You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1039 lines
34KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "avcodec.h"
  28. #include "ratecontrol.h"
  29. #include "mpegvideo.h"
  30. #include "libavutil/eval.h"
  31. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  32. #include <assert.h>
  33. #ifndef M_E
  34. #define M_E 2.718281828
  35. #endif
  36. static int init_pass2(MpegEncContext *s);
  37. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  38. double rate_factor, int frame_num);
  39. void ff_write_pass1_stats(MpegEncContext *s)
  40. {
  41. snprintf(s->avctx->stats_out, 256,
  42. "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
  43. "fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  44. s->current_picture_ptr->f.display_picture_number,
  45. s->current_picture_ptr->f.coded_picture_number,
  46. s->pict_type,
  47. s->current_picture.f.quality,
  48. s->i_tex_bits,
  49. s->p_tex_bits,
  50. s->mv_bits,
  51. s->misc_bits,
  52. s->f_code,
  53. s->b_code,
  54. s->current_picture.mc_mb_var_sum,
  55. s->current_picture.mb_var_sum,
  56. s->i_count, s->skip_count,
  57. s->header_bits);
  58. }
  59. static inline double qp2bits(RateControlEntry *rce, double qp)
  60. {
  61. if (qp <= 0.0) {
  62. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  63. }
  64. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  65. }
  66. static inline double bits2qp(RateControlEntry *rce, double bits)
  67. {
  68. if (bits < 0.9) {
  69. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  70. }
  71. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  72. }
  73. av_cold int ff_rate_control_init(MpegEncContext *s)
  74. {
  75. RateControlContext *rcc = &s->rc_context;
  76. int i, res;
  77. static const char * const const_names[] = {
  78. "PI",
  79. "E",
  80. "iTex",
  81. "pTex",
  82. "tex",
  83. "mv",
  84. "fCode",
  85. "iCount",
  86. "mcVar",
  87. "var",
  88. "isI",
  89. "isP",
  90. "isB",
  91. "avgQP",
  92. "qComp",
  93. #if 0
  94. "lastIQP",
  95. "lastPQP",
  96. "lastBQP",
  97. "nextNonBQP",
  98. #endif
  99. "avgIITex",
  100. "avgPITex",
  101. "avgPPTex",
  102. "avgBPTex",
  103. "avgTex",
  104. NULL
  105. };
  106. static double (* const func1[])(void *, double) = {
  107. (void *)bits2qp,
  108. (void *)qp2bits,
  109. NULL
  110. };
  111. static const char * const func1_names[] = {
  112. "bits2qp",
  113. "qp2bits",
  114. NULL
  115. };
  116. emms_c();
  117. res = av_expr_parse(&rcc->rc_eq_eval,
  118. s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp",
  119. const_names, func1_names, func1,
  120. NULL, NULL, 0, s->avctx);
  121. if (res < 0) {
  122. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
  123. return res;
  124. }
  125. for (i = 0; i < 5; i++) {
  126. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  127. rcc->pred[i].count = 1.0;
  128. rcc->pred[i].decay = 0.4;
  129. rcc->i_cplx_sum [i] =
  130. rcc->p_cplx_sum [i] =
  131. rcc->mv_bits_sum[i] =
  132. rcc->qscale_sum [i] =
  133. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  134. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  135. }
  136. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  137. if (s->flags & CODEC_FLAG_PASS2) {
  138. int i;
  139. char *p;
  140. /* find number of pics */
  141. p = s->avctx->stats_in;
  142. for (i = -1; p; i++)
  143. p = strchr(p + 1, ';');
  144. i += s->max_b_frames;
  145. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  146. return -1;
  147. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  148. rcc->num_entries = i;
  149. /* init all to skipped p frames
  150. * (with b frames we might have a not encoded frame at the end FIXME) */
  151. for (i = 0; i < rcc->num_entries; i++) {
  152. RateControlEntry *rce = &rcc->entry[i];
  153. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  154. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  155. rce->misc_bits = s->mb_num + 10;
  156. rce->mb_var_sum = s->mb_num * 100;
  157. }
  158. /* read stats */
  159. p = s->avctx->stats_in;
  160. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  161. RateControlEntry *rce;
  162. int picture_number;
  163. int e;
