. (FFABS(p_l[1] - p_tl[1]) - FFABS(p_t[1] - p_tl[1])) +
  740. (FFABS(p_l[2] - p_tl[2]) - FFABS(p_t[2] - p_tl[2])) +
  741. (FFABS(p_l[3] - p_tl[3]) - FFABS(p_t[3] - p_tl[3]));
  742. if (diff <= 0)
  743. AV_COPY32(p, p_t);
  744. else
  745. AV_COPY32(p, p_l);
  746. }
  747. /* PRED_MODE_ADD_SUBTRACT_FULL */
  748. static void inv_predict_12(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  749. const uint8_t *p_t, const uint8_t *p_tr)
  750. {
  751. p[0] = av_clip_uint8(p_l[0] + p_t[0] - p_tl[0]);
  752. p[1] = av_clip_uint8(p_l[1] + p_t[1] - p_tl[1]);
  753. p[2] = av_clip_uint8(p_l[2] + p_t[2] - p_tl[2]);
  754. p[3] = av_clip_uint8(p_l[3] + p_t[3] - p_tl[3]);
  755. }
  756. static av_always_inline uint8_t clamp_add_subtract_half(int a, int b, int c)
  757. {
  758. int d = a + b >> 1;
  759. return av_clip_uint8(d + (d - c) / 2);
  760. }
  761. /* PRED_MODE_ADD_SUBTRACT_HALF */
  762. static void inv_predict_13(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
  763. const uint8_t *p_t, const uint8_t *p_tr)
  764. {
  765. p[0] = clamp_add_subtract_half(p_l[0], p_t[0], p_tl[0]);
  766. p[1] = clamp_add_subtract_half(p_l[1], p_t[1], p_tl[1]);
  767. p[2] = clamp_add_subtract_half(p_l[2], p_t[2], p_tl[2]);
  768. p[3] = clamp_add_subtract_half(p_l[3], p_t[3], p_tl[3]);
  769. }
  770. typedef void (*inv_predict_func)(uint8_t *p, const uint8_t *p_l,
  771. const uint8_t *p_tl, const uint8_t *p_t,
  772. const uint8_t *p_tr);
  773. static const inv_predict_func inverse_predict[14] = {
  774. inv_predict_0, inv_predict_1, inv_predict_2, inv_predict_3,
  775. inv_predict_4, inv_predict_5, inv_predict_6, inv_predict_7,
  776. inv_predict_8, inv_predict_9, inv_predict_10, inv_predict_11,
  777. inv_predict_12, inv_predict_13,
  778. };
  779. static void inverse_prediction(AVFrame *frame, enum PredictionMode m, int x, int y)
  780. {
  781. uint8_t *dec, *p_l, *p_tl, *p_t, *p_tr;
  782. uint8_t p[4];
  783. dec = GET_PIXEL(frame, x, y);
  784. p_l = GET_PIXEL(frame, x - 1, y);
  785. p_tl = GET_PIXEL(frame, x - 1, y - 1);
  786. p_t = GET_PIXEL(frame, x, y - 1);
  787. if (x == frame->width - 1)
  788. p_tr = GET_PIXEL(frame, 0, y);
  789. else
  790. p_tr = GET_PIXEL(frame, x + 1, y - 1);
  791. inverse_predict[m](p, p_l, p_tl, p_t, p_tr);
  792. dec[0] += p[0];
  793. dec[1] += p[1];
  794. dec[2] += p[2];
  795. dec[3] += p[3];
  796. }
  797. static int apply_predictor_transform(WebPContext *s)
  798. {
  799. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  800. ImageContext *pimg = &s->image[IMAGE_ROLE_PREDICTOR];
  801. int x, y;
  802. for (y = 0; y < img->frame->height; y++) {
  803. for (x = 0; x < img->frame->width; x++) {
  804. int tx = x >> pimg->size_reduction;
  805. int ty = y >> pimg->size_reduction;
  806. enum PredictionMode m = GET_PIXEL_COMP(pimg->frame, tx, ty, 2);
  807. if (x == 0) {
  808. if (y == 0)
  809. m = PRED_MODE_BLACK;
  810. else
  811. m = PRED_MODE_T;
  812. } else if (y == 0)
