You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1036 lines
36KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/internal.h"
  28. #include "libavutil/opt.h"
  29. #include "avcodec.h"
  30. #include "dsputil.h"
  31. #include "internal.h"
  32. #include "mpegvideo.h"
  33. #include "dnxhdenc.h"
  34. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  35. #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
  36. static const AVOption options[]={
  37. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, VE},
  38. {NULL}
  39. };
  40. static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
  41. #define LAMBDA_FRAC_BITS 10
  42. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, int line_size)
  43. {
  44. int i;
  45. for (i = 0; i < 4; i++) {
  46. block[0] = pixels[0]; block[1] = pixels[1];
  47. block[2] = pixels[2]; block[3] = pixels[3];
  48. block[4] = pixels[4]; block[5] = pixels[5];
  49. block[6] = pixels[6]; block[7] = pixels[7];
  50. pixels += line_size;
  51. block += 8;
  52. }
  53. memcpy(block, block - 8, sizeof(*block) * 8);
  54. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  55. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  56. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  57. }
  58. static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, int line_size)
  59. {
  60. int i;
  61. block += 32;
  62. for (i = 0; i < 4; i++) {
  63. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  64. memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  65. }
  66. }
  67. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  68. int n, int qscale, int *overflow)
  69. {
  70. const uint8_t *scantable= ctx->intra_scantable.scantable;
  71. const int *qmat = ctx->q_intra_matrix[qscale];
  72. int last_non_zero = 0;
  73. int i;
  74. ctx->dsp.fdct(block);
  75. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  76. block[0] = (block[0] + 2) >> 2;
  77. for (i = 1; i < 64; ++i) {
  78. int j = scantable[i];
  79. int sign = block[j] >> 31;
  80. int level = (block[j] ^ sign) - sign;
  81. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  82. block[j] = (level ^ sign) - sign;
  83. if (level)
  84. last_non_zero = i;
  85. }
  86. return last_non_zero;
  87. }
  88. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  89. {
  90. int i, j, level, run;
  91. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  92. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  93. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
  94. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
  95. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
  96. ctx->vlc_codes += max_level*2;
  97. ctx->vlc_bits += max_level*2;
  98. for (level = -max_level; level < max_level; level++) {
  99. for (run = 0; run < 2; run++) {
  100. int index = (level<<1)|run;
  101. int sign, offset = 0, alevel = level;
  102. MASK_ABS(sign, alevel);
  103. if (alevel > 64) {
  104. offset = (alevel-1)>>6;
  105. alevel -= offset<<6;
  106. }
  107. for (j = 0; j < 257; j++) {
  108. if (ctx->cid_table->ac_level[j] == alevel &&
  109. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  110. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  111. assert(!ctx->vlc_codes[index]);
  112. if (alevel) {
  113. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  114. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  115. } else {
  116. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  117. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  118. }
  119. break;
  120. }
  121. }
  122. assert(!alevel || j < 257);
  123. if (offset) {
  124. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  125. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  126. }
  127. }
  128. }
  129. for (i = 0; i < 62; i++) {
  130. int run = ctx->cid_table->run[i];
  131. assert(run < 63);
  132. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  133. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  134. }
  135. return 0;
  136. fail:
  137. return -1;
  138. }
  139. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  140. {
  141. // init first elem to 1 to avoid div by 0 in convert_matrix
  142. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  143. int qscale, i;
  144. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  145. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  146. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  147. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  148. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  149. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  150. if (ctx->cid_table->bit_depth == 8) {
  151. for (i = 1; i < 64; i++) {
  152. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  153. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  154. }
  155. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  156. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  157. for (i = 1; i < 64; i++) {
  158. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  159. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  160. }