  164. char *next;
  165. next = strchr(p, ';');
  166. if (next) {
  167. (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write
  168. next++;
  169. }
  170. e = sscanf(p, " in:%d ", &picture_number);
  171. assert(picture_number >= 0);
  172. assert(picture_number < rcc->num_entries);
  173. rce = &rcc->entry[picture_number];
  174. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  175. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  176. &rce->mv_bits, &rce->misc_bits,
  177. &rce->f_code, &rce->b_code,
  178. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  179. &rce->i_count, &rce->skip_count, &rce->header_bits);
  180. if (e != 14) {
  181. av_log(s->avctx, AV_LOG_ERROR,
  182. "statistics are damaged at line %d, parser out=%d\n",
  183. i, e);
  184. return -1;
  185. }
  186. p = next;
  187. }
  188. if (init_pass2(s) < 0)
  189. return -1;
  190. // FIXME maybe move to end
  191. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  192. #if CONFIG_LIBXVID
  193. return ff_xvid_rate_control_init(s);
  194. #else
  195. av_log(s->avctx, AV_LOG_ERROR,
  196. "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  197. return -1;
  198. #endif
  199. }
  200. }
  201. if (!(s->flags & CODEC_FLAG_PASS2)) {
  202. rcc->short_term_qsum = 0.001;
  203. rcc->short_term_qcount = 0.001;
  204. rcc->pass1_rc_eq_output_sum = 0.001;
  205. rcc->pass1_wanted_bits = 0.001;
  206. if (s->avctx->qblur > 1.0) {
  207. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  208. return -1;
  209. }
  210. /* init stuff with the user specified complexity */
  211. if (s->avctx->rc_initial_cplx) {
  212. for (i = 0; i < 60 * 30; i++) {
  213. double bits = s->avctx->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  214. RateControlEntry rce;
  215. if (i % ((s->gop_size + 3) / 4) == 0)
  216. rce.pict_type = AV_PICTURE_TYPE_I;
  217. else if (i % (s->max_b_frames + 1))
  218. rce.pict_type = AV_PICTURE_TYPE_B;
  219. else
  220. rce.pict_type = AV_PICTURE_TYPE_P;
  221. rce.new_pict_type = rce.pict_type;
  222. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  223. rce.mb_var_sum = s->mb_num;
  224. rce.qscale = FF_QP2LAMBDA * 2;
  225. rce.f_code = 2;
  226. rce.b_code = 1;
  227. rce.misc_bits = 1;
  228. if (s->pict_type == AV_PICTURE_TYPE_I) {
  229. rce.i_count = s->mb_num;
  230. rce.i_tex_bits = bits;
  231. rce.p_tex_bits = 0;
  232. rce.mv_bits = 0;
  233. } else {
  234. rce.i_count = 0; // FIXME we do know this approx
  235. rce.i_tex_bits = 0;
  236. rce.p_tex_bits = bits * 0.9;
  237. rce.mv_bits = bits * 0.1;
  238. }
  239. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  240. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  241. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  242. rcc->frame_count[rce.pict_type]++;
  243. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  244. // FIXME misbehaves a little for variable fps
  245. rcc->pass1_wanted_bits += s->bit_rate / (1 / av_q2d(s->avctx->time_base));
  246. }
  247. }
  248. }
  249. return 0;
  250. }
  251. av_cold void ff_rate_control_uninit(MpegEncContext *s)
  252. {
  253. RateControlContext *rcc = &s->rc_context;
  254. emms_c();
  255. av_expr_free(rcc->rc_eq_eval);
  256. av_freep(&rcc->entry);
  257. #if CONFIG_LIBXVID
  258. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  259. ff_xvid_rate_control_uninit(s);
  260. #endif
  261. }
  262. int ff_vbv_update(MpegEncContext *s, int frame_size)
  263. {
  264. RateControlContext *rcc = &s->rc_context;
  265. const double fps = 1 / av_q2d(s->avctx->time_base);
  266. const int buffer_size = s->avctx->rc_buffer_size;
  267. const double min_rate = s->avctx->rc_min_rate / fps;
  268. const double max_rate = s->avctx->rc_max_rate / fps;
  269. av_dlog(s, "%d %f %d %f %f\n",
  270. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  271. if (buffer_size) {
  272. int left;
  273. rcc->buffer_index -= frame_size;
  274. if (rcc->buffer_index < 0) {
  275. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  276. rcc->buffer_index = 0;
  277. }
  278. left = buffer_size - rcc->buffer_index - 1;
  279. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  280. if (rcc->buffer_index > buffer_size) {
