You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2056 lines
67KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG Audio decoder
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/float_dsp.h"
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "internal.h"
  32. #include "mathops.h"
  33. #include "mpegaudiodsp.h"
  34. /*
  35. * TODO:
  36. * - test lsf / mpeg25 extensively.
  37. */
  38. #include "mpegaudio.h"
  39. #include "mpegaudiodecheader.h"
  40. #define BACKSTEP_SIZE 512
  41. #define EXTRABYTES 24
  42. #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
  43. /* layer 3 "granule" */
  44. typedef struct GranuleDef {
  45. uint8_t scfsi;
  46. int part2_3_length;
  47. int big_values;
  48. int global_gain;
  49. int scalefac_compress;
  50. uint8_t block_type;
  51. uint8_t switch_point;
  52. int table_select[3];
  53. int subblock_gain[3];
  54. uint8_t scalefac_scale;
  55. uint8_t count1table_select;
  56. int region_size[3]; /* number of huffman codes in each region */
  57. int preflag;
  58. int short_start, long_end; /* long/short band indexes */
  59. uint8_t scale_factors[40];
  60. DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
  61. } GranuleDef;
  62. typedef struct MPADecodeContext {
  63. MPA_DECODE_HEADER
  64. uint8_t last_buf[LAST_BUF_SIZE];
  65. int last_buf_size;
  66. /* next header (used in free format parsing) */
  67. uint32_t free_format_next_header;
  68. GetBitContext gb;
  69. GetBitContext in_gb;
  70. DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
  71. int synth_buf_offset[MPA_MAX_CHANNELS];
  72. DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
  73. INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  74. GranuleDef granules[2][2]; /* Used in Layer 3 */
  75. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  76. int dither_state;
  77. int err_recognition;
  78. AVCodecContext* avctx;
  79. MPADSPContext mpadsp;
  80. AVFloatDSPContext fdsp;
  81. AVFrame *frame;
  82. } MPADecodeContext;
  83. #if CONFIG_FLOAT
  84. # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
  85. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  86. # define FIXR(x) ((float)(x))
  87. # define FIXHR(x) ((float)(x))
  88. # define MULH3(x, y, s) ((s)*(y)*(x))
  89. # define MULLx(x, y, s) ((y)*(x))
  90. # define RENAME(a) a ## _float
  91. # define OUT_FMT AV_SAMPLE_FMT_FLT
  92. # define OUT_FMT_P AV_SAMPLE_FMT_FLTP
  93. #else
  94. # define SHR(a,b) ((a)>>(b))
  95. /* WARNING: only correct for positive numbers */
  96. # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
  97. # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  98. # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  99. # define MULH3(x, y, s) MULH((s)*(x), y)
  100. # define MULLx(x, y, s) MULL(x,y,s)
  101. # define RENAME(a) a ## _fixed
  102. # define OUT_FMT AV_SAMPLE_FMT_S16
  103. # define OUT_FMT_P AV_SAMPLE_FMT_S16P
  104. #endif
  105. /****************/
  106. #define HEADER_SIZE 4
  107. #include "mpegaudiodata.h"
  108. #include "mpegaudiodectab.h"
  109. /* vlc structure for decoding layer 3 huffman tables */
  110. static VLC huff_vlc[16];
  111. static VLC_TYPE huff_vlc_tables[
  112. 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
  113. 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
  114. ][2];
  115. static const int huff_vlc_tables_sizes[16] = {
  116. 0, 128, 128, 128, 130, 128, 154, 166,
  117. 142, 204, 190, 170, 542, 460, 662, 414
  118. };
  119. static VLC huff_quad_vlc[2];
  120. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  121. static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
  122. /* computed from band_size_long */
  123. static uint16_t band_index_long[9][23];
  124. #include "mpegaudio_tablegen.h"
  125. /* intensity stereo coef table */
  126. static INTFLOAT is_table[2][16];
  127. static INTFLOAT is_table_lsf[2][2][16];
  128. static INTFLOAT csa_table[8][4];
  129. static int16_t division_tab3[1<<6 ];
  130. static int16_t division_tab5[1<<8 ];
  131. static int16_t division_tab9[1<<11];
  132. static int16_t * const division_tabs[4] = {
  133. division_tab3, division_tab5, NULL, division_tab9
  134. };
  135. /* lower 2 bits: modulo 3, higher bits: shift */
  136. static uint16_t scale_factor_modshift[64];
  137. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  138. static int32_t scale_factor_mult[15][3];
  139. /* mult table for layer 2 group quantization */
  140. #define SCALE_GEN(v) \
  141. { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
  142. static const int32_t scale_factor_mult2[3][3] = {
  143. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  144. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  145. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  146. };
  147. /**
  148. * Convert region offsets to region sizes and truncate
  149. * size to big_values.
  150. */
  151. static void region_offset2size(GranuleDef *g)
  152. {
  153. int i, k, j = 0;
  154. g->region_size[2] = 576 / 2;
  155. for (i = 0; i < 3; i++) {
  156. k = FFMIN(g->region_size[i], g->big_values);
  157. g->region_size[i] = k - j;
  158. j = k;
  159. }
  160. }
  161. static void init_short_region(MPADecodeContext *s, GranuleDef *g)
  162. {
  163. if (g->block_type == 2) {
  164. if (s->sample_rate_index != 8)
  165. g->region_size[0] = (36 / 2);
  166. else
  167. g->region_size[0] = (72 / 2);
  168. } else {
  169. if (s->sample_rate_index <= 2)
  170. g->region_size[0] = (36 / 2);
  171. else if (s->sample_rate_index != 8)
  172. g->region_size[0] = (54 / 2);
  173. else
  174. g->region_size[0] = (108 / 2);
  175. }
  176. g->region_size[1] = (576 / 2);
  177. }
  178. static void init_long_region(MPADecodeContext *s, GranuleDef *g,
  179. int ra1, int ra2)
  180. {
  181. int l;
  182. g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  183. /* should not overflow */
  184. l = FFMIN(ra1 + ra2 + 2, 22);
  185. g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
  186. }
  187. static void compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
  188. {
  189. if (g->block_type == 2) {
  190. if (g->switch_point) {
  191. /* if switched mode, we handle the 36 first samples as
  192. long blocks. For 8000Hz, we handle the 72 first
  193. exponents as long blocks */
  194. if (s->sample_rate_index <= 2)
  195. g->long_end = 8;
  196. else
  197. g->long_end = 6;
  198. g->short_start = 3;
  199. } else {
  200. g->long_end = 0;
  201. g->short_start = 0;
  202. }
  203. } else {
  204. g->short_start = 13;
  205. g->long_end = 22;
  206. }
  207. }
  208. /* layer 1 unscaling */
  209. /* n = number of bits of the mantissa minus 1 */
  210. static inline int l1_unscale(int n, int mant, int scale_factor)
  211. {
  212. int shift, mod;
  213. int64_t val;
  214. shift = scale_factor_modshift[scale_factor];
  215. mod = shift & 3;
  216. shift >>= 2;
  217. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  218. shift += n;
  219. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  220. return (int)((val + (1LL << (shift - 1))) >> shift);
  221. }
  222. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  223. {
  224. int shift, mod, val;
  225. shift = scale_factor_modshift[scale_factor];
  226. mod = shift & 3;
  227. shift >>= 2;
  228. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  229. /* NOTE: at this point, 0 <= shift <= 21 */
  230. if (shift > 0)
  231. val = (val + (1 << (shift - 1))) >> shift;
  232. return val;
  233. }
  234. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  235. static inline int l3_unscale(int value, int exponent)
  236. {
  237. unsigned int m;
  238. int e;
  239. e = table_4_3_exp [4 * value + (exponent & 3)];
  240. m = table_4_3_value[4 * value + (exponent & 3)];
  241. e -= exponent >> 2;
  242. assert(e >= 1);
  243. if (e > 31)
  244. return 0;