  161. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  162. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  163. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  164. for (i = 0; i < 64; i++) {
  165. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  166. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  167. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  168. }
  169. }
  170. } else {
  171. // 10-bit
  172. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  173. for (i = 1; i < 64; i++) {
  174. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  175. // The quantization formula from the VC-3 standard is:
  176. // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
  177. // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  178. // The s factor compensates scaling of DCT coefficients done by the DCT routines,
  179. // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
  180. // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  181. // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
  182. // For 10-bit samples, p / s == 2
  183. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
  184. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
  185. }
  186. }
  187. }
  188. return 0;
  189. fail:
  190. return -1;
  191. }
  192. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  193. {
  194. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  195. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  196. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  197. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  198. ctx->qscale = 1;
  199. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  200. return 0;
  201. fail:
  202. return -1;
  203. }
  204. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  205. {
  206. DNXHDEncContext *ctx = avctx->priv_data;
  207. int i, index, bit_depth;
  208. switch (avctx->pix_fmt) {
  209. case AV_PIX_FMT_YUV422P:
  210. bit_depth = 8;
  211. break;
  212. case AV_PIX_FMT_YUV422P10:
  213. bit_depth = 10;
  214. break;
  215. default:
  216. av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
  217. return -1;
  218. }
  219. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  220. if (!ctx->cid) {
  221. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  222. return -1;
  223. }
  224. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  225. index = ff_dnxhd_get_cid_table(ctx->cid);
  226. ctx->cid_table = &ff_dnxhd_cid_table[index];
  227. ctx->m.avctx = avctx;
  228. ctx->m.mb_intra = 1;
  229. ctx->m.h263_aic = 1;
  230. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  231. ff_dsputil_init(&ctx->m.dsp, avctx);
  232. ff_dct_common_init(&ctx->m);
  233. if (!ctx->m.dct_quantize)
  234. ctx->m.dct_quantize = ff_dct_quantize_c;
  235. if (ctx->cid_table->bit_depth == 10) {
  236. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  237. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  238. ctx->block_width_l2 = 4;
  239. } else {
  240. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  241. ctx->block_width_l2 = 3;
  242. }
  243. if (ARCH_X86)
  244. ff_dnxhdenc_init_x86(ctx);
  245. ctx->m.mb_height = (avctx->height + 15) / 16;
  246. ctx->m.mb_width = (avctx->width + 15) / 16;
  247. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  248. ctx->interlaced = 1;
  249. ctx->m.mb_height /= 2;
  250. }
  251. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  252. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  253. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  254. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  255. return -1;
  256. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  257. if (ctx->nitris_compat)
  258. ctx->min_padding = 1600;
  259. if (dnxhd_init_vlc(ctx) < 0)
  260. return -1;
  261. if (dnxhd_init_rc(ctx) < 0)
  262. return -1;
  263. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  264. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  265. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  266. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
  267. ctx->frame.key_frame = 1;
  268. ctx->frame.pict_type = AV_PICTURE_TYPE_I;
  269. ctx->m.avctx->coded_frame = &ctx->frame;
  270. if (avctx->thread_count > MAX_THREADS) {
  271. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  272. return -1;
  273. }
  274. ctx->thread[0] = ctx;
  275. for (i = 1; i < avctx->thread_count; i++) {
  276. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  277. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  278. }
  279. return 0;
  280. fail: //for FF_ALLOCZ_OR_GOTO
  281. return -1;
  282. }
  283. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  284. {
  285. DNXHDEncContext *ctx = avctx->priv_data;
  286. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  287. memset(buf, 0, 640);
  288. memcpy(buf, header_prefix, 5);
  289. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  290. buf[6] = 0x80; // crc flag off
  291. buf[7] = 0xa0; // reserved
  292. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  293. AV_WB16(buf + 0x1a, avctx->width); // SPL
