You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1779 lines
62KB

  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "unary.h"
  29. #include "mpeg4audio.h"
  30. #include "bytestream.h"
  31. #include "bgmc.h"
  32. #include "dsputil.h"
  33. #include "internal.h"
  34. #include "libavutil/samplefmt.h"
  35. #include "libavutil/crc.h"
  36. #include <stdint.h>
  37. /** Rice parameters and corresponding index offsets for decoding the
  38. * indices of scaled PARCOR values. The table chosen is set globally
  39. * by the encoder and stored in ALSSpecificConfig.
  40. */
  41. static const int8_t parcor_rice_table[3][20][2] = {
  42. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  43. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  44. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  45. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  46. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  47. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  48. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  49. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  50. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  51. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  52. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  53. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  54. };
  55. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  56. * To be indexed by the Rice coded indices.
  57. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  58. * Actual values are divided by 32 in order to be stored in 16 bits.
  59. */
  60. static const int16_t parcor_scaled_values[] = {
  61. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  62. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  63. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  64. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  65. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  66. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  67. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  68. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  69. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  70. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  71. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  72. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  73. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  74. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  75. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  76. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  77. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  78. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  79. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  80. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  81. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  82. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  83. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  84. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  85. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  86. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  87. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  88. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  89. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  90. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  91. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  92. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  93. };
  94. /** Gain values of p(0) for long-term prediction.
  95. * To be indexed by the Rice coded indices.
  96. */
  97. static const uint8_t ltp_gain_values [4][4] = {
  98. { 0, 8, 16, 24},
  99. {32, 40, 48, 56},
  100. {64, 70, 76, 82},
  101. {88, 92, 96, 100}
  102. };
  103. /** Inter-channel weighting factors for multi-channel correlation.
  104. * To be indexed by the Rice coded indices.
  105. */
  106. static const int16_t mcc_weightings[] = {
  107. 204, 192, 179, 166, 153, 140, 128, 115,
  108. 102, 89, 76, 64, 51, 38, 25, 12,
  109. 0, -12, -25, -38, -51, -64, -76, -89,
  110. -102, -115, -128, -140, -153, -166, -179, -192
  111. };
  112. /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  113. */
  114. static const uint8_t tail_code[16][6] = {
  115. { 74, 44, 25, 13, 7, 3},
  116. { 68, 42, 24, 13, 7, 3},
  117. { 58, 39, 23, 13, 7, 3},
  118. {126, 70, 37, 19, 10, 5},
  119. {132, 70, 37, 20, 10, 5},
  120. {124, 70, 38, 20, 10, 5},
  121. {120, 69, 37, 20, 11, 5},
  122. {116, 67, 37, 20, 11, 5},
  123. {108, 66, 36, 20, 10, 5},
  124. {102, 62, 36, 20, 10, 5},
  125. { 88, 58, 34, 19, 10, 5},
  126. {162, 89, 49, 25, 13, 7},
  127. {156, 87, 49, 26, 14, 7},
  128. {150, 86, 47, 26, 14, 7},
  129. {142, 84, 47, 26, 14, 7},
  130. {131, 79, 46, 26, 14, 7}
  131. };
  132. enum RA_Flag {
  133. RA_FLAG_NONE,
  134. RA_FLAG_FRAMES,
  135. RA_FLAG_HEADER
  136. };
  137. typedef struct {
  138. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  139. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  140. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  141. int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
  142. int frame_length; ///< frame length for each frame (last frame may differ)
  143. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  144. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  145. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  146. int coef_table; ///< table index of Rice code parameters
  147. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  148. int max_order; ///< maximum prediction order (0..1023)
  149. int block_switching; ///< number of block switching levels
  150. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  151. int sb_part; ///< sub-block partition
  152. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  153. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  154. int chan_config; ///< indicates that a chan_config_info field is present
  155. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  156. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  157. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  158. int *chan_pos; ///< original channel positions
  159. int crc_enabled; ///< enable Cyclic Redundancy Checksum
  160. } ALSSpecificConfig;
  161. typedef struct {
  162. int stop_flag;
  163. int master_channel;
  164. int time_diff_flag;
  165. int time_diff_sign;
  166. int time_diff_index;
  167. int weighting[6];
  168. } ALSChannelData;
  169. typedef struct {
  170. AVCodecContext *avctx;
  171. ALSSpecificConfig sconf;
  172. GetBitContext gb;
  173. DSPContext dsp;
  174. const AVCRC *crc_table;
  175. uint32_t crc_org; ///< CRC value of the original input data
  176. uint32_t crc; ///< CRC value calculated from decoded data
  177. unsigned int cur_frame_length; ///< length of the current frame to decode
  178. unsigned int frame_id; ///< the frame ID / number of the current frame
  179. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  180. unsigned int num_blocks; ///< number of blocks used in the current frame
  181. unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
  182. uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
  183. int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
  184. int ltp_lag_length; ///< number of bits used for ltp lag value
  185. int *const_block; ///< contains const_block flags for all channels
  186. unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
  187. unsigned int *opt_order; ///< contains opt_order flags for all channels
  188. int *store_prev_samples; ///< contains store_prev_samples flags for all channels
  189. int *use_ltp; ///< contains use_ltp flags for all channels
  190. int *ltp_lag; ///< contains ltp lag values for all channels
  191. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  192. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  193. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  194. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  195. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  196. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  197. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  198. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  199. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  200. int *reverted_channels; ///< stores a flag for each reverted channel
  201. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  202. int32_t **raw_samples; ///< decoded raw samples for each channel
  203. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  204. uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
  205. } ALSDecContext;
  206. typedef struct {
  207. unsigned int block_length; ///< number of samples within the block
  208. unsigned int ra_block; ///< if true, this is a random access block
  209. int *const_block; ///< if true, this is a constant value block
  210. int js_blocks; ///< true if this block contains a difference signal
  211. unsigned int *shift_lsbs; ///< shift of values for this block
  212. unsigned int *opt_order; ///< prediction order of this block
  213. int *store_prev_samples;///< if true, carryover samples have to be stored
  214. int *use_ltp; ///< if true, long-term prediction is used
  215. int *ltp_lag; ///< lag value for long-term prediction
  216. int *ltp_gain; ///< gain values for ltp 5-tap filter
  217. int32_t *quant_cof; ///< quantized parcor coefficients
  218. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  219. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  220. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  221. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  222. } ALSBlockData;
  223. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  224. {
  225. #ifdef DEBUG
  226. AVCodecContext *avctx = ctx->avctx;
  227. ALSSpecificConfig *sconf = &ctx->sconf;
  228. av_dlog(avctx, "resolution = %i\n", sconf->resolution);
  229. av_dlog(avctx, "floating = %i\n", sconf->floating);
  230. av_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
  231. av_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
  232. av_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
  233. av_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
  234. av_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
  235. av_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  236. av_dlog(avctx, "max_order = %i\n", sconf->max_order);
  237. av_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
  238. av_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
  239. av_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
  240. av_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  241. av_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
  242. av_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
  243. av_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
  244. av_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
  245. av_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  246. #endif
  247. }
  248. /** Read an ALSSpecificConfig from a buffer into the output struct.