  245. m = (m + (1 << (e - 1))) >> e;
  246. return m;
  247. }
  248. static av_cold void decode_init_static(void)
  249. {
  250. int i, j, k;
  251. int offset;
  252. /* scale factors table for layer 1/2 */
  253. for (i = 0; i < 64; i++) {
  254. int shift, mod;
  255. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  256. shift = i / 3;
  257. mod = i % 3;
  258. scale_factor_modshift[i] = mod | (shift << 2);
  259. }
  260. /* scale factor multiply for layer 1 */
  261. for (i = 0; i < 15; i++) {
  262. int n, norm;
  263. n = i + 2;
  264. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  265. scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
  266. scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
  267. scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
  268. av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
  269. scale_factor_mult[i][0],
  270. scale_factor_mult[i][1],
  271. scale_factor_mult[i][2]);
  272. }
  273. RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
  274. /* huffman decode tables */
  275. offset = 0;
  276. for (i = 1; i < 16; i++) {
  277. const HuffTable *h = &mpa_huff_tables[i];
  278. int xsize, x, y;
  279. uint8_t tmp_bits [512] = { 0 };
  280. uint16_t tmp_codes[512] = { 0 };
  281. xsize = h->xsize;
  282. j = 0;
  283. for (x = 0; x < xsize; x++) {
  284. for (y = 0; y < xsize; y++) {
  285. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  286. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  287. }
  288. }
  289. /* XXX: fail test */
  290. huff_vlc[i].table = huff_vlc_tables+offset;
  291. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  292. init_vlc(&huff_vlc[i], 7, 512,
  293. tmp_bits, 1, 1, tmp_codes, 2, 2,
  294. INIT_VLC_USE_NEW_STATIC);
  295. offset += huff_vlc_tables_sizes[i];
  296. }
  297. assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  298. offset = 0;
  299. for (i = 0; i < 2; i++) {
  300. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  301. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  302. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  303. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  304. INIT_VLC_USE_NEW_STATIC);
  305. offset += huff_quad_vlc_tables_sizes[i];
  306. }
  307. assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  308. for (i = 0; i < 9; i++) {
  309. k = 0;
  310. for (j = 0; j < 22; j++) {
  311. band_index_long[i][j] = k;
  312. k += band_size_long[i][j];
  313. }
  314. band_index_long[i][22] = k;
  315. }
  316. /* compute n ^ (4/3) and store it in mantissa/exp format */
  317. mpegaudio_tableinit();
  318. for (i = 0; i < 4; i++) {
  319. if (ff_mpa_quant_bits[i] < 0) {
  320. for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
  321. int val1, val2, val3, steps;
  322. int val = j;
  323. steps = ff_mpa_quant_steps[i];
  324. val1 = val % steps;
  325. val /= steps;
  326. val2 = val % steps;
  327. val3 = val / steps;
  328. division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
  329. }
  330. }
  331. }
  332. for (i = 0; i < 7; i++) {
  333. float f;
  334. INTFLOAT v;
  335. if (i != 6) {
  336. f = tan((double)i * M_PI / 12.0);
  337. v = FIXR(f / (1.0 + f));
  338. } else {
  339. v = FIXR(1.0);
  340. }
  341. is_table[0][ i] = v;
  342. is_table[1][6 - i] = v;
  343. }
  344. /* invalid values */
  345. for (i = 7; i < 16; i++)
  346. is_table[0][i] = is_table[1][i] = 0.0;
  347. for (i = 0; i < 16; i++) {
  348. double f;
  349. int e, k;
  350. for (j = 0; j < 2; j++) {
  351. e = -(j + 1) * ((i + 1) >> 1);
  352. f = pow(2.0, e / 4.0);
  353. k = i & 1;
  354. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  355. is_table_lsf[j][k ][i] = FIXR(1.0);
  356. av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
  357. i, j, (float) is_table_lsf[j][0][i],
  358. (float) is_table_lsf[j][1][i]);
  359. }
  360. }
  361. for (i = 0; i < 8; i++) {
  362. float ci, cs, ca;
  363. ci = ci_table[i];
  364. cs = 1.0 / sqrt(1.0 + ci * ci);
  365. ca = cs * ci;
  366. #if !CONFIG_FLOAT
  367. csa_table[i][0] = FIXHR(cs/4);
  368. csa_table[i][1] = FIXHR(ca/4);
  369. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  370. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  371. #else
  372. csa_table[i][0] = cs;
  373. csa_table[i][1] = ca;
  374. csa_table[i][2] = ca + cs;
  375. csa_table[i][3] = ca - cs;
  376. #endif
  377. }
  378. }
  379. static av_cold int decode_init(AVCodecContext * avctx)
  380. {
  381. static int initialized_tables = 0;
  382. MPADecodeContext *s = avctx->priv_data;
  383. if (!initialized_tables) {
  384. decode_init_static();
  385. initialized_tables = 1;
  386. }
  387. s->avctx = avctx;
  388. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  389. ff_mpadsp_init(&s->mpadsp);
  390. if (avctx->request_sample_fmt == OUT_FMT &&
  391. avctx->codec_id != AV_CODEC_ID_MP3ON4)
  392. avctx->sample_fmt = OUT_FMT;
  393. else
  394. avctx->sample_fmt = OUT_FMT_P;
  395. s->err_recognition = avctx->err_recognition;
  396. if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
  397. s->adu_mode = 1;
  398. return 0;
  399. }
  400. #define C3 FIXHR(0.86602540378443864676/2)
  401. #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
  402. #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
  403. #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
  404. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  405. cases. */
  406. static void imdct12(INTFLOAT *out, INTFLOAT *in)
  407. {
  408. INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
  409. in0 = in[0*3];
  410. in1 = in[1*3] + in[0*3];
  411. in2 = in[2*3] + in[1*3];
  412. in3 = in[3*3] + in[2*3];
  413. in4 = in[4*3] + in[3*3];
  414. in5 = in[5*3] + in[4*3];
  415. in5 += in3;
  416. in3 += in1;
  417. in2 = MULH3(in2, C3, 2);
  418. in3 = MULH3(in3, C3, 4);
  419. t1 = in0 - in4;
  420. t2 = MULH3(in1 - in5, C4, 2);
  421. out[ 7] =
  422. out[10] = t1 + t2;
  423. out[ 1] =
  424. out[ 4] = t1 - t2;
  425. in0 += SHR(in4, 1);
  426. in4 = in0 + in2;
  427. in5 += 2*in1;
  428. in1 = MULH3(in5 + in3, C5, 1);
  429. out[ 8] =
  430. out[ 9] = in4 + in1;
  431. out[ 2] =
  432. out[ 3] = in4 - in1;
  433. in0 -= in2;
  434. in5 = MULH3(in5 - in3, C6, 2);
  435. out[ 0] =
  436. out[ 5] = in0 - in5;
  437. out[ 6] =
  438. out[11] = in0 + in5;
  439. }
  440. /* return the number of decoded frames */
  441. static int mp_decode_layer1(MPADecodeContext *s)
  442. {
  443. int bound, i, v, n, ch, j, mant;
  444. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  445. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  446. if (s->mode == MPA_JSTEREO)
  447. bound = (s->mode_ext + 1) * 4;
  448. else
  449. bound = SBLIMIT;
  450. /* allocation bits */
  451. for (i = 0; i < bound; i++) {
  452. for (ch = 0; ch < s->nb_channels; ch++) {
  453. allocation[ch][i] = get_bits(&s->gb, 4);
  454. }
  455. }
  456. for (i = bound; i < SBLIMIT; i++)
  457. allocation[0][i] = get_bits(&s->gb, 4);
  458. /* scale factors */
  459. for (i = 0; i < bound; i++) {
  460. for (ch = 0; ch < s->nb_channels; ch++) {
  461. if (allocation[ch][i])
  462. scale_factors[ch][i] = get_bits(&s->gb, 6);
  463. }
  464. }
  465. for (i = bound; i < SBLIMIT; i++) {
  466. if (allocation[0][i]) {
  467. scale_factors[0][i] = get_bits(&s->gb, 6);
  468. scale_factors[1][i] = get_bits(&s->gb, 6);
  469. }
  470. }
  471. /* compute samples */
  472. for (j = 0; j < 12; j++) {
  473. for (i = 0; i < bound; i++) {
  474. for (ch = 0; ch < s->nb_channels; ch++) {
  475. n = allocation[ch][i];
  476. if (n) {
  477. mant = get_bits(&s->gb, n + 1);
  478. v = l1_unscale(n, mant, scale_factors[ch][i]);
  479. } else {
  480. v = 0;
  481. }
  482. s->sb_samples[ch][j][i] = v;
  483. }
  484. }
  485. for (i = bound; i < SBLIMIT; i++) {
  486. n = allocation[0][i];