  294. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  295. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  296. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  297. AV_WB32(buf + 0x28, ctx->cid); // CID
  298. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  299. buf[0x5f] = 0x01; // UDL
  300. buf[0x167] = 0x02; // reserved
  301. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  302. buf[0x16d] = ctx->m.mb_height; // Ns
  303. buf[0x16f] = 0x10; // reserved
  304. ctx->msip = buf + 0x170;
  305. return 0;
  306. }
  307. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  308. {
  309. int nbits;
  310. if (diff < 0) {
  311. nbits = av_log2_16bit(-2*diff);
  312. diff--;
  313. } else {
  314. nbits = av_log2_16bit(2*diff);
  315. }
  316. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  317. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  318. }
  319. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n)
  320. {
  321. int last_non_zero = 0;
  322. int slevel, i, j;
  323. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  324. ctx->m.last_dc[n] = block[0];
  325. for (i = 1; i <= last_index; i++) {
  326. j = ctx->m.intra_scantable.permutated[i];
  327. slevel = block[j];
  328. if (slevel) {
  329. int run_level = i - last_non_zero - 1;
  330. int rlevel = (slevel<<1)|!!run_level;
  331. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  332. if (run_level)
  333. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  334. last_non_zero = i;
  335. }
  336. }
  337. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  338. }
  339. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index)
  340. {
  341. const uint8_t *weight_matrix;
  342. int level;
  343. int i;
  344. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  345. for (i = 1; i <= last_index; i++) {
  346. int j = ctx->m.intra_scantable.permutated[i];
  347. level = block[j];
  348. if (level) {
  349. if (level < 0) {
  350. level = (1-2*level) * qscale * weight_matrix[i];
  351. if (ctx->cid_table->bit_depth == 10) {
  352. if (weight_matrix[i] != 8)
  353. level += 8;
  354. level >>= 4;
  355. } else {
  356. if (weight_matrix[i] != 32)
  357. level += 32;
  358. level >>= 6;
  359. }
  360. level = -level;
  361. } else {
  362. level = (2*level+1) * qscale * weight_matrix[i];
  363. if (ctx->cid_table->bit_depth == 10) {
  364. if (weight_matrix[i] != 8)
  365. level += 8;
  366. level >>= 4;
  367. } else {
  368. if (weight_matrix[i] != 32)
  369. level += 32;
  370. level >>= 6;
  371. }
  372. }
  373. block[j] = level;
  374. }
  375. }
  376. }
  377. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  378. {
  379. int score = 0;
  380. int i;
  381. for (i = 0; i < 64; i++)
  382. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  383. return score;
  384. }
  385. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  386. {
  387. int last_non_zero = 0;
  388. int bits = 0;
  389. int i, j, level;
  390. for (i = 1; i <= last_index; i++) {
  391. j = ctx->m.intra_scantable.permutated[i];
  392. level = block[j];
  393. if (level) {
  394. int run_level = i - last_non_zero - 1;
  395. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  396. last_non_zero = i;
  397. }
  398. }
  399. return bits;
  400. }
  401. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  402. {
  403. const int bs = ctx->block_width_l2;
  404. const int bw = 1 << bs;
  405. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
  406. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  407. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  408. DSPContext *dsp = &ctx->m.dsp;
  409. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  410. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  411. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  412. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  413. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  414. if (ctx->interlaced) {
  415. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  416. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  417. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  418. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  419. } else {
  420. dsp->clear_block(ctx->blocks[4]);
  421. dsp->clear_block(ctx->blocks[5]);
  422. dsp->clear_block(ctx->blocks[6]);
  423. dsp->clear_block(ctx->blocks[7]);
  424. }
  425. } else {
  426. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  427. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  428. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  429. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  430. }
  431. }
  432. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  433. {
  434. if (i&2) {
  435. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  436. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  437. return 1 + (i&1);
  438. } else {
  439. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  440. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  441. return 0;
  442. }