  813. m = PRED_MODE_L;
  814. if (m > 13) {
  815. av_log(s->avctx, AV_LOG_ERROR,
  816. "invalid predictor mode: %d\n", m);
  817. return AVERROR_INVALIDDATA;
  818. }
  819. inverse_prediction(img->frame, m, x, y);
  820. }
  821. }
  822. return 0;
  823. }
  824. static av_always_inline uint8_t color_transform_delta(uint8_t color_pred,
  825. uint8_t color)
  826. {
  827. return (int)ff_u8_to_s8(color_pred) * ff_u8_to_s8(color) >> 5;
  828. }
  829. static int apply_color_transform(WebPContext *s)
  830. {
  831. ImageContext *img, *cimg;
  832. int x, y, cx, cy;
  833. uint8_t *p, *cp;
  834. img = &s->image[IMAGE_ROLE_ARGB];
  835. cimg = &s->image[IMAGE_ROLE_COLOR_TRANSFORM];
  836. for (y = 0; y < img->frame->height; y++) {
  837. for (x = 0; x < img->frame->width; x++) {
  838. cx = x >> cimg->size_reduction;
  839. cy = y >> cimg->size_reduction;
  840. cp = GET_PIXEL(cimg->frame, cx, cy);
  841. p = GET_PIXEL(img->frame, x, y);
  842. p[1] += color_transform_delta(cp[3], p[2]);
  843. p[3] += color_transform_delta(cp[2], p[2]) +
  844. color_transform_delta(cp[1], p[1]);
  845. }
  846. }
  847. return 0;
  848. }
  849. static int apply_subtract_green_transform(WebPContext *s)
  850. {
  851. int x, y;
  852. ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
  853. for (y = 0; y < img->frame->height; y++) {
  854. for (x = 0; x < img->frame->width; x++) {
  855. uint8_t *p = GET_PIXEL(img->frame, x, y);
  856. p[1] += p[2];
  857. p[3] += p[2];
  858. }
  859. }
  860. return 0;
  861. }
  862. static int apply_color_indexing_transform(WebPContext *s)
  863. {
  864. ImageContext *img;
  865. ImageContext *pal;
  866. int i, x, y;
  867. uint8_t *p, *pi;
  868. img = &s->image[IMAGE_ROLE_ARGB];
  869. pal = &s->image[IMAGE_ROLE_COLOR_INDEXING];
  870. if (pal->size_reduction > 0) {
  871. GetBitContext gb_g;
  872. uint8_t *line;
  873. int pixel_bits = 8 >> pal->size_reduction;
  874. line = av_malloc(img->frame->linesize[0]);
  875. if (!line)
  876. return AVERROR(ENOMEM);
  877. for (y = 0; y < img->frame->height; y++) {
  878. p = GET_PIXEL(img->frame, 0, y);
  879. memcpy(line, p, img->frame->linesize[0]);
  880. init_get_bits(&gb_g, line, img->frame->linesize[0] * 8);
  881. skip_bits(&gb_g, 16);
  882. i = 0;
  883. for (x = 0; x < img->frame->width; x++) {
  884. p = GET_PIXEL(img->frame, x, y);
  885. p[2] = get_bits(&gb_g, pixel_bits);
  886. i++;
  887. if (i == 1 << pal->size_reduction) {
  888. skip_bits(&gb_g, 24);
  889. i = 0;
  890. }
  891. }
  892. }
  893. av_free(line);
  894. }
  895. for (y = 0; y < img->frame->height; y++) {
  896. for (x = 0; x < img->frame->width; x++) {
  897. p = GET_PIXEL(img->frame, x, y);
  898. i = p[2];
  899. if (i >= pal->frame->width) {
  900. av_log(s->avctx, AV_LOG_ERROR, "invalid palette index %d\n", i);
  901. return AVERROR_INVALIDDATA;
  902. }
  903. pi = GET_PIXEL(pal->frame, i, 0);
  904. AV_COPY32(p, pi);
  905. }
  906. }
  907. return 0;
  908. }
