You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2765 lines
74KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph can be represented using a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  19. @file{libavfilter/avfilter.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance. It may have one of the two allowed forms:
  35. @itemize
  36. @item
  37. A ':'-separated list of @var{key=value} pairs.
  38. @item
  39. A ':'-separated list of @var{value}. In this case, the keys are assumed to be
  40. the option names in the order they are declared. E.g. the @code{fade} filter
  41. declares three options in this order -- @option{type}, @option{start_frame} and
  42. @option{nb_frames}. Then the parameter list @var{in:0:30} means that the value
  43. @var{in} is assigned to the option @option{type}, @var{0} to
  44. @option{start_frame} and @var{30} to @option{nb_frames}.
  45. @end itemize
  46. If the option value itself is a list of items (e.g. the @code{format} filter
  47. takes a list of pixel formats), the items in the list are usually separated by
  48. '|'.
  49. The list of arguments can be quoted using the character "'" as initial
  50. and ending mark, and the character '\' for escaping the characters
  51. within the quoted text; otherwise the argument string is considered
  52. terminated when the next special character (belonging to the set
  53. "[]=;,") is encountered.
  54. The name and arguments of the filter are optionally preceded and
  55. followed by a list of link labels.
  56. A link label allows to name a link and associate it to a filter output
  57. or input pad. The preceding labels @var{in_link_1}
  58. ... @var{in_link_N}, are associated to the filter input pads,
  59. the following labels @var{out_link_1} ... @var{out_link_M}, are
  60. associated to the output pads.
  61. When two link labels with the same name are found in the
  62. filtergraph, a link between the corresponding input and output pad is
  63. created.
  64. If an output pad is not labelled, it is linked by default to the first
  65. unlabelled input pad of the next filter in the filterchain.
  66. For example in the filterchain:
  67. @example
  68. nullsrc, split[L1], [L2]overlay, nullsink
  69. @end example
  70. the split filter instance has two output pads, and the overlay filter
  71. instance two input pads. The first output pad of split is labelled
  72. "L1", the first input pad of overlay is labelled "L2", and the second
  73. output pad of split is linked to the second input pad of overlay,
  74. which are both unlabelled.
  75. In a complete filterchain all the unlabelled filter input and output
  76. pads must be connected. A filtergraph is considered valid if all the
  77. filter input and output pads of all the filterchains are connected.
  78. Libavfilter will automatically insert scale filters where format
  79. conversion is required. It is possible to specify swscale flags
  80. for those automatically inserted scalers by prepending
  81. @code{sws_flags=@var{flags};}
  82. to the filtergraph description.
  83. Follows a BNF description for the filtergraph syntax:
  84. @example
  85. @var{NAME} ::= sequence of alphanumeric characters and '_'
  86. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  87. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  88. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  89. @var{FILTER} ::= [@var{LINKLABELS}] @var{NAME} ["=" @var{FILTER_ARGUMENTS}] [@var{LINKLABELS}]
  90. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  91. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  92. @end example
  93. @c man end FILTERGRAPH DESCRIPTION
  94. @chapter Audio Filters
  95. @c man begin AUDIO FILTERS
  96. When you configure your Libav build, you can disable any of the
  97. existing filters using --disable-filters.
  98. The configure output will show the audio filters included in your
  99. build.
  100. Below is a description of the currently available audio filters.
  101. @section aformat
  102. Convert the input audio to one of the specified formats. The framework will
  103. negotiate the most appropriate format to minimize conversions.
  104. The filter accepts the following named parameters:
  105. @table @option
  106. @item sample_fmts
  107. A '|'-separated list of requested sample formats.
  108. @item sample_rates
  109. A '|'-separated list of requested sample rates.
  110. @item channel_layouts
  111. A '|'-separated list of requested channel layouts.
  112. @end table
  113. If a parameter is omitted, all values are allowed.
  114. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  115. @example
  116. aformat=sample_fmts=u8|s16:channel_layouts=stereo
  117. @end example
  118. @section amix
  119. Mixes multiple audio inputs into a single output.
  120. For example
  121. @example
  122. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  123. @end example
  124. will mix 3 input audio streams to a single output with the same duration as the
  125. first input and a dropout transition time of 3 seconds.
  126. The filter accepts the following named parameters:
  127. @table @option
  128. @item inputs
  129. Number of inputs. If unspecified, it defaults to 2.
  130. @item duration
  131. How to determine the end-of-stream.
  132. @table @option
  133. @item longest
  134. Duration of longest input. (default)
  135. @item shortest
  136. Duration of shortest input.
  137. @item first
  138. Duration of first input.
  139. @end table
  140. @item dropout_transition
  141. Transition time, in seconds, for volume renormalization when an input
  142. stream ends. The default value is 2 seconds.
  143. @end table
  144. @section anull
  145. Pass the audio source unchanged to the output.
  146. @section asetpts
  147. Change the PTS (presentation timestamp) of the input audio frames.
  148. This filter accepts the following options:
  149. @table @option
  150. @item expr
  151. The expression which is evaluated for each frame to construct its timestamp.
  152. @end table
  153. The expression is evaluated through the eval API and can contain the following
  154. constants:
  155. @table @option
  156. @item PTS
  157. the presentation timestamp in input
  158. @item PI
  159. Greek PI
  160. @item PHI
  161. golden ratio
  162. @item E
  163. Euler number
  164. @item N
  165. Number of the audio samples pass through the filter so far, starting at 0.
  166. @item S
  167. Number of the audio samples in the current frame.
  168. @item SR
  169. Audio sample rate.
  170. @item STARTPTS
  171. the PTS of the first frame
  172. @item PREV_INPTS
  173. previous input PTS
  174. @item PREV_OUTPTS
  175. previous output PTS
  176. @item RTCTIME
  177. wallclock (RTC) time in microseconds
  178. @item RTCSTART
  179. wallclock (RTC) time at the start of the movie in microseconds
  180. @end table
  181. Some examples follow:
  182. @example
  183. # start counting PTS from zero
  184. asetpts=expr=PTS-STARTPTS
  185. #generate timestamps by counting samples
  186. asetpts=expr=N/SR/TB
  187. # generate timestamps from a "live source" and rebase onto the current timebase
  188. asetpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  189. @end example
  190. @section ashowinfo
  191. Show a line containing various information for each input audio frame.
  192. The input audio is not modified.
  193. The shown line contains a sequence of key/value pairs of the form
  194. @var{key}:@var{value}.
  195. A description of each shown parameter follows:
  196. @table @option
  197. @item n
  198. sequential number of the input frame, starting from 0
  199. @item pts
  200. Presentation timestamp of the input frame, in time base units; the time base
  201. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  202. @item pts_time
  203. presentation timestamp of the input frame in seconds
  204. @item fmt
  205. sample format
  206. @item chlayout
  207. channel layout
  208. @item rate
  209. sample rate for the audio frame
  210. @item nb_samples
  211. number of samples (per channel) in the frame
  212. @item checksum
  213. Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio
  214. the data is treated as if all the planes were concatenated.