  443. }
  444. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  445. {
  446. DNXHDEncContext *ctx = avctx->priv_data;
  447. int mb_y = jobnr, mb_x;
  448. int qscale = ctx->qscale;
  449. LOCAL_ALIGNED_16(int16_t, block, [64]);
  450. ctx = ctx->thread[threadnr];
  451. ctx->m.last_dc[0] =
  452. ctx->m.last_dc[1] =
  453. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  454. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  455. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  456. int ssd = 0;
  457. int ac_bits = 0;
  458. int dc_bits = 0;
  459. int i;
  460. dnxhd_get_blocks(ctx, mb_x, mb_y);
  461. for (i = 0; i < 8; i++) {
  462. int16_t *src_block = ctx->blocks[i];
  463. int overflow, nbits, diff, last_index;
  464. int n = dnxhd_switch_matrix(ctx, i);
  465. memcpy(block, src_block, 64*sizeof(*block));
  466. last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow);
  467. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  468. diff = block[0] - ctx->m.last_dc[n];
  469. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  470. else nbits = av_log2_16bit( 2*diff);
  471. assert(nbits < ctx->cid_table->bit_depth + 4);
  472. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  473. ctx->m.last_dc[n] = block[0];
  474. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  475. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  476. ctx->m.dsp.idct(block);
  477. ssd += dnxhd_ssd_block(block, src_block);
  478. }
  479. }
  480. ctx->mb_rc[qscale][mb].ssd = ssd;
  481. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  482. }
  483. return 0;
  484. }
  485. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  486. {
  487. DNXHDEncContext *ctx = avctx->priv_data;
  488. int mb_y = jobnr, mb_x;
  489. ctx = ctx->thread[threadnr];
  490. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  491. ctx->m.last_dc[0] =
  492. ctx->m.last_dc[1] =
  493. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  494. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  495. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  496. int qscale = ctx->mb_qscale[mb];
  497. int i;
  498. put_bits(&ctx->m.pb, 12, qscale<<1);
  499. dnxhd_get_blocks(ctx, mb_x, mb_y);
  500. for (i = 0; i < 8; i++) {
  501. int16_t *block = ctx->blocks[i];
  502. int overflow, n = dnxhd_switch_matrix(ctx, i);
  503. int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  504. qscale, &overflow);
  505. //START_TIMER;
  506. dnxhd_encode_block(ctx, block, last_index, n);
  507. //STOP_TIMER("encode_block");
  508. }
  509. }
  510. if (put_bits_count(&ctx->m.pb)&31)
  511. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  512. flush_put_bits(&ctx->m.pb);
  513. return 0;
  514. }
  515. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  516. {
  517. int mb_y, mb_x;
  518. int offset = 0;
  519. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  520. int thread_size;
  521. ctx->slice_offs[mb_y] = offset;
  522. ctx->slice_size[mb_y] = 0;
  523. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  524. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  525. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  526. }
  527. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  528. ctx->slice_size[mb_y] >>= 3;
  529. thread_size = ctx->slice_size[mb_y];
  530. offset += thread_size;
  531. }
  532. }
  533. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  534. {
  535. DNXHDEncContext *ctx = avctx->priv_data;
  536. int mb_y = jobnr, mb_x, x, y;
  537. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  538. ((avctx->height >> ctx->interlaced) & 0xF);
  539. ctx = ctx->thread[threadnr];
  540. if (ctx->cid_table->bit_depth == 8) {
  541. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
  542. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  543. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  544. int sum;
  545. int varc;
  546. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  547. sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  548. varc = ctx->m.dsp.pix_norm1(pix, ctx->m.linesize);
  549. } else {
  550. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  551. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  552. sum = varc = 0;
  553. for (y = 0; y < bh; y++) {
  554. for (x = 0; x < bw; x++) {
  555. uint8_t val = pix[x + y * ctx->m.linesize];
  556. sum += val;
  557. varc += val * val;
  558. }
  559. }
  560. }
  561. varc = (varc - (((unsigned)sum * sum) >> 8) + 128) >> 8;
  562. ctx->mb_cmp[mb].value = varc;
  563. ctx->mb_cmp[mb].mb = mb;
  564. }
  565. } else { // 10-bit
  566. int const linesize = ctx->m.linesize >> 1;
  567. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  568. uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
  569. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  570. int sum = 0;
  571. int sqsum = 0;
  572. int mean, sqmean;
  573. int i, j;
  574. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  575. for (i = 0; i < 16; ++i) {
  576. for (j = 0; j < 16; ++j) {
  577. // Turn 16-bit pixels into 10-bit ones.