  249. */
  250. static av_cold int read_specific_config(ALSDecContext *ctx)
  251. {
  252. GetBitContext gb;
  253. uint64_t ht_size;
  254. int i, config_offset;
  255. MPEG4AudioConfig m4ac;
  256. ALSSpecificConfig *sconf = &ctx->sconf;
  257. AVCodecContext *avctx = ctx->avctx;
  258. uint32_t als_id, header_size, trailer_size;
  259. init_get_bits(&gb, avctx->extradata, avctx->extradata_size * 8);
  260. config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
  261. avctx->extradata_size * 8, 1);
  262. if (config_offset < 0)
  263. return AVERROR_INVALIDDATA;
  264. skip_bits_long(&gb, config_offset);
  265. if (get_bits_left(&gb) < (30 << 3))
  266. return AVERROR_INVALIDDATA;
  267. // read the fixed items
  268. als_id = get_bits_long(&gb, 32);
  269. avctx->sample_rate = m4ac.sample_rate;
  270. skip_bits_long(&gb, 32); // sample rate already known
  271. sconf->samples = get_bits_long(&gb, 32);
  272. avctx->channels = m4ac.channels;
  273. skip_bits(&gb, 16); // number of channels already knwon
  274. skip_bits(&gb, 3); // skip file_type
  275. sconf->resolution = get_bits(&gb, 3);
  276. sconf->floating = get_bits1(&gb);
  277. sconf->msb_first = get_bits1(&gb);
  278. sconf->frame_length = get_bits(&gb, 16) + 1;
  279. sconf->ra_distance = get_bits(&gb, 8);
  280. sconf->ra_flag = get_bits(&gb, 2);
  281. sconf->adapt_order = get_bits1(&gb);
  282. sconf->coef_table = get_bits(&gb, 2);
  283. sconf->long_term_prediction = get_bits1(&gb);
  284. sconf->max_order = get_bits(&gb, 10);
  285. sconf->block_switching = get_bits(&gb, 2);
  286. sconf->bgmc = get_bits1(&gb);
  287. sconf->sb_part = get_bits1(&gb);
  288. sconf->joint_stereo = get_bits1(&gb);
  289. sconf->mc_coding = get_bits1(&gb);
  290. sconf->chan_config = get_bits1(&gb);
  291. sconf->chan_sort = get_bits1(&gb);
  292. sconf->crc_enabled = get_bits1(&gb);
  293. sconf->rlslms = get_bits1(&gb);
  294. skip_bits(&gb, 5); // skip 5 reserved bits
  295. skip_bits1(&gb); // skip aux_data_enabled
  296. // check for ALSSpecificConfig struct
  297. if (als_id != MKBETAG('A','L','S','\0'))
  298. return AVERROR_INVALIDDATA;
  299. ctx->cur_frame_length = sconf->frame_length;
  300. // read channel config
  301. if (sconf->chan_config)
  302. sconf->chan_config_info = get_bits(&gb, 16);
  303. // TODO: use this to set avctx->channel_layout
  304. // read channel sorting
  305. if (sconf->chan_sort && avctx->channels > 1) {
  306. int chan_pos_bits = av_ceil_log2(avctx->channels);
  307. int bits_needed = avctx->channels * chan_pos_bits + 7;
  308. if (get_bits_left(&gb) < bits_needed)
  309. return AVERROR_INVALIDDATA;
  310. if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
  311. return AVERROR(ENOMEM);
  312. for (i = 0; i < avctx->channels; i++)
  313. sconf->chan_pos[i] = get_bits(&gb, chan_pos_bits);
  314. align_get_bits(&gb);
  315. // TODO: use this to actually do channel sorting
  316. } else {
  317. sconf->chan_sort = 0;
  318. }
  319. // read fixed header and trailer sizes,
  320. // if size = 0xFFFFFFFF then there is no data field!
  321. if (get_bits_left(&gb) < 64)
  322. return AVERROR_INVALIDDATA;
  323. header_size = get_bits_long(&gb, 32);
  324. trailer_size = get_bits_long(&gb, 32);
  325. if (header_size == 0xFFFFFFFF)
  326. header_size = 0;
  327. if (trailer_size == 0xFFFFFFFF)
  328. trailer_size = 0;
  329. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  330. // skip the header and trailer data
  331. if (get_bits_left(&gb) < ht_size)
  332. return AVERROR_INVALIDDATA;
  333. if (ht_size > INT32_MAX)
  334. return AVERROR_PATCHWELCOME;
  335. skip_bits_long(&gb, ht_size);
  336. // initialize CRC calculation
  337. if (sconf->crc_enabled) {
  338. if (get_bits_left(&gb) < 32)
  339. return AVERROR_INVALIDDATA;
  340. if (avctx->err_recognition & AV_EF_CRCCHECK) {
  341. ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
  342. ctx->crc = 0xFFFFFFFF;
  343. ctx->crc_org = ~get_bits_long(&gb, 32);
  344. } else
  345. skip_bits_long(&gb, 32);
  346. }
  347. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  348. dprint_specific_config(ctx);
  349. return 0;
  350. }
  351. /** Check the ALSSpecificConfig for unsupported features.
  352. */
  353. static int check_specific_config(ALSDecContext *ctx)
  354. {
  355. ALSSpecificConfig *sconf = &ctx->sconf;
  356. int error = 0;
  357. // report unsupported feature and set error value
  358. #define MISSING_ERR(cond, str, errval) \
  359. { \
  360. if (cond) { \
  361. avpriv_report_missing_feature(ctx->avctx, \
  362. str); \
  363. error = errval; \
  364. } \
  365. }
  366. MISSING_ERR(sconf->floating, "Floating point decoding", AVERROR_PATCHWELCOME);
  367. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
  368. MISSING_ERR(sconf->chan_sort, "Channel sorting", 0);
  369. return error;
  370. }
  371. /** Parse the bs_info field to extract the block partitioning used in
  372. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  373. */
  374. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  375. unsigned int div, unsigned int **div_blocks,
  376. unsigned int *num_blocks)
  377. {
  378. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  379. // if the level is valid and the investigated bit n is set
  380. // then recursively check both children at bits (2n+1) and (2n+2)
  381. n *= 2;
  382. div += 1;
  383. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  384. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  385. } else {
  386. // else the bit is not set or the last level has been reached
  387. // (bit implicitly not set)
  388. **div_blocks = div;
  389. (*div_blocks)++;
  390. (*num_blocks)++;
  391. }
  392. }
  393. /** Read and decode a Rice codeword.
