You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2015 lines
68KB

  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This file is part of Libav.
  9. *
  10. * Libav is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * Libav is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with Libav; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file
  26. * QDM2 decoder
  27. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  28. *
  29. * The decoder is not perfect yet, there are still some distortions
  30. * especially on files encoded with 16 or 8 subbands.
  31. */
  32. #include <math.h>
  33. #include <stddef.h>
  34. #include <stdio.h>
  35. #define BITSTREAM_READER_LE
  36. #include "libavutil/channel_layout.h"
  37. #include "avcodec.h"
  38. #include "get_bits.h"
  39. #include "internal.h"
  40. #include "rdft.h"
  41. #include "mpegaudiodsp.h"
  42. #include "mpegaudio.h"
  43. #include "qdm2data.h"
  44. #include "qdm2_tablegen.h"
  45. #undef NDEBUG
  46. #include <assert.h>
  47. #define QDM2_LIST_ADD(list, size, packet) \
  48. do { \
  49. if (size > 0) { \
  50. list[size - 1].next = &list[size]; \
  51. } \
  52. list[size].packet = packet; \
  53. list[size].next = NULL; \
  54. size++; \
  55. } while(0)
  56. // Result is 8, 16 or 30
  57. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  58. #define FIX_NOISE_IDX(noise_idx) \
  59. if ((noise_idx) >= 3840) \
  60. (noise_idx) -= 3840; \
  61. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  62. #define SAMPLES_NEEDED \
  63. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  64. #define SAMPLES_NEEDED_2(why) \
  65. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  66. #define QDM2_MAX_FRAME_SIZE 512
  67. typedef int8_t sb_int8_array[2][30][64];
  68. /**
  69. * Subpacket
  70. */
  71. typedef struct {
  72. int type; ///< subpacket type
  73. unsigned int size; ///< subpacket size
  74. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  75. } QDM2SubPacket;
  76. /**
  77. * A node in the subpacket list
  78. */
  79. typedef struct QDM2SubPNode {
  80. QDM2SubPacket *packet; ///< packet
  81. struct QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  82. } QDM2SubPNode;
  83. typedef struct {
  84. float re;
  85. float im;
  86. } QDM2Complex;
  87. typedef struct {
  88. float level;
  89. QDM2Complex *complex;
  90. const float *table;
  91. int phase;
  92. int phase_shift;
  93. int duration;
  94. short time_index;
  95. short cutoff;
  96. } FFTTone;
  97. typedef struct {
  98. int16_t sub_packet;
  99. uint8_t channel;
  100. int16_t offset;
  101. int16_t exp;
  102. uint8_t phase;
  103. } FFTCoefficient;
  104. typedef struct {
  105. DECLARE_ALIGNED(32, QDM2Complex, complex)[MPA_MAX_CHANNELS][256];
  106. } QDM2FFT;
  107. /**
  108. * QDM2 decoder context
  109. */
  110. typedef struct {
  111. /// Parameters from codec header, do not change during playback
  112. int nb_channels; ///< number of channels
  113. int channels; ///< number of channels
  114. int group_size; ///< size of frame group (16 frames per group)
  115. int fft_size; ///< size of FFT, in complex numbers
  116. int checksum_size; ///< size of data block, used also for checksum
  117. /// Parameters built from header parameters, do not change during playback
  118. int group_order; ///< order of frame group
  119. int fft_order; ///< order of FFT (actually fftorder+1)
  120. int frame_size; ///< size of data frame
  121. int frequency_range;
  122. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  123. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  124. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  125. /// Packets and packet lists
  126. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  127. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  128. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  129. int sub_packets_B; ///< number of packets on 'B' list
  130. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  131. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  132. /// FFT and tones
  133. FFTTone fft_tones[1000];
  134. int fft_tone_start;
  135. int fft_tone_end;
  136. FFTCoefficient fft_coefs[1000];
  137. int fft_coefs_index;
  138. int fft_coefs_min_index[5];
  139. int fft_coefs_max_index[5];
  140. int fft_level_exp[6];
  141. RDFTContext rdft_ctx;
  142. QDM2FFT fft;
  143. /// I/O data
  144. const uint8_t *compressed_data;
  145. int compressed_size;
  146. float output_buffer[QDM2_MAX_FRAME_SIZE * 2];
  147. /// Synthesis filter
  148. MPADSPContext mpadsp;
  149. DECLARE_ALIGNED(32, float, synth_buf)[MPA_MAX_CHANNELS][512*2];
  150. int synth_buf_offset[MPA_MAX_CHANNELS];
  151. DECLARE_ALIGNED(32, float, sb_samples)[MPA_MAX_CHANNELS][128][SBLIMIT];
  152. DECLARE_ALIGNED(32, float, samples)[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  153. /// Mixed temporary data used in decoding
  154. float tone_level[MPA_MAX_CHANNELS][30][64];
  155. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  156. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  157. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  158. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  159. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  160. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  161. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  162. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  163. // Flags
  164. int has_errors; ///< packet has errors
  165. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  166. int do_synth_filter; ///< used to perform or skip synthesis filter
  167. int sub_packet;
  168. int noise_idx; ///< index for dithering noise table
  169. } QDM2Context;
  170. static VLC vlc_tab_level;
  171. static VLC vlc_tab_diff;
  172. static VLC vlc_tab_run;
  173. static VLC fft_level_exp_alt_vlc;
  174. static VLC fft_level_exp_vlc;
  175. static VLC fft_stereo_exp_vlc;
  176. static VLC fft_stereo_phase_vlc;
  177. static VLC vlc_tab_tone_level_idx_hi1;
  178. static VLC vlc_tab_tone_level_idx_mid;
  179. static VLC vlc_tab_tone_level_idx_hi2;
  180. static VLC vlc_tab_type30;
  181. static VLC vlc_tab_type34;
  182. static VLC vlc_tab_fft_tone_offset[5];
  183. static const uint16_t qdm2_vlc_offs[] = {
  184. 0,260,566,598,894,1166,1230,1294,1678,1950,2214,2278,2310,2570,2834,3124,3448,3838,
  185. };
  186. static const int switchtable[23] = {
  187. 0, 5, 1, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 4
  188. };
  189. static av_cold void qdm2_init_vlc(void)
  190. {
  191. static VLC_TYPE qdm2_table[3838][2];
  192. vlc_tab_level.table = &qdm2_table[qdm2_vlc_offs[0]];
  193. vlc_tab_level.table_allocated = qdm2_vlc_offs[1] - qdm2_vlc_offs[0];
  194. init_vlc(&vlc_tab_level, 8, 24,
  195. vlc_tab_level_huffbits, 1, 1,
  196. vlc_tab_level_huffcodes, 2, 2,
  197. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  198. vlc_tab_diff.table = &qdm2_table[qdm2_vlc_offs[1]];
  199. vlc_tab_diff.table_allocated = qdm2_vlc_offs[2] - qdm2_vlc_offs[1];
  200. init_vlc(&vlc_tab_diff, 8, 37,
  201. vlc_tab_diff_huffbits, 1, 1,
  202. vlc_tab_diff_huffcodes, 2, 2,
  203. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  204. vlc_tab_run.table = &qdm2_table[qdm2_vlc_offs[2]];
  205. vlc_tab_run.table_allocated = qdm2_vlc_offs[3] - qdm2_vlc_offs[2];
  206. init_vlc(&vlc_tab_run, 5, 6,
  207. vlc_tab_run_huffbits, 1, 1,
  208. vlc_tab_run_huffcodes, 1, 1,
  209. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  210. fft_level_exp_alt_vlc.table = &qdm2_table[qdm2_vlc_offs[3]];
  211. fft_level_exp_alt_vlc.table_allocated = qdm2_vlc_offs[4] -
  212. qdm2_vlc_offs[3];
  213. init_vlc(&fft_level_exp_alt_vlc, 8, 28,
  214. fft_level_exp_alt_huffbits, 1, 1,
  215. fft_level_exp_alt_huffcodes, 2, 2,