  578. int const sample = (unsigned)pix[j] >> 6;
  579. sum += sample;
  580. sqsum += sample * sample;
  581. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  582. }
  583. pix += linesize;
  584. }
  585. mean = sum >> 8; // 16*16 == 2^8
  586. sqmean = sqsum >> 8;
  587. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  588. ctx->mb_cmp[mb].mb = mb;
  589. }
  590. }
  591. return 0;
  592. }
  593. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  594. {
  595. int lambda, up_step, down_step;
  596. int last_lower = INT_MAX, last_higher = 0;
  597. int x, y, q;
  598. for (q = 1; q < avctx->qmax; q++) {
  599. ctx->qscale = q;
  600. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  601. }
  602. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  603. lambda = ctx->lambda;
  604. for (;;) {
  605. int bits = 0;
  606. int end = 0;
  607. if (lambda == last_higher) {
  608. lambda++;
  609. end = 1; // need to set final qscales/bits
  610. }
  611. for (y = 0; y < ctx->m.mb_height; y++) {
  612. for (x = 0; x < ctx->m.mb_width; x++) {
  613. unsigned min = UINT_MAX;
  614. int qscale = 1;
  615. int mb = y*ctx->m.mb_width+x;
  616. for (q = 1; q < avctx->qmax; q++) {
  617. unsigned score = ctx->mb_rc[q][mb].bits*lambda+
  618. ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  619. if (score < min) {
  620. min = score;
  621. qscale = q;
  622. }
  623. }
  624. bits += ctx->mb_rc[qscale][mb].bits;
  625. ctx->mb_qscale[mb] = qscale;
  626. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  627. }
  628. bits = (bits+31)&~31; // padding
  629. if (bits > ctx->frame_bits)
  630. break;
  631. }
  632. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  633. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  634. if (end) {
  635. if (bits > ctx->frame_bits)
  636. return -1;
  637. break;
  638. }
  639. if (bits < ctx->frame_bits) {
  640. last_lower = FFMIN(lambda, last_lower);
  641. if (last_higher != 0)
  642. lambda = (lambda+last_higher)>>1;
  643. else
  644. lambda -= down_step;
  645. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  646. up_step = 1<<LAMBDA_FRAC_BITS;
  647. lambda = FFMAX(1, lambda);
  648. if (lambda == last_lower)
  649. break;
  650. } else {
  651. last_higher = FFMAX(lambda, last_higher);
  652. if (last_lower != INT_MAX)
  653. lambda = (lambda+last_lower)>>1;
  654. else if ((int64_t)lambda + up_step > INT_MAX)
  655. return -1;
  656. else
  657. lambda += up_step;
  658. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  659. down_step = 1<<LAMBDA_FRAC_BITS;
  660. }
  661. }
  662. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  663. ctx->lambda = lambda;
  664. return 0;
  665. }
  666. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  667. {
  668. int bits = 0;
  669. int up_step = 1;
  670. int down_step = 1;
  671. int last_higher = 0;
  672. int last_lower = INT_MAX;
  673. int qscale;
  674. int x, y;
  675. qscale = ctx->qscale;
  676. for (;;) {
  677. bits = 0;
  678. ctx->qscale = qscale;
  679. // XXX avoid recalculating bits
  680. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  681. for (y = 0; y < ctx->m.mb_height; y++) {
  682. for (x = 0; x < ctx->m.mb_width; x++)
  683. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  684. bits = (bits+31)&~31; // padding