  394. */
  395. static int32_t decode_rice(GetBitContext *gb, unsigned int k)
  396. {
  397. int max = get_bits_left(gb) - k;
  398. int q = get_unary(gb, 0, max);
  399. int r = k ? get_bits1(gb) : !(q & 1);
  400. if (k > 1) {
  401. q <<= (k - 1);
  402. q += get_bits_long(gb, k - 1);
  403. } else if (!k) {
  404. q >>= 1;
  405. }
  406. return r ? q : ~q;
  407. }
  408. /** Convert PARCOR coefficient k to direct filter coefficient.
  409. */
  410. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  411. {
  412. int i, j;
  413. for (i = 0, j = k - 1; i < j; i++, j--) {
  414. int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  415. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  416. cof[i] += tmp1;
  417. }
  418. if (i == j)
  419. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  420. cof[k] = par[k];
  421. }
  422. /** Read block switching field if necessary and set actual block sizes.
  423. * Also assure that the block sizes of the last frame correspond to the
  424. * actual number of samples.
  425. */
  426. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  427. uint32_t *bs_info)
  428. {
  429. ALSSpecificConfig *sconf = &ctx->sconf;
  430. GetBitContext *gb = &ctx->gb;
  431. unsigned int *ptr_div_blocks = div_blocks;
  432. unsigned int b;
  433. if (sconf->block_switching) {
  434. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  435. *bs_info = get_bits_long(gb, bs_info_len);
  436. *bs_info <<= (32 - bs_info_len);
  437. }
  438. ctx->num_blocks = 0;
  439. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  440. // The last frame may have an overdetermined block structure given in
  441. // the bitstream. In that case the defined block structure would need
  442. // more samples than available to be consistent.
  443. // The block structure is actually used but the block sizes are adapted
  444. // to fit the actual number of available samples.
  445. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  446. // This results in the actual block sizes: 2 2 1 0.
  447. // This is not specified in 14496-3 but actually done by the reference
  448. // codec RM22 revision 2.
  449. // This appears to happen in case of an odd number of samples in the last
  450. // frame which is actually not allowed by the block length switching part
  451. // of 14496-3.
  452. // The ALS conformance files feature an odd number of samples in the last
  453. // frame.
  454. for (b = 0; b < ctx->num_blocks; b++)
  455. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  456. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  457. unsigned int remaining = ctx->cur_frame_length;
  458. for (b = 0; b < ctx->num_blocks; b++) {
  459. if (remaining <= div_blocks[b]) {
  460. div_blocks[b] = remaining;
  461. ctx->num_blocks = b + 1;
  462. break;
  463. }
  464. remaining -= div_blocks[b];
  465. }
  466. }
  467. }
  468. /** Read the block data for a constant block
  469. */
  470. static void read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  471. {
  472. ALSSpecificConfig *sconf = &ctx->sconf;
  473. AVCodecContext *avctx = ctx->avctx;
  474. GetBitContext *gb = &ctx->gb;
  475. *bd->raw_samples = 0;
  476. *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
  477. bd->js_blocks = get_bits1(gb);
  478. // skip 5 reserved bits
  479. skip_bits(gb, 5);
  480. if (*bd->const_block) {
  481. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  482. *bd->raw_samples = get_sbits_long(gb, const_val_bits);
  483. }
  484. // ensure constant block decoding by reusing this field
  485. *bd->const_block = 1;
  486. }
  487. /** Decode the block data for a constant block
  488. */
  489. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  490. {
  491. int smp = bd->block_length - 1;
  492. int32_t val = *bd->raw_samples;
  493. int32_t *dst = bd->raw_samples + 1;
  494. // write raw samples into buffer
  495. for (; smp; smp--)
  496. *dst++ = val;
  497. }
  498. /** Read the block data for a non-constant block
  499. */
  500. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  501. {
  502. ALSSpecificConfig *sconf = &ctx->sconf;
  503. AVCodecContext *avctx = ctx->avctx;
  504. GetBitContext *gb = &ctx->gb;
  505. unsigned int k;
  506. unsigned int s[8];
  507. unsigned int sx[8];
  508. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  509. unsigned int start = 0;
  510. unsigned int opt_order;
  511. int sb;
  512. int32_t *quant_cof = bd->quant_cof;
  513. int32_t *current_res;
  514. // ensure variable block decoding by reusing this field
  515. *bd->const_block = 0;
  516. *bd->opt_order = 1;
  517. bd->js_blocks = get_bits1(gb);
  518. opt_order = *bd->opt_order;
  519. // determine the number of subblocks for entropy decoding
  520. if (!sconf->bgmc && !sconf->sb_part) {
  521. log2_sub_blocks = 0;
  522. } else {
  523. if (sconf->bgmc && sconf->sb_part)
  524. log2_sub_blocks = get_bits(gb, 2);
  525. else
  526. log2_sub_blocks = 2 * get_bits1(gb);
  527. }
  528. sub_blocks = 1 << log2_sub_blocks;
  529. // do not continue in case of a damaged stream since
  530. // block_length must be evenly divisible by sub_blocks
  531. if (bd->block_length & (sub_blocks - 1)) {
  532. av_log(avctx, AV_LOG_WARNING,
  533. "Block length is not evenly divisible by the number of subblocks.\n");
  534. return AVERROR_INVALIDDATA;
  535. }
  536. sb_length = bd->block_length >> log2_sub_blocks;
  537. if (sconf->bgmc) {
  538. s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
  539. for (k = 1; k < sub_blocks; k++)
  540. s[k] = s[k - 1] + decode_rice(gb, 2);
  541. for (k = 0; k < sub_blocks; k++) {
  542. sx[k] = s[k] & 0x0F;
  543. s [k] >>= 4;
  544. }
  545. } else {
  546. s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
  547. for (k = 1; k < sub_blocks; k++)
  548. s[k] = s[k - 1] + decode_rice(gb, 0);
  549. }
  550. for (k = 1; k < sub_blocks; k++)
  551. if (s[k] > 32) {
  552. av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
  553. return AVERROR_INVALIDDATA;
  554. }
  555. if (get_bits1(gb))
  556. *bd->shift_lsbs = get_bits(gb, 4) + 1;
  557. *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
  558. if (!sconf->rlslms) {
  559. if (sconf->adapt_order) {
  560. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  561. 2, sconf->max_order + 1));
  562. *bd->opt_order = get_bits(gb, opt_order_length);
  563. if (*bd->opt_order > sconf->max_order) {
  564. *bd->opt_order = sconf->max_order;
  565. av_log(avctx, AV_LOG_ERROR, "Predictor order too large!\n");
  566. return AVERROR_INVALIDDATA;
  567. }
  568. } else {
  569. *bd->opt_order = sconf->max_order;
  570. }
  571. opt_order = *bd->opt_order;
  572. if (opt_order) {
  573. int add_base;
  574. if (sconf->coef_table == 3) {
  575. add_base = 0x7F;
  576. // read coefficient 0
  577. quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
  578. // read coefficient 1
  579. if (opt_order > 1)
  580. quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
  581. // read coefficients 2 to opt_order
  582. for (k = 2; k < opt_order; k++)
  583. quant_cof[k] = get_bits(gb, 7);
  584. } else {
  585. int k_max;
  586. add_base = 1;
  587. // read coefficient 0 to 19
  588. k_max = FFMIN(opt_order, 20);