  487. if (n) {
  488. mant = get_bits(&s->gb, n + 1);
  489. v = l1_unscale(n, mant, scale_factors[0][i]);
  490. s->sb_samples[0][j][i] = v;
  491. v = l1_unscale(n, mant, scale_factors[1][i]);
  492. s->sb_samples[1][j][i] = v;
  493. } else {
  494. s->sb_samples[0][j][i] = 0;
  495. s->sb_samples[1][j][i] = 0;
  496. }
  497. }
  498. }
  499. return 12;
  500. }
  501. static int mp_decode_layer2(MPADecodeContext *s)
  502. {
  503. int sblimit; /* number of used subbands */
  504. const unsigned char *alloc_table;
  505. int table, bit_alloc_bits, i, j, ch, bound, v;
  506. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  507. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  508. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  509. int scale, qindex, bits, steps, k, l, m, b;
  510. /* select decoding table */
  511. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  512. s->sample_rate, s->lsf);
  513. sblimit = ff_mpa_sblimit_table[table];
  514. alloc_table = ff_mpa_alloc_tables[table];
  515. if (s->mode == MPA_JSTEREO)
  516. bound = (s->mode_ext + 1) * 4;
  517. else
  518. bound = sblimit;
  519. av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  520. /* sanity check */
  521. if (bound > sblimit)
  522. bound = sblimit;
  523. /* parse bit allocation */
  524. j = 0;
  525. for (i = 0; i < bound; i++) {
  526. bit_alloc_bits = alloc_table[j];
  527. for (ch = 0; ch < s->nb_channels; ch++)
  528. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  529. j += 1 << bit_alloc_bits;
  530. }
  531. for (i = bound; i < sblimit; i++) {
  532. bit_alloc_bits = alloc_table[j];
  533. v = get_bits(&s->gb, bit_alloc_bits);
  534. bit_alloc[0][i] = v;
  535. bit_alloc[1][i] = v;
  536. j += 1 << bit_alloc_bits;
  537. }
  538. /* scale codes */
  539. for (i = 0; i < sblimit; i++) {
  540. for (ch = 0; ch < s->nb_channels; ch++) {
  541. if (bit_alloc[ch][i])
  542. scale_code[ch][i] = get_bits(&s->gb, 2);
  543. }
  544. }
  545. /* scale factors */
  546. for (i = 0; i < sblimit; i++) {
  547. for (ch = 0; ch < s->nb_channels; ch++) {
  548. if (bit_alloc[ch][i]) {
  549. sf = scale_factors[ch][i];
  550. switch (scale_code[ch][i]) {
  551. default:
  552. case 0:
  553. sf[0] = get_bits(&s->gb, 6);
  554. sf[1] = get_bits(&s->gb, 6);
  555. sf[2] = get_bits(&s->gb, 6);
  556. break;
  557. case 2:
  558. sf[0] = get_bits(&s->gb, 6);
  559. sf[1] = sf[0];
  560. sf[2] = sf[0];
  561. break;
  562. case 1:
  563. sf[0] = get_bits(&s->gb, 6);
  564. sf[2] = get_bits(&s->gb, 6);
  565. sf[1] = sf[0];
  566. break;
  567. case 3:
  568. sf[0] = get_bits(&s->gb, 6);
  569. sf[2] = get_bits(&s->gb, 6);
  570. sf[1] = sf[2];
  571. break;
  572. }
  573. }
  574. }
  575. }
  576. /* samples */
  577. for (k = 0; k < 3; k++) {
  578. for (l = 0; l < 12; l += 3) {
  579. j = 0;
  580. for (i = 0; i < bound; i++) {
  581. bit_alloc_bits = alloc_table[j];
  582. for (ch = 0; ch < s->nb_channels; ch++) {
  583. b = bit_alloc[ch][i];
  584. if (b) {
  585. scale = scale_factors[ch][i][k];
  586. qindex = alloc_table[j+b];
  587. bits = ff_mpa_quant_bits[qindex];
  588. if (bits < 0) {
  589. int v2;
  590. /* 3 values at the same time */
  591. v = get_bits(&s->gb, -bits);
  592. v2 = division_tabs[qindex][v];
  593. steps = ff_mpa_quant_steps[qindex];
  594. s->sb_samples[ch][k * 12 + l + 0][i] =
  595. l2_unscale_group(steps, v2 & 15, scale);
  596. s->sb_samples[ch][k * 12 + l + 1][i] =
  597. l2_unscale_group(steps, (v2 >> 4) & 15, scale);
  598. s->sb_samples[ch][k * 12 + l + 2][i] =
  599. l2_unscale_group(steps, v2 >> 8 , scale);
  600. } else {
  601. for (m = 0; m < 3; m++) {
  602. v = get_bits(&s->gb, bits);
  603. v = l1_unscale(bits - 1, v, scale);
  604. s->sb_samples[ch][k * 12 + l + m][i] = v;
  605. }
  606. }
  607. } else {
  608. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  609. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  610. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  611. }
  612. }
  613. /* next subband in alloc table */
  614. j += 1 << bit_alloc_bits;
  615. }
  616. /* XXX: find a way to avoid this duplication of code */
  617. for (i = bound; i < sblimit; i++) {
  618. bit_alloc_bits = alloc_table[j];
  619. b = bit_alloc[0][i];
  620. if (b) {
  621. int mant, scale0, scale1;
  622. scale0 = scale_factors[0][i][k];
  623. scale1 = scale_factors[1][i][k];
  624. qindex = alloc_table[j+b];
  625. bits = ff_mpa_quant_bits[qindex];
  626. if (bits < 0) {
  627. /* 3 values at the same time */
  628. v = get_bits(&s->gb, -bits);
  629. steps = ff_mpa_quant_steps[qindex];
  630. mant = v % steps;
  631. v = v / steps;
  632. s->sb_samples[0][k * 12 + l + 0][i] =
  633. l2_unscale_group(steps, mant, scale0);
  634. s->sb_samples[1][k * 12 + l + 0][i] =
  635. l2_unscale_group(steps, mant, scale1);
  636. mant = v % steps;
  637. v = v / steps;
  638. s->sb_samples[0][k * 12 + l + 1][i] =
  639. l2_unscale_group(steps, mant, scale0);
  640. s->sb_samples[1][k * 12 + l + 1][i] =
  641. l2_unscale_group(steps, mant, scale1);
  642. s->sb_samples[0][k * 12 + l + 2][i] =
  643. l2_unscale_group(steps, v, scale0);
  644. s->sb_samples[1][k * 12 + l + 2][i] =
  645. l2_unscale_group(steps, v, scale1);
  646. } else {
  647. for (m = 0; m < 3; m++) {
  648. mant = get_bits(&s->gb, bits);
  649. s->sb_samples[0][k * 12 + l + m][i] =
  650. l1_unscale(bits - 1, mant, scale0);
  651. s->sb_samples[1][k * 12 + l + m][i] =
  652. l1_unscale(bits - 1, mant, scale1);
  653. }
  654. }
  655. } else {
  656. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  657. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  658. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  659. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  660. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  661. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  662. }
  663. /* next subband in alloc table */
  664. j += 1 << bit_alloc_bits;
  665. }
  666. /* fill remaining samples to zero */
  667. for (i = sblimit; i < SBLIMIT; i++) {
  668. for (ch = 0; ch < s->nb_channels; ch++) {
  669. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  670. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  671. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  672. }
  673. }
  674. }
  675. }
  676. return 3 * 12;
  677. }
  678. #define SPLIT(dst,sf,n) \
  679. if (n == 3) { \
  680. int m = (sf * 171) >> 9; \
  681. dst = sf - 3 * m; \
  682. sf = m; \
  683. } else if (n == 4) { \
  684. dst = sf & 3; \
  685. sf >>= 2; \
  686. } else if (n == 5) { \
  687. int m = (sf * 205) >> 10; \
  688. dst = sf - 5 * m; \
  689. sf = m; \
  690. } else if (n == 6) { \
  691. int m = (sf * 171) >> 10; \
  692. dst = sf - 6 * m; \
  693. sf = m; \
  694. } else { \
  695. dst = 0; \
  696. }
  697. static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
  698. int n3)
  699. {
  700. SPLIT(slen[3], sf, n3)
  701. SPLIT(slen[2], sf, n2)
  702. SPLIT(slen[1], sf, n1)
  703. slen[0] = sf;
  704. }
  705. static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
  706. int16_t *exponents)
  707. {
  708. const uint8_t *bstab, *pretab;
  709. int len, i, j, k, l, v0, shift, gain, gains[3];
  710. int16_t *exp_ptr;
  711. exp_ptr = exponents;
  712. gain = g->global_gain - 210;
  713. shift = g->scalefac_scale + 1;
  714. bstab = band_size_long[s->sample_rate_index];
  715. pretab = mpa_pretab[g->preflag];
  716. for (i = 0; i < g->long_end; i++) {
  717. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  718. len = bstab[i];
  719. for (j = len; j > 0; j--)
  720. *exp_ptr++ = v0;
  721. }
  722. if (g->short_start < 13) {
  723. bstab = band_size_short[s->sample_rate_index];
  724. gains[0] = gain - (g->subblock_gain[0] << 3);
  725. gains[1] = gain - (g->subblock_gain[1] << 3);
  726. gains[2] = gain - (g->subblock_gain[2] << 3);