  216. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  217. fft_level_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[4]];
  218. fft_level_exp_vlc.table_allocated = qdm2_vlc_offs[5] - qdm2_vlc_offs[4];
  219. init_vlc(&fft_level_exp_vlc, 8, 20,
  220. fft_level_exp_huffbits, 1, 1,
  221. fft_level_exp_huffcodes, 2, 2,
  222. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  223. fft_stereo_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[5]];
  224. fft_stereo_exp_vlc.table_allocated = qdm2_vlc_offs[6] -
  225. qdm2_vlc_offs[5];
  226. init_vlc(&fft_stereo_exp_vlc, 6, 7,
  227. fft_stereo_exp_huffbits, 1, 1,
  228. fft_stereo_exp_huffcodes, 1, 1,
  229. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  230. fft_stereo_phase_vlc.table = &qdm2_table[qdm2_vlc_offs[6]];
  231. fft_stereo_phase_vlc.table_allocated = qdm2_vlc_offs[7] -
  232. qdm2_vlc_offs[6];
  233. init_vlc(&fft_stereo_phase_vlc, 6, 9,
  234. fft_stereo_phase_huffbits, 1, 1,
  235. fft_stereo_phase_huffcodes, 1, 1,
  236. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  237. vlc_tab_tone_level_idx_hi1.table =
  238. &qdm2_table[qdm2_vlc_offs[7]];
  239. vlc_tab_tone_level_idx_hi1.table_allocated = qdm2_vlc_offs[8] -
  240. qdm2_vlc_offs[7];
  241. init_vlc(&vlc_tab_tone_level_idx_hi1, 8, 20,
  242. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  243. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2,
  244. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  245. vlc_tab_tone_level_idx_mid.table =
  246. &qdm2_table[qdm2_vlc_offs[8]];
  247. vlc_tab_tone_level_idx_mid.table_allocated = qdm2_vlc_offs[9] -
  248. qdm2_vlc_offs[8];
  249. init_vlc(&vlc_tab_tone_level_idx_mid, 8, 24,
  250. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  251. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2,
  252. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  253. vlc_tab_tone_level_idx_hi2.table =
  254. &qdm2_table[qdm2_vlc_offs[9]];
  255. vlc_tab_tone_level_idx_hi2.table_allocated = qdm2_vlc_offs[10] -
  256. qdm2_vlc_offs[9];
  257. init_vlc(&vlc_tab_tone_level_idx_hi2, 8, 24,
  258. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  259. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2,
  260. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  261. vlc_tab_type30.table = &qdm2_table[qdm2_vlc_offs[10]];
  262. vlc_tab_type30.table_allocated = qdm2_vlc_offs[11] - qdm2_vlc_offs[10];
  263. init_vlc(&vlc_tab_type30, 6, 9,
  264. vlc_tab_type30_huffbits, 1, 1,
  265. vlc_tab_type30_huffcodes, 1, 1,
  266. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  267. vlc_tab_type34.table = &qdm2_table[qdm2_vlc_offs[11]];
  268. vlc_tab_type34.table_allocated = qdm2_vlc_offs[12] - qdm2_vlc_offs[11];
  269. init_vlc(&vlc_tab_type34, 5, 10,
  270. vlc_tab_type34_huffbits, 1, 1,
  271. vlc_tab_type34_huffcodes, 1, 1,
  272. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  273. vlc_tab_fft_tone_offset[0].table =
  274. &qdm2_table[qdm2_vlc_offs[12]];
  275. vlc_tab_fft_tone_offset[0].table_allocated = qdm2_vlc_offs[13] -
  276. qdm2_vlc_offs[12];
  277. init_vlc(&vlc_tab_fft_tone_offset[0], 8, 23,
  278. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  279. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2,
  280. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  281. vlc_tab_fft_tone_offset[1].table =
  282. &qdm2_table[qdm2_vlc_offs[13]];
  283. vlc_tab_fft_tone_offset[1].table_allocated = qdm2_vlc_offs[14] -
  284. qdm2_vlc_offs[13];
  285. init_vlc(&vlc_tab_fft_tone_offset[1], 8, 28,
  286. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  287. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2,
  288. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  289. vlc_tab_fft_tone_offset[2].table =
  290. &qdm2_table[qdm2_vlc_offs[14]];
  291. vlc_tab_fft_tone_offset[2].table_allocated = qdm2_vlc_offs[15] -
  292. qdm2_vlc_offs[14];
  293. init_vlc(&vlc_tab_fft_tone_offset[2], 8, 32,
  294. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  295. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2,
  296. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  297. vlc_tab_fft_tone_offset[3].table =
  298. &qdm2_table[qdm2_vlc_offs[15]];
  299. vlc_tab_fft_tone_offset[3].table_allocated = qdm2_vlc_offs[16] -
  300. qdm2_vlc_offs[15];
  301. init_vlc(&vlc_tab_fft_tone_offset[3], 8, 35,
  302. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  303. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2,
  304. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  305. vlc_tab_fft_tone_offset[4].table =
  306. &qdm2_table[qdm2_vlc_offs[16]];
  307. vlc_tab_fft_tone_offset[4].table_allocated = qdm2_vlc_offs[17] -
  308. qdm2_vlc_offs[16];
  309. init_vlc(&vlc_tab_fft_tone_offset[4], 8, 38,
  310. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  311. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2,
  312. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  313. }
  314. static int qdm2_get_vlc(GetBitContext *gb, VLC *vlc, int flag, int depth)
  315. {
  316. int value;
  317. value = get_vlc2(gb, vlc->table, vlc->bits, depth);
  318. /* stage-2, 3 bits exponent escape sequence */
  319. if (value-- == 0)
  320. value = get_bits(gb, get_bits(gb, 3) + 1);
  321. /* stage-3, optional */
  322. if (flag) {
  323. int tmp = vlc_stage3_values[value];
  324. if ((value & ~3) > 0)
  325. tmp += get_bits(gb, (value >> 2));
  326. value = tmp;
  327. }
  328. return value;
  329. }
  330. static int qdm2_get_se_vlc(VLC *vlc, GetBitContext *gb, int depth)
  331. {
  332. int value = qdm2_get_vlc(gb, vlc, 0, depth);
  333. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  334. }
  335. /**
  336. * QDM2 checksum
  337. *
  338. * @param data pointer to data to be checksum'ed
  339. * @param length data length
  340. * @param value checksum value
  341. *
  342. * @return 0 if checksum is OK
  343. */
  344. static uint16_t qdm2_packet_checksum(const uint8_t *data, int length, int value)
  345. {
  346. int i;
  347. for (i = 0; i < length; i++)
  348. value -= data[i];
  349. return (uint16_t)(value & 0xffff);
  350. }
  351. /**
  352. * Fill a QDM2SubPacket structure with packet type, size, and data pointer.
  353. *
  354. * @param gb bitreader context
  355. * @param sub_packet packet under analysis
  356. */
  357. static void qdm2_decode_sub_packet_header(GetBitContext *gb,
  358. QDM2SubPacket *sub_packet)
  359. {
  360. sub_packet->type = get_bits(gb, 8);
  361. if (sub_packet->type == 0) {
  362. sub_packet->size = 0;
  363. sub_packet->data = NULL;
  364. } else {
  365. sub_packet->size = get_bits(gb, 8);
  366. if (sub_packet->type & 0x80) {
  367. sub_packet->size <<= 8;
  368. sub_packet->size |= get_bits(gb, 8);
  369. sub_packet->type &= 0x7f;
  370. }
  371. if (sub_packet->type == 0x7f)
  372. sub_packet->type |= (get_bits(gb, 8) << 8);
  373. // FIXME: this depends on bitreader-internal data
  374. sub_packet->data = &gb->buffer[get_bits_count(gb) / 8];
  375. }
  376. av_log(NULL, AV_LOG_DEBUG, "Subpacket: type=%d size=%d start_offs=%x\n",
  377. sub_packet->type, sub_packet->size, get_bits_count(gb) / 8);
  378. }
  379. /**
  380. * Return node pointer to first packet of requested type in list.
  381. *
  382. * @param list list of subpackets to be scanned
  383. * @param type type of searched subpacket
  384. * @return node pointer for subpacket if found, else NULL
  385. */
  386. static QDM2SubPNode *qdm2_search_subpacket_type_in_list(QDM2SubPNode *list,
  387. int type)
  388. {
  389. while (list != NULL && list->packet != NULL) {
  390. if (list->packet->type == type)
  391. return list;
  392. list = list->next;
  393. }
  394. return NULL;
  395. }
  396. /**
  397. * Replace 8 elements with their average value.
  398. * Called by qdm2_decode_superblock before starting subblock decoding.