  589. for (k = 0; k < k_max; k++) {
  590. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  591. int offset = parcor_rice_table[sconf->coef_table][k][0];
  592. quant_cof[k] = decode_rice(gb, rice_param) + offset;
  593. if (quant_cof[k] < -64 || quant_cof[k] > 63) {
  594. av_log(avctx, AV_LOG_ERROR, "quant_cof %d is out of range\n", quant_cof[k]);
  595. return AVERROR_INVALIDDATA;
  596. }
  597. }
  598. // read coefficients 20 to 126
  599. k_max = FFMIN(opt_order, 127);
  600. for (; k < k_max; k++)
  601. quant_cof[k] = decode_rice(gb, 2) + (k & 1);
  602. // read coefficients 127 to opt_order
  603. for (; k < opt_order; k++)
  604. quant_cof[k] = decode_rice(gb, 1);
  605. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  606. if (opt_order > 1)
  607. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  608. }
  609. for (k = 2; k < opt_order; k++)
  610. quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
  611. }
  612. }
  613. // read LTP gain and lag values
  614. if (sconf->long_term_prediction) {
  615. *bd->use_ltp = get_bits1(gb);
  616. if (*bd->use_ltp) {
  617. int r, c;
  618. bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
  619. bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
  620. r = get_unary(gb, 0, 3);
  621. c = get_bits(gb, 2);
  622. bd->ltp_gain[2] = ltp_gain_values[r][c];
  623. bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
  624. bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
  625. *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
  626. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  627. }
  628. }
  629. // read first value and residuals in case of a random access block
  630. if (bd->ra_block) {
  631. if (opt_order)
  632. bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
  633. if (opt_order > 1)
  634. bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
  635. if (opt_order > 2)
  636. bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
  637. start = FFMIN(opt_order, 3);
  638. }
  639. // read all residuals
  640. if (sconf->bgmc) {
  641. int delta[8];
  642. unsigned int k [8];
  643. unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
  644. // read most significant bits
  645. unsigned int high;
  646. unsigned int low;
  647. unsigned int value;
  648. ff_bgmc_decode_init(gb, &high, &low, &value);
  649. current_res = bd->raw_samples + start;
  650. for (sb = 0; sb < sub_blocks; sb++) {
  651. unsigned int sb_len = sb_length - (sb ? 0 : start);
  652. k [sb] = s[sb] > b ? s[sb] - b : 0;
  653. delta[sb] = 5 - s[sb] + k[sb];
  654. ff_bgmc_decode(gb, sb_len, current_res,
  655. delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
  656. current_res += sb_len;
  657. }
  658. ff_bgmc_decode_end(gb);
  659. // read least significant bits and tails
  660. current_res = bd->raw_samples + start;
  661. for (sb = 0; sb < sub_blocks; sb++, start = 0) {
  662. unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
  663. unsigned int cur_k = k[sb];
  664. unsigned int cur_s = s[sb];
  665. for (; start < sb_length; start++) {
  666. int32_t res = *current_res;
  667. if (res == cur_tail_code) {
  668. unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
  669. << (5 - delta[sb]);
  670. res = decode_rice(gb, cur_s);
  671. if (res >= 0) {
  672. res += (max_msb ) << cur_k;
  673. } else {
  674. res -= (max_msb - 1) << cur_k;
  675. }
  676. } else {
  677. if (res > cur_tail_code)
  678. res--;
  679. if (res & 1)
  680. res = -res;
  681. res >>= 1;
  682. if (cur_k) {
  683. res <<= cur_k;
  684. res |= get_bits_long(gb, cur_k);
  685. }
  686. }
  687. *current_res++ = res;
  688. }
  689. }
  690. } else {
  691. current_res = bd->raw_samples + start;
  692. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  693. for (; start < sb_length; start++)
  694. *current_res++ = decode_rice(gb, s[sb]);
  695. }
  696. if (!sconf->mc_coding || ctx->js_switch)
  697. align_get_bits(gb);
  698. return 0;
  699. }
  700. /** Decode the block data for a non-constant block
  701. */
  702. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  703. {
  704. ALSSpecificConfig *sconf = &ctx->sconf;
  705. unsigned int block_length = bd->block_length;
  706. unsigned int smp = 0;
  707. unsigned int k;
  708. int opt_order = *bd->opt_order;
  709. int sb;
  710. int64_t y;
  711. int32_t *quant_cof = bd->quant_cof;
  712. int32_t *lpc_cof = bd->lpc_cof;
  713. int32_t *raw_samples = bd->raw_samples;
  714. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  715. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  716. // reverse long-term prediction
  717. if (*bd->use_ltp) {
  718. int ltp_smp;
  719. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  720. int center = ltp_smp - *bd->ltp_lag;
  721. int begin = FFMAX(0, center - 2);
  722. int end = center + 3;
  723. int tab = 5 - (end - begin);
  724. int base;
  725. y = 1 << 6;
  726. for (base = begin; base < end; base++, tab++)
  727. y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
  728. raw_samples[ltp_smp] += y >> 7;
  729. }
  730. }
  731. // reconstruct all samples from residuals
  732. if (bd->ra_block) {
  733. for (smp = 0; smp < opt_order; smp++) {
  734. y = 1 << 19;
  735. for (sb = 0; sb < smp; sb++)
  736. y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  737. *raw_samples++ -= y >> 20;
  738. parcor_to_lpc(smp, quant_cof, lpc_cof);
  739. }
  740. } else {
  741. for (k = 0; k < opt_order; k++)
  742. parcor_to_lpc(k, quant_cof, lpc_cof);
  743. // store previous samples in case that they have to be altered
  744. if (*bd->store_prev_samples)
  745. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  746. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  747. // reconstruct difference signal for prediction (joint-stereo)
  748. if (bd->js_blocks && bd->raw_other) {
  749. int32_t *left, *right;
  750. if (bd->raw_other > raw_samples) { // D = R - L
  751. left = raw_samples;
  752. right = bd->raw_other;
  753. } else { // D = R - L
  754. left = bd->raw_other;
  755. right = raw_samples;
  756. }
  757. for (sb = -1; sb >= -sconf->max_order; sb--)
  758. raw_samples[sb] = right[sb] - left[sb];
  759. }
  760. // reconstruct shifted signal
  761. if (*bd->shift_lsbs)
  762. for (sb = -1; sb >= -sconf->max_order; sb--)
  763. raw_samples[sb] >>= *bd->shift_lsbs;
  764. }
  765. // reverse linear prediction coefficients for efficiency
  766. lpc_cof = lpc_cof + opt_order;
  767. for (sb = 0; sb < opt_order; sb++)
  768. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  769. // reconstruct raw samples
  770. raw_samples = bd->raw_samples + smp;
  771. lpc_cof = lpc_cof_reversed + opt_order;
  772. for (; raw_samples < raw_samples_end; raw_samples++) {
  773. y = 1 << 19;
  774. for (sb = -opt_order; sb < 0; sb++)
  775. y += MUL64(lpc_cof[sb], raw_samples[sb]);
  776. *raw_samples -= y >> 20;
  777. }
  778. raw_samples = bd->raw_samples;
  779. // restore previous samples in case that they have been altered
  780. if (*bd->store_prev_samples)
  781. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  782. sizeof(*raw_samples) * sconf->max_order);
  783. return 0;
  784. }
  785. /** Read the block data.