  727. k = g->long_end;
  728. for (i = g->short_start; i < 13; i++) {
  729. len = bstab[i];
  730. for (l = 0; l < 3; l++) {
  731. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  732. for (j = len; j > 0; j--)
  733. *exp_ptr++ = v0;
  734. }
  735. }
  736. }
  737. }
  738. /* handle n = 0 too */
  739. static inline int get_bitsz(GetBitContext *s, int n)
  740. {
  741. return n ? get_bits(s, n) : 0;
  742. }
  743. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
  744. int *end_pos2)
  745. {
  746. if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
  747. s->gb = s->in_gb;
  748. s->in_gb.buffer = NULL;
  749. assert((get_bits_count(&s->gb) & 7) == 0);
  750. skip_bits_long(&s->gb, *pos - *end_pos);
  751. *end_pos2 =
  752. *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
  753. *pos = get_bits_count(&s->gb);
  754. }
  755. }
  756. /* Following is a optimized code for
  757. INTFLOAT v = *src
  758. if(get_bits1(&s->gb))
  759. v = -v;
  760. *dst = v;
  761. */
  762. #if CONFIG_FLOAT
  763. #define READ_FLIP_SIGN(dst,src) \
  764. v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
  765. AV_WN32A(dst, v);
  766. #else
  767. #define READ_FLIP_SIGN(dst,src) \
  768. v = -get_bits1(&s->gb); \
  769. *(dst) = (*(src) ^ v) - v;
  770. #endif
  771. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  772. int16_t *exponents, int end_pos2)
  773. {
  774. int s_index;
  775. int i;
  776. int last_pos, bits_left;
  777. VLC *vlc;
  778. int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
  779. /* low frequencies (called big values) */
  780. s_index = 0;
  781. for (i = 0; i < 3; i++) {
  782. int j, k, l, linbits;
  783. j = g->region_size[i];
  784. if (j == 0)
  785. continue;
  786. /* select vlc table */
  787. k = g->table_select[i];
  788. l = mpa_huff_data[k][0];
  789. linbits = mpa_huff_data[k][1];
  790. vlc = &huff_vlc[l];
  791. if (!l) {
  792. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
  793. s_index += 2 * j;
  794. continue;
  795. }
  796. /* read huffcode and compute each couple */
  797. for (; j > 0; j--) {
  798. int exponent, x, y;
  799. int v;
  800. int pos = get_bits_count(&s->gb);
  801. if (pos >= end_pos){
  802. switch_buffer(s, &pos, &end_pos, &end_pos2);
  803. if (pos >= end_pos)
  804. break;
  805. }
  806. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  807. if (!y) {
  808. g->sb_hybrid[s_index ] =
  809. g->sb_hybrid[s_index+1] = 0;
  810. s_index += 2;
  811. continue;
  812. }
  813. exponent= exponents[s_index];
  814. av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  815. i, g->region_size[i] - j, x, y, exponent);
  816. if (y & 16) {
  817. x = y >> 5;
  818. y = y & 0x0f;
  819. if (x < 15) {
  820. READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
  821. } else {
  822. x += get_bitsz(&s->gb, linbits);
  823. v = l3_unscale(x, exponent);
  824. if (get_bits1(&s->gb))
  825. v = -v;
  826. g->sb_hybrid[s_index] = v;
  827. }
  828. if (y < 15) {
  829. READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
  830. } else {
  831. y += get_bitsz(&s->gb, linbits);
  832. v = l3_unscale(y, exponent);
  833. if (get_bits1(&s->gb))
  834. v = -v;
  835. g->sb_hybrid[s_index+1] = v;
  836. }
  837. } else {
  838. x = y >> 5;
  839. y = y & 0x0f;
  840. x += y;
  841. if (x < 15) {
  842. READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
  843. } else {
  844. x += get_bitsz(&s->gb, linbits);
  845. v = l3_unscale(x, exponent);
  846. if (get_bits1(&s->gb))
  847. v = -v;
  848. g->sb_hybrid[s_index+!!y] = v;
  849. }
  850. g->sb_hybrid[s_index + !y] = 0;
  851. }
  852. s_index += 2;
  853. }
  854. }
  855. /* high frequencies */
  856. vlc = &huff_quad_vlc[g->count1table_select];
  857. last_pos = 0;
  858. while (s_index <= 572) {
  859. int pos, code;
  860. pos = get_bits_count(&s->gb);
  861. if (pos >= end_pos) {
  862. if (pos > end_pos2 && last_pos) {
  863. /* some encoders generate an incorrect size for this
  864. part. We must go back into the data */
  865. s_index -= 4;
  866. skip_bits_long(&s->gb, last_pos - pos);
  867. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  868. if(s->err_recognition & AV_EF_BITSTREAM)
  869. s_index=0;
  870. break;
  871. }
  872. switch_buffer(s, &pos, &end_pos, &end_pos2);
  873. if (pos >= end_pos)
  874. break;
  875. }
  876. last_pos = pos;
  877. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  878. av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  879. g->sb_hybrid[s_index+0] =
  880. g->sb_hybrid[s_index+1] =
  881. g->sb_hybrid[s_index+2] =
  882. g->sb_hybrid[s_index+3] = 0;
  883. while (code) {
  884. static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
  885. int v;
  886. int pos = s_index + idxtab[code];
  887. code ^= 8 >> idxtab[code];
  888. READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
  889. }
  890. s_index += 4;
  891. }
  892. /* skip extension bits */
  893. bits_left = end_pos2 - get_bits_count(&s->gb);
  894. if (bits_left < 0 && (s->err_recognition & AV_EF_BUFFER)) {
  895. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  896. s_index=0;
  897. } else if (bits_left > 0 && (s->err_recognition & AV_EF_BUFFER)) {
  898. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  899. s_index = 0;
  900. }
  901. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
  902. skip_bits_long(&s->gb, bits_left);
  903. i = get_bits_count(&s->gb);
  904. switch_buffer(s, &i, &end_pos, &end_pos2);
  905. return 0;
  906. }
  907. /* Reorder short blocks from bitstream order to interleaved order. It
  908. would be faster to do it in parsing, but the code would be far more
  909. complicated */
  910. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  911. {
  912. int i, j, len;
  913. INTFLOAT *ptr, *dst, *ptr1;
  914. INTFLOAT tmp[576];
  915. if (g->block_type != 2)
  916. return;
  917. if (g->switch_point) {
  918. if (s->sample_rate_index != 8)
  919. ptr = g->sb_hybrid + 36;
  920. else
  921. ptr = g->sb_hybrid + 72;
  922. } else {
  923. ptr = g->sb_hybrid;
  924. }
  925. for (i = g->short_start; i < 13; i++) {
  926. len = band_size_short[s->sample_rate_index][i];
  927. ptr1 = ptr;
  928. dst = tmp;
  929. for (j = len; j > 0; j--) {
  930. *dst++ = ptr[0*len];
  931. *dst++ = ptr[1*len];
  932. *dst++ = ptr[2*len];
  933. ptr++;
  934. }
  935. ptr += 2 * len;
  936. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  937. }
  938. }
  939. #define ISQRT2 FIXR(0.70710678118654752440)
  940. static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
  941. {
  942. int i, j, k, l;
  943. int sf_max, sf, len, non_zero_found;
  944. INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
  945. int non_zero_found_short[3];
  946. /* intensity stereo */
  947. if (s->mode_ext & MODE_EXT_I_STEREO) {
  948. if (!s->lsf) {
  949. is_tab = is_table;
  950. sf_max = 7;
  951. } else {
  952. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  953. sf_max = 16;
  954. }
  955. tab0 = g0->sb_hybrid + 576;
  956. tab1 = g1->sb_hybrid + 576;
  957. non_zero_found_short[0] = 0;
  958. non_zero_found_short[1] = 0;
  959. non_zero_found_short[2] = 0;
  960. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  961. for (i = 12; i >= g1->short_start; i--) {
  962. /* for last band, use previous scale factor */
  963. if (i != 11)
  964. k -= 3;
  965. len = band_size_short[s->sample_rate_index][i];
  966. for (l = 2; l >= 0; l--) {
  967. tab0 -= len;
  968. tab1 -= len;
  969. if (!non_zero_found_short[l]) {
  970. /* test if non zero band. if so, stop doing i-stereo */
  971. for (j = 0; j < len; j++) {
  972. if (tab1[j] != 0) {
  973. non_zero_found_short[l] = 1;
  974. goto found1;
  975. }
  976. }
  977. sf = g1->scale_factors[k + l];
  978. if (sf >= sf_max)
  979. goto found1;
  980. v1 = is_tab[0][sf];