  399. *
  400. * @param q context
  401. */
  402. static void average_quantized_coeffs(QDM2Context *q)
  403. {
  404. int i, j, n, ch, sum;
  405. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  406. for (ch = 0; ch < q->nb_channels; ch++)
  407. for (i = 0; i < n; i++) {
  408. sum = 0;
  409. for (j = 0; j < 8; j++)
  410. sum += q->quantized_coeffs[ch][i][j];
  411. sum /= 8;
  412. if (sum > 0)
  413. sum--;
  414. for (j = 0; j < 8; j++)
  415. q->quantized_coeffs[ch][i][j] = sum;
  416. }
  417. }
  418. /**
  419. * Build subband samples with noise weighted by q->tone_level.
  420. * Called by synthfilt_build_sb_samples.
  421. *
  422. * @param q context
  423. * @param sb subband index
  424. */
  425. static void build_sb_samples_from_noise(QDM2Context *q, int sb)
  426. {
  427. int ch, j;
  428. FIX_NOISE_IDX(q->noise_idx);
  429. if (!q->nb_channels)
  430. return;
  431. for (ch = 0; ch < q->nb_channels; ch++) {
  432. for (j = 0; j < 64; j++) {
  433. q->sb_samples[ch][j * 2][sb] =
  434. SB_DITHERING_NOISE(sb, q->noise_idx) * q->tone_level[ch][sb][j];
  435. q->sb_samples[ch][j * 2 + 1][sb] =
  436. SB_DITHERING_NOISE(sb, q->noise_idx) * q->tone_level[ch][sb][j];
  437. }
  438. }
  439. }
  440. /**
  441. * Called while processing data from subpackets 11 and 12.
  442. * Used after making changes to coding_method array.
  443. *
  444. * @param sb subband index
  445. * @param channels number of channels
  446. * @param coding_method q->coding_method[0][0][0]
  447. */
  448. static int fix_coding_method_array(int sb, int channels,
  449. sb_int8_array coding_method)
  450. {
  451. int j, k;
  452. int ch;
  453. int run, case_val;
  454. for (ch = 0; ch < channels; ch++) {
  455. for (j = 0; j < 64; ) {
  456. if (coding_method[ch][sb][j] < 8)
  457. return -1;
  458. if ((coding_method[ch][sb][j] - 8) > 22) {
  459. run = 1;
  460. case_val = 8;
  461. } else {
  462. switch (switchtable[coding_method[ch][sb][j] - 8]) {
  463. case 0: run = 10;
  464. case_val = 10;
  465. break;
  466. case 1: run = 1;
  467. case_val = 16;
  468. break;
  469. case 2: run = 5;
  470. case_val = 24;
  471. break;
  472. case 3: run = 3;
  473. case_val = 30;
  474. break;
  475. case 4: run = 1;
  476. case_val = 30;
  477. break;
  478. case 5: run = 1;
  479. case_val = 8;
  480. break;
  481. default: run = 1;
  482. case_val = 8;
  483. break;
  484. }
  485. }
  486. for (k = 0; k < run; k++) {
  487. if (j + k < 128) {
  488. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j]) {
  489. if (k > 0) {
  490. SAMPLES_NEEDED
  491. //not debugged, almost never used
  492. memset(&coding_method[ch][sb][j + k], case_val,
  493. k *sizeof(int8_t));
  494. memset(&coding_method[ch][sb][j + k], case_val,
  495. 3 * sizeof(int8_t));
  496. }
  497. }
  498. }
  499. }
  500. j += run;
  501. }
  502. }
  503. return 0;
  504. }
  505. /**
  506. * Related to synthesis filter
  507. * Called by process_subpacket_10
  508. *
  509. * @param q context
  510. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  511. */
  512. static void fill_tone_level_array(QDM2Context *q, int flag)
  513. {
  514. int i, sb, ch, sb_used;
  515. int tmp, tab;
  516. for (ch = 0; ch < q->nb_channels; ch++)
  517. for (sb = 0; sb < 30; sb++)
  518. for (i = 0; i < 8; i++) {
  519. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  520. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  521. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  522. else
  523. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  524. if(tmp < 0)
  525. tmp += 0xff;
  526. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  527. }
  528. sb_used = QDM2_SB_USED(q->sub_sampling);
  529. if ((q->superblocktype_2_3 != 0) && !flag) {
  530. for (sb = 0; sb < sb_used; sb++)
  531. for (ch = 0; ch < q->nb_channels; ch++)
  532. for (i = 0; i < 64; i++) {
  533. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  534. if (q->tone_level_idx[ch][sb][i] < 0)
  535. q->tone_level[ch][sb][i] = 0;
  536. else
  537. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  538. }
  539. } else {
  540. tab = q->superblocktype_2_3 ? 0 : 1;
  541. for (sb = 0; sb < sb_used; sb++) {
  542. if ((sb >= 4) && (sb <= 23)) {
  543. for (ch = 0; ch < q->nb_channels; ch++)
  544. for (i = 0; i < 64; i++) {
  545. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  546. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  547. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  548. q->tone_level_idx_hi2[ch][sb - 4];
  549. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  550. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  551. q->tone_level[ch][sb][i] = 0;
  552. else
  553. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  554. }
  555. } else {
  556. if (sb > 4) {
  557. for (ch = 0; ch < q->nb_channels; ch++)
  558. for (i = 0; i < 64; i++) {
  559. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  560. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  561. q->tone_level_idx_hi2[ch][sb - 4];
  562. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  563. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  564. q->tone_level[ch][sb][i] = 0;
  565. else
  566. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  567. }
  568. } else {
  569. for (ch = 0; ch < q->nb_channels; ch++)
  570. for (i = 0; i < 64; i++) {
  571. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  572. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  573. q->tone_level[ch][sb][i] = 0;
  574. else
  575. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  576. }
  577. }
  578. }
  579. }
  580. }
  581. }
  582. /**
  583. * Related to synthesis filter
  584. * Called by process_subpacket_11
  585. * c is built with data from subpacket 11
  586. * Most of this function is used only if superblock_type_2_3 == 0,
  587. * never seen it in samples.
  588. *
  589. * @param tone_level_idx
  590. * @param tone_level_idx_temp
  591. * @param coding_method q->coding_method[0][0][0]
  592. * @param nb_channels number of channels
  593. * @param c coming from subpacket 11, passed as 8*c
  594. * @param superblocktype_2_3 flag based on superblock packet type
  595. * @param cm_table_select q->cm_table_select
  596. */
  597. static void fill_coding_method_array(sb_int8_array tone_level_idx,
  598. sb_int8_array tone_level_idx_temp,
  599. sb_int8_array coding_method,
  600. int nb_channels,
  601. int c, int superblocktype_2_3,
  602. int cm_table_select)
  603. {
  604. int ch, sb, j;
  605. int tmp, acc, esp_40, comp;
  606. int add1, add2, add3, add4;
  607. int64_t multres;
  608. if (!superblocktype_2_3) {
  609. /* This case is untested, no samples available */
  610. SAMPLES_NEEDED
  611. for (ch = 0; ch < nb_channels; ch++)
  612. for (sb = 0; sb < 30; sb++) {
  613. for (j = 1; j < 63; j++) { // The loop only iterates to 63 so the code doesn't overflow the buffer
  614. add1 = tone_level_idx[ch][sb][j] - 10;
  615. if (add1 < 0)
  616. add1 = 0;
  617. add2 = add3 = add4 = 0;
  618. if (sb > 1) {
  619. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  620. if (add2 < 0)
  621. add2 = 0;
  622. }
  623. if (sb > 0) {
  624. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  625. if (add3 < 0)
  626. add3 = 0;
  627. }
  628. if (sb < 29) {
  629. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  630. if (add4 < 0)
  631. add4 = 0;
  632. }
  633. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  634. if (tmp < 0)
  635. tmp = 0;
  636. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  637. }
  638. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  639. }
  640. acc = 0;
  641. for (ch = 0; ch < nb_channels; ch++)
  642. for (sb = 0; sb < 30; sb++)
  643. for (j = 0; j < 64; j++)
  644. acc += tone_level_idx_temp[ch][sb][j];
  645. multres = 0x66666667 * (acc * 10);
  646. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  647. for (ch = 0; ch < nb_channels; ch++)
  648. for (sb = 0; sb < 30; sb++)
  649. for (j = 0; j < 64; j++) {
  650. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  651. if (comp < 0)
  652. comp += 0xff;
  653. comp /= 256; // signed shift
  654. switch(sb) {
  655. case 0:
  656. if (comp < 30)
  657. comp = 30;
  658. comp += 15;
  659. break;
  660. case 1:
  661. if (comp < 24)
  662. comp = 24;
  663. comp += 10;
  664. break;
  665. case 2:
  666. case 3:
  667. case 4:
  668. if (comp < 16)
  669. comp = 16;
  670. }
  671. if (comp <= 5)
  672. tmp = 0;
  673. else if (comp <= 10)
  674. tmp = 10;
  675. else if (comp <= 16)
  676. tmp = 16;
  677. else if (comp <= 24)
  678. tmp = -1;
  679. else
  680. tmp = 0;
  681. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  682. }
  683. for (sb = 0; sb < 30; sb++)
  684. fix_coding_method_array(sb, nb_channels, coding_method);
  685. for (ch = 0; ch < nb_channels; ch++)
  686. for (sb = 0; sb < 30; sb++)
  687. for (j = 0; j < 64; j++)
  688. if (sb >= 10) {
  689. if (coding_method[ch][sb][j] < 10)
  690. coding_method[ch][sb][j] = 10;
  691. } else {
  692. if (sb >= 2) {
  693. if (coding_method[ch][sb][j] < 16)
  694. coding_method[ch][sb][j] = 16;
  695. } else {
  696. if (coding_method[ch][sb][j] < 30)
  697. coding_method[ch][sb][j] = 30;
  698. }
  699. }
  700. } else { // superblocktype_2_3 != 0
  701. for (ch = 0; ch < nb_channels; ch++)
  702. for (sb = 0; sb < 30; sb++)
  703. for (j = 0; j < 64; j++)
  704. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  705. }
  706. }
  707. /**
  708. *
  709. * Called by process_subpacket_11 to process more data from subpacket 11
  710. * with sb 0-8.