  786. */
  787. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  788. {
  789. int ret = 0;
  790. GetBitContext *gb = &ctx->gb;
  791. *bd->shift_lsbs = 0;
  792. // read block type flag and read the samples accordingly
  793. if (get_bits1(gb)) {
  794. ret = read_var_block_data(ctx, bd);
  795. } else {
  796. read_const_block_data(ctx, bd);
  797. }
  798. return ret;
  799. }
  800. /** Decode the block data.
  801. */
  802. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  803. {
  804. unsigned int smp;
  805. int ret = 0;
  806. // read block type flag and read the samples accordingly
  807. if (*bd->const_block)
  808. decode_const_block_data(ctx, bd);
  809. else
  810. ret = decode_var_block_data(ctx, bd); // always return 0
  811. if (ret < 0)
  812. return ret;
  813. // TODO: read RLSLMS extension data
  814. if (*bd->shift_lsbs)
  815. for (smp = 0; smp < bd->block_length; smp++)
  816. bd->raw_samples[smp] <<= *bd->shift_lsbs;
  817. return 0;
  818. }
  819. /** Read and decode block data successively.
  820. */
  821. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  822. {
  823. int ret;
  824. if ((ret = read_block(ctx, bd)) < 0)
  825. return ret;
  826. return decode_block(ctx, bd);
  827. }
  828. /** Compute the number of samples left to decode for the current frame and
  829. * sets these samples to zero.
  830. */
  831. static void zero_remaining(unsigned int b, unsigned int b_max,
  832. const unsigned int *div_blocks, int32_t *buf)
  833. {
  834. unsigned int count = 0;
  835. for (; b < b_max; b++)
  836. count += div_blocks[b];
  837. if (count)
  838. memset(buf, 0, sizeof(*buf) * count);
  839. }
  840. /** Decode blocks independently.
  841. */
  842. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  843. unsigned int c, const unsigned int *div_blocks,
  844. unsigned int *js_blocks)
  845. {
  846. int ret;
  847. unsigned int b;
  848. ALSBlockData bd = { 0 };
  849. bd.ra_block = ra_frame;
  850. bd.const_block = ctx->const_block;
  851. bd.shift_lsbs = ctx->shift_lsbs;
  852. bd.opt_order = ctx->opt_order;
  853. bd.store_prev_samples = ctx->store_prev_samples;
  854. bd.use_ltp = ctx->use_ltp;
  855. bd.ltp_lag = ctx->ltp_lag;
  856. bd.ltp_gain = ctx->ltp_gain[0];
  857. bd.quant_cof = ctx->quant_cof[0];
  858. bd.lpc_cof = ctx->lpc_cof[0];
  859. bd.prev_raw_samples = ctx->prev_raw_samples;
  860. bd.raw_samples = ctx->raw_samples[c];
  861. for (b = 0; b < ctx->num_blocks; b++) {
  862. bd.block_length = div_blocks[b];
  863. if ((ret = read_decode_block(ctx, &bd)) < 0) {
  864. // damaged block, write zero for the rest of the frame
  865. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  866. return ret;
  867. }
  868. bd.raw_samples += div_blocks[b];
  869. bd.ra_block = 0;
  870. }
  871. return 0;
  872. }
  873. /** Decode blocks dependently.
  874. */
  875. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  876. unsigned int c, const unsigned int *div_blocks,
  877. unsigned int *js_blocks)
  878. {
  879. ALSSpecificConfig *sconf = &ctx->sconf;
  880. unsigned int offset = 0;
  881. unsigned int b;
  882. int ret;
  883. ALSBlockData bd[2] = { { 0 } };
  884. bd[0].ra_block = ra_frame;
  885. bd[0].const_block = ctx->const_block;
  886. bd[0].shift_lsbs = ctx->shift_lsbs;
  887. bd[0].opt_order = ctx->opt_order;
  888. bd[0].store_prev_samples = ctx->store_prev_samples;
  889. bd[0].use_ltp = ctx->use_ltp;
  890. bd[0].ltp_lag = ctx->ltp_lag;
  891. bd[0].ltp_gain = ctx->ltp_gain[0];
  892. bd[0].quant_cof = ctx->quant_cof[0];
  893. bd[0].lpc_cof = ctx->lpc_cof[0];
  894. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  895. bd[0].js_blocks = *js_blocks;
  896. bd[1].ra_block = ra_frame;
  897. bd[1].const_block = ctx->const_block;
  898. bd[1].shift_lsbs = ctx->shift_lsbs;
  899. bd[1].opt_order = ctx->opt_order;
  900. bd[1].store_prev_samples = ctx->store_prev_samples;
  901. bd[1].use_ltp = ctx->use_ltp;
  902. bd[1].ltp_lag = ctx->ltp_lag;
  903. bd[1].ltp_gain = ctx->ltp_gain[0];
  904. bd[1].quant_cof = ctx->quant_cof[0];
  905. bd[1].lpc_cof = ctx->lpc_cof[0];
  906. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  907. bd[1].js_blocks = *(js_blocks + 1);
  908. // decode all blocks
  909. for (b = 0; b < ctx->num_blocks; b++) {
  910. unsigned int s;
  911. bd[0].block_length = div_blocks[b];
  912. bd[1].block_length = div_blocks[b];
  913. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  914. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  915. bd[0].raw_other = bd[1].raw_samples;
  916. bd[1].raw_other = bd[0].raw_samples;
  917. if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
  918. (ret = read_decode_block(ctx, &bd[1])) < 0)
  919. goto fail;
  920. // reconstruct joint-stereo blocks
  921. if (bd[0].js_blocks) {
  922. if (bd[1].js_blocks)
  923. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair!\n");
  924. for (s = 0; s < div_blocks[b]; s++)
  925. bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
  926. } else if (bd[1].js_blocks) {
  927. for (s = 0; s < div_blocks[b]; s++)
  928. bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
  929. }
  930. offset += div_blocks[b];
  931. bd[0].ra_block = 0;
  932. bd[1].ra_block = 0;
  933. }
  934. // store carryover raw samples,
  935. // the others channel raw samples are stored by the calling function.
  936. memmove(ctx->raw_samples[c] - sconf->max_order,
  937. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  938. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  939. return 0;
  940. fail:
  941. // damaged block, write zero for the rest of the frame
  942. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  943. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  944. return ret;
  945. }
  946. static inline int als_weighting(GetBitContext *gb, int k, int off)
  947. {
  948. int idx = av_clip(decode_rice(gb, k) + off,
  949. 0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
  950. return mcc_weightings[idx];
  951. }
  952. /** Read the channel data.