  281. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  282. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  283. stuffing = 4;
  284. rcc->buffer_index -= 8 * stuffing;
  285. if (s->avctx->debug & FF_DEBUG_RC)
  286. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  287. return stuffing;
  288. }
  289. }
  290. return 0;
  291. }
  292. /**
  293. * Modify the bitrate curve from pass1 for one frame.
  294. */
  295. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  296. double rate_factor, int frame_num)
  297. {
  298. RateControlContext *rcc = &s->rc_context;
  299. AVCodecContext *a = s->avctx;
  300. const int pict_type = rce->new_pict_type;
  301. const double mb_num = s->mb_num;
  302. double q, bits;
  303. int i;
  304. double const_values[] = {
  305. M_PI,
  306. M_E,
  307. rce->i_tex_bits * rce->qscale,
  308. rce->p_tex_bits * rce->qscale,
  309. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  310. rce->mv_bits / mb_num,
  311. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  312. rce->i_count / mb_num,
  313. rce->mc_mb_var_sum / mb_num,
  314. rce->mb_var_sum / mb_num,
  315. rce->pict_type == AV_PICTURE_TYPE_I,
  316. rce->pict_type == AV_PICTURE_TYPE_P,
  317. rce->pict_type == AV_PICTURE_TYPE_B,
  318. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  319. a->qcompress,
  320. #if 0
  321. rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  322. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  323. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  324. rcc->next_non_b_qscale,
  325. #endif
  326. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  327. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  328. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  329. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  330. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  331. 0
  332. };
  333. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  334. if (isnan(bits)) {
  335. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  336. return -1;
  337. }
  338. rcc->pass1_rc_eq_output_sum += bits;
  339. bits *= rate_factor;
  340. if (bits < 0.0)
  341. bits = 0.0;
  342. bits += 1.0; // avoid 1/0 issues
  343. /* user override */
  344. for (i = 0; i < s->avctx->rc_override_count; i++) {
  345. RcOverride *rco = s->avctx->rc_override;
  346. if (rco[i].start_frame > frame_num)
  347. continue;
  348. if (rco[i].end_frame < frame_num)
  349. continue;
  350. if (rco[i].qscale)
  351. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  352. else
  353. bits *= rco[i].quality_factor;
  354. }
  355. q = bits2qp(rce, bits);
  356. /* I/B difference */
  357. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  358. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  359. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  360. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  361. if (q < 1)
  362. q = 1;
  363. return q;
  364. }
  365. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  366. {
  367. RateControlContext *rcc = &s->rc_context;
  368. AVCodecContext *a = s->avctx;
  369. const int pict_type = rce->new_pict_type;
  370. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  371. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  372. if (pict_type == AV_PICTURE_TYPE_I &&
  373. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  374. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  375. else if (pict_type == AV_PICTURE_TYPE_B &&
  376. a->b_quant_factor > 0.0)
  377. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  378. if (q < 1)
  379. q = 1;
  380. /* last qscale / qdiff stuff */
  381. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  382. double last_q = rcc->last_qscale_for[pict_type];
  383. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  384. if (q > last_q + maxdiff)
  385. q = last_q + maxdiff;
  386. else if (q < last_q - maxdiff)
  387. q = last_q - maxdiff;
  388. }
  389. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  390. if (pict_type != AV_PICTURE_TYPE_B)
  391. rcc->last_non_b_pict_type = pict_type;
  392. return q;
  393. }
  394. /**
  395. * Get the qmin & qmax for pict_type.