  685. if (bits > ctx->frame_bits)
  686. break;
  687. }
  688. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  689. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  690. if (bits < ctx->frame_bits) {
  691. if (qscale == 1)
  692. return 1;
  693. if (last_higher == qscale - 1) {
  694. qscale = last_higher;
  695. break;
  696. }
  697. last_lower = FFMIN(qscale, last_lower);
  698. if (last_higher != 0)
  699. qscale = (qscale+last_higher)>>1;
  700. else
  701. qscale -= down_step++;
  702. if (qscale < 1)
  703. qscale = 1;
  704. up_step = 1;
  705. } else {
  706. if (last_lower == qscale + 1)
  707. break;
  708. last_higher = FFMAX(qscale, last_higher);
  709. if (last_lower != INT_MAX)
  710. qscale = (qscale+last_lower)>>1;
  711. else
  712. qscale += up_step++;
  713. down_step = 1;
  714. if (qscale >= ctx->m.avctx->qmax)
  715. return -1;
  716. }
  717. }
  718. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  719. ctx->qscale = qscale;
  720. return 0;
  721. }
  722. #define BUCKET_BITS 8
  723. #define RADIX_PASSES 4
  724. #define NBUCKETS (1 << BUCKET_BITS)
  725. static inline int get_bucket(int value, int shift)
  726. {
  727. value >>= shift;
  728. value &= NBUCKETS - 1;
  729. return NBUCKETS - 1 - value;
  730. }
  731. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  732. {
  733. int i, j;
  734. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  735. for (i = 0; i < size; i++) {
  736. int v = data[i].value;
  737. for (j = 0; j < RADIX_PASSES; j++) {
  738. buckets[j][get_bucket(v, 0)]++;
  739. v >>= BUCKET_BITS;
  740. }
  741. assert(!v);
  742. }
  743. for (j = 0; j < RADIX_PASSES; j++) {
  744. int offset = size;
  745. for (i = NBUCKETS - 1; i >= 0; i--)
  746. buckets[j][i] = offset -= buckets[j][i];
  747. assert(!buckets[j][0]);
  748. }
  749. }
  750. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  751. {
  752. int shift = pass * BUCKET_BITS;
  753. int i;
  754. for (i = 0; i < size; i++) {
  755. int v = get_bucket(data[i].value, shift);
  756. int pos = buckets[v]++;
  757. dst[pos] = data[i];
  758. }
  759. }
  760. static void radix_sort(RCCMPEntry *data, int size)
  761. {
  762. int buckets[RADIX_PASSES][NBUCKETS];
  763. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  764. radix_count(data, size, buckets);
  765. radix_sort_pass(tmp, data, size, buckets[0], 0);
  766. radix_sort_pass(data, tmp, size, buckets[1], 1);
  767. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  768. radix_sort_pass(tmp, data, size, buckets[2], 2);
  769. radix_sort_pass(data, tmp, size, buckets[3], 3);
  770. }
  771. av_free(tmp);
  772. }
  773. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  774. {
  775. int max_bits = 0;
  776. int ret, x, y;
  777. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  778. return -1;
  779. for (y = 0; y < ctx->m.mb_height; y++) {
  780. for (x = 0; x < ctx->m.mb_width; x++) {
  781. int mb = y*ctx->m.mb_width+x;
  782. int delta_bits;
  783. ctx->mb_qscale[mb] = ctx->qscale;
  784. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  785. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  786. if (!RC_VARIANCE) {
  787. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  788. ctx->mb_cmp[mb].mb = mb;
  789. ctx->mb_cmp[mb].value = delta_bits ?