  953. */
  954. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  955. {
  956. GetBitContext *gb = &ctx->gb;
  957. ALSChannelData *current = cd;
  958. unsigned int channels = ctx->avctx->channels;
  959. int entries = 0;
  960. while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
  961. current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
  962. if (current->master_channel >= channels) {
  963. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel!\n");
  964. return AVERROR_INVALIDDATA;
  965. }
  966. if (current->master_channel != c) {
  967. current->time_diff_flag = get_bits1(gb);
  968. current->weighting[0] = als_weighting(gb, 1, 16);
  969. current->weighting[1] = als_weighting(gb, 2, 14);
  970. current->weighting[2] = als_weighting(gb, 1, 16);
  971. if (current->time_diff_flag) {
  972. current->weighting[3] = als_weighting(gb, 1, 16);
  973. current->weighting[4] = als_weighting(gb, 1, 16);
  974. current->weighting[5] = als_weighting(gb, 1, 16);
  975. current->time_diff_sign = get_bits1(gb);
  976. current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
  977. }
  978. }
  979. current++;
  980. entries++;
  981. }
  982. if (entries == channels) {
  983. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data!\n");
  984. return AVERROR_INVALIDDATA;
  985. }
  986. align_get_bits(gb);
  987. return 0;
  988. }
  989. /** Recursively reverts the inter-channel correlation for a block.
  990. */
  991. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  992. ALSChannelData **cd, int *reverted,
  993. unsigned int offset, int c)
  994. {
  995. ALSChannelData *ch = cd[c];
  996. unsigned int dep = 0;
  997. unsigned int channels = ctx->avctx->channels;
  998. if (reverted[c])
  999. return 0;
  1000. reverted[c] = 1;
  1001. while (dep < channels && !ch[dep].stop_flag) {
  1002. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  1003. ch[dep].master_channel);
  1004. dep++;
  1005. }
  1006. if (dep == channels) {
  1007. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation!\n");
  1008. return AVERROR_INVALIDDATA;
  1009. }
  1010. bd->const_block = ctx->const_block + c;
  1011. bd->shift_lsbs = ctx->shift_lsbs + c;
  1012. bd->opt_order = ctx->opt_order + c;
  1013. bd->store_prev_samples = ctx->store_prev_samples + c;
  1014. bd->use_ltp = ctx->use_ltp + c;
  1015. bd->ltp_lag = ctx->ltp_lag + c;
  1016. bd->ltp_gain = ctx->ltp_gain[c];
  1017. bd->lpc_cof = ctx->lpc_cof[c];
  1018. bd->quant_cof = ctx->quant_cof[c];
  1019. bd->raw_samples = ctx->raw_samples[c] + offset;
  1020. dep = 0;
  1021. while (!ch[dep].stop_flag) {
  1022. unsigned int smp;
  1023. unsigned int begin = 1;
  1024. unsigned int end = bd->block_length - 1;
  1025. int64_t y;
  1026. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  1027. if (ch[dep].time_diff_flag) {
  1028. int t = ch[dep].time_diff_index;
  1029. if (ch[dep].time_diff_sign) {
  1030. t = -t;
  1031. begin -= t;
  1032. } else {
  1033. end -= t;
  1034. }
  1035. for (smp = begin; smp < end; smp++) {
  1036. y = (1 << 6) +
  1037. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  1038. MUL64(ch[dep].weighting[1], master[smp ]) +
  1039. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  1040. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  1041. MUL64(ch[dep].weighting[4], master[smp + t]) +
  1042. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  1043. bd->raw_samples[smp] += y >> 7;
  1044. }
  1045. } else {
  1046. for (smp = begin; smp < end; smp++) {
  1047. y = (1 << 6) +
  1048. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  1049. MUL64(ch[dep].weighting[1], master[smp ]) +
  1050. MUL64(ch[dep].weighting[2], master[smp + 1]);
  1051. bd->raw_samples[smp] += y >> 7;
  1052. }
  1053. }
  1054. dep++;
  1055. }
  1056. return 0;
  1057. }
  1058. /** Read the frame data.
  1059. */
  1060. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  1061. {
  1062. ALSSpecificConfig *sconf = &ctx->sconf;
  1063. AVCodecContext *avctx = ctx->avctx;
  1064. GetBitContext *gb = &ctx->gb;
  1065. unsigned int div_blocks[32]; ///< block sizes.
  1066. unsigned int c;
  1067. unsigned int js_blocks[2];
  1068. uint32_t bs_info = 0;
  1069. int ret;
  1070. // skip the size of the ra unit if present in the frame
  1071. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  1072. skip_bits_long(gb, 32);
  1073. if (sconf->mc_coding && sconf->joint_stereo) {
  1074. ctx->js_switch = get_bits1(gb);
  1075. align_get_bits(gb);
  1076. }
  1077. if (!sconf->mc_coding || ctx->js_switch) {
  1078. int independent_bs = !sconf->joint_stereo;
  1079. for (c = 0; c < avctx->channels; c++) {
  1080. js_blocks[0] = 0;
  1081. js_blocks[1] = 0;
  1082. get_block_sizes(ctx, div_blocks, &bs_info);
  1083. // if joint_stereo and block_switching is set, independent decoding
  1084. // is signaled via the first bit of bs_info
  1085. if (sconf->joint_stereo && sconf->block_switching)
  1086. if (bs_info >> 31)
  1087. independent_bs = 2;
  1088. // if this is the last channel, it has to be decoded independently
  1089. if (c == avctx->channels - 1)
  1090. independent_bs = 1;
  1091. if (independent_bs) {
  1092. ret = decode_blocks_ind(ctx, ra_frame, c,
  1093. div_blocks, js_blocks);
  1094. if (ret < 0)
  1095. return ret;
  1096. independent_bs--;
  1097. } else {
  1098. ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
  1099. if (ret < 0)
  1100. return ret;
  1101. c++;
  1102. }
  1103. // store carryover raw samples
  1104. memmove(ctx->raw_samples[c] - sconf->max_order,
  1105. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1106. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1107. }
  1108. } else { // multi-channel coding
  1109. ALSBlockData bd = { 0 };
  1110. int b, ret;
  1111. int *reverted_channels = ctx->reverted_channels;
  1112. unsigned int offset = 0;
  1113. for (c = 0; c < avctx->channels; c++)
  1114. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  1115. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data!\n");
  1116. return AVERROR_INVALIDDATA;
  1117. }