  396. */
  397. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  398. {
  399. int qmin = s->avctx->lmin;
  400. int qmax = s->avctx->lmax;
  401. assert(qmin <= qmax);
  402. switch (pict_type) {
  403. case AV_PICTURE_TYPE_B:
  404. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  405. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  406. break;
  407. case AV_PICTURE_TYPE_I:
  408. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  409. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  410. break;
  411. }
  412. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  413. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  414. if (qmax < qmin)
  415. qmax = qmin;
  416. *qmin_ret = qmin;
  417. *qmax_ret = qmax;
  418. }
  419. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  420. double q, int frame_num)
  421. {
  422. RateControlContext *rcc = &s->rc_context;
  423. const double buffer_size = s->avctx->rc_buffer_size;
  424. const double fps = 1 / av_q2d(s->avctx->time_base);
  425. const double min_rate = s->avctx->rc_min_rate / fps;
  426. const double max_rate = s->avctx->rc_max_rate / fps;
  427. const int pict_type = rce->new_pict_type;
  428. int qmin, qmax;
  429. get_qminmax(&qmin, &qmax, s, pict_type);
  430. /* modulation */
  431. if (s->avctx->rc_qmod_freq &&
  432. frame_num % s->avctx->rc_qmod_freq == 0 &&
  433. pict_type == AV_PICTURE_TYPE_P)
  434. q *= s->avctx->rc_qmod_amp;
  435. /* buffer overflow/underflow protection */
  436. if (buffer_size) {
  437. double expected_size = rcc->buffer_index;
  438. double q_limit;
  439. if (min_rate) {
  440. double d = 2 * (buffer_size - expected_size) / buffer_size;
  441. if (d > 1.0)
  442. d = 1.0;
  443. else if (d < 0.0001)
  444. d = 0.0001;
  445. q *= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
  446. q_limit = bits2qp(rce,
  447. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  448. s->avctx->rc_min_vbv_overflow_use, 1));
  449. if (q > q_limit) {
  450. if (s->avctx->debug & FF_DEBUG_RC)
  451. av_log(s->avctx, AV_LOG_DEBUG,
  452. "limiting QP %f -> %f\n", q, q_limit);
  453. q = q_limit;
  454. }
  455. }
  456. if (max_rate) {
  457. double d = 2 * expected_size / buffer_size;
  458. if (d > 1.0)
  459. d = 1.0;
  460. else if (d < 0.0001)
  461. d = 0.0001;
  462. q /= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
  463. q_limit = bits2qp(rce,
  464. FFMAX(rcc->buffer_index *
  465. s->avctx->rc_max_available_vbv_use,
  466. 1));
  467. if (q < q_limit) {
  468. if (s->avctx->debug & FF_DEBUG_RC)
  469. av_log(s->avctx, AV_LOG_DEBUG,
  470. "limiting QP %f -> %f\n", q, q_limit);
  471. q = q_limit;
  472. }
  473. }
  474. }
  475. av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  476. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  477. s->avctx->rc_buffer_aggressivity);
  478. if (s->avctx->rc_qsquish == 0.0 || qmin == qmax) {
  479. if (q < qmin)
  480. q = qmin;
  481. else if (q > qmax)
  482. q = qmax;
  483. } else {
  484. double min2 = log(qmin);
  485. double max2 = log(qmax);
  486. q = log(q);
  487. q = (q - min2) / (max2 - min2) - 0.5;
  488. q *= -4.0;
  489. q = 1.0 / (1.0 + exp(q));
  490. q = q * (max2 - min2) + min2;
  491. q = exp(q);
  492. }
  493. return q;
  494. }
  495. // ----------------------------------
  496. // 1 Pass Code
  497. static double predict_size(Predictor *p, double q, double var)
  498. {
  499. return p->coeff * var / (q * p->count);
  500. }
  501. static void update_predictor(Predictor *p, double q, double var, double size)
  502. {