  215. @item plane_checksums
  216. A list of Adler-32 checksums for each data plane.
  217. @end table
  218. @section asplit
  219. Split input audio into several identical outputs.
  220. The filter accepts a single parameter which specifies the number of outputs. If
  221. unspecified, it defaults to 2.
  222. For example
  223. @example
  224. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  225. @end example
  226. will create 5 copies of the input audio.
  227. @section asyncts
  228. Synchronize audio data with timestamps by squeezing/stretching it and/or
  229. dropping samples/adding silence when needed.
  230. The filter accepts the following named parameters:
  231. @table @option
  232. @item compensate
  233. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  234. by default. When disabled, time gaps are covered with silence.
  235. @item min_delta
  236. Minimum difference between timestamps and audio data (in seconds) to trigger
  237. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  238. this filter, try setting this parameter to 0.
  239. @item max_comp
  240. Maximum compensation in samples per second. Relevant only with compensate=1.
  241. Default value 500.
  242. @item first_pts
  243. Assume the first pts should be this value. The time base is 1 / sample rate.
  244. This allows for padding/trimming at the start of stream. By default, no
  245. assumption is made about the first frame's expected pts, so no padding or
  246. trimming is done. For example, this could be set to 0 to pad the beginning with
  247. silence if an audio stream starts after the video stream or to trim any samples
  248. with a negative pts due to encoder delay.
  249. @end table
  250. @section atrim
  251. Trim the input so that the output contains one continuous subpart of the input.
  252. This filter accepts the following options:
  253. @table @option
  254. @item start
  255. Timestamp (in seconds) of the start of the kept section. I.e. the audio sample
  256. with the timestamp @var{start} will be the first sample in the output.
  257. @item end
  258. Timestamp (in seconds) of the first audio sample that will be dropped. I.e. the
  259. audio sample immediately preceding the one with the timestamp @var{end} will be
  260. the last sample in the output.
  261. @item start_pts
  262. Same as @var{start}, except this option sets the start timestamp in samples
  263. instead of seconds.
  264. @item end_pts
  265. Same as @var{end}, except this option sets the end timestamp in samples instead
  266. of seconds.
  267. @item duration
  268. Maximum duration of the output in seconds.
  269. @item start_sample
  270. Number of the first sample that should be passed to output.
  271. @item end_sample
  272. Number of the first sample that should be dropped.
  273. @end table
  274. Note that the first two sets of the start/end options and the @option{duration}
  275. option look at the frame timestamp, while the _sample options simply count the
  276. samples that pass through the filter. So start/end_pts and start/end_sample will
  277. give different results when the timestamps are wrong, inexact or do not start at
  278. zero. Also note that this filter does not modify the timestamps. If you wish
  279. that the output timestamps start at zero, insert the asetpts filter after the
  280. atrim filter.
  281. If multiple start or end options are set, this filter tries to be greedy and
  282. keep all samples that match at least one of the specified constraints. To keep
  283. only the part that matches all the constraints at once, chain multiple atrim
  284. filters.
  285. The defaults are such that all the input is kept. So it is possible to set e.g.
  286. just the end values to keep everything before the specified time.
  287. Examples:
  288. @itemize
  289. @item
  290. drop everything except the second minute of input
  291. @example
  292. avconv -i INPUT -af atrim=60:120
  293. @end example
  294. @item
  295. keep only the first 1000 samples
  296. @example
  297. avconv -i INPUT -af atrim=end_sample=1000
  298. @end example
  299. @end itemize
  300. @section channelsplit
  301. Split each channel in input audio stream into a separate output stream.
  302. This filter accepts the following named parameters:
  303. @table @option
  304. @item channel_layout
  305. Channel layout of the input stream. Default is "stereo".
  306. @end table
  307. For example, assuming a stereo input MP3 file
  308. @example
  309. avconv -i in.mp3 -filter_complex channelsplit out.mkv
  310. @end example
  311. will create an output Matroska file with two audio streams, one containing only
  312. the left channel and the other the right channel.
  313. To split a 5.1 WAV file into per-channel files
  314. @example
  315. avconv -i in.wav -filter_complex
  316. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  317. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  318. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  319. side_right.wav
  320. @end example
  321. @section channelmap
  322. Remap input channels to new locations.
  323. This filter accepts the following named parameters:
  324. @table @option
  325. @item channel_layout
  326. Channel layout of the output stream.
  327. @item map
  328. Map channels from input to output. The argument is a '|'-separated list of
  329. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  330. @var{in_channel} form. @var{in_channel} can be either the name of the input
  331. channel (e.g. FL for front left) or its index in the input channel layout.
  332. @var{out_channel} is the name of the output channel or its index in the output
  333. channel layout. If @var{out_channel} is not given then it is implicitly an
  334. index, starting with zero and increasing by one for each mapping.
  335. @end table
  336. If no mapping is present, the filter will implicitly map input channels to
  337. output channels preserving index.
  338. For example, assuming a 5.1+downmix input MOV file
  339. @example
  340. avconv -i in.mov -filter 'channelmap=map=DL-FL|DR-FR' out.wav
  341. @end example
  342. will create an output WAV file tagged as stereo from the downmix channels of
  343. the input.
  344. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  345. @example
  346. avconv -i in.wav -filter 'channelmap=1|2|0|5|3|4:channel_layout=5.1' out.wav
  347. @end example
  348. @section join
  349. Join multiple input streams into one multi-channel stream.
  350. The filter accepts the following named parameters:
  351. @table @option
  352. @item inputs
  353. Number of input streams. Defaults to 2.
  354. @item channel_layout
  355. Desired output channel layout. Defaults to stereo.
  356. @item map
  357. Map channels from inputs to output. The argument is a '|'-separated list of
  358. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  359. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  360. can be either the name of the input channel (e.g. FL for front left) or its
  361. index in the specified input stream. @var{out_channel} is the name of the output
  362. channel.
  363. @end table
  364. The filter will attempt to guess the mappings when those are not specified
  365. explicitly. It does so by first trying to find an unused matching input channel
  366. and if that fails it picks the first unused input channel.
  367. E.g. to join 3 inputs (with properly set channel layouts)
  368. @example
  369. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  370. @end example
  371. To build a 5.1 output from 6 single-channel streams:
  372. @example
  373. avconv -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  374. 'join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE'
  375. out
  376. @end example
  377. @section resample
  378. Convert the audio sample format, sample rate and channel layout. This filter is
  379. not meant to be used directly, it is inserted automatically by libavfilter
  380. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  381. conversion.