  1118. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  1119. bd.ra_block = ra_frame;
  1120. bd.prev_raw_samples = ctx->prev_raw_samples;
  1121. get_block_sizes(ctx, div_blocks, &bs_info);
  1122. for (b = 0; b < ctx->num_blocks; b++) {
  1123. bd.block_length = div_blocks[b];
  1124. for (c = 0; c < avctx->channels; c++) {
  1125. bd.const_block = ctx->const_block + c;
  1126. bd.shift_lsbs = ctx->shift_lsbs + c;
  1127. bd.opt_order = ctx->opt_order + c;
  1128. bd.store_prev_samples = ctx->store_prev_samples + c;
  1129. bd.use_ltp = ctx->use_ltp + c;
  1130. bd.ltp_lag = ctx->ltp_lag + c;
  1131. bd.ltp_gain = ctx->ltp_gain[c];
  1132. bd.lpc_cof = ctx->lpc_cof[c];
  1133. bd.quant_cof = ctx->quant_cof[c];
  1134. bd.raw_samples = ctx->raw_samples[c] + offset;
  1135. bd.raw_other = NULL;
  1136. if ((ret = read_block(ctx, &bd)) < 0)
  1137. return ret;
  1138. if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
  1139. return ret;
  1140. }
  1141. for (c = 0; c < avctx->channels; c++) {
  1142. ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
  1143. reverted_channels, offset, c);
  1144. if (ret < 0)
  1145. return ret;
  1146. }
  1147. for (c = 0; c < avctx->channels; c++) {
  1148. bd.const_block = ctx->const_block + c;
  1149. bd.shift_lsbs = ctx->shift_lsbs + c;
  1150. bd.opt_order = ctx->opt_order + c;
  1151. bd.store_prev_samples = ctx->store_prev_samples + c;
  1152. bd.use_ltp = ctx->use_ltp + c;
  1153. bd.ltp_lag = ctx->ltp_lag + c;
  1154. bd.ltp_gain = ctx->ltp_gain[c];
  1155. bd.lpc_cof = ctx->lpc_cof[c];
  1156. bd.quant_cof = ctx->quant_cof[c];
  1157. bd.raw_samples = ctx->raw_samples[c] + offset;
  1158. if ((ret = decode_block(ctx, &bd)) < 0)
  1159. return ret;
  1160. }
  1161. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1162. offset += div_blocks[b];
  1163. bd.ra_block = 0;
  1164. }
  1165. // store carryover raw samples
  1166. for (c = 0; c < avctx->channels; c++)
  1167. memmove(ctx->raw_samples[c] - sconf->max_order,
  1168. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1169. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1170. }
  1171. // TODO: read_diff_float_data
  1172. return 0;
  1173. }
  1174. /** Decode an ALS frame.
  1175. */
  1176. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
  1177. AVPacket *avpkt)
  1178. {
  1179. ALSDecContext *ctx = avctx->priv_data;
  1180. AVFrame *frame = data;
  1181. ALSSpecificConfig *sconf = &ctx->sconf;
  1182. const uint8_t *buffer = avpkt->data;
  1183. int buffer_size = avpkt->size;
  1184. int invalid_frame, ret;
  1185. unsigned int c, sample, ra_frame, bytes_read, shift;
  1186. init_get_bits(&ctx->gb, buffer, buffer_size * 8);
  1187. // In the case that the distance between random access frames is set to zero
  1188. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1189. // For the first frame, if prediction is used, all samples used from the
  1190. // previous frame are assumed to be zero.
  1191. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1192. // the last frame to decode might have a different length
  1193. if (sconf->samples != 0xFFFFFFFF)
  1194. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1195. sconf->frame_length);
  1196. else
  1197. ctx->cur_frame_length = sconf->frame_length;
  1198. // decode the frame data
  1199. if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
  1200. av_log(ctx->avctx, AV_LOG_WARNING,
  1201. "Reading frame data failed. Skipping RA unit.\n");
  1202. ctx->frame_id++;
  1203. /* get output buffer */
  1204. frame->nb_samples = ctx->cur_frame_length;
  1205. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1206. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1207. return ret;
  1208. }
  1209. // transform decoded frame into output format
  1210. #define INTERLEAVE_OUTPUT(bps) \
  1211. { \
  1212. int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
  1213. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1214. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1215. for (c = 0; c < avctx->channels; c++) \
  1216. *dest++ = ctx->raw_samples[c][sample] << shift; \
  1217. }
  1218. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1219. INTERLEAVE_OUTPUT(16)
  1220. } else {
  1221. INTERLEAVE_OUTPUT(32)
  1222. }
  1223. // update CRC
  1224. if (sconf->crc_enabled && (avctx->err_recognition & AV_EF_CRCCHECK)) {
  1225. int swap = HAVE_BIGENDIAN != sconf->msb_first;
  1226. if (ctx->avctx->bits_per_raw_sample == 24) {
  1227. int32_t *src = (int32_t *)frame->data[0];
  1228. for (sample = 0;
  1229. sample < ctx->cur_frame_length * avctx->channels;
  1230. sample++) {
  1231. int32_t v;
  1232. if (swap)
  1233. v = av_bswap32(src[sample]);
  1234. else
  1235. v = src[sample];
  1236. if (!HAVE_BIGENDIAN)
  1237. v >>= 8;
  1238. ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
  1239. }
  1240. } else {
  1241. uint8_t *crc_source;
  1242. if (swap) {
  1243. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1244. int16_t *src = (int16_t*) frame->data[0];
  1245. int16_t *dest = (int16_t*) ctx->crc_buffer;
  1246. for (sample = 0;
  1247. sample < ctx->cur_frame_length * avctx->channels;
  1248. sample++)
  1249. *dest++ = av_bswap16(src[sample]);
  1250. } else {
  1251. ctx->dsp.bswap_buf((uint32_t*)ctx->crc_buffer,
  1252. (uint32_t *)frame->data[0],
  1253. ctx->cur_frame_length * avctx->channels);
  1254. }
  1255. crc_source = ctx->crc_buffer;
  1256. } else {
  1257. crc_source = frame->data[0];
  1258. }
  1259. ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
  1260. ctx->cur_frame_length * avctx->channels *
  1261. av_get_bytes_per_sample(avctx->sample_fmt));
  1262. }
  1263. // check CRC sums if this is the last frame
  1264. if (ctx->cur_frame_length != sconf->frame_length &&
  1265. ctx->crc_org != ctx->crc) {
  1266. av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
  1267. }
  1268. }
  1269. *got_frame_ptr = 1;
  1270. bytes_read = invalid_frame ? buffer_size :
  1271. (get_bits_count(&ctx->gb) + 7) >> 3;
  1272. return bytes_read;
  1273. }
  1274. /** Uninitialize the ALS decoder.