  711. * Called by process_subpacket_12 to process data from subpacket 12 with
  712. * sb 8-sb_used.
  713. *
  714. * @param q context
  715. * @param gb bitreader context
  716. * @param length packet length in bits
  717. * @param sb_min lower subband processed (sb_min included)
  718. * @param sb_max higher subband processed (sb_max excluded)
  719. */
  720. static void synthfilt_build_sb_samples(QDM2Context *q, GetBitContext *gb,
  721. int length, int sb_min, int sb_max)
  722. {
  723. int sb, j, k, n, ch, run, channels;
  724. int joined_stereo, zero_encoding;
  725. int type34_first;
  726. float type34_div = 0;
  727. float type34_predictor;
  728. float samples[10], sign_bits[16];
  729. if (length == 0) {
  730. // If no data use noise
  731. for (sb=sb_min; sb < sb_max; sb++)
  732. build_sb_samples_from_noise(q, sb);
  733. return;
  734. }
  735. for (sb = sb_min; sb < sb_max; sb++) {
  736. channels = q->nb_channels;
  737. if (q->nb_channels <= 1 || sb < 12)
  738. joined_stereo = 0;
  739. else if (sb >= 24)
  740. joined_stereo = 1;
  741. else
  742. joined_stereo = (get_bits_left(gb) >= 1) ? get_bits1(gb) : 0;
  743. if (joined_stereo) {
  744. if (get_bits_left(gb) >= 16)
  745. for (j = 0; j < 16; j++)
  746. sign_bits[j] = get_bits1(gb);
  747. for (j = 0; j < 64; j++)
  748. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  749. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  750. if (fix_coding_method_array(sb, q->nb_channels,
  751. q->coding_method)) {
  752. build_sb_samples_from_noise(q, sb);
  753. continue;
  754. }
  755. channels = 1;
  756. }
  757. for (ch = 0; ch < channels; ch++) {
  758. FIX_NOISE_IDX(q->noise_idx);
  759. zero_encoding = (get_bits_left(gb) >= 1) ? get_bits1(gb) : 0;
  760. type34_predictor = 0.0;
  761. type34_first = 1;
  762. for (j = 0; j < 128; ) {
  763. switch (q->coding_method[ch][sb][j / 2]) {
  764. case 8:
  765. if (get_bits_left(gb) >= 10) {
  766. if (zero_encoding) {
  767. for (k = 0; k < 5; k++) {
  768. if ((j + 2 * k) >= 128)
  769. break;
  770. samples[2 * k] = get_bits1(gb) ? dequant_1bit[joined_stereo][2 * get_bits1(gb)] : 0;
  771. }
  772. } else {
  773. n = get_bits(gb, 8);
  774. for (k = 0; k < 5; k++)
  775. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  776. }
  777. for (k = 0; k < 5; k++)
  778. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  779. } else {
  780. for (k = 0; k < 10; k++)
  781. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  782. }
  783. run = 10;
  784. break;
  785. case 10:
  786. if (get_bits_left(gb) >= 1) {
  787. float f = 0.81;
  788. if (get_bits1(gb))
  789. f = -f;
  790. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  791. samples[0] = f;
  792. } else {
  793. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  794. }
  795. run = 1;
  796. break;
  797. case 16:
  798. if (get_bits_left(gb) >= 10) {
  799. if (zero_encoding) {
  800. for (k = 0; k < 5; k++) {
  801. if ((j + k) >= 128)
  802. break;
  803. samples[k] = (get_bits1(gb) == 0) ? 0 : dequant_1bit[joined_stereo][2 * get_bits1(gb)];
  804. }
  805. } else {
  806. n = get_bits (gb, 8);
  807. for (k = 0; k < 5; k++)
  808. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  809. }
  810. } else {
  811. for (k = 0; k < 5; k++)
  812. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  813. }
  814. run = 5;
  815. break;
  816. case 24:
  817. if (get_bits_left(gb) >= 7) {
  818. n = get_bits(gb, 7);
  819. for (k = 0; k < 3; k++)
  820. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  821. } else {
  822. for (k = 0; k < 3; k++)
  823. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  824. }
  825. run = 3;
  826. break;
  827. case 30:
  828. if (get_bits_left(gb) >= 4) {
  829. unsigned index = qdm2_get_vlc(gb, &vlc_tab_type30, 0, 1);
  830. if (index < FF_ARRAY_ELEMS(type30_dequant)) {
  831. samples[0] = type30_dequant[index];
  832. } else
  833. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  834. } else
  835. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  836. run = 1;
  837. break;
  838. case 34:
  839. if (get_bits_left(gb) >= 7) {
  840. if (type34_first) {
  841. type34_div = (float)(1 << get_bits(gb, 2));
  842. samples[0] = ((float)get_bits(gb, 5) - 16.0) / 15.0;
  843. type34_predictor = samples[0];
  844. type34_first = 0;
  845. } else {
  846. unsigned index = qdm2_get_vlc(gb, &vlc_tab_type34, 0, 1);
  847. if (index < FF_ARRAY_ELEMS(type34_delta)) {
  848. samples[0] = type34_delta[index] / type34_div + type34_predictor;
  849. type34_predictor = samples[0];
  850. } else
  851. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  852. }
  853. } else {
  854. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  855. }
  856. run = 1;
  857. break;
  858. default:
  859. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  860. run = 1;
  861. break;
  862. }
  863. if (joined_stereo) {
  864. for (k = 0; k < run && j + k < 128; k++) {
  865. q->sb_samples[0][j + k][sb] =
  866. q->tone_level[0][sb][(j + k) / 2] * samples[k];
  867. if (q->nb_channels == 2) {
  868. if (sign_bits[(j + k) / 8])
  869. q->sb_samples[1][j + k][sb] =
  870. q->tone_level[1][sb][(j + k) / 2] * -samples[k];
  871. else
  872. q->sb_samples[1][j + k][sb] =
  873. q->tone_level[1][sb][(j + k) / 2] * samples[k];
  874. }
  875. }
  876. } else {
  877. for (k = 0; k < run; k++)
  878. if ((j + k) < 128)
  879. q->sb_samples[ch][j + k][sb] = q->tone_level[ch][sb][(j + k)/2] * samples[k];
  880. }
  881. j += run;
  882. } // j loop
  883. } // channel loop
  884. } // subband loop
  885. }
  886. /**
  887. * Init the first element of a channel in quantized_coeffs with data
  888. * from packet 10 (quantized_coeffs[ch][0]).
  889. * This is similar to process_subpacket_9, but for a single channel
  890. * and for element [0]
  891. * same VLC tables as process_subpacket_9 are used.