  382. @section volume
  383. Adjust the input audio volume.
  384. The filter accepts the following named parameters:
  385. @table @option
  386. @item volume
  387. Expresses how the audio volume will be increased or decreased.
  388. Output values are clipped to the maximum value.
  389. The output audio volume is given by the relation:
  390. @example
  391. @var{output_volume} = @var{volume} * @var{input_volume}
  392. @end example
  393. Default value for @var{volume} is 1.0.
  394. @item precision
  395. Mathematical precision.
  396. This determines which input sample formats will be allowed, which affects the
  397. precision of the volume scaling.
  398. @table @option
  399. @item fixed
  400. 8-bit fixed-point; limits input sample format to U8, S16, and S32.
  401. @item float
  402. 32-bit floating-point; limits input sample format to FLT. (default)
  403. @item double
  404. 64-bit floating-point; limits input sample format to DBL.
  405. @end table
  406. @end table
  407. @subsection Examples
  408. @itemize
  409. @item
  410. Halve the input audio volume:
  411. @example
  412. volume=volume=0.5
  413. volume=volume=1/2
  414. volume=volume=-6.0206dB
  415. @end example
  416. @item
  417. Increase input audio power by 6 decibels using fixed-point precision:
  418. @example
  419. volume=volume=6dB:precision=fixed
  420. @end example
  421. @end itemize
  422. @c man end AUDIO FILTERS
  423. @chapter Audio Sources
  424. @c man begin AUDIO SOURCES
  425. Below is a description of the currently available audio sources.
  426. @section anullsrc
  427. Null audio source, never return audio frames. It is mainly useful as a
  428. template and to be employed in analysis / debugging tools.
  429. It accepts as optional parameter a string of the form
  430. @var{sample_rate}:@var{channel_layout}.
  431. @var{sample_rate} specify the sample rate, and defaults to 44100.
  432. @var{channel_layout} specify the channel layout, and can be either an
  433. integer or a string representing a channel layout. The default value
  434. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  435. Check the channel_layout_map definition in
  436. @file{libavutil/channel_layout.c} for the mapping between strings and
  437. channel layout values.
  438. Follow some examples:
  439. @example
  440. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  441. anullsrc=48000:4
  442. # same as
  443. anullsrc=48000:mono
  444. @end example
  445. @section abuffer
  446. Buffer audio frames, and make them available to the filter chain.
  447. This source is not intended to be part of user-supplied graph descriptions but
  448. for insertion by calling programs through the interface defined in
  449. @file{libavfilter/buffersrc.h}.
  450. It accepts the following named parameters:
  451. @table @option
  452. @item time_base
  453. Timebase which will be used for timestamps of submitted frames. It must be
  454. either a floating-point number or in @var{numerator}/@var{denominator} form.
  455. @item sample_rate
  456. Audio sample rate.
  457. @item sample_fmt
  458. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  459. @item channel_layout
  460. Channel layout of the audio data, in the form that can be accepted by
  461. @code{av_get_channel_layout()}.
  462. @end table
  463. All the parameters need to be explicitly defined.
  464. @c man end AUDIO SOURCES
  465. @chapter Audio Sinks
  466. @c man begin AUDIO SINKS
  467. Below is a description of the currently available audio sinks.
  468. @section anullsink
  469. Null audio sink, do absolutely nothing with the input audio. It is
  470. mainly useful as a template and to be employed in analysis / debugging
  471. tools.
  472. @section abuffersink
  473. This sink is intended for programmatic use. Frames that arrive on this sink can
  474. be retrieved by the calling program using the interface defined in
  475. @file{libavfilter/buffersink.h}.
  476. This filter accepts no parameters.
  477. @c man end AUDIO SINKS
  478. @chapter Video Filters
  479. @c man begin VIDEO FILTERS
  480. When you configure your Libav build, you can disable any of the
  481. existing filters using --disable-filters.
  482. The configure output will show the video filters included in your
  483. build.
  484. Below is a description of the currently available video filters.
  485. @section blackframe
  486. Detect frames that are (almost) completely black. Can be useful to
  487. detect chapter transitions or commercials. Output lines consist of
  488. the frame number of the detected frame, the percentage of blackness,
  489. the position in the file if known or -1 and the timestamp in seconds.
  490. In order to display the output lines, you need to set the loglevel at
  491. least to the AV_LOG_INFO value.
  492. The filter accepts the following options:
  493. @table @option
  494. @item amount
  495. The percentage of the pixels that have to be below the threshold, defaults to
  496. 98.
  497. @item threshold
  498. Threshold below which a pixel value is considered black, defaults to 32.
  499. @end table
  500. @section boxblur
  501. Apply boxblur algorithm to the input video.
  502. This filter accepts the following options:
  503. @table @option
  504. @item luma_radius
  505. @item luma_power
  506. @item chroma_radius
  507. @item chroma_power
  508. @item alpha_radius
  509. @item alpha_power
  510. @end table
  511. Chroma and alpha parameters are optional, if not specified they default
  512. to the corresponding values set for @var{luma_radius} and
  513. @var{luma_power}.
  514. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  515. the radius in pixels of the box used for blurring the corresponding
  516. input plane. They are expressions, and can contain the following
  517. constants:
  518. @table @option
  519. @item w, h
  520. the input width and height in pixels
  521. @item cw, ch
  522. the input chroma image width and height in pixels
  523. @item hsub, vsub
  524. horizontal and vertical chroma subsample values. For example for the
  525. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  526. @end table
  527. The radius must be a non-negative number, and must not be greater than
  528. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  529. and of @code{min(cw,ch)/2} for the chroma planes.
  530. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  531. how many times the boxblur filter is applied to the corresponding
  532. plane.
  533. Some examples follow:
  534. @itemize
  535. @item
  536. Apply a boxblur filter with luma, chroma, and alpha radius
  537. set to 2:
  538. @example
  539. boxblur=luma_radius=2:luma_power=1
  540. @end example
  541. @item
  542. Set luma radius to 2, alpha and chroma radius to 0
  543. @example
  544. boxblur=2:1:0:0:0:0
  545. @end example
  546. @item
  547. Set luma and chroma radius to a fraction of the video dimension
  548. @example
  549. boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1
  550. @end example
  551. @end itemize
  552. @section copy
  553. Copy the input source unchanged to the output. Mainly useful for
  554. testing purposes.
  555. @section crop
  556. Crop the input video to given dimensions.
  557. This filter accepts the following options:
  558. @table @option
  559. @item out_w
  560. Width of the output video.
  561. @item out_h
  562. Height of the output video.
  563. @item x
  564. Horizontal position, in the input video, of the left edge of the output video.
  565. @item y
  566. Vertical position, in the input video, of the top edge of the output video.
  567. @end table
  568. The parameters are expressions containing the following constants:
  569. @table @option
  570. @item E, PI, PHI
  571. the corresponding mathematical approximated values for e
  572. (euler number), pi (greek PI), PHI (golden ratio)
  573. @item x, y
  574. the computed values for @var{x} and @var{y}. They are evaluated for
  575. each new frame.