  981. v2 = is_tab[1][sf];
  982. for (j = 0; j < len; j++) {
  983. tmp0 = tab0[j];
  984. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  985. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  986. }
  987. } else {
  988. found1:
  989. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  990. /* lower part of the spectrum : do ms stereo
  991. if enabled */
  992. for (j = 0; j < len; j++) {
  993. tmp0 = tab0[j];
  994. tmp1 = tab1[j];
  995. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  996. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  997. }
  998. }
  999. }
  1000. }
  1001. }
  1002. non_zero_found = non_zero_found_short[0] |
  1003. non_zero_found_short[1] |
  1004. non_zero_found_short[2];
  1005. for (i = g1->long_end - 1;i >= 0;i--) {
  1006. len = band_size_long[s->sample_rate_index][i];
  1007. tab0 -= len;
  1008. tab1 -= len;
  1009. /* test if non zero band. if so, stop doing i-stereo */
  1010. if (!non_zero_found) {
  1011. for (j = 0; j < len; j++) {
  1012. if (tab1[j] != 0) {
  1013. non_zero_found = 1;
  1014. goto found2;
  1015. }
  1016. }
  1017. /* for last band, use previous scale factor */
  1018. k = (i == 21) ? 20 : i;
  1019. sf = g1->scale_factors[k];
  1020. if (sf >= sf_max)
  1021. goto found2;
  1022. v1 = is_tab[0][sf];
  1023. v2 = is_tab[1][sf];
  1024. for (j = 0; j < len; j++) {
  1025. tmp0 = tab0[j];
  1026. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  1027. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  1028. }
  1029. } else {
  1030. found2:
  1031. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1032. /* lower part of the spectrum : do ms stereo
  1033. if enabled */
  1034. for (j = 0; j < len; j++) {
  1035. tmp0 = tab0[j];
  1036. tmp1 = tab1[j];
  1037. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1038. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1039. }
  1040. }
  1041. }
  1042. }
  1043. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1044. /* ms stereo ONLY */
  1045. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1046. global gain */
  1047. #if CONFIG_FLOAT
  1048. s->fdsp.butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
  1049. #else
  1050. tab0 = g0->sb_hybrid;
  1051. tab1 = g1->sb_hybrid;
  1052. for (i = 0; i < 576; i++) {
  1053. tmp0 = tab0[i];
  1054. tmp1 = tab1[i];
  1055. tab0[i] = tmp0 + tmp1;
  1056. tab1[i] = tmp0 - tmp1;
  1057. }
  1058. #endif
  1059. }
  1060. }
  1061. #if CONFIG_FLOAT
  1062. #define AA(j) do { \
  1063. float tmp0 = ptr[-1-j]; \
  1064. float tmp1 = ptr[ j]; \
  1065. ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
  1066. ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
  1067. } while (0)
  1068. #else
  1069. #define AA(j) do { \
  1070. int tmp0 = ptr[-1-j]; \
  1071. int tmp1 = ptr[ j]; \
  1072. int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
  1073. ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
  1074. ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
  1075. } while (0)
  1076. #endif
  1077. static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
  1078. {
  1079. INTFLOAT *ptr;
  1080. int n, i;
  1081. /* we antialias only "long" bands */
  1082. if (g->block_type == 2) {
  1083. if (!g->switch_point)
  1084. return;
  1085. /* XXX: check this for 8000Hz case */
  1086. n = 1;
  1087. } else {
  1088. n = SBLIMIT - 1;
  1089. }
  1090. ptr = g->sb_hybrid + 18;
  1091. for (i = n; i > 0; i--) {
  1092. AA(0);
  1093. AA(1);
  1094. AA(2);
  1095. AA(3);
  1096. AA(4);
  1097. AA(5);
  1098. AA(6);
  1099. AA(7);
  1100. ptr += 18;
  1101. }
  1102. }
  1103. static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
  1104. INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
  1105. {
  1106. INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
  1107. INTFLOAT out2[12];
  1108. int i, j, mdct_long_end, sblimit;
  1109. /* find last non zero block */
  1110. ptr = g->sb_hybrid + 576;
  1111. ptr1 = g->sb_hybrid + 2 * 18;
  1112. while (ptr >= ptr1) {
  1113. int32_t *p;
  1114. ptr -= 6;
  1115. p = (int32_t*)ptr;
  1116. if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
  1117. break;
  1118. }
  1119. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1120. if (g->block_type == 2) {
  1121. /* XXX: check for 8000 Hz */
  1122. if (g->switch_point)
  1123. mdct_long_end = 2;
  1124. else
  1125. mdct_long_end = 0;
  1126. } else {
  1127. mdct_long_end = sblimit;
  1128. }
  1129. s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
  1130. mdct_long_end, g->switch_point,
  1131. g->block_type);
  1132. buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
  1133. ptr = g->sb_hybrid + 18 * mdct_long_end;
  1134. for (j = mdct_long_end; j < sblimit; j++) {
  1135. /* select frequency inversion */
  1136. win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
  1137. out_ptr = sb_samples + j;
  1138. for (i = 0; i < 6; i++) {
  1139. *out_ptr = buf[4*i];
  1140. out_ptr += SBLIMIT;
  1141. }
  1142. imdct12(out2, ptr + 0);
  1143. for (i = 0; i < 6; i++) {
  1144. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
  1145. buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
  1146. out_ptr += SBLIMIT;
  1147. }
  1148. imdct12(out2, ptr + 1);
  1149. for (i = 0; i < 6; i++) {
  1150. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
  1151. buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
  1152. out_ptr += SBLIMIT;
  1153. }
  1154. imdct12(out2, ptr + 2);
  1155. for (i = 0; i < 6; i++) {
  1156. buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
  1157. buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
  1158. buf[4*(i + 6*2)] = 0;
  1159. }
  1160. ptr += 18;
  1161. buf += (j&3) != 3 ? 1 : (4*18-3);
  1162. }
  1163. /* zero bands */
  1164. for (j = sblimit; j < SBLIMIT; j++) {
  1165. /* overlap */
  1166. out_ptr = sb_samples + j;
  1167. for (i = 0; i < 18; i++) {
  1168. *out_ptr = buf[4*i];
  1169. buf[4*i] = 0;
  1170. out_ptr += SBLIMIT;
  1171. }
  1172. buf += (j&3) != 3 ? 1 : (4*18-3);
  1173. }
  1174. }
  1175. /* main layer3 decoding function */
  1176. static int mp_decode_layer3(MPADecodeContext *s)
  1177. {
  1178. int nb_granules, main_data_begin;
  1179. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1180. GranuleDef *g;
  1181. int16_t exponents[576]; //FIXME try INTFLOAT
  1182. /* read side info */
  1183. if (s->lsf) {
  1184. main_data_begin = get_bits(&s->gb, 8);
  1185. skip_bits(&s->gb, s->nb_channels);
  1186. nb_granules = 1;
  1187. } else {
  1188. main_data_begin = get_bits(&s->gb, 9);
  1189. if (s->nb_channels == 2)
  1190. skip_bits(&s->gb, 3);
  1191. else
  1192. skip_bits(&s->gb, 5);
  1193. nb_granules = 2;
  1194. for (ch = 0; ch < s->nb_channels; ch++) {
  1195. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1196. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1197. }
  1198. }
  1199. for (gr = 0; gr < nb_granules; gr++) {
  1200. for (ch = 0; ch < s->nb_channels; ch++) {
  1201. av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1202. g = &s->granules[ch][gr];
  1203. g->part2_3_length = get_bits(&s->gb, 12);
  1204. g->big_values = get_bits(&s->gb, 9);
  1205. if (g->big_values > 288) {
  1206. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1207. return AVERROR_INVALIDDATA;
  1208. }
  1209. g->global_gain = get_bits(&s->gb, 8);
  1210. /* if MS stereo only is selected, we precompute the
  1211. 1/sqrt(2) renormalization factor */
  1212. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1213. MODE_EXT_MS_STEREO)
  1214. g->global_gain -= 2;
  1215. if (s->lsf)
  1216. g->scalefac_compress = get_bits(&s->gb, 9);
  1217. else
  1218. g->scalefac_compress = get_bits(&s->gb, 4);
  1219. blocksplit_flag = get_bits1(&s->gb);
  1220. if (blocksplit_flag) {
  1221. g->block_type = get_bits(&s->gb, 2);