  909. static int vp8_lossless_decode_frame(AVCodecContext *avctx, AVFrame *p,
  910. int *got_frame, uint8_t *data_start,
  911. unsigned int data_size, int is_alpha_chunk)
  912. {
  913. WebPContext *s = avctx->priv_data;
  914. int w, h, ret, i;
  915. if (!is_alpha_chunk) {
  916. s->lossless = 1;
  917. avctx->pix_fmt = AV_PIX_FMT_ARGB;
  918. }
  919. ret = init_get_bits(&s->gb, data_start, data_size * 8);
  920. if (ret < 0)
  921. return ret;
  922. if (!is_alpha_chunk) {
  923. if (get_bits(&s->gb, 8) != 0x2F) {
  924. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless signature\n");
  925. return AVERROR_INVALIDDATA;
  926. }
  927. w = get_bits(&s->gb, 14) + 1;
  928. h = get_bits(&s->gb, 14) + 1;
  929. if (s->width && s->width != w) {
  930. av_log(avctx, AV_LOG_WARNING, "Width mismatch. %d != %d\n",
  931. s->width, w);
  932. }
  933. s->width = w;
  934. if (s->height && s->height != h) {
  935. av_log(avctx, AV_LOG_WARNING, "Height mismatch. %d != %d\n",
  936. s->width, w);
  937. }
  938. s->height = h;
  939. ret = av_image_check_size(s->width, s->height, 0, avctx);
  940. if (ret < 0)
  941. return ret;
  942. avcodec_set_dimensions(avctx, s->width, s->height);
  943. s->has_alpha = get_bits1(&s->gb);
  944. if (get_bits(&s->gb, 3) != 0x0) {
  945. av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless version\n");
  946. return AVERROR_INVALIDDATA;
  947. }
  948. } else {
  949. if (!s->width || !s->height)
  950. return AVERROR_BUG;
  951. w = s->width;
  952. h = s->height;
  953. }
  954. /* parse transformations */
  955. s->nb_transforms = 0;
  956. s->reduced_width = 0;
  957. while (get_bits1(&s->gb)) {
  958. enum TransformType transform = get_bits(&s->gb, 2);
  959. s->transforms[s->nb_transforms++] = transform;
  960. switch (transform) {
  961. case PREDICTOR_TRANSFORM:
  962. ret = parse_transform_predictor(s);
  963. break;
  964. case COLOR_TRANSFORM:
  965. ret = parse_transform_color(s);
  966. break;
  967. case COLOR_INDEXING_TRANSFORM:
  968. ret = parse_transform_color_indexing(s);
  969. break;
  970. }
  971. if (ret < 0)
  972. goto free_and_return;
  973. }
  974. /* decode primary image */
  975. s->image[IMAGE_ROLE_ARGB].frame = p;
  976. if (is_alpha_chunk)
  977. s->image[IMAGE_ROLE_ARGB].is_alpha_primary = 1;
  978. ret = decode_entropy_coded_image(s, IMAGE_ROLE_ARGB, w, h);
  979. if (ret < 0) {
  980. av_frame_free(&p);
  981. goto free_and_return;
  982. }
  983. /* apply transformations */
  984. for (i = s->nb_transforms - 1; i >= 0; i--) {
  985. switch (s->transforms[i]) {
  986. case PREDICTOR_TRANSFORM:
  987. ret = apply_predictor_transform(s);
  988. break;
  989. case COLOR_TRANSFORM:
  990. ret = apply_color_transform(s);
  991. break;
  992. case SUBTRACT_GREEN:
  993. ret = apply_subtract_green_transform(s);
  994. break;
  995. case COLOR_INDEXING_TRANSFORM:
  996. ret = apply_color_indexing_transform(s);
  997. break;
  998. }
  999. if (ret < 0) {
  1000. av_frame_free(&p);