  576. @item in_w, in_h
  577. the input width and height
  578. @item iw, ih
  579. same as @var{in_w} and @var{in_h}
  580. @item out_w, out_h
  581. the output (cropped) width and height
  582. @item ow, oh
  583. same as @var{out_w} and @var{out_h}
  584. @item n
  585. the number of input frame, starting from 0
  586. @item t
  587. timestamp expressed in seconds, NAN if the input timestamp is unknown
  588. @end table
  589. The @var{out_w} and @var{out_h} parameters specify the expressions for
  590. the width and height of the output (cropped) video. They are
  591. evaluated just at the configuration of the filter.
  592. The default value of @var{out_w} is "in_w", and the default value of
  593. @var{out_h} is "in_h".
  594. The expression for @var{out_w} may depend on the value of @var{out_h},
  595. and the expression for @var{out_h} may depend on @var{out_w}, but they
  596. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  597. evaluated after @var{out_w} and @var{out_h}.
  598. The @var{x} and @var{y} parameters specify the expressions for the
  599. position of the top-left corner of the output (non-cropped) area. They
  600. are evaluated for each frame. If the evaluated value is not valid, it
  601. is approximated to the nearest valid value.
  602. The default value of @var{x} is "(in_w-out_w)/2", and the default
  603. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  604. the center of the input image.
  605. The expression for @var{x} may depend on @var{y}, and the expression
  606. for @var{y} may depend on @var{x}.
  607. Follow some examples:
  608. @example
  609. # crop the central input area with size 100x100
  610. crop=out_w=100:out_h=100
  611. # crop the central input area with size 2/3 of the input video
  612. "crop=out_w=2/3*in_w:out_h=2/3*in_h"
  613. # crop the input video central square
  614. crop=out_w=in_h
  615. # delimit the rectangle with the top-left corner placed at position
  616. # 100:100 and the right-bottom corner corresponding to the right-bottom
  617. # corner of the input image.
  618. crop=out_w=in_w-100:out_h=in_h-100:x=100:y=100
  619. # crop 10 pixels from the left and right borders, and 20 pixels from
  620. # the top and bottom borders
  621. "crop=out_w=in_w-2*10:out_h=in_h-2*20"
  622. # keep only the bottom right quarter of the input image
  623. "crop=out_w=in_w/2:out_h=in_h/2:x=in_w/2:y=in_h/2"
  624. # crop height for getting Greek harmony
  625. "crop=out_w=in_w:out_h=1/PHI*in_w"
  626. # trembling effect
  627. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  628. # erratic camera effect depending on timestamp
  629. "crop=out_w=in_w/2:out_h=in_h/2:x=(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):y=(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  630. # set x depending on the value of y
  631. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  632. @end example
  633. @section cropdetect
  634. Auto-detect crop size.
  635. Calculate necessary cropping parameters and prints the recommended
  636. parameters through the logging system. The detected dimensions
  637. correspond to the non-black area of the input video.
  638. This filter accepts the following options:
  639. @table @option
  640. @item limit
  641. Threshold, which can be optionally specified from nothing (0) to
  642. everything (255), defaults to 24.
  643. @item round
  644. Value which the width/height should be divisible by, defaults to
  645. 16. The offset is automatically adjusted to center the video. Use 2 to
  646. get only even dimensions (needed for 4:2:2 video). 16 is best when
  647. encoding to most video codecs.
  648. @item reset
  649. Counter that determines after how many frames cropdetect will reset
  650. the previously detected largest video area and start over to detect
  651. the current optimal crop area. Defaults to 0.
  652. This can be useful when channel logos distort the video area. 0
  653. indicates never reset and return the largest area encountered during
  654. playback.
  655. @end table
  656. @section delogo
  657. Suppress a TV station logo by a simple interpolation of the surrounding
  658. pixels. Just set a rectangle covering the logo and watch it disappear
  659. (and sometimes something even uglier appear - your mileage may vary).
  660. This filter accepts the following options:
  661. @table @option
  662. @item x, y
  663. Specify the top left corner coordinates of the logo. They must be
  664. specified.
  665. @item w, h
  666. Specify the width and height of the logo to clear. They must be
  667. specified.
  668. @item band, t
  669. Specify the thickness of the fuzzy edge of the rectangle (added to
  670. @var{w} and @var{h}). The default value is 4.
  671. @item show
  672. When set to 1, a green rectangle is drawn on the screen to simplify
  673. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  674. @var{band} is set to 4. The default value is 0.
  675. @end table
  676. Some examples follow.
  677. @itemize
  678. @item
  679. Set a rectangle covering the area with top left corner coordinates 0,0
  680. and size 100x77, setting a band of size 10:
  681. @example
  682. delogo=x=0:y=0:w=100:h=77:band=10
  683. @end example
  684. @end itemize
  685. @section drawbox
  686. Draw a colored box on the input image.
  687. This filter accepts the following options:
  688. @table @option
  689. @item x, y
  690. Specify the top left corner coordinates of the box. Default to 0.
  691. @item width, height
  692. Specify the width and height of the box, if 0 they are interpreted as
  693. the input width and height. Default to 0.
  694. @item color
  695. Specify the color of the box to write, it can be the name of a color
  696. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  697. @end table
  698. Follow some examples:
  699. @example
  700. # draw a black box around the edge of the input image
  701. drawbox
  702. # draw a box with color red and an opacity of 50%
  703. drawbox=x=10:y=20:width=200:height=60:color=red@@0.5"
  704. @end example
  705. @section drawtext
  706. Draw text string or text from specified file on top of video using the
  707. libfreetype library.
  708. To enable compilation of this filter you need to configure Libav with
  709. @code{--enable-libfreetype}.
  710. The filter also recognizes strftime() sequences in the provided text
  711. and expands them accordingly. Check the documentation of strftime().
  712. The description of the accepted parameters follows.
  713. @table @option
  714. @item fontfile
  715. The font file to be used for drawing text. Path must be included.
  716. This parameter is mandatory.
  717. @item text
  718. The text string to be drawn. The text must be a sequence of UTF-8
  719. encoded characters.
  720. This parameter is mandatory if no file is specified with the parameter
  721. @var{textfile}.
  722. @item textfile
  723. A text file containing text to be drawn. The text must be a sequence
  724. of UTF-8 encoded characters.
  725. This parameter is mandatory if no text string is specified with the
  726. parameter @var{text}.