  1222. if (g->block_type == 0) {
  1223. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1224. return AVERROR_INVALIDDATA;
  1225. }
  1226. g->switch_point = get_bits1(&s->gb);
  1227. for (i = 0; i < 2; i++)
  1228. g->table_select[i] = get_bits(&s->gb, 5);
  1229. for (i = 0; i < 3; i++)
  1230. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1231. init_short_region(s, g);
  1232. } else {
  1233. int region_address1, region_address2;
  1234. g->block_type = 0;
  1235. g->switch_point = 0;
  1236. for (i = 0; i < 3; i++)
  1237. g->table_select[i] = get_bits(&s->gb, 5);
  1238. /* compute huffman coded region sizes */
  1239. region_address1 = get_bits(&s->gb, 4);
  1240. region_address2 = get_bits(&s->gb, 3);
  1241. av_dlog(s->avctx, "region1=%d region2=%d\n",
  1242. region_address1, region_address2);
  1243. init_long_region(s, g, region_address1, region_address2);
  1244. }
  1245. region_offset2size(g);
  1246. compute_band_indexes(s, g);
  1247. g->preflag = 0;
  1248. if (!s->lsf)
  1249. g->preflag = get_bits1(&s->gb);
  1250. g->scalefac_scale = get_bits1(&s->gb);
  1251. g->count1table_select = get_bits1(&s->gb);
  1252. av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
  1253. g->block_type, g->switch_point);
  1254. }
  1255. }
  1256. if (!s->adu_mode) {
  1257. int skip;
  1258. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1259. int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0,
  1260. FFMAX(0, LAST_BUF_SIZE - s->last_buf_size));
  1261. assert((get_bits_count(&s->gb) & 7) == 0);
  1262. /* now we get bits from the main_data_begin offset */
  1263. av_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
  1264. main_data_begin, s->last_buf_size);
  1265. memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
  1266. s->in_gb = s->gb;
  1267. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1268. #if !UNCHECKED_BITSTREAM_READER
  1269. s->gb.size_in_bits_plus8 += extrasize * 8;
  1270. #endif
  1271. s->last_buf_size <<= 3;
  1272. for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
  1273. for (ch = 0; ch < s->nb_channels; ch++) {
  1274. g = &s->granules[ch][gr];
  1275. s->last_buf_size += g->part2_3_length;
  1276. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1277. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1278. }
  1279. }
  1280. skip = s->last_buf_size - 8 * main_data_begin;
  1281. if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
  1282. skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
  1283. s->gb = s->in_gb;
  1284. s->in_gb.buffer = NULL;
  1285. } else {
  1286. skip_bits_long(&s->gb, skip);
  1287. }
  1288. } else {
  1289. gr = 0;
  1290. }
  1291. for (; gr < nb_granules; gr++) {
  1292. for (ch = 0; ch < s->nb_channels; ch++) {
  1293. g = &s->granules[ch][gr];
  1294. bits_pos = get_bits_count(&s->gb);
  1295. if (!s->lsf) {
  1296. uint8_t *sc;
  1297. int slen, slen1, slen2;
  1298. /* MPEG1 scale factors */
  1299. slen1 = slen_table[0][g->scalefac_compress];
  1300. slen2 = slen_table[1][g->scalefac_compress];
  1301. av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1302. if (g->block_type == 2) {
  1303. n = g->switch_point ? 17 : 18;
  1304. j = 0;
  1305. if (slen1) {
  1306. for (i = 0; i < n; i++)
  1307. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1308. } else {
  1309. for (i = 0; i < n; i++)
  1310. g->scale_factors[j++] = 0;
  1311. }
  1312. if (slen2) {
  1313. for (i = 0; i < 18; i++)
  1314. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1315. for (i = 0; i < 3; i++)
  1316. g->scale_factors[j++] = 0;
  1317. } else {
  1318. for (i = 0; i < 21; i++)
  1319. g->scale_factors[j++] = 0;
  1320. }
  1321. } else {
  1322. sc = s->granules[ch][0].scale_factors;
  1323. j = 0;
  1324. for (k = 0; k < 4; k++) {
  1325. n = k == 0 ? 6 : 5;
  1326. if ((g->scfsi & (0x8 >> k)) == 0) {
  1327. slen = (k < 2) ? slen1 : slen2;
  1328. if (slen) {
  1329. for (i = 0; i < n; i++)
  1330. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1331. } else {
  1332. for (i = 0; i < n; i++)
  1333. g->scale_factors[j++] = 0;
  1334. }
  1335. } else {
  1336. /* simply copy from last granule */
  1337. for (i = 0; i < n; i++) {
  1338. g->scale_factors[j] = sc[j];
  1339. j++;
  1340. }
  1341. }
  1342. }
  1343. g->scale_factors[j++] = 0;
  1344. }
  1345. } else {
  1346. int tindex, tindex2, slen[4], sl, sf;
  1347. /* LSF scale factors */
  1348. if (g->block_type == 2)
  1349. tindex = g->switch_point ? 2 : 1;
  1350. else
  1351. tindex = 0;
  1352. sf = g->scalefac_compress;
  1353. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1354. /* intensity stereo case */
  1355. sf >>= 1;
  1356. if (sf < 180) {
  1357. lsf_sf_expand(slen, sf, 6, 6, 0);
  1358. tindex2 = 3;
  1359. } else if (sf < 244) {
  1360. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1361. tindex2 = 4;
  1362. } else {
  1363. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1364. tindex2 = 5;
  1365. }
  1366. } else {
  1367. /* normal case */
  1368. if (sf < 400) {
  1369. lsf_sf_expand(slen, sf, 5, 4, 4);
  1370. tindex2 = 0;
  1371. } else if (sf < 500) {
  1372. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1373. tindex2 = 1;
  1374. } else {
  1375. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1376. tindex2 = 2;
  1377. g->preflag = 1;
  1378. }
  1379. }
  1380. j = 0;
  1381. for (k = 0; k < 4; k++) {
  1382. n = lsf_nsf_table[tindex2][tindex][k];
  1383. sl = slen[k];
  1384. if (sl) {
  1385. for (i = 0; i < n; i++)
  1386. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1387. } else {
  1388. for (i = 0; i < n; i++)
  1389. g->scale_factors[j++] = 0;
  1390. }
  1391. }
  1392. /* XXX: should compute exact size */
  1393. for (; j < 40; j++)
  1394. g->scale_factors[j] = 0;
  1395. }
  1396. exponents_from_scale_factors(s, g, exponents);
  1397. /* read Huffman coded residue */
  1398. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1399. } /* ch */
  1400. if (s->mode == MPA_JSTEREO)
  1401. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1402. for (ch = 0; ch < s->nb_channels; ch++) {
  1403. g = &s->granules[ch][gr];
  1404. reorder_block(s, g);
  1405. compute_antialias(s, g);
  1406. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1407. }
  1408. } /* gr */
  1409. if (get_bits_count(&s->gb) < 0)
  1410. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1411. return nb_granules * 18;
  1412. }
  1413. static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
  1414. const uint8_t *buf, int buf_size)
  1415. {
  1416. int i, nb_frames, ch, ret;
  1417. OUT_INT *samples_ptr;
  1418. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
  1419. /* skip error protection field */
  1420. if (s->error_protection)
  1421. skip_bits(&s->gb, 16);
  1422. switch(s->layer) {
  1423. case 1:
  1424. s->avctx->frame_size = 384;
  1425. nb_frames = mp_decode_layer1(s);
  1426. break;
  1427. case 2:
  1428. s->avctx->frame_size = 1152;
  1429. nb_frames = mp_decode_layer2(s);
  1430. break;
  1431. case 3:
  1432. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1433. default:
  1434. nb_frames = mp_decode_layer3(s);
  1435. if (nb_frames < 0)
  1436. return nb_frames;
  1437. s->last_buf_size=0;
  1438. if (s->in_gb.buffer) {
  1439. align_get_bits(&s->gb);
  1440. i = get_bits_left(&s->gb)>>3;
  1441. if (i >= 0 && i <= BACKSTEP_SIZE) {
  1442. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1443. s->last_buf_size=i;
  1444. } else
  1445. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1446. s->gb = s->in_gb;
  1447. s->in_gb.buffer = NULL;
  1448. }
  1449. align_get_bits(&s->gb);
  1450. assert((get_bits_count(&s->gb) & 7) == 0);
  1451. i = get_bits_left(&s->gb) >> 3;
  1452. if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
  1453. if (i < 0)