  503. double new_coeff = size * q / (var + 1);
  504. if (var < 10)
  505. return;
  506. p->count *= p->decay;
  507. p->coeff *= p->decay;
  508. p->count++;
  509. p->coeff += new_coeff;
  510. }
  511. static void adaptive_quantization(MpegEncContext *s, double q)
  512. {
  513. int i;
  514. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  515. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  516. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  517. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  518. const float p_masking = s->avctx->p_masking;
  519. const float border_masking = s->avctx->border_masking;
  520. float bits_sum = 0.0;
  521. float cplx_sum = 0.0;
  522. float *cplx_tab = s->cplx_tab;
  523. float *bits_tab = s->bits_tab;
  524. const int qmin = s->avctx->mb_lmin;
  525. const int qmax = s->avctx->mb_lmax;
  526. Picture *const pic = &s->current_picture;
  527. const int mb_width = s->mb_width;
  528. const int mb_height = s->mb_height;
  529. for (i = 0; i < s->mb_num; i++) {
  530. const int mb_xy = s->mb_index2xy[i];
  531. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  532. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  533. const int lumi = pic->mb_mean[mb_xy];
  534. float bits, cplx, factor;
  535. int mb_x = mb_xy % s->mb_stride;
  536. int mb_y = mb_xy / s->mb_stride;
  537. int mb_distance;
  538. float mb_factor = 0.0;
  539. if (spat_cplx < 4)
  540. spat_cplx = 4; // FIXME finetune
  541. if (temp_cplx < 4)
  542. temp_cplx = 4; // FIXME finetune
  543. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  544. cplx = spat_cplx;
  545. factor = 1.0 + p_masking;
  546. } else {
  547. cplx = temp_cplx;
  548. factor = pow(temp_cplx, -temp_cplx_masking);
  549. }
  550. factor *= pow(spat_cplx, -spatial_cplx_masking);
  551. if (lumi > 127)
  552. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  553. else
  554. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  555. if (mb_x < mb_width / 5) {
  556. mb_distance = mb_width / 5 - mb_x;
  557. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  558. } else if (mb_x > 4 * mb_width / 5) {
  559. mb_distance = mb_x - 4 * mb_width / 5;
  560. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  561. }
  562. if (mb_y < mb_height / 5) {
  563. mb_distance = mb_height / 5 - mb_y;
  564. mb_factor = FFMAX(mb_factor,
  565. (float)mb_distance / (float)(mb_height / 5));
  566. } else if (mb_y > 4 * mb_height / 5) {
  567. mb_distance = mb_y - 4 * mb_height / 5;
  568. mb_factor = FFMAX(mb_factor,
  569. (float)mb_distance / (float)(mb_height / 5));
  570. }
  571. factor *= 1.0 - border_masking * mb_factor;
  572. if (factor < 0.00001)
  573. factor = 0.00001;
  574. bits = cplx * factor;
  575. cplx_sum += cplx;
  576. bits_sum += bits;
  577. cplx_tab[i] = cplx;
  578. bits_tab[i] = bits;
  579. }
  580. /* handle qmin/qmax clipping */
  581. if (s->flags & CODEC_FLAG_NORMALIZE_AQP) {
  582. float factor = bits_sum / cplx_sum;
  583. for (i = 0; i < s->mb_num; i++) {
  584. float newq = q * cplx_tab[i] / bits_tab[i];
  585. newq *= factor;
  586. if (newq > qmax) {
  587. bits_sum -= bits_tab[i];
  588. cplx_sum -= cplx_tab[i] * q / qmax;
  589. } else if (newq < qmin) {
  590. bits_sum -= bits_tab[i];
  591. cplx_sum -= cplx_tab[i] * q / qmin;
  592. }
  593. }
  594. if (bits_sum < 0.001)
  595. bits_sum = 0.001;
  596. if (cplx_sum < 0.001)
  597. cplx_sum = 0.001;
  598. }
  599. for (i = 0; i < s->mb_num; i++) {
  600. const int mb_xy = s->mb_index2xy[i];
  601. float newq = q * cplx_tab[i] / bits_tab[i];
  602. int intq;