  727. If both text and textfile are specified, an error is thrown.
  728. @item x, y
  729. The offsets where text will be drawn within the video frame.
  730. Relative to the top/left border of the output image.
  731. They accept expressions similar to the @ref{overlay} filter:
  732. @table @option
  733. @item x, y
  734. the computed values for @var{x} and @var{y}. They are evaluated for
  735. each new frame.
  736. @item main_w, main_h
  737. main input width and height
  738. @item W, H
  739. same as @var{main_w} and @var{main_h}
  740. @item text_w, text_h
  741. rendered text width and height
  742. @item w, h
  743. same as @var{text_w} and @var{text_h}
  744. @item n
  745. the number of frames processed, starting from 0
  746. @item t
  747. timestamp expressed in seconds, NAN if the input timestamp is unknown
  748. @end table
  749. The default value of @var{x} and @var{y} is 0.
  750. @item fontsize
  751. The font size to be used for drawing text.
  752. The default value of @var{fontsize} is 16.
  753. @item fontcolor
  754. The color to be used for drawing fonts.
  755. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  756. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  757. The default value of @var{fontcolor} is "black".
  758. @item boxcolor
  759. The color to be used for drawing box around text.
  760. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  761. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  762. The default value of @var{boxcolor} is "white".
  763. @item box
  764. Used to draw a box around text using background color.
  765. Value should be either 1 (enable) or 0 (disable).
  766. The default value of @var{box} is 0.
  767. @item shadowx, shadowy
  768. The x and y offsets for the text shadow position with respect to the
  769. position of the text. They can be either positive or negative
  770. values. Default value for both is "0".
  771. @item shadowcolor
  772. The color to be used for drawing a shadow behind the drawn text. It
  773. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  774. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  775. The default value of @var{shadowcolor} is "black".
  776. @item ft_load_flags
  777. Flags to be used for loading the fonts.
  778. The flags map the corresponding flags supported by libfreetype, and are
  779. a combination of the following values:
  780. @table @var
  781. @item default
  782. @item no_scale
  783. @item no_hinting
  784. @item render
  785. @item no_bitmap
  786. @item vertical_layout
  787. @item force_autohint
  788. @item crop_bitmap
  789. @item pedantic
  790. @item ignore_global_advance_width
  791. @item no_recurse
  792. @item ignore_transform
  793. @item monochrome
  794. @item linear_design
  795. @item no_autohint
  796. @item end table
  797. @end table
  798. Default value is "render".
  799. For more information consult the documentation for the FT_LOAD_*
  800. libfreetype flags.
  801. @item tabsize
  802. The size in number of spaces to use for rendering the tab.
  803. Default value is 4.
  804. @item fix_bounds
  805. If true, check and fix text coords to avoid clipping.
  806. @end table
  807. For example the command:
  808. @example
  809. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  810. @end example
  811. will draw "Test Text" with font FreeSerif, using the default values
  812. for the optional parameters.
  813. The command:
  814. @example
  815. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  816. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  817. @end example
  818. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  819. and y=50 (counting from the top-left corner of the screen), text is
  820. yellow with a red box around it. Both the text and the box have an
  821. opacity of 20%.
  822. Note that the double quotes are not necessary if spaces are not used
  823. within the parameter list.
  824. For more information about libfreetype, check:
  825. @url{http://www.freetype.org/}.
  826. @section fade
  827. Apply fade-in/out effect to input video.
  828. This filter accepts the following options:
  829. @table @option
  830. @item type
  831. The effect type -- can be either "in" for fade-in, or "out" for a fade-out
  832. effect.
  833. @item start_frame
  834. The number of the start frame for starting to apply the fade effect.
  835. @item nb_frames
  836. The number of frames for which the fade effect has to last. At the end of the
  837. fade-in effect the output video will have the same intensity as the input video,
  838. at the end of the fade-out transition the output video will be completely black.
  839. @end table
  840. A few usage examples follow, usable too as test scenarios.
  841. @example
  842. # fade in first 30 frames of video
  843. fade=type=in:nb_frames=30
  844. # fade out last 45 frames of a 200-frame video
  845. fade=type=out:start_frame=155:nb_frames=45
  846. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  847. fade=type=in:start_frame=0:nb_frames=25, fade=type=out:start_frame=975:nb_frames=25
  848. # make first 5 frames black, then fade in from frame 5-24
  849. fade=type=in:start_frame=5:nb_frames=20
  850. @end example
  851. @section fieldorder
  852. Transform the field order of the input video.
  853. This filter accepts the following options:
  854. @table @option
  855. @item order
  856. Output field order. Valid values are @var{tff} for top field first or @var{bff}
  857. for bottom field first.
  858. @end table
  859. Default value is "tff".
  860. Transformation is achieved by shifting the picture content up or down
  861. by one line, and filling the remaining line with appropriate picture content.
  862. This method is consistent with most broadcast field order converters.
  863. If the input video is not flagged as being interlaced, or it is already
  864. flagged as being of the required output field order then this filter does
  865. not alter the incoming video.
  866. This filter is very useful when converting to or from PAL DV material,
  867. which is bottom field first.
  868. For example:
  869. @example
  870. ./avconv -i in.vob -vf "fieldorder=order=bff" out.dv
  871. @end example
  872. @section fifo
  873. Buffer input images and send them when they are requested.
  874. This filter is mainly useful when auto-inserted by the libavfilter
  875. framework.
  876. The filter does not take parameters.
  877. @section format
  878. Convert the input video to one of the specified pixel formats.
  879. Libavfilter will try to pick one that is supported for the input to
  880. the next filter.
  881. This filter accepts the following parameters:
  882. @table @option
  883. @item pix_fmts
  884. A '|'-separated list of pixel format names, for example
  885. "pix_fmts=yuv420p|monow|rgb24".
  886. @end table
  887. Some examples follow:
  888. @example
  889. # convert the input video to the format "yuv420p"
  890. format=pix_fmts=yuv420p
  891. # convert the input video to any of the formats in the list
  892. format=pix_fmts=yuv420p|yuv444p|yuv410p
  893. @end example
  894. @section fps
  895. Convert the video to specified constant framerate by duplicating or dropping
  896. frames as necessary.
  897. This filter accepts the following named parameters:
  898. @table @option
  899. @item fps
  900. Desired output framerate.
  901. @item start_time
  902. Assume the first PTS should be the given value, in seconds. This allows for
  903. padding/trimming at the start of stream. By default, no assumption is made
  904. about the first frame's expected PTS, so no padding or trimming is done.
  905. For example, this could be set to 0 to pad the beginning with duplicates of
  906. the first frame if a video stream starts after the audio stream or to trim any
  907. frames with a negative PTS.
  908. @end table
  909. @anchor{frei0r}
  910. @section frei0r
  911. Apply a frei0r effect to the input video.
  912. To enable compilation of this filter you need to install the frei0r
  913. header and configure Libav with --enable-frei0r.