  790. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  791. : INT_MIN; //avoid increasing qscale
  792. }
  793. }
  794. max_bits += 31; //worst padding
  795. }
  796. if (!ret) {
  797. if (RC_VARIANCE)
  798. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  799. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  800. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  801. int mb = ctx->mb_cmp[x].mb;
  802. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  803. ctx->mb_qscale[mb] = ctx->qscale+1;
  804. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  805. }
  806. }
  807. return 0;
  808. }
  809. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  810. {
  811. int i;
  812. for (i = 0; i < 3; i++) {
  813. ctx->frame.data[i] = frame->data[i];
  814. ctx->frame.linesize[i] = frame->linesize[i];
  815. }
  816. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  817. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  818. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  819. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  820. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  821. }
  822. ctx->frame.interlaced_frame = frame->interlaced_frame;
  823. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  824. }
  825. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  826. const AVFrame *frame, int *got_packet)
  827. {
  828. DNXHDEncContext *ctx = avctx->priv_data;
  829. int first_field = 1;
  830. int offset, i, ret;
  831. uint8_t *buf;
  832. if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
  833. av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
  834. return ret;
  835. }
  836. buf = pkt->data;
  837. dnxhd_load_picture(ctx, frame);
  838. encode_coding_unit:
  839. for (i = 0; i < 3; i++) {
  840. ctx->src[i] = ctx->frame.data[i];
  841. if (ctx->interlaced && ctx->cur_field)
  842. ctx->src[i] += ctx->frame.linesize[i];
  843. }
  844. dnxhd_write_header(avctx, buf);
  845. if (avctx->mb_decision == FF_MB_DECISION_RD)
  846. ret = dnxhd_encode_rdo(avctx, ctx);
  847. else
  848. ret = dnxhd_encode_fast(avctx, ctx);
  849. if (ret < 0) {
  850. av_log(avctx, AV_LOG_ERROR,
  851. "picture could not fit ratecontrol constraints, increase qmax\n");
  852. return -1;
  853. }
  854. dnxhd_setup_threads_slices(ctx);
  855. offset = 0;
  856. for (i = 0; i < ctx->m.mb_height; i++) {
  857. AV_WB32(ctx->msip + i * 4, offset);
  858. offset += ctx->slice_size[i];
  859. assert(!(ctx->slice_size[i] & 3));
  860. }
  861. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  862. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  863. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  864. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  865. if (ctx->interlaced && first_field) {
  866. first_field = 0;
  867. ctx->cur_field ^= 1;
  868. buf += ctx->cid_table->coding_unit_size;
  869. goto encode_coding_unit;
  870. }
  871. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  872. pkt->flags |= AV_PKT_FLAG_KEY;
  873. *got_packet = 1;
  874. return 0;
  875. }
  876. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  877. {
  878. DNXHDEncContext *ctx = avctx->priv_data;
  879. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  880. int i;
  881. av_free(ctx->vlc_codes-max_level*2);
  882. av_free(ctx->vlc_bits -max_level*2);
  883. av_freep(&ctx->run_codes);
  884. av_freep(&ctx->run_bits);
  885. av_freep(&ctx->mb_bits);
  886. av_freep(&ctx->mb_qscale);
  887. av_freep(&ctx->mb_rc);
  888. av_freep(&ctx->mb_cmp);
  889. av_freep(&ctx->slice_size);
  890. av_freep(&ctx->slice_offs);
  891. av_freep(&ctx->qmatrix_c);
  892. av_freep(&ctx->qmatrix_l);
  893. av_freep(&ctx->qmatrix_c16);
  894. av_freep(&ctx->qmatrix_l16);
  895. for (i = 1; i < avctx->thread_count; i++)
  896. av_freep(&ctx->thread[i]);
  897. return 0;
  898. }
  899. AVCodec ff_dnxhd_encoder = {
  900. .name = "dnxhd",
  901. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  902. .type = AVMEDIA_TYPE_VIDEO,
  903. .id = AV_CODEC_ID_DNXHD,
  904. .priv_data_size = sizeof(DNXHDEncContext),
  905. .init = dnxhd_encode_init,
  906. .encode2 = dnxhd_encode_picture,
  907. .close = dnxhd_encode_end,
  908. .capabilities = CODEC_CAP_SLICE_THREADS,
  909. .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV422P,
  910. AV_PIX_FMT_YUV422P10,
  911. AV_PIX_FMT_NONE },
  912. .priv_class = &class,
  913. };