  603. if (s->flags & CODEC_FLAG_NORMALIZE_AQP) {
  604. newq *= bits_sum / cplx_sum;
  605. }
  606. intq = (int)(newq + 0.5);
  607. if (intq > qmax)
  608. intq = qmax;
  609. else if (intq < qmin)
  610. intq = qmin;
  611. s->lambda_table[mb_xy] = intq;
  612. }
  613. }
  614. void ff_get_2pass_fcode(MpegEncContext *s)
  615. {
  616. RateControlContext *rcc = &s->rc_context;
  617. RateControlEntry *rce = &rcc->entry[s->picture_number];
  618. s->f_code = rce->f_code;
  619. s->b_code = rce->b_code;
  620. }
  621. // FIXME rd or at least approx for dquant
  622. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  623. {
  624. float q;
  625. int qmin, qmax;
  626. float br_compensation;
  627. double diff;
  628. double short_term_q;
  629. double fps;
  630. int picture_number = s->picture_number;
  631. int64_t wanted_bits;
  632. RateControlContext *rcc = &s->rc_context;
  633. AVCodecContext *a = s->avctx;
  634. RateControlEntry local_rce, *rce;
  635. double bits;
  636. double rate_factor;
  637. int var;
  638. const int pict_type = s->pict_type;
  639. Picture * const pic = &s->current_picture;
  640. emms_c();
  641. #if CONFIG_LIBXVID
  642. if ((s->flags & CODEC_FLAG_PASS2) &&
  643. s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  644. return ff_xvid_rate_estimate_qscale(s, dry_run);
  645. #endif
  646. get_qminmax(&qmin, &qmax, s, pict_type);
  647. fps = 1 / av_q2d(s->avctx->time_base);
  648. /* update predictors */
  649. if (picture_number > 2 && !dry_run) {
  650. const int last_var = s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  651. : rcc->last_mc_mb_var_sum;
  652. update_predictor(&rcc->pred[s->last_pict_type],
  653. rcc->last_qscale,
  654. sqrt(last_var), s->frame_bits);
  655. }
  656. if (s->flags & CODEC_FLAG_PASS2) {
  657. assert(picture_number >= 0);
  658. assert(picture_number < rcc->num_entries);
  659. rce = &rcc->entry[picture_number];
  660. wanted_bits = rce->expected_bits;
  661. } else {
  662. Picture *dts_pic;
  663. rce = &local_rce;
  664. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  665. * here instead of reordering but the reordering is simpler for now
  666. * until H.264 B-pyramid must be handled. */
  667. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  668. dts_pic = s->current_picture_ptr;
  669. else
  670. dts_pic = s->last_picture_ptr;
  671. if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE)
  672. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  673. else
  674. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f.pts / fps);
  675. }
  676. diff = s->total_bits - wanted_bits;
  677. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  678. if (br_compensation <= 0.0)
  679. br_compensation = 0.001;
  680. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  681. short_term_q = 0; /* avoid warning */
  682. if (s->flags & CODEC_FLAG_PASS2) {
  683. if (pict_type != AV_PICTURE_TYPE_I)
  684. assert(pict_type == rce->new_pict_type);
  685. q = rce->new_qscale / br_compensation;
  686. av_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
  687. br_compensation, s->frame_bits, var, pict_type);
  688. } else {
  689. rce->pict_type =
  690. rce->new_pict_type = pict_type;
  691. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  692. rce->mb_var_sum = pic->mb_var_sum;
  693. rce->qscale = FF_QP2LAMBDA * 2;
  694. rce->f_code = s->f_code;
  695. rce->b_code = s->b_code;
  696. rce->misc_bits = 1;
  697. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  698. if (pict_type == AV_PICTURE_TYPE_I) {
  699. rce->i_count = s->mb_num;
  700. rce->i_tex_bits = bits;