  914. This filter accepts the following options:
  915. @table @option
  916. @item filter_name
  917. The name to the frei0r effect to load. If the environment variable
  918. @env{FREI0R_PATH} is defined, the frei0r effect is searched in each one of the
  919. directories specified by the colon separated list in @env{FREIOR_PATH},
  920. otherwise in the standard frei0r paths, which are in this order:
  921. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  922. @file{/usr/lib/frei0r-1/}.
  923. @item filter_params
  924. A '|'-separated list of parameters to pass to the frei0r effect.
  925. @end table
  926. A frei0r effect parameter can be a boolean (whose values are specified
  927. with "y" and "n"), a double, a color (specified by the syntax
  928. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  929. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  930. description), a position (specified by the syntax @var{X}/@var{Y},
  931. @var{X} and @var{Y} being float numbers) and a string.
  932. The number and kind of parameters depend on the loaded effect. If an
  933. effect parameter is not specified the default value is set.
  934. Some examples follow:
  935. @example
  936. # apply the distort0r effect, set the first two double parameters
  937. frei0r=filter_name=distort0r:filter_params=0.5|0.01
  938. # apply the colordistance effect, takes a color as first parameter
  939. frei0r=colordistance:0.2/0.3/0.4
  940. frei0r=colordistance:violet
  941. frei0r=colordistance:0x112233
  942. # apply the perspective effect, specify the top left and top right
  943. # image positions
  944. frei0r=perspective:0.2/0.2|0.8/0.2
  945. @end example
  946. For more information see:
  947. @url{http://piksel.org/frei0r}
  948. @section gradfun
  949. Fix the banding artifacts that are sometimes introduced into nearly flat
  950. regions by truncation to 8bit colordepth.
  951. Interpolate the gradients that should go where the bands are, and
  952. dither them.
  953. This filter is designed for playback only. Do not use it prior to
  954. lossy compression, because compression tends to lose the dither and
  955. bring back the bands.
  956. This filter accepts the following options:
  957. @table @option
  958. @item strength
  959. The maximum amount by which the filter will change any one pixel. Also the
  960. threshold for detecting nearly flat regions. Acceptable values range from .51 to
  961. 64, default value is 1.2, out-of-range values will be clipped to the valid
  962. range.
  963. @item radius
  964. The neighborhood to fit the gradient to. A larger radius makes for smoother
  965. gradients, but also prevents the filter from modifying the pixels near detailed
  966. regions. Acceptable values are 8-32, default value is 16, out-of-range values
  967. will be clipped to the valid range.
  968. @end table
  969. @example
  970. # default parameters
  971. gradfun=strength=1.2:radius=16
  972. # omitting radius
  973. gradfun=1.2
  974. @end example
  975. @section hflip
  976. Flip the input video horizontally.
  977. For example to horizontally flip the input video with @command{avconv}:
  978. @example
  979. avconv -i in.avi -vf "hflip" out.avi
  980. @end example
  981. @section hqdn3d
  982. High precision/quality 3d denoise filter. This filter aims to reduce
  983. image noise producing smooth images and making still images really
  984. still. It should enhance compressibility.
  985. It accepts the following optional parameters:
  986. @table @option
  987. @item luma_spatial
  988. a non-negative float number which specifies spatial luma strength,
  989. defaults to 4.0
  990. @item chroma_spatial
  991. a non-negative float number which specifies spatial chroma strength,
  992. defaults to 3.0*@var{luma_spatial}/4.0
  993. @item luma_tmp
  994. a float number which specifies luma temporal strength, defaults to
  995. 6.0*@var{luma_spatial}/4.0
  996. @item chroma_tmp
  997. a float number which specifies chroma temporal strength, defaults to
  998. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  999. @end table
  1000. @section interlace
  1001. Simple interlacing filter from progressive contents. This interleaves upper (or
  1002. lower) lines from odd frames with lower (or upper) lines from even frames,
  1003. halving the frame rate and preserving image height.
  1004. @example
  1005. Original Original New Frame
  1006. Frame 'j' Frame 'j+1' (tff)
  1007. ========== =========== ==================
  1008. Line 0 --------------------> Frame 'j' Line 0
  1009. Line 1 Line 1 ----> Frame 'j+1' Line 1
  1010. Line 2 ---------------------> Frame 'j' Line 2
  1011. Line 3 Line 3 ----> Frame 'j+1' Line 3
  1012. ... ... ...
  1013. New Frame + 1 will be generated by Frame 'j+2' and Frame 'j+3' and so on
  1014. @end example
  1015. It accepts the following optional parameters:
  1016. @table @option
  1017. @item scan
  1018. determines whether the interlaced frame is taken from the even (tff - default)
  1019. or odd (bff) lines of the progressive frame.
  1020. @item lowpass
  1021. Enable (default) or disable the vertical lowpass filter to avoid twitter
  1022. interlacing and reduce moire patterns.
  1023. @end table
  1024. @section lut, lutrgb, lutyuv
  1025. Compute a look-up table for binding each pixel component input value
  1026. to an output value, and apply it to input video.
  1027. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1028. to an RGB input video.
  1029. These filters accept the following options:
  1030. @table @option
  1031. @item @var{c0} (first pixel component)
  1032. @item @var{c1} (second pixel component)
  1033. @item @var{c2} (third pixel component)
  1034. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  1035. @item @var{r} (red component)
  1036. @item @var{g} (green component)
  1037. @item @var{b} (blue component)
  1038. @item @var{a} (alpha component)
  1039. @item @var{y} (Y/luminance component)
  1040. @item @var{u} (U/Cb component)
  1041. @item @var{v} (V/Cr component)
  1042. @end table
  1043. Each of them specifies the expression to use for computing the lookup table for
  1044. the corresponding pixel component values.
  1045. The exact component associated to each of the @var{c*} options depends on the
  1046. format in input.
  1047. The @var{lut} filter requires either YUV or RGB pixel formats in input,
  1048. @var{lutrgb} requires RGB pixel formats in input, and @var{lutyuv} requires YUV.