  892. *
  893. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  894. * @param gb bitreader context
  895. */
  896. static void init_quantized_coeffs_elem0(int8_t *quantized_coeffs,
  897. GetBitContext *gb)
  898. {
  899. int i, k, run, level, diff;
  900. if (get_bits_left(gb) < 16)
  901. return;
  902. level = qdm2_get_vlc(gb, &vlc_tab_level, 0, 2);
  903. quantized_coeffs[0] = level;
  904. for (i = 0; i < 7; ) {
  905. if (get_bits_left(gb) < 16)
  906. break;
  907. run = qdm2_get_vlc(gb, &vlc_tab_run, 0, 1) + 1;
  908. if (get_bits_left(gb) < 16)
  909. break;
  910. diff = qdm2_get_se_vlc(&vlc_tab_diff, gb, 2);
  911. for (k = 1; k <= run; k++)
  912. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  913. level += diff;
  914. i += run;
  915. }
  916. }
  917. /**
  918. * Related to synthesis filter, process data from packet 10
  919. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  920. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with
  921. * data from packet 10
  922. *
  923. * @param q context
  924. * @param gb bitreader context
  925. */
  926. static void init_tone_level_dequantization(QDM2Context *q, GetBitContext *gb)
  927. {
  928. int sb, j, k, n, ch;
  929. for (ch = 0; ch < q->nb_channels; ch++) {
  930. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], gb);
  931. if (get_bits_left(gb) < 16) {
  932. memset(q->quantized_coeffs[ch][0], 0, 8);
  933. break;
  934. }
  935. }
  936. n = q->sub_sampling + 1;
  937. for (sb = 0; sb < n; sb++)
  938. for (ch = 0; ch < q->nb_channels; ch++)
  939. for (j = 0; j < 8; j++) {
  940. if (get_bits_left(gb) < 1)
  941. break;
  942. if (get_bits1(gb)) {
  943. for (k=0; k < 8; k++) {
  944. if (get_bits_left(gb) < 16)
  945. break;
  946. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi1, 0, 2);
  947. }
  948. } else {
  949. for (k=0; k < 8; k++)
  950. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  951. }
  952. }
  953. n = QDM2_SB_USED(q->sub_sampling) - 4;
  954. for (sb = 0; sb < n; sb++)
  955. for (ch = 0; ch < q->nb_channels; ch++) {
  956. if (get_bits_left(gb) < 16)
  957. break;
  958. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi2, 0, 2);
  959. if (sb > 19)
  960. q->tone_level_idx_hi2[ch][sb] -= 16;
  961. else
  962. for (j = 0; j < 8; j++)
  963. q->tone_level_idx_mid[ch][sb][j] = -16;
  964. }
  965. n = QDM2_SB_USED(q->sub_sampling) - 5;
  966. for (sb = 0; sb < n; sb++)
  967. for (ch = 0; ch < q->nb_channels; ch++)
  968. for (j = 0; j < 8; j++) {
  969. if (get_bits_left(gb) < 16)
  970. break;
  971. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  972. }
  973. }
  974. /**
  975. * Process subpacket 9, init quantized_coeffs with data from it
  976. *
  977. * @param q context
  978. * @param node pointer to node with packet
  979. */
  980. static void process_subpacket_9(QDM2Context *q, QDM2SubPNode *node)
  981. {
  982. GetBitContext gb;
  983. int i, j, k, n, ch, run, level, diff;
  984. init_get_bits(&gb, node->packet->data, node->packet->size * 8);
  985. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  986. for (i = 1; i < n; i++)
  987. for (ch = 0; ch < q->nb_channels; ch++) {
  988. level = qdm2_get_vlc(&gb, &vlc_tab_level, 0, 2);
  989. q->quantized_coeffs[ch][i][0] = level;
  990. for (j = 0; j < (8 - 1); ) {
  991. run = qdm2_get_vlc(&gb, &vlc_tab_run, 0, 1) + 1;
  992. diff = qdm2_get_se_vlc(&vlc_tab_diff, &gb, 2);
  993. for (k = 1; k <= run; k++)
  994. q->quantized_coeffs[ch][i][j + k] = (level + ((k * diff) / run));
  995. level += diff;
  996. j += run;
  997. }
  998. }
  999. for (ch = 0; ch < q->nb_channels; ch++)
  1000. for (i = 0; i < 8; i++)
  1001. q->quantized_coeffs[ch][0][i] = 0;
  1002. }
  1003. /**
  1004. * Process subpacket 10 if not null, else
  1005. *
  1006. * @param q context
  1007. * @param node pointer to node with packet
  1008. */
  1009. static void process_subpacket_10(QDM2Context *q, QDM2SubPNode *node)
  1010. {
  1011. GetBitContext gb;
  1012. if (node) {
  1013. init_get_bits(&gb, node->packet->data, node->packet->size * 8);
  1014. init_tone_level_dequantization(q, &gb);
  1015. fill_tone_level_array(q, 1);
  1016. } else {
  1017. fill_tone_level_array(q, 0);
  1018. }
  1019. }
  1020. /**
  1021. * Process subpacket 11
  1022. *
  1023. * @param q context
  1024. * @param node pointer to node with packet
  1025. */
  1026. static void process_subpacket_11(QDM2Context *q, QDM2SubPNode *node)
  1027. {
  1028. GetBitContext gb;
  1029. int length = 0;
  1030. if (node) {
  1031. length = node->packet->size * 8;
  1032. init_get_bits(&gb, node->packet->data, length);
  1033. }
  1034. if (length >= 32) {
  1035. int c = get_bits(&gb, 13);
  1036. if (c > 3)
  1037. fill_coding_method_array(q->tone_level_idx,
  1038. q->tone_level_idx_temp, q->coding_method,
  1039. q->nb_channels, 8 * c,
  1040. q->superblocktype_2_3, q->cm_table_select);
  1041. }
  1042. synthfilt_build_sb_samples(q, &gb, length, 0, 8);
  1043. }
  1044. /**
  1045. * Process subpacket 12
  1046. *
  1047. * @param q context
  1048. * @param node pointer to node with packet
  1049. */
  1050. static void process_subpacket_12(QDM2Context *q, QDM2SubPNode *node)
  1051. {
  1052. GetBitContext gb;
  1053. int length = 0;
  1054. if (node) {
  1055. length = node->packet->size * 8;
  1056. init_get_bits(&gb, node->packet->data, length);
  1057. }
  1058. synthfilt_build_sb_samples(q, &gb, length, 8, QDM2_SB_USED(q->sub_sampling));
  1059. }
  1060. /*
  1061. * Process new subpackets for synthesis filter
  1062. *
  1063. * @param q context
  1064. * @param list list with synthesis filter packets (list D)
  1065. */
  1066. static void process_synthesis_subpackets(QDM2Context *q, QDM2SubPNode *list)
  1067. {
  1068. QDM2SubPNode *nodes[4];
  1069. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  1070. if (nodes[0] != NULL)
  1071. process_subpacket_9(q, nodes[0]);
  1072. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1073. if (nodes[1] != NULL)
  1074. process_subpacket_10(q, nodes[1]);
  1075. else
  1076. process_subpacket_10(q, NULL);
  1077. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1078. if (nodes[0] != NULL && nodes[1] != NULL && nodes[2] != NULL)
  1079. process_subpacket_11(q, nodes[2]);
  1080. else
  1081. process_subpacket_11(q, NULL);
  1082. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1083. if (nodes[0] != NULL && nodes[1] != NULL && nodes[3] != NULL)
  1084. process_subpacket_12(q, nodes[3]);
  1085. else
  1086. process_subpacket_12(q, NULL);
  1087. }
  1088. /*
  1089. * Decode superblock, fill packet lists.