  1275. */
  1276. static av_cold int decode_end(AVCodecContext *avctx)
  1277. {
  1278. ALSDecContext *ctx = avctx->priv_data;
  1279. av_freep(&ctx->sconf.chan_pos);
  1280. ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1281. av_freep(&ctx->const_block);
  1282. av_freep(&ctx->shift_lsbs);
  1283. av_freep(&ctx->opt_order);
  1284. av_freep(&ctx->store_prev_samples);
  1285. av_freep(&ctx->use_ltp);
  1286. av_freep(&ctx->ltp_lag);
  1287. av_freep(&ctx->ltp_gain);
  1288. av_freep(&ctx->ltp_gain_buffer);
  1289. av_freep(&ctx->quant_cof);
  1290. av_freep(&ctx->lpc_cof);
  1291. av_freep(&ctx->quant_cof_buffer);
  1292. av_freep(&ctx->lpc_cof_buffer);
  1293. av_freep(&ctx->lpc_cof_reversed_buffer);
  1294. av_freep(&ctx->prev_raw_samples);
  1295. av_freep(&ctx->raw_samples);
  1296. av_freep(&ctx->raw_buffer);
  1297. av_freep(&ctx->chan_data);
  1298. av_freep(&ctx->chan_data_buffer);
  1299. av_freep(&ctx->reverted_channels);
  1300. av_freep(&ctx->crc_buffer);
  1301. return 0;
  1302. }
  1303. /** Initialize the ALS decoder.
  1304. */
  1305. static av_cold int decode_init(AVCodecContext *avctx)
  1306. {
  1307. unsigned int c;
  1308. unsigned int channel_size;
  1309. int num_buffers, ret;
  1310. ALSDecContext *ctx = avctx->priv_data;
  1311. ALSSpecificConfig *sconf = &ctx->sconf;
  1312. ctx->avctx = avctx;
  1313. if (!avctx->extradata) {
  1314. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
  1315. return AVERROR_INVALIDDATA;
  1316. }
  1317. if ((ret = read_specific_config(ctx)) < 0) {
  1318. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
  1319. goto fail;
  1320. }
  1321. if ((ret = check_specific_config(ctx)) < 0) {
  1322. goto fail;
  1323. }
  1324. if (sconf->bgmc) {
  1325. ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1326. if (ret < 0)
  1327. goto fail;
  1328. }
  1329. if (sconf->floating) {
  1330. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1331. avctx->bits_per_raw_sample = 32;
  1332. } else {
  1333. avctx->sample_fmt = sconf->resolution > 1
  1334. ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
  1335. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1336. }
  1337. // set maximum Rice parameter for progressive decoding based on resolution
  1338. // This is not specified in 14496-3 but actually done by the reference
  1339. // codec RM22 revision 2.
  1340. ctx->s_max = sconf->resolution > 1 ? 31 : 15;
  1341. // set lag value for long-term prediction
  1342. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1343. (avctx->sample_rate >= 192000);
  1344. // allocate quantized parcor coefficient buffer
  1345. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1346. ctx->quant_cof = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
  1347. ctx->lpc_cof = av_malloc(sizeof(*ctx->lpc_cof) * num_buffers);
  1348. ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
  1349. num_buffers * sconf->max_order);
  1350. ctx->lpc_cof_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1351. num_buffers * sconf->max_order);
  1352. ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1353. sconf->max_order);
  1354. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1355. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1356. !ctx->lpc_cof_reversed_buffer) {
  1357. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1358. ret = AVERROR(ENOMEM);
  1359. goto fail;
  1360. }
  1361. // assign quantized parcor coefficient buffers
  1362. for (c = 0; c < num_buffers; c++) {
  1363. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1364. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1365. }
  1366. // allocate and assign lag and gain data buffer for ltp mode
  1367. ctx->const_block = av_malloc (sizeof(*ctx->const_block) * num_buffers);
  1368. ctx->shift_lsbs = av_malloc (sizeof(*ctx->shift_lsbs) * num_buffers);
  1369. ctx->opt_order = av_malloc (sizeof(*ctx->opt_order) * num_buffers);
  1370. ctx->store_prev_samples = av_malloc(sizeof(*ctx->store_prev_samples) * num_buffers);
  1371. ctx->use_ltp = av_mallocz(sizeof(*ctx->use_ltp) * num_buffers);
  1372. ctx->ltp_lag = av_malloc (sizeof(*ctx->ltp_lag) * num_buffers);
  1373. ctx->ltp_gain = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
  1374. ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
  1375. num_buffers * 5);
  1376. if (!ctx->const_block || !ctx->shift_lsbs ||
  1377. !ctx->opt_order || !ctx->store_prev_samples ||
  1378. !ctx->use_ltp || !ctx->ltp_lag ||
  1379. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1380. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1381. ret = AVERROR(ENOMEM);
  1382. goto fail;
  1383. }
  1384. for (c = 0; c < num_buffers; c++)
  1385. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1386. // allocate and assign channel data buffer for mcc mode
  1387. if (sconf->mc_coding) {
  1388. ctx->chan_data_buffer = av_malloc(sizeof(*ctx->chan_data_buffer) *
  1389. num_buffers * num_buffers);
  1390. ctx->chan_data = av_malloc(sizeof(*ctx->chan_data) *
  1391. num_buffers);
  1392. ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
  1393. num_buffers);
  1394. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1395. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1396. ret = AVERROR(ENOMEM);
  1397. goto fail;
  1398. }
  1399. for (c = 0; c < num_buffers; c++)
  1400. ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
  1401. } else {
  1402. ctx->chan_data = NULL;
  1403. ctx->chan_data_buffer = NULL;
  1404. ctx->reverted_channels = NULL;
  1405. }
  1406. channel_size = sconf->frame_length + sconf->max_order;
  1407. ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
  1408. ctx->raw_buffer = av_mallocz(sizeof(*ctx-> raw_buffer) * avctx->channels * channel_size);
  1409. ctx->raw_samples = av_malloc (sizeof(*ctx-> raw_samples) * avctx->channels);
  1410. // allocate previous raw sample buffer
  1411. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1412. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1413. ret = AVERROR(ENOMEM);
  1414. goto fail;
  1415. }
  1416. // assign raw samples buffers
  1417. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1418. for (c = 1; c < avctx->channels; c++)
  1419. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1420. // allocate crc buffer
  1421. if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
  1422. (avctx->err_recognition & AV_EF_CRCCHECK)) {
  1423. ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
  1424. ctx->cur_frame_length *
  1425. avctx->channels *
  1426. av_get_bytes_per_sample(avctx->sample_fmt));
  1427. if (!ctx->crc_buffer) {
  1428. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1429. ret = AVERROR(ENOMEM);
  1430. goto fail;
  1431. }
  1432. }
  1433. ff_dsputil_init(&ctx->dsp, avctx);
  1434. return 0;
  1435. fail:
  1436. decode_end(avctx);
  1437. return ret;
  1438. }
  1439. /** Flush (reset) the frame ID after seeking.
  1440. */
  1441. static av_cold void flush(AVCodecContext *avctx)
  1442. {
  1443. ALSDecContext *ctx = avctx->priv_data;
  1444. ctx->frame_id = 0;
  1445. }
  1446. AVCodec ff_als_decoder = {
  1447. .name = "als",
  1448. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1449. .type = AVMEDIA_TYPE_AUDIO,
  1450. .id = AV_CODEC_ID_MP4ALS,
  1451. .priv_data_size = sizeof(ALSDecContext),
  1452. .init = decode_init,
  1453. .close = decode_end,
  1454. .decode = decode_frame,
  1455. .flush = flush,
  1456. .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
  1457. };