  1049. The expressions can contain the following constants and functions:
  1050. @table @option
  1051. @item E, PI, PHI
  1052. the corresponding mathematical approximated values for e
  1053. (euler number), pi (greek PI), PHI (golden ratio)
  1054. @item w, h
  1055. the input width and height
  1056. @item val
  1057. input value for the pixel component
  1058. @item clipval
  1059. the input value clipped in the @var{minval}-@var{maxval} range
  1060. @item maxval
  1061. maximum value for the pixel component
  1062. @item minval
  1063. minimum value for the pixel component
  1064. @item negval
  1065. the negated value for the pixel component value clipped in the
  1066. @var{minval}-@var{maxval} range , it corresponds to the expression
  1067. "maxval-clipval+minval"
  1068. @item clip(val)
  1069. the computed value in @var{val} clipped in the
  1070. @var{minval}-@var{maxval} range
  1071. @item gammaval(gamma)
  1072. the computed gamma correction value of the pixel component value
  1073. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1074. expression
  1075. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1076. @end table
  1077. All expressions default to "val".
  1078. Some examples follow:
  1079. @example
  1080. # negate input video
  1081. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1082. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1083. # the above is the same as
  1084. lutrgb="r=negval:g=negval:b=negval"
  1085. lutyuv="y=negval:u=negval:v=negval"
  1086. # negate luminance
  1087. lutyuv=negval
  1088. # remove chroma components, turns the video into a graytone image
  1089. lutyuv="u=128:v=128"
  1090. # apply a luma burning effect
  1091. lutyuv="y=2*val"
  1092. # remove green and blue components
  1093. lutrgb="g=0:b=0"
  1094. # set a constant alpha channel value on input
  1095. format=rgba,lutrgb=a="maxval-minval/2"
  1096. # correct luminance gamma by a 0.5 factor
  1097. lutyuv=y=gammaval(0.5)
  1098. @end example
  1099. @section negate
  1100. Negate input video.
  1101. This filter accepts an integer in input, if non-zero it negates the
  1102. alpha component (if available). The default value in input is 0.
  1103. @section noformat
  1104. Force libavfilter not to use any of the specified pixel formats for the
  1105. input to the next filter.
  1106. This filter accepts the following parameters:
  1107. @table @option
  1108. @item pix_fmts
  1109. A '|'-separated list of pixel format names, for example
  1110. "pix_fmts=yuv420p|monow|rgb24".
  1111. @end table
  1112. Some examples follow:
  1113. @example
  1114. # force libavfilter to use a format different from "yuv420p" for the
  1115. # input to the vflip filter
  1116. noformat=pix_fmts=yuv420p,vflip
  1117. # convert the input video to any of the formats not contained in the list
  1118. noformat=yuv420p|yuv444p|yuv410p
  1119. @end example
  1120. @section null
  1121. Pass the video source unchanged to the output.
  1122. @section ocv
  1123. Apply video transform using libopencv.
  1124. To enable this filter install libopencv library and headers and
  1125. configure Libav with --enable-libopencv.
  1126. This filter accepts the following parameters:
  1127. @table @option
  1128. @item filter_name
  1129. The name of the libopencv filter to apply.
  1130. @item filter_params
  1131. The parameters to pass to the libopencv filter. If not specified the default
  1132. values are assumed.
  1133. @end table
  1134. Refer to the official libopencv documentation for more precise
  1135. information:
  1136. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1137. Follows the list of supported libopencv filters.
  1138. @anchor{dilate}
  1139. @subsection dilate
  1140. Dilate an image by using a specific structuring element.
  1141. This filter corresponds to the libopencv function @code{cvDilate}.
  1142. It accepts the parameters: @var{struct_el}|@var{nb_iterations}.
  1143. @var{struct_el} represents a structuring element, and has the syntax:
  1144. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1145. @var{cols} and @var{rows} represent the number of columns and rows of
  1146. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1147. point, and @var{shape} the shape for the structuring element, and
  1148. can be one of the values "rect", "cross", "ellipse", "custom".
  1149. If the value for @var{shape} is "custom", it must be followed by a
  1150. string of the form "=@var{filename}". The file with name
  1151. @var{filename} is assumed to represent a binary image, with each
  1152. printable character corresponding to a bright pixel. When a custom
  1153. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1154. or columns and rows of the read file are assumed instead.
  1155. The default value for @var{struct_el} is "3x3+0x0/rect".
  1156. @var{nb_iterations} specifies the number of times the transform is
  1157. applied to the image, and defaults to 1.
  1158. Follow some example:
  1159. @example
  1160. # use the default values
  1161. ocv=dilate
  1162. # dilate using a structuring element with a 5x5 cross, iterate two times
  1163. ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2
  1164. # read the shape from the file diamond.shape, iterate two times
  1165. # the file diamond.shape may contain a pattern of characters like this:
  1166. # *
  1167. # ***
  1168. # *****
  1169. # ***
  1170. # *
  1171. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1172. ocv=dilate:0x0+2x2/custom=diamond.shape|2
  1173. @end example
  1174. @subsection erode
  1175. Erode an image by using a specific structuring element.
  1176. This filter corresponds to the libopencv function @code{cvErode}.
  1177. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1178. with the same syntax and semantics as the @ref{dilate} filter.
  1179. @subsection smooth
  1180. Smooth the input video.
  1181. The filter takes the following parameters:
  1182. @var{type}|@var{param1}|@var{param2}|@var{param3}|@var{param4}.
  1183. @var{type} is the type of smooth filter to apply, and can be one of
  1184. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1185. "bilateral". The default value is "gaussian".
  1186. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1187. parameters whose meanings depend on smooth type. @var{param1} and
  1188. @var{param2} accept integer positive values or 0, @var{param3} and
  1189. @var{param4} accept float values.
  1190. The default value for @var{param1} is 3, the default value for the
  1191. other parameters is 0.
  1192. These parameters correspond to the parameters assigned to the
  1193. libopencv function @code{cvSmooth}.
  1194. @anchor{overlay}
  1195. @section overlay
  1196. Overlay one video on top of another.
  1197. It takes two inputs and one output, the first input is the "main"
  1198. video on which the second input is overlayed.
  1199. This filter accepts the following parameters:
  1200. @table @option
  1201. @item x
  1202. The horizontal position of the left edge of the overlaid video on the main video.
  1203. @item y
  1204. The vertical position of the top edge of the overlaid video on the main video.
  1205. @end table
  1206. The parameters are expressions containing the following parameters:
  1207. @table @option
  1208. @item main_w, main_h
  1209. main input width and height
  1210. @item W, H
  1211. same as @var{main_w} and @var{main_h}
  1212. @item overlay_w, overlay_h
  1213. overlay input width and height
  1214. @item w, h
  1215. same as @var{overlay_w} and @var{overlay_h}
  1216. @end table
  1217. Be aware that frames are taken from each input video in timestamp
  1218. order, hence, if their initial timestamps differ, it is a a good idea
  1219. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1220. have them begin in the same zero timestamp, as it does the example for
  1221. the @var{movie} filter.
  1222. Follow some examples:
  1223. @example
  1224. # draw the overlay at 10 pixels from the bottom right
  1225. # corner of the main video.
  1226. overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10
  1227. # insert a transparent PNG logo in the bottom left corner of the input
  1228. avconv -i input -i logo -filter_complex 'overlay=x=10:y=main_h-overlay_h-10' output
  1229. # insert 2 different transparent PNG logos (second logo on bottom
  1230. # right corner):
  1231. avconv -i input -i logo1 -i logo2 -filter_complex
  1232. 'overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10' output
  1233. # add a transparent color layer on top of the main video,
  1234. # WxH specifies the size of the main input to the overlay filter
  1235. color=red@.3:WxH [over]; [in][over] overlay [out]
  1236. @end example
  1237. You can chain together more overlays but the efficiency of such
  1238. approach is yet to be tested.