  1090. *
  1091. * @param q context
  1092. */
  1093. static void qdm2_decode_super_block(QDM2Context *q)
  1094. {
  1095. GetBitContext gb;
  1096. QDM2SubPacket header, *packet;
  1097. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1098. unsigned int next_index = 0;
  1099. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1100. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1101. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1102. q->sub_packets_B = 0;
  1103. sub_packets_D = 0;
  1104. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1105. init_get_bits(&gb, q->compressed_data, q->compressed_size * 8);
  1106. qdm2_decode_sub_packet_header(&gb, &header);
  1107. if (header.type < 2 || header.type >= 8) {
  1108. q->has_errors = 1;
  1109. av_log(NULL, AV_LOG_ERROR, "bad superblock type\n");
  1110. return;
  1111. }
  1112. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1113. packet_bytes = (q->compressed_size - get_bits_count(&gb) / 8);
  1114. init_get_bits(&gb, header.data, header.size * 8);
  1115. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1116. int csum = 257 * get_bits(&gb, 8);
  1117. csum += 2 * get_bits(&gb, 8);
  1118. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1119. if (csum != 0) {
  1120. q->has_errors = 1;
  1121. av_log(NULL, AV_LOG_ERROR, "bad packet checksum\n");
  1122. return;
  1123. }
  1124. }
  1125. q->sub_packet_list_B[0].packet = NULL;
  1126. q->sub_packet_list_D[0].packet = NULL;
  1127. for (i = 0; i < 6; i++)
  1128. if (--q->fft_level_exp[i] < 0)
  1129. q->fft_level_exp[i] = 0;
  1130. for (i = 0; packet_bytes > 0; i++) {
  1131. int j;
  1132. if (i >= FF_ARRAY_ELEMS(q->sub_packet_list_A)) {
  1133. SAMPLES_NEEDED_2("too many packet bytes");
  1134. return;
  1135. }
  1136. q->sub_packet_list_A[i].next = NULL;
  1137. if (i > 0) {
  1138. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1139. /* seek to next block */
  1140. init_get_bits(&gb, header.data, header.size * 8);
  1141. skip_bits(&gb, next_index * 8);
  1142. if (next_index >= header.size)
  1143. break;
  1144. }
  1145. /* decode subpacket */
  1146. packet = &q->sub_packets[i];
  1147. qdm2_decode_sub_packet_header(&gb, packet);
  1148. next_index = packet->size + get_bits_count(&gb) / 8;
  1149. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1150. if (packet->type == 0)
  1151. break;
  1152. if (sub_packet_size > packet_bytes) {
  1153. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1154. break;
  1155. packet->size += packet_bytes - sub_packet_size;
  1156. }
  1157. packet_bytes -= sub_packet_size;
  1158. /* add subpacket to 'all subpackets' list */
  1159. q->sub_packet_list_A[i].packet = packet;
  1160. /* add subpacket to related list */
  1161. if (packet->type == 8) {
  1162. SAMPLES_NEEDED_2("packet type 8");
  1163. return;
  1164. } else if (packet->type >= 9 && packet->type <= 12) {
  1165. /* packets for MPEG Audio like Synthesis Filter */
  1166. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1167. } else if (packet->type == 13) {
  1168. for (j = 0; j < 6; j++)
  1169. q->fft_level_exp[j] = get_bits(&gb, 6);
  1170. } else if (packet->type == 14) {
  1171. for (j = 0; j < 6; j++)
  1172. q->fft_level_exp[j] = qdm2_get_vlc(&gb, &fft_level_exp_vlc, 0, 2);
  1173. } else if (packet->type == 15) {
  1174. SAMPLES_NEEDED_2("packet type 15")
  1175. return;
  1176. } else if (packet->type >= 16 && packet->type < 48 &&
  1177. !fft_subpackets[packet->type - 16]) {
  1178. /* packets for FFT */
  1179. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1180. }
  1181. } // Packet bytes loop
  1182. if (q->sub_packet_list_D[0].packet != NULL) {
  1183. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1184. q->do_synth_filter = 1;
  1185. } else if (q->do_synth_filter) {
  1186. process_subpacket_10(q, NULL);
  1187. process_subpacket_11(q, NULL);
  1188. process_subpacket_12(q, NULL);
  1189. }
  1190. }
  1191. static void qdm2_fft_init_coefficient(QDM2Context *q, int sub_packet,
  1192. int offset, int duration, int channel,
  1193. int exp, int phase)
  1194. {
  1195. if (q->fft_coefs_min_index[duration] < 0)
  1196. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1197. q->fft_coefs[q->fft_coefs_index].sub_packet =
  1198. ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1199. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1200. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1201. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1202. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1203. q->fft_coefs_index++;
  1204. }
  1205. static void qdm2_fft_decode_tones(QDM2Context *q, int duration,
  1206. GetBitContext *gb, int b)
  1207. {
  1208. int channel, stereo, phase, exp;
  1209. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1210. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1211. int n, offset;
  1212. local_int_4 = 0;
  1213. local_int_28 = 0;
  1214. local_int_20 = 2;
  1215. local_int_8 = (4 - duration);
  1216. local_int_10 = 1 << (q->group_order - duration - 1);
  1217. offset = 1;
  1218. while (1) {
  1219. if (q->superblocktype_2_3) {
  1220. while ((n = qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1221. offset = 1;
  1222. if (n == 0) {
  1223. local_int_4 += local_int_10;
  1224. local_int_28 += (1 << local_int_8);
  1225. } else {
  1226. local_int_4 += 8 * local_int_10;
  1227. local_int_28 += (8 << local_int_8);
  1228. }
  1229. }
  1230. offset += (n - 2);
  1231. } else {
  1232. offset += qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1233. while (offset >= (local_int_10 - 1)) {
  1234. offset += (1 - (local_int_10 - 1));
  1235. local_int_4 += local_int_10;
  1236. local_int_28 += (1 << local_int_8);
  1237. }
  1238. }
  1239. if (local_int_4 >= q->group_size)
  1240. return;
  1241. local_int_14 = (offset >> local_int_8);
  1242. if (local_int_14 >= FF_ARRAY_ELEMS(fft_level_index_table))
  1243. return;
  1244. if (q->nb_channels > 1) {
  1245. channel = get_bits1(gb);
  1246. stereo = get_bits1(gb);
  1247. } else {
  1248. channel = 0;
  1249. stereo = 0;
  1250. }
  1251. exp = qdm2_get_vlc(gb, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1252. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1253. exp = (exp < 0) ? 0 : exp;
  1254. phase = get_bits(gb, 3);
  1255. stereo_exp = 0;
  1256. stereo_phase = 0;
  1257. if (stereo) {
  1258. stereo_exp = (exp - qdm2_get_vlc(gb, &fft_stereo_exp_vlc, 0, 1));
  1259. stereo_phase = (phase - qdm2_get_vlc(gb, &fft_stereo_phase_vlc, 0, 1));
  1260. if (stereo_phase < 0)
  1261. stereo_phase += 8;
  1262. }
  1263. if (q->frequency_range > (local_int_14 + 1)) {
  1264. int sub_packet = (local_int_20 + local_int_28);
  1265. qdm2_fft_init_coefficient(q, sub_packet, offset, duration,
  1266. channel, exp, phase);
  1267. if (stereo)
  1268. qdm2_fft_init_coefficient(q, sub_packet, offset, duration,
  1269. 1 - channel,
  1270. stereo_exp, stereo_phase);
  1271. }
  1272. offset++;
  1273. }
  1274. }
  1275. static void qdm2_decode_fft_packets(QDM2Context *q)
  1276. {
  1277. int i, j, min, max, value, type, unknown_flag;
  1278. GetBitContext gb;
  1279. if (q->sub_packet_list_B[0].packet == NULL)
  1280. return;
  1281. /* reset minimum indexes for FFT coefficients */
  1282. q->fft_coefs_index = 0;
  1283. for (i = 0; i < 5; i++)
  1284. q->fft_coefs_min_index[i] = -1;
  1285. /* process subpackets ordered by type, largest type first */
  1286. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1287. QDM2SubPacket *packet = NULL;
  1288. /* find subpacket with largest type less than max */
  1289. for (j = 0, min = 0; j < q->sub_packets_B; j++) {
  1290. value = q->sub_packet_list_B[j].packet->type;
  1291. if (value > min && value < max) {
  1292. min = value;
  1293. packet = q->sub_packet_list_B[j].packet;
  1294. }
  1295. }
  1296. max = min;
  1297. /* check for errors (?) */
  1298. if (!packet)
  1299. return;
  1300. if (i == 0 &&
  1301. (packet->type < 16 || packet->type >= 48 ||
  1302. fft_subpackets[packet->type - 16]))
  1303. return;
  1304. /* decode FFT tones */
  1305. init_get_bits(&gb, packet->data, packet->size * 8);
  1306. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1307. unknown_flag = 1;