  1001. goto free_and_return;
  1002. }
  1003. }
  1004. *got_frame = 1;
  1005. p->pict_type = AV_PICTURE_TYPE_I;
  1006. p->key_frame = 1;
  1007. ret = data_size;
  1008. free_and_return:
  1009. for (i = 0; i < IMAGE_ROLE_NB; i++)
  1010. image_ctx_free(&s->image[i]);
  1011. return ret;
  1012. }
  1013. static void alpha_inverse_prediction(AVFrame *frame, enum AlphaFilter m)
  1014. {
  1015. int x, y, ls;
  1016. uint8_t *dec;
  1017. ls = frame->linesize[3];
  1018. /* filter first row using horizontal filter */
  1019. dec = frame->data[3] + 1;
  1020. for (x = 1; x < frame->width; x++, dec++)
  1021. *dec += *(dec - 1);
  1022. /* filter first column using vertical filter */
  1023. dec = frame->data[3] + ls;
  1024. for (y = 1; y < frame->height; y++, dec += ls)
  1025. *dec += *(dec - ls);
  1026. /* filter the rest using the specified filter */
  1027. switch (m) {
  1028. case ALPHA_FILTER_HORIZONTAL:
  1029. for (y = 1; y < frame->height; y++) {
  1030. dec = frame->data[3] + y * ls + 1;
  1031. for (x = 1; x < frame->width; x++, dec++)
  1032. *dec += *(dec - 1);
  1033. }
  1034. break;
  1035. case ALPHA_FILTER_VERTICAL:
  1036. for (y = 1; y < frame->height; y++) {
  1037. dec = frame->data[3] + y * ls + 1;
  1038. for (x = 1; x < frame->width; x++, dec++)
  1039. *dec += *(dec - ls);
  1040. }
  1041. break;
  1042. case ALPHA_FILTER_GRADIENT:
  1043. for (y = 1; y < frame->height; y++) {
  1044. dec = frame->data[3] + y * ls + 1;
  1045. for (x = 1; x < frame->width; x++, dec++)
  1046. dec[0] += av_clip_uint8(*(dec - 1) + *(dec - ls) - *(dec - ls - 1));
  1047. }
  1048. break;
  1049. }
  1050. }
  1051. static int vp8_lossy_decode_alpha(AVCodecContext *avctx, AVFrame *p,
  1052. uint8_t *data_start,
  1053. unsigned int data_size)
  1054. {
  1055. WebPContext *s = avctx->priv_data;
  1056. int x, y, ret;
  1057. if (s->alpha_compression == ALPHA_COMPRESSION_NONE) {
  1058. GetByteContext gb;
  1059. bytestream2_init(&gb, data_start, data_size);
  1060. for (y = 0; y < s->height; y++)
  1061. bytestream2_get_buffer(&gb, p->data[3] + p->linesize[3] * y,
  1062. s->width);
  1063. } else if (s->alpha_compression == ALPHA_COMPRESSION_VP8L) {
  1064. uint8_t *ap, *pp;
  1065. int alpha_got_frame = 0;
  1066. s->alpha_frame = av_frame_alloc();
  1067. if (!s->alpha_frame)
  1068. return AVERROR(ENOMEM);
  1069. ret = vp8_lossless_decode_frame(avctx, s->alpha_frame, &alpha_got_frame,
  1070. data_start, data_size, 1);
  1071. if (ret < 0) {
  1072. av_frame_free(&s->alpha_frame);
  1073. return ret;
  1074. }
  1075. if (!alpha_got_frame) {
  1076. av_frame_free(&s->alpha_frame);
  1077. return AVERROR_INVALIDDATA;
  1078. }
  1079. /* copy green component of alpha image to alpha plane of primary image */
  1080. for (y = 0; y < s->height; y++) {
  1081. ap = GET_PIXEL(s->alpha_frame, 0, y) + 2;
  1082. pp = p->data[3] + p->linesize[3] * y;
  1083. for (x = 0; x < s->width; x++) {
  1084. *pp = *ap;
  1085. pp++;
  1086. ap += 4;