  1454. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1455. i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1456. }
  1457. assert(i <= buf_size - HEADER_SIZE && i >= 0);
  1458. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1459. s->last_buf_size += i;
  1460. }
  1461. /* get output buffer */
  1462. if (!samples) {
  1463. av_assert0(s->frame != NULL);
  1464. s->frame->nb_samples = s->avctx->frame_size;
  1465. if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0) {
  1466. av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1467. return ret;
  1468. }
  1469. samples = (OUT_INT **)s->frame->extended_data;
  1470. }
  1471. /* apply the synthesis filter */
  1472. for (ch = 0; ch < s->nb_channels; ch++) {
  1473. int sample_stride;
  1474. if (s->avctx->sample_fmt == OUT_FMT_P) {
  1475. samples_ptr = samples[ch];
  1476. sample_stride = 1;
  1477. } else {
  1478. samples_ptr = samples[0] + ch;
  1479. sample_stride = s->nb_channels;
  1480. }
  1481. for (i = 0; i < nb_frames; i++) {
  1482. RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
  1483. &(s->synth_buf_offset[ch]),
  1484. RENAME(ff_mpa_synth_window),
  1485. &s->dither_state, samples_ptr,
  1486. sample_stride, s->sb_samples[ch][i]);
  1487. samples_ptr += 32 * sample_stride;
  1488. }
  1489. }
  1490. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1491. }
  1492. static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
  1493. AVPacket *avpkt)
  1494. {
  1495. const uint8_t *buf = avpkt->data;
  1496. int buf_size = avpkt->size;
  1497. MPADecodeContext *s = avctx->priv_data;
  1498. uint32_t header;
  1499. int ret;
  1500. if (buf_size < HEADER_SIZE)
  1501. return AVERROR_INVALIDDATA;
  1502. header = AV_RB32(buf);
  1503. if (ff_mpa_check_header(header) < 0) {
  1504. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  1505. return AVERROR_INVALIDDATA;
  1506. }
  1507. if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  1508. /* free format: prepare to compute frame size */
  1509. s->frame_size = -1;
  1510. return AVERROR_INVALIDDATA;
  1511. }
  1512. /* update codec info */
  1513. avctx->channels = s->nb_channels;
  1514. avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
  1515. if (!avctx->bit_rate)
  1516. avctx->bit_rate = s->bit_rate;
  1517. if (s->frame_size <= 0 || s->frame_size > buf_size) {
  1518. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  1519. return AVERROR_INVALIDDATA;
  1520. } else if (s->frame_size < buf_size) {
  1521. buf_size= s->frame_size;
  1522. }
  1523. s->frame = data;
  1524. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1525. if (ret >= 0) {
  1526. s->frame->nb_samples = avctx->frame_size;
  1527. *got_frame_ptr = 1;
  1528. avctx->sample_rate = s->sample_rate;
  1529. //FIXME maybe move the other codec info stuff from above here too
  1530. } else {
  1531. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1532. /* Only return an error if the bad frame makes up the whole packet or
  1533. * the error is related to buffer management.
  1534. * If there is more data in the packet, just consume the bad frame
  1535. * instead of returning an error, which would discard the whole
  1536. * packet. */
  1537. *got_frame_ptr = 0;
  1538. if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
  1539. return ret;
  1540. }
  1541. s->frame_size = 0;
  1542. return buf_size;
  1543. }
  1544. static void mp_flush(MPADecodeContext *ctx)
  1545. {
  1546. memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
  1547. ctx->last_buf_size = 0;
  1548. }
  1549. static void flush(AVCodecContext *avctx)
  1550. {
  1551. mp_flush(avctx->priv_data);
  1552. }
  1553. #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
  1554. static int decode_frame_adu(AVCodecContext *avctx, void *data,
  1555. int *got_frame_ptr, AVPacket *avpkt)
  1556. {
  1557. const uint8_t *buf = avpkt->data;
  1558. int buf_size = avpkt->size;
  1559. MPADecodeContext *s = avctx->priv_data;
  1560. uint32_t header;
  1561. int len, ret;
  1562. len = buf_size;
  1563. // Discard too short frames
  1564. if (buf_size < HEADER_SIZE) {
  1565. av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
  1566. return AVERROR_INVALIDDATA;
  1567. }
  1568. if (len > MPA_MAX_CODED_FRAME_SIZE)
  1569. len = MPA_MAX_CODED_FRAME_SIZE;
  1570. // Get header and restore sync word
  1571. header = AV_RB32(buf) | 0xffe00000;
  1572. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  1573. av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
  1574. return AVERROR_INVALIDDATA;
  1575. }
  1576. avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  1577. /* update codec info */
  1578. avctx->sample_rate = s->sample_rate;
  1579. avctx->channels = s->nb_channels;
  1580. if (!avctx->bit_rate)
  1581. avctx->bit_rate = s->bit_rate;
  1582. s->frame_size = len;
  1583. s->frame = data;
  1584. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1585. if (ret < 0) {
  1586. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1587. return ret;
  1588. }
  1589. *got_frame_ptr = 1;
  1590. return buf_size;
  1591. }
  1592. #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
  1593. #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
  1594. /**
  1595. * Context for MP3On4 decoder
  1596. */
  1597. typedef struct MP3On4DecodeContext {
  1598. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  1599. int syncword; ///< syncword patch
  1600. const uint8_t *coff; ///< channel offsets in output buffer
  1601. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  1602. } MP3On4DecodeContext;
  1603. #include "mpeg4audio.h"
  1604. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  1605. /* number of mp3 decoder instances */
  1606. static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
  1607. /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
  1608. static const uint8_t chan_offset[8][5] = {
  1609. { 0 },
  1610. { 0 }, // C
  1611. { 0 }, // FLR
  1612. { 2, 0 }, // C FLR
  1613. { 2, 0, 3 }, // C FLR BS
  1614. { 2, 0, 3 }, // C FLR BLRS
  1615. { 2, 0, 4, 3 }, // C FLR BLRS LFE
  1616. { 2, 0, 6, 4, 3 }, // C FLR BLRS BLR LFE
  1617. };
  1618. /* mp3on4 channel layouts */
  1619. static const int16_t chan_layout[8] = {
  1620. 0,
  1621. AV_CH_LAYOUT_MONO,
  1622. AV_CH_LAYOUT_STEREO,
  1623. AV_CH_LAYOUT_SURROUND,
  1624. AV_CH_LAYOUT_4POINT0,
  1625. AV_CH_LAYOUT_5POINT0,
  1626. AV_CH_LAYOUT_5POINT1,
  1627. AV_CH_LAYOUT_7POINT1
  1628. };
  1629. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  1630. {
  1631. MP3On4DecodeContext *s = avctx->priv_data;
  1632. int i;
  1633. for (i = 0; i < s->frames; i++)
  1634. av_free(s->mp3decctx[i]);
  1635. return 0;
  1636. }
  1637. static av_cold int decode_init_mp3on4(AVCodecContext * avctx)
  1638. {
  1639. MP3On4DecodeContext *s = avctx->priv_data;
  1640. MPEG4AudioConfig cfg;
  1641. int i;
  1642. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  1643. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  1644. return AVERROR_INVALIDDATA;
  1645. }
  1646. avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
  1647. avctx->extradata_size * 8, 1);
  1648. if (!cfg.chan_config || cfg.chan_config > 7) {
  1649. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  1650. return AVERROR_INVALIDDATA;
  1651. }
  1652. s->frames = mp3Frames[cfg.chan_config];
  1653. s->coff = chan_offset[cfg.chan_config];
  1654. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  1655. avctx->channel_layout = chan_layout[cfg.chan_config];
  1656. if (cfg.sample_rate < 16000)
  1657. s->syncword = 0xffe00000;
  1658. else
  1659. s->syncword = 0xfff00000;
  1660. /* Init the first mp3 decoder in standard way, so that all tables get builded
  1661. * We replace avctx->priv_data with the context of the first decoder so that
  1662. * decode_init() does not have to be changed.