  1308. else
  1309. unknown_flag = 0;
  1310. type = packet->type;
  1311. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1312. int duration = q->sub_sampling + 5 - (type & 15);
  1313. if (duration >= 0 && duration < 4)
  1314. qdm2_fft_decode_tones(q, duration, &gb, unknown_flag);
  1315. } else if (type == 31) {
  1316. for (j = 0; j < 4; j++)
  1317. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1318. } else if (type == 46) {
  1319. for (j = 0; j < 6; j++)
  1320. q->fft_level_exp[j] = get_bits(&gb, 6);
  1321. for (j = 0; j < 4; j++)
  1322. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1323. }
  1324. } // Loop on B packets
  1325. /* calculate maximum indexes for FFT coefficients */
  1326. for (i = 0, j = -1; i < 5; i++)
  1327. if (q->fft_coefs_min_index[i] >= 0) {
  1328. if (j >= 0)
  1329. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1330. j = i;
  1331. }
  1332. if (j >= 0)
  1333. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1334. }
  1335. static void qdm2_fft_generate_tone(QDM2Context *q, FFTTone *tone)
  1336. {
  1337. float level, f[6];
  1338. int i;
  1339. QDM2Complex c;
  1340. const double iscale = 2.0 * M_PI / 512.0;
  1341. tone->phase += tone->phase_shift;
  1342. /* calculate current level (maximum amplitude) of tone */
  1343. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1344. c.im = level * sin(tone->phase * iscale);
  1345. c.re = level * cos(tone->phase * iscale);
  1346. /* generate FFT coefficients for tone */
  1347. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1348. tone->complex[0].im += c.im;
  1349. tone->complex[0].re += c.re;
  1350. tone->complex[1].im -= c.im;
  1351. tone->complex[1].re -= c.re;
  1352. } else {
  1353. f[1] = -tone->table[4];
  1354. f[0] = tone->table[3] - tone->table[0];
  1355. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1356. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1357. f[4] = tone->table[0] - tone->table[1];
  1358. f[5] = tone->table[2];
  1359. for (i = 0; i < 2; i++) {
  1360. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].re +=
  1361. c.re * f[i];
  1362. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].im +=
  1363. c.im * ((tone->cutoff <= i) ? -f[i] : f[i]);
  1364. }
  1365. for (i = 0; i < 4; i++) {
  1366. tone->complex[i].re += c.re * f[i + 2];
  1367. tone->complex[i].im += c.im * f[i + 2];
  1368. }
  1369. }
  1370. /* copy the tone if it has not yet died out */
  1371. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1372. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1373. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1374. }
  1375. }
  1376. static void qdm2_fft_tone_synthesizer(QDM2Context *q, int sub_packet)
  1377. {
  1378. int i, j, ch;
  1379. const double iscale = 0.25 * M_PI;
  1380. for (ch = 0; ch < q->channels; ch++) {
  1381. memset(q->fft.complex[ch], 0, q->fft_size * sizeof(QDM2Complex));
  1382. }
  1383. /* apply FFT tones with duration 4 (1 FFT period) */
  1384. if (q->fft_coefs_min_index[4] >= 0)
  1385. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1386. float level;
  1387. QDM2Complex c;
  1388. if (q->fft_coefs[i].sub_packet != sub_packet)
  1389. break;
  1390. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1391. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1392. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1393. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1394. q->fft.complex[ch][q->fft_coefs[i].offset + 0].re += c.re;
  1395. q->fft.complex[ch][q->fft_coefs[i].offset + 0].im += c.im;
  1396. q->fft.complex[ch][q->fft_coefs[i].offset + 1].re -= c.re;
  1397. q->fft.complex[ch][q->fft_coefs[i].offset + 1].im -= c.im;
  1398. }
  1399. /* generate existing FFT tones */
  1400. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1401. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1402. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1403. }
  1404. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1405. for (i = 0; i < 4; i++)
  1406. if (q->fft_coefs_min_index[i] >= 0) {
  1407. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1408. int offset, four_i;
  1409. FFTTone tone;
  1410. if (q->fft_coefs[j].sub_packet != sub_packet)
  1411. break;
  1412. four_i = (4 - i);
  1413. offset = q->fft_coefs[j].offset >> four_i;
  1414. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1415. if (offset < q->frequency_range) {
  1416. if (offset < 2)
  1417. tone.cutoff = offset;
  1418. else
  1419. tone.cutoff = (offset >= 60) ? 3 : 2;
  1420. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1421. tone.complex = &q->fft.complex[ch][offset];
  1422. tone.table = fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1423. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1424. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1425. tone.duration = i;
  1426. tone.time_index = 0;
  1427. qdm2_fft_generate_tone(q, &tone);
  1428. }
  1429. }
  1430. q->fft_coefs_min_index[i] = j;
  1431. }
  1432. }
  1433. static void qdm2_calculate_fft(QDM2Context *q, int channel, int sub_packet)
  1434. {
  1435. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.5f : 1.0f;
  1436. float *out = q->output_buffer + channel;
  1437. int i;
  1438. q->fft.complex[channel][0].re *= 2.0f;
  1439. q->fft.complex[channel][0].im = 0.0f;
  1440. q->rdft_ctx.rdft_calc(&q->rdft_ctx, (FFTSample *)q->fft.complex[channel]);
  1441. /* add samples to output buffer */
  1442. for (i = 0; i < FFALIGN(q->fft_size, 8); i++) {
  1443. out[0] += q->fft.complex[channel][i].re * gain;
  1444. out[q->channels] += q->fft.complex[channel][i].im * gain;
  1445. out += 2 * q->channels;
  1446. }
  1447. }
  1448. /**
  1449. * @param q context
  1450. * @param index subpacket number
  1451. */
  1452. static void qdm2_synthesis_filter(QDM2Context *q, int index)
  1453. {
  1454. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1455. /* copy sb_samples */
  1456. sb_used = QDM2_SB_USED(q->sub_sampling);
  1457. for (ch = 0; ch < q->channels; ch++)
  1458. for (i = 0; i < 8; i++)
  1459. for (k = sb_used; k < SBLIMIT; k++)
  1460. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1461. for (ch = 0; ch < q->nb_channels; ch++) {
  1462. float *samples_ptr = q->samples + ch;
  1463. for (i = 0; i < 8; i++) {
  1464. ff_mpa_synth_filter_float(&q->mpadsp,
  1465. q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1466. ff_mpa_synth_window_float, &dither_state,
  1467. samples_ptr, q->nb_channels,
  1468. q->sb_samples[ch][(8 * index) + i]);
  1469. samples_ptr += 32 * q->nb_channels;
  1470. }
  1471. }
  1472. /* add samples to output buffer */
  1473. sub_sampling = (4 >> q->sub_sampling);
  1474. for (ch = 0; ch < q->channels; ch++)
  1475. for (i = 0; i < q->frame_size; i++)
  1476. q->output_buffer[q->channels * i + ch] += (1 << 23) * q->samples[q->nb_channels * sub_sampling * i + ch];
  1477. }
  1478. /**
  1479. * Init static data (does not depend on specific file)
  1480. *
  1481. * @param q context
  1482. */
  1483. static av_cold void qdm2_init_static_data(AVCodec *codec) {
  1484. qdm2_init_vlc();
  1485. ff_mpa_synth_init_float(ff_mpa_synth_window_float);
  1486. softclip_table_init();
  1487. rnd_table_init();
  1488. init_noise_samples();
  1489. }
  1490. /**
  1491. * Init parameters from codec extradata
  1492. */
  1493. static av_cold int qdm2_decode_init(AVCodecContext *avctx)
  1494. {
  1495. QDM2Context *s = avctx->priv_data;
  1496. uint8_t *extradata;
  1497. int extradata_size;
  1498. int tmp_val, tmp, size;
  1499. /* extradata parsing
  1500. Structure:
  1501. wave {
  1502. frma (QDM2)
  1503. QDCA
  1504. QDCP
  1505. }
  1506. 32 size (including this field)
  1507. 32 tag (=frma)
  1508. 32 type (=QDM2 or QDMC)
  1509. 32 size (including this field, in bytes)
  1510. 32 tag (=QDCA) // maybe mandatory parameters
  1511. 32 unknown (=1)
  1512. 32 channels (=2)
  1513. 32 samplerate (=44100)
  1514. 32 bitrate (=96000)
  1515. 32 block size (=4096)
  1516. 32 frame size (=256) (for one channel)
  1517. 32 packet size (=1300)
  1518. 32 size (including this field, in bytes)
  1519. 32 tag (=QDCP) // maybe some tuneable parameters
  1520. 32 float1 (=1.0)
  1521. 32 zero ?