  1087. }
  1088. }
  1089. av_frame_free(&s->alpha_frame);
  1090. }
  1091. /* apply alpha filtering */
  1092. if (s->alpha_filter)
  1093. alpha_inverse_prediction(p, s->alpha_filter);
  1094. return 0;
  1095. }
  1096. static int vp8_lossy_decode_frame(AVCodecContext *avctx, AVFrame *p,
  1097. int *got_frame, uint8_t *data_start,
  1098. unsigned int data_size)
  1099. {
  1100. WebPContext *s = avctx->priv_data;
  1101. AVPacket pkt;
  1102. int ret;
  1103. if (!s->initialized) {
  1104. ff_vp8_decode_init(avctx);
  1105. s->initialized = 1;
  1106. if (s->has_alpha)
  1107. avctx->pix_fmt = AV_PIX_FMT_YUVA420P;
  1108. }
  1109. s->lossless = 0;
  1110. if (data_size > INT_MAX) {
  1111. av_log(avctx, AV_LOG_ERROR, "unsupported chunk size\n");
  1112. return AVERROR_PATCHWELCOME;
  1113. }
  1114. av_init_packet(&pkt);
  1115. pkt.data = data_start;
  1116. pkt.size = data_size;
  1117. ret = ff_vp8_decode_frame(avctx, p, got_frame, &pkt);
  1118. if (s->has_alpha) {
  1119. ret = vp8_lossy_decode_alpha(avctx, p, s->alpha_data,
  1120. s->alpha_data_size);
  1121. if (ret < 0)
  1122. return ret;
  1123. }
  1124. return ret;
  1125. }
  1126. static int webp_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  1127. AVPacket *avpkt)
  1128. {
  1129. AVFrame * const p = data;
  1130. WebPContext *s = avctx->priv_data;
  1131. GetByteContext gb;
  1132. int ret;
  1133. uint32_t chunk_type, chunk_size;
  1134. int vp8x_flags = 0;
  1135. s->avctx = avctx;
  1136. s->width = 0;
  1137. s->height = 0;
  1138. *got_frame = 0;
  1139. s->has_alpha = 0;
  1140. bytestream2_init(&gb, avpkt->data, avpkt->size);
  1141. if (bytestream2_get_bytes_left(&gb) < 12)
  1142. return AVERROR_INVALIDDATA;
  1143. if (bytestream2_get_le32(&gb) != MKTAG('R', 'I', 'F', 'F')) {
  1144. av_log(avctx, AV_LOG_ERROR, "missing RIFF tag\n");
  1145. return AVERROR_INVALIDDATA;
  1146. }
  1147. chunk_size = bytestream2_get_le32(&gb);
  1148. if (bytestream2_get_bytes_left(&gb) < chunk_size)
  1149. return AVERROR_INVALIDDATA;
  1150. if (bytestream2_get_le32(&gb) != MKTAG('W', 'E', 'B', 'P')) {
  1151. av_log(avctx, AV_LOG_ERROR, "missing WEBP tag\n");
  1152. return AVERROR_INVALIDDATA;
  1153. }
  1154. while (bytestream2_get_bytes_left(&gb) > 0) {
  1155. char chunk_str[5] = { 0 };
  1156. chunk_type = bytestream2_get_le32(&gb);
  1157. chunk_size = bytestream2_get_le32(&gb);
  1158. if (chunk_size == UINT32_MAX)
  1159. return AVERROR_INVALIDDATA;
  1160. chunk_size += chunk_size & 1;
  1161. if (bytestream2_get_bytes_left(&gb) < chunk_size)
  1162. return AVERROR_INVALIDDATA;
  1163. switch (chunk_type) {
  1164. case MKTAG('V', 'P', '8', ' '):
  1165. if (!*got_frame) {
  1166. ret = vp8_lossy_decode_frame(avctx, p, got_frame,
  1167. avpkt->data + bytestream2_tell(&gb),
  1168. chunk_size);
  1169. if (ret < 0)
  1170. return ret;
  1171. }
  1172. bytestream2_skip(&gb, chunk_size);
  1173. break;
  1174. case MKTAG('V', 'P', '8', 'L'):