  1239. @section pad
  1240. Add paddings to the input image, and places the original input at the
  1241. given coordinates @var{x}, @var{y}.
  1242. This filter accepts the following parameters:
  1243. @table @option
  1244. @item width, height
  1245. Specify the size of the output image with the paddings added. If the
  1246. value for @var{width} or @var{height} is 0, the corresponding input size
  1247. is used for the output.
  1248. The @var{width} expression can reference the value set by the
  1249. @var{height} expression, and vice versa.
  1250. The default value of @var{width} and @var{height} is 0.
  1251. @item x, y
  1252. Specify the offsets where to place the input image in the padded area
  1253. with respect to the top/left border of the output image.
  1254. The @var{x} expression can reference the value set by the @var{y}
  1255. expression, and vice versa.
  1256. The default value of @var{x} and @var{y} is 0.
  1257. @item color
  1258. Specify the color of the padded area, it can be the name of a color
  1259. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1260. The default value of @var{color} is "black".
  1261. @end table
  1262. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1263. expressions containing the following constants:
  1264. @table @option
  1265. @item E, PI, PHI
  1266. the corresponding mathematical approximated values for e
  1267. (euler number), pi (greek PI), phi (golden ratio)
  1268. @item in_w, in_h
  1269. the input video width and height
  1270. @item iw, ih
  1271. same as @var{in_w} and @var{in_h}
  1272. @item out_w, out_h
  1273. the output width and height, that is the size of the padded area as
  1274. specified by the @var{width} and @var{height} expressions
  1275. @item ow, oh
  1276. same as @var{out_w} and @var{out_h}
  1277. @item x, y
  1278. x and y offsets as specified by the @var{x} and @var{y}
  1279. expressions, or NAN if not yet specified
  1280. @item a
  1281. input display aspect ratio, same as @var{iw} / @var{ih}
  1282. @item hsub, vsub
  1283. horizontal and vertical chroma subsample values. For example for the
  1284. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1285. @end table
  1286. Some examples follow:
  1287. @example
  1288. # Add paddings with color "violet" to the input video. Output video
  1289. # size is 640x480, the top-left corner of the input video is placed at
  1290. # column 0, row 40.
  1291. pad=width=640:height=480:x=0:y=40:color=violet
  1292. # pad the input to get an output with dimensions increased bt 3/2,
  1293. # and put the input video at the center of the padded area
  1294. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1295. # pad the input to get a squared output with size equal to the maximum
  1296. # value between the input width and height, and put the input video at
  1297. # the center of the padded area
  1298. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1299. # pad the input to get a final w/h ratio of 16:9
  1300. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1301. # double output size and put the input video in the bottom-right
  1302. # corner of the output padded area
  1303. pad="2*iw:2*ih:ow-iw:oh-ih"
  1304. @end example
  1305. @section pixdesctest
  1306. Pixel format descriptor test filter, mainly useful for internal
  1307. testing. The output video should be equal to the input video.
  1308. For example:
  1309. @example
  1310. format=monow, pixdesctest
  1311. @end example
  1312. can be used to test the monowhite pixel format descriptor definition.
  1313. @section scale
  1314. Scale the input video and/or convert the image format.
  1315. This filter accepts the following options:
  1316. @table @option
  1317. @item w
  1318. Output video width.
  1319. @item h
  1320. Output video height.
  1321. @end table
  1322. The parameters @var{w} and @var{h} are expressions containing
  1323. the following constants:
  1324. @table @option
  1325. @item E, PI, PHI
  1326. the corresponding mathematical approximated values for e
  1327. (euler number), pi (greek PI), phi (golden ratio)
  1328. @item in_w, in_h
  1329. the input width and height
  1330. @item iw, ih
  1331. same as @var{in_w} and @var{in_h}
  1332. @item out_w, out_h
  1333. the output (cropped) width and height
  1334. @item ow, oh
  1335. same as @var{out_w} and @var{out_h}
  1336. @item dar, a
  1337. input display aspect ratio, same as @var{iw} / @var{ih}
  1338. @item sar
  1339. input sample aspect ratio
  1340. @item hsub, vsub
  1341. horizontal and vertical chroma subsample values. For example for the
  1342. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1343. @end table
  1344. If the input image format is different from the format requested by
  1345. the next filter, the scale filter will convert the input to the
  1346. requested format.
  1347. If the value for @var{w} or @var{h} is 0, the respective input
  1348. size is used for the output.
  1349. If the value for @var{w} or @var{h} is -1, the scale filter will use, for the
  1350. respective output size, a value that maintains the aspect ratio of the input
  1351. image.
  1352. The default value of @var{w} and @var{h} is 0.
  1353. Some examples follow:
  1354. @example
  1355. # scale the input video to a size of 200x100.
  1356. scale=w=200:h=100
  1357. # scale the input to 2x
  1358. scale=w=2*iw:h=2*ih
  1359. # the above is the same as
  1360. scale=2*in_w:2*in_h
  1361. # scale the input to half size
  1362. scale=w=iw/2:h=ih/2
  1363. # increase the width, and set the height to the same size
  1364. scale=3/2*iw:ow
  1365. # seek for Greek harmony
  1366. scale=iw:1/PHI*iw
  1367. scale=ih*PHI:ih
  1368. # increase the height, and set the width to 3/2 of the height
  1369. scale=w=3/2*oh:h=3/5*ih
  1370. # increase the size, but make the size a multiple of the chroma
  1371. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1372. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1373. scale=w='min(500\, iw*3/2):h=-1'
  1374. @end example
  1375. @section select
  1376. Select frames to pass in output.
  1377. This filter accepts the following options:
  1378. @table @option
  1379. @item expr
  1380. An expression, which is evaluated for each input frame. If the expression is
  1381. evaluated to a non-zero value, the frame is selected and passed to the output,
  1382. otherwise it is discarded.
  1383. @end table
  1384. The expression can contain the following constants:
  1385. @table @option
  1386. @item PI
  1387. Greek PI
  1388. @item PHI
  1389. golden ratio
  1390. @item E
  1391. Euler number
  1392. @item n
  1393. the sequential number of the filtered frame, starting from 0
  1394. @item selected_n
  1395. the sequential number of the selected frame, starting from 0
  1396. @item prev_selected_n
  1397. the sequential number of the last selected frame, NAN if undefined
  1398. @item TB
  1399. timebase of the input timestamps
  1400. @item pts
  1401. the PTS (Presentation TimeStamp) of the