  1522. 32 float2 (=1.0)
  1523. 32 float3 (=1.0)
  1524. 32 unknown (27)
  1525. 32 unknown (8)
  1526. 32 zero ?
  1527. */
  1528. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1529. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1530. return -1;
  1531. }
  1532. extradata = avctx->extradata;
  1533. extradata_size = avctx->extradata_size;
  1534. while (extradata_size > 7) {
  1535. if (!memcmp(extradata, "frmaQDM", 7))
  1536. break;
  1537. extradata++;
  1538. extradata_size--;
  1539. }
  1540. if (extradata_size < 12) {
  1541. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1542. extradata_size);
  1543. return -1;
  1544. }
  1545. if (memcmp(extradata, "frmaQDM", 7)) {
  1546. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1547. return -1;
  1548. }
  1549. if (extradata[7] == 'C') {
  1550. // s->is_qdmc = 1;
  1551. av_log(avctx, AV_LOG_ERROR, "stream is QDMC version 1, which is not supported\n");
  1552. return -1;
  1553. }
  1554. extradata += 8;
  1555. extradata_size -= 8;
  1556. size = AV_RB32(extradata);
  1557. if(size > extradata_size){
  1558. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1559. extradata_size, size);
  1560. return -1;
  1561. }
  1562. extradata += 4;
  1563. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1564. if (AV_RB32(extradata) != MKBETAG('Q','D','C','A')) {
  1565. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1566. return -1;
  1567. }
  1568. extradata += 8;
  1569. avctx->channels = s->nb_channels = s->channels = AV_RB32(extradata);
  1570. extradata += 4;
  1571. if (s->channels <= 0 || s->channels > MPA_MAX_CHANNELS)
  1572. return AVERROR_INVALIDDATA;
  1573. avctx->channel_layout = avctx->channels == 2 ? AV_CH_LAYOUT_STEREO :
  1574. AV_CH_LAYOUT_MONO;
  1575. avctx->sample_rate = AV_RB32(extradata);
  1576. extradata += 4;
  1577. avctx->bit_rate = AV_RB32(extradata);
  1578. extradata += 4;
  1579. s->group_size = AV_RB32(extradata);
  1580. extradata += 4;
  1581. s->fft_size = AV_RB32(extradata);
  1582. extradata += 4;
  1583. s->checksum_size = AV_RB32(extradata);
  1584. if (s->checksum_size >= 1U << 28) {
  1585. av_log(avctx, AV_LOG_ERROR, "data block size too large (%u)\n", s->checksum_size);
  1586. return AVERROR_INVALIDDATA;
  1587. }
  1588. s->fft_order = av_log2(s->fft_size) + 1;
  1589. // something like max decodable tones
  1590. s->group_order = av_log2(s->group_size) + 1;
  1591. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1592. if (s->frame_size > QDM2_MAX_FRAME_SIZE)
  1593. return AVERROR_INVALIDDATA;
  1594. s->sub_sampling = s->fft_order - 7;
  1595. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1596. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1597. case 0: tmp = 40; break;
  1598. case 1: tmp = 48; break;
  1599. case 2: tmp = 56; break;
  1600. case 3: tmp = 72; break;
  1601. case 4: tmp = 80; break;
  1602. case 5: tmp = 100;break;
  1603. default: tmp=s->sub_sampling; break;
  1604. }
  1605. tmp_val = 0;
  1606. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1607. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1608. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1609. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1610. s->cm_table_select = tmp_val;
  1611. if (s->sub_sampling == 0)
  1612. tmp = 7999;
  1613. else
  1614. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1615. /*
  1616. 0: 7999 -> 0
  1617. 1: 20000 -> 2
  1618. 2: 28000 -> 2
  1619. */
  1620. if (tmp < 8000)
  1621. s->coeff_per_sb_select = 0;
  1622. else if (tmp <= 16000)
  1623. s->coeff_per_sb_select = 1;
  1624. else
  1625. s->coeff_per_sb_select = 2;
  1626. // Fail on unknown fft order
  1627. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1628. av_log(avctx, AV_LOG_ERROR, "Unknown FFT order (%d), contact the developers!\n", s->fft_order);
  1629. return -1;
  1630. }
  1631. if (s->fft_size != (1 << (s->fft_order - 1))) {
  1632. av_log(avctx, AV_LOG_ERROR, "FFT size %d not power of 2.\n", s->fft_size);
  1633. return AVERROR_INVALIDDATA;
  1634. }
  1635. ff_rdft_init(&s->rdft_ctx, s->fft_order, IDFT_C2R);
  1636. ff_mpadsp_init(&s->mpadsp);
  1637. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  1638. return 0;
  1639. }
  1640. static av_cold int qdm2_decode_close(AVCodecContext *avctx)
  1641. {
  1642. QDM2Context *s = avctx->priv_data;
  1643. ff_rdft_end(&s->rdft_ctx);
  1644. return 0;
  1645. }
  1646. static int qdm2_decode(QDM2Context *q, const uint8_t *in, int16_t *out)
  1647. {
  1648. int ch, i;
  1649. const int frame_size = (q->frame_size * q->channels);
  1650. /* select input buffer */
  1651. q->compressed_data = in;
  1652. q->compressed_size = q->checksum_size;
  1653. /* copy old block, clear new block of output samples */
  1654. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1655. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1656. /* decode block of QDM2 compressed data */
  1657. if (q->sub_packet == 0) {
  1658. q->has_errors = 0; // zero it for a new super block
  1659. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1660. qdm2_decode_super_block(q);
  1661. }
  1662. /* parse subpackets */
  1663. if (!q->has_errors) {
  1664. if (q->sub_packet == 2)
  1665. qdm2_decode_fft_packets(q);
  1666. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1667. }
  1668. /* sound synthesis stage 1 (FFT) */
  1669. for (ch = 0; ch < q->channels; ch++) {
  1670. qdm2_calculate_fft(q, ch, q->sub_packet);
  1671. if (!q->has_errors && q->sub_packet_list_C[0].packet != NULL) {
  1672. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1673. return -1;
  1674. }
  1675. }
  1676. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1677. if (!q->has_errors && q->do_synth_filter)
  1678. qdm2_synthesis_filter(q, q->sub_packet);
  1679. q->sub_packet = (q->sub_packet + 1) % 16;
  1680. /* clip and convert output float[] to 16bit signed samples */
  1681. for (i = 0; i < frame_size; i++) {
  1682. int value = (int)q->output_buffer[i];
  1683. if (value > SOFTCLIP_THRESHOLD)
  1684. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1685. else if (value < -SOFTCLIP_THRESHOLD)
  1686. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1687. out[i] = value;
  1688. }
  1689. return 0;
  1690. }
  1691. static int qdm2_decode_frame(AVCodecContext *avctx, void *data,
  1692. int *got_frame_ptr, AVPacket *avpkt)
  1693. {
  1694. AVFrame *frame = data;
  1695. const uint8_t *buf = avpkt->data;
  1696. int buf_size = avpkt->size;
  1697. QDM2Context *s = avctx->priv_data;
  1698. int16_t *out;
  1699. int i, ret;
  1700. if(!buf)
  1701. return 0;
  1702. if(buf_size < s->checksum_size)
  1703. return -1;
  1704. /* get output buffer */
  1705. frame->nb_samples = 16 * s->frame_size;
  1706. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1707. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1708. return ret;
  1709. }
  1710. out = (int16_t *)frame->data[0];
  1711. for (i = 0; i < 16; i++) {
  1712. if (qdm2_decode(s, buf, out) < 0)
  1713. return -1;
  1714. out += s->channels * s->frame_size;
  1715. }
  1716. *got_frame_ptr = 1;
  1717. return s->checksum_size;
  1718. }
  1719. AVCodec ff_qdm2_decoder = {
  1720. .name = "qdm2",
  1721. .long_name = NULL_IF_CONFIG_SMALL("QDesign Music Codec 2"),
  1722. .type = AVMEDIA_TYPE_AUDIO,
  1723. .id = AV_CODEC_ID_QDM2,
  1724. .priv_data_size = sizeof(QDM2Context),
  1725. .init = qdm2_decode_init,
  1726. .init_static_data = qdm2_init_static_data,
  1727. .close = qdm2_decode_close,
  1728. .decode = qdm2_decode_frame,
  1729. .capabilities = CODEC_CAP_DR1,
  1730. };