  1663. * Other decoders will be initialized here copying data from the first context
  1664. */
  1665. // Allocate zeroed memory for the first decoder context
  1666. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  1667. if (!s->mp3decctx[0])
  1668. goto alloc_fail;
  1669. // Put decoder context in place to make init_decode() happy
  1670. avctx->priv_data = s->mp3decctx[0];
  1671. decode_init(avctx);
  1672. // Restore mp3on4 context pointer
  1673. avctx->priv_data = s;
  1674. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  1675. /* Create a separate codec/context for each frame (first is already ok).
  1676. * Each frame is 1 or 2 channels - up to 5 frames allowed
  1677. */
  1678. for (i = 1; i < s->frames; i++) {
  1679. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  1680. if (!s->mp3decctx[i])
  1681. goto alloc_fail;
  1682. s->mp3decctx[i]->adu_mode = 1;
  1683. s->mp3decctx[i]->avctx = avctx;
  1684. s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
  1685. }
  1686. return 0;
  1687. alloc_fail:
  1688. decode_close_mp3on4(avctx);
  1689. return AVERROR(ENOMEM);
  1690. }
  1691. static void flush_mp3on4(AVCodecContext *avctx)
  1692. {
  1693. int i;
  1694. MP3On4DecodeContext *s = avctx->priv_data;
  1695. for (i = 0; i < s->frames; i++)
  1696. mp_flush(s->mp3decctx[i]);
  1697. }
  1698. static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
  1699. int *got_frame_ptr, AVPacket *avpkt)
  1700. {
  1701. AVFrame *frame = data;
  1702. const uint8_t *buf = avpkt->data;
  1703. int buf_size = avpkt->size;
  1704. MP3On4DecodeContext *s = avctx->priv_data;
  1705. MPADecodeContext *m;
  1706. int fsize, len = buf_size, out_size = 0;
  1707. uint32_t header;
  1708. OUT_INT **out_samples;
  1709. OUT_INT *outptr[2];
  1710. int fr, ch, ret;
  1711. /* get output buffer */
  1712. frame->nb_samples = MPA_FRAME_SIZE;
  1713. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1714. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1715. return ret;
  1716. }
  1717. out_samples = (OUT_INT **)frame->extended_data;
  1718. // Discard too short frames
  1719. if (buf_size < HEADER_SIZE)
  1720. return AVERROR_INVALIDDATA;
  1721. avctx->bit_rate = 0;
  1722. ch = 0;
  1723. for (fr = 0; fr < s->frames; fr++) {
  1724. fsize = AV_RB16(buf) >> 4;
  1725. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  1726. m = s->mp3decctx[fr];
  1727. assert(m != NULL);
  1728. if (fsize < HEADER_SIZE) {
  1729. av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
  1730. return AVERROR_INVALIDDATA;
  1731. }
  1732. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  1733. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  1734. break;
  1735. avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  1736. if (ch + m->nb_channels > avctx->channels ||
  1737. s->coff[fr] + m->nb_channels > avctx->channels) {
  1738. av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
  1739. "channel count\n");
  1740. return AVERROR_INVALIDDATA;
  1741. }
  1742. ch += m->nb_channels;
  1743. outptr[0] = out_samples[s->coff[fr]];
  1744. if (m->nb_channels > 1)
  1745. outptr[1] = out_samples[s->coff[fr] + 1];
  1746. if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0)
  1747. return ret;
  1748. out_size += ret;
  1749. buf += fsize;
  1750. len -= fsize;
  1751. avctx->bit_rate += m->bit_rate;
  1752. }
  1753. /* update codec info */
  1754. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  1755. frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
  1756. *got_frame_ptr = 1;
  1757. return buf_size;
  1758. }
  1759. #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
  1760. #if !CONFIG_FLOAT
  1761. #if CONFIG_MP1_DECODER
  1762. AVCodec ff_mp1_decoder = {
  1763. .name = "mp1",
  1764. .long_name = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  1765. .type = AVMEDIA_TYPE_AUDIO,
  1766. .id = AV_CODEC_ID_MP1,
  1767. .priv_data_size = sizeof(MPADecodeContext),
  1768. .init = decode_init,
  1769. .decode = decode_frame,
  1770. .capabilities = CODEC_CAP_DR1,
  1771. .flush = flush,
  1772. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1773. AV_SAMPLE_FMT_S16,
  1774. AV_SAMPLE_FMT_NONE },
  1775. };
  1776. #endif
  1777. #if CONFIG_MP2_DECODER
  1778. AVCodec ff_mp2_decoder = {
  1779. .name = "mp2",
  1780. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  1781. .type = AVMEDIA_TYPE_AUDIO,
  1782. .id = AV_CODEC_ID_MP2,
  1783. .priv_data_size = sizeof(MPADecodeContext),
  1784. .init = decode_init,
  1785. .decode = decode_frame,
  1786. .capabilities = CODEC_CAP_DR1,
  1787. .flush = flush,
  1788. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1789. AV_SAMPLE_FMT_S16,
  1790. AV_SAMPLE_FMT_NONE },
  1791. };
  1792. #endif
  1793. #if CONFIG_MP3_DECODER
  1794. AVCodec ff_mp3_decoder = {
  1795. .name = "mp3",
  1796. .long_name = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  1797. .type = AVMEDIA_TYPE_AUDIO,
  1798. .id = AV_CODEC_ID_MP3,
  1799. .priv_data_size = sizeof(MPADecodeContext),
  1800. .init = decode_init,
  1801. .decode = decode_frame,
  1802. .capabilities = CODEC_CAP_DR1,
  1803. .flush = flush,
  1804. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1805. AV_SAMPLE_FMT_S16,
  1806. AV_SAMPLE_FMT_NONE },
  1807. };
  1808. #endif
  1809. #if CONFIG_MP3ADU_DECODER
  1810. AVCodec ff_mp3adu_decoder = {
  1811. .name = "mp3adu",
  1812. .long_name = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  1813. .type = AVMEDIA_TYPE_AUDIO,
  1814. .id = AV_CODEC_ID_MP3ADU,
  1815. .priv_data_size = sizeof(MPADecodeContext),
  1816. .init = decode_init,
  1817. .decode = decode_frame_adu,
  1818. .capabilities = CODEC_CAP_DR1,
  1819. .flush = flush,
  1820. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1821. AV_SAMPLE_FMT_S16,
  1822. AV_SAMPLE_FMT_NONE },
  1823. };
  1824. #endif
  1825. #if CONFIG_MP3ON4_DECODER
  1826. AVCodec ff_mp3on4_decoder = {
  1827. .name = "mp3on4",
  1828. .long_name = NULL_IF_CONFIG_SMALL("MP3onMP4"),
  1829. .type = AVMEDIA_TYPE_AUDIO,
  1830. .id = AV_CODEC_ID_MP3ON4,
  1831. .priv_data_size = sizeof(MP3On4DecodeContext),
  1832. .init = decode_init_mp3on4,
  1833. .close = decode_close_mp3on4,
  1834. .decode = decode_frame_mp3on4,
  1835. .capabilities = CODEC_CAP_DR1,
  1836. .flush = flush_mp3on4,
  1837. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P,
  1838. AV_SAMPLE_FMT_NONE },
  1839. };
  1840. #endif
  1841. #endif