  701. rce->p_tex_bits = 0;
  702. rce->mv_bits = 0;
  703. } else {
  704. rce->i_count = 0; // FIXME we do know this approx
  705. rce->i_tex_bits = 0;
  706. rce->p_tex_bits = bits * 0.9;
  707. rce->mv_bits = bits * 0.1;
  708. }
  709. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  710. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  711. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  712. rcc->frame_count[pict_type]++;
  713. bits = rce->i_tex_bits + rce->p_tex_bits;
  714. rate_factor = rcc->pass1_wanted_bits /
  715. rcc->pass1_rc_eq_output_sum * br_compensation;
  716. q = get_qscale(s, rce, rate_factor, picture_number);
  717. if (q < 0)
  718. return -1;
  719. assert(q > 0.0);
  720. q = get_diff_limited_q(s, rce, q);
  721. assert(q > 0.0);
  722. // FIXME type dependent blur like in 2-pass
  723. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  724. rcc->short_term_qsum *= a->qblur;
  725. rcc->short_term_qcount *= a->qblur;
  726. rcc->short_term_qsum += q;
  727. rcc->short_term_qcount++;
  728. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  729. }
  730. assert(q > 0.0);
  731. q = modify_qscale(s, rce, q, picture_number);
  732. rcc->pass1_wanted_bits += s->bit_rate / fps;
  733. assert(q > 0.0);
  734. }
  735. if (s->avctx->debug & FF_DEBUG_RC) {
  736. av_log(s->avctx, AV_LOG_DEBUG,
  737. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  738. "size:%d var:%d/%d br:%d fps:%d\n",
  739. av_get_picture_type_char(pict_type),
  740. qmin, q, qmax, picture_number,
  741. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  742. br_compensation, short_term_q, s->frame_bits,
  743. pic->mb_var_sum, pic->mc_mb_var_sum,
  744. s->bit_rate / 1000, (int)fps);
  745. }
  746. if (q < qmin)
  747. q = qmin;
  748. else if (q > qmax)
  749. q = qmax;
  750. if (s->adaptive_quant)
  751. adaptive_quantization(s, q);
  752. else
  753. q = (int)(q + 0.5);
  754. if (!dry_run) {
  755. rcc->last_qscale = q;
  756. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  757. rcc->last_mb_var_sum = pic->mb_var_sum;
  758. }
  759. return q;
  760. }
  761. // ----------------------------------------------
  762. // 2-Pass code
  763. static int init_pass2(MpegEncContext *s)
  764. {
  765. RateControlContext *rcc = &s->rc_context;
  766. AVCodecContext *a = s->avctx;
  767. int i, toobig;
  768. double fps = 1 / av_q2d(s->avctx->time_base);
  769. double complexity[5] = { 0 }; // approximate bits at quant=1
  770. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  771. uint64_t all_const_bits;
  772. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  773. (double)rcc->num_entries / fps);
  774. double rate_factor = 0;
  775. double step;
  776. const int filter_size = (int)(a->qblur * 4) | 1;
  777. double expected_bits;
  778. double *qscale, *blurred_qscale, qscale_sum;
  779. /* find complexity & const_bits & decide the pict_types */
  780. for (i = 0; i < rcc->num_entries; i++) {
  781. RateControlEntry *rce = &rcc->entry[i];
  782. rce->new_pict_type = rce->pict_type;
  783. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  784. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  785. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  786. rcc->frame_count[rce->pict_type]++;
  787. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  788. (double)rce->qscale;
  789. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  790. }
  791. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  792. const_bits[AV_PICTURE_TYPE_P] +
  793. const_bits[AV_PICTURE_TYPE_B];