  1175. if (!*got_frame) {
  1176. ret = vp8_lossless_decode_frame(avctx, p, got_frame,
  1177. avpkt->data + bytestream2_tell(&gb),
  1178. chunk_size, 0);
  1179. if (ret < 0)
  1180. return ret;
  1181. }
  1182. bytestream2_skip(&gb, chunk_size);
  1183. break;
  1184. case MKTAG('V', 'P', '8', 'X'):
  1185. vp8x_flags = bytestream2_get_byte(&gb);
  1186. bytestream2_skip(&gb, 3);
  1187. s->width = bytestream2_get_le24(&gb) + 1;
  1188. s->height = bytestream2_get_le24(&gb) + 1;
  1189. ret = av_image_check_size(s->width, s->height, 0, avctx);
  1190. if (ret < 0)
  1191. return ret;
  1192. break;
  1193. case MKTAG('A', 'L', 'P', 'H'): {
  1194. int alpha_header, filter_m, compression;
  1195. if (!(vp8x_flags & VP8X_FLAG_ALPHA)) {
  1196. av_log(avctx, AV_LOG_WARNING,
  1197. "ALPHA chunk present, but alpha bit not set in the "
  1198. "VP8X header\n");
  1199. }
  1200. if (chunk_size == 0) {
  1201. av_log(avctx, AV_LOG_ERROR, "invalid ALPHA chunk size\n");
  1202. return AVERROR_INVALIDDATA;
  1203. }
  1204. alpha_header = bytestream2_get_byte(&gb);
  1205. s->alpha_data = avpkt->data + bytestream2_tell(&gb);
  1206. s->alpha_data_size = chunk_size - 1;
  1207. bytestream2_skip(&gb, s->alpha_data_size);
  1208. filter_m = (alpha_header >> 2) & 0x03;
  1209. compression = alpha_header & 0x03;
  1210. if (compression > ALPHA_COMPRESSION_VP8L) {
  1211. av_log(avctx, AV_LOG_VERBOSE,
  1212. "skipping unsupported ALPHA chunk\n");
  1213. } else {
  1214. s->has_alpha = 1;
  1215. s->alpha_compression = compression;
  1216. s->alpha_filter = filter_m;
  1217. }
  1218. break;
  1219. }
  1220. case MKTAG('I', 'C', 'C', 'P'):
  1221. case MKTAG('A', 'N', 'I', 'M'):
  1222. case MKTAG('A', 'N', 'M', 'F'):
  1223. case MKTAG('E', 'X', 'I', 'F'):
  1224. case MKTAG('X', 'M', 'P', ' '):
  1225. AV_WL32(chunk_str, chunk_type);
  1226. av_log(avctx, AV_LOG_VERBOSE, "skipping unsupported chunk: %s\n",
  1227. chunk_str);
  1228. bytestream2_skip(&gb, chunk_size);
  1229. break;
  1230. default:
  1231. AV_WL32(chunk_str, chunk_type);
  1232. av_log(avctx, AV_LOG_VERBOSE, "skipping unknown chunk: %s\n",
  1233. chunk_str);
  1234. bytestream2_skip(&gb, chunk_size);
  1235. break;
  1236. }
  1237. }
  1238. if (!*got_frame) {
  1239. av_log(avctx, AV_LOG_ERROR, "image data not found\n");
  1240. return AVERROR_INVALIDDATA;
  1241. }
  1242. return avpkt->size;
  1243. }
  1244. static av_cold int webp_decode_close(AVCodecContext *avctx)
  1245. {
  1246. WebPContext *s = avctx->priv_data;
  1247. if (s->initialized)
  1248. return ff_vp8_decode_free(avctx);
  1249. return 0;
  1250. }
  1251. AVCodec ff_webp_decoder = {
  1252. .name = "webp",
  1253. .long_name = NULL_IF_CONFIG_SMALL("WebP image"),
  1254. .type = AVMEDIA_TYPE_VIDEO,
  1255. .id = AV_CODEC_ID_WEBP,
  1256. .priv_data_size = sizeof(WebPContext),
  1257. .decode = webp_decode_frame,
  1258. .close = webp_decode_close,
  1259. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
  1260. };