  794. if (all_available_bits < all_const_bits) {
  795. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  796. return -1;
  797. }
  798. qscale = av_malloc(sizeof(double) * rcc->num_entries);
  799. blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries);
  800. toobig = 0;
  801. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  802. expected_bits = 0;
  803. rate_factor += step;
  804. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  805. /* find qscale */
  806. for (i = 0; i < rcc->num_entries; i++) {
  807. RateControlEntry *rce = &rcc->entry[i];
  808. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  809. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  810. }
  811. assert(filter_size % 2 == 1);
  812. /* fixed I/B QP relative to P mode */
  813. for (i = rcc->num_entries - 1; i >= 0; i--) {
  814. RateControlEntry *rce = &rcc->entry[i];
  815. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  816. }
  817. /* smooth curve */
  818. for (i = 0; i < rcc->num_entries; i++) {
  819. RateControlEntry *rce = &rcc->entry[i];
  820. const int pict_type = rce->new_pict_type;
  821. int j;
  822. double q = 0.0, sum = 0.0;
  823. for (j = 0; j < filter_size; j++) {
  824. int index = i + j - filter_size / 2;
  825. double d = index - i;
  826. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  827. if (index < 0 || index >= rcc->num_entries)
  828. continue;
  829. if (pict_type != rcc->entry[index].new_pict_type)
  830. continue;
  831. q += qscale[index] * coeff;
  832. sum += coeff;
  833. }
  834. blurred_qscale[i] = q / sum;
  835. }
  836. /* find expected bits */
  837. for (i = 0; i < rcc->num_entries; i++) {
  838. RateControlEntry *rce = &rcc->entry[i];
  839. double bits;
  840. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  841. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  842. bits += 8 * ff_vbv_update(s, bits);
  843. rce->expected_bits = expected_bits;
  844. expected_bits += bits;
  845. }
  846. av_dlog(s->avctx,
  847. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  848. expected_bits, (int)all_available_bits, rate_factor);
  849. if (expected_bits > all_available_bits) {
  850. rate_factor -= step;
  851. ++toobig;
  852. }
  853. }
  854. av_free(qscale);
  855. av_free(blurred_qscale);
  856. /* check bitrate calculations and print info */
  857. qscale_sum = 0.0;
  858. for (i = 0; i < rcc->num_entries; i++) {
  859. av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  860. i,
  861. rcc->entry[i].new_qscale,
  862. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  863. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  864. s->avctx->qmin, s->avctx->qmax);
  865. }
  866. assert(toobig <= 40);
  867. av_log(s->avctx, AV_LOG_DEBUG,
  868. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  869. s->bit_rate,
  870. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  871. av_log(s->avctx, AV_LOG_DEBUG,
  872. "[lavc rc] estimated target average qp: %.3f\n",
  873. (float)qscale_sum / rcc->num_entries);
  874. if (toobig == 0) {
  875. av_log(s->avctx, AV_LOG_INFO,
  876. "[lavc rc] Using all of requested bitrate is not "
  877. "necessary for this video with these parameters.\n");
  878. } else if (toobig == 40) {
  879. av_log(s->avctx, AV_LOG_ERROR,
  880. "[lavc rc] Error: bitrate too low for this video "
  881. "with these parameters.\n");
  882. return -1;
  883. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  884. av_log(s->avctx, AV_LOG_ERROR,
  885. "[lavc rc] Error: 2pass curve failed to converge\n");
  886. return -1;
  887. }
  888. return 0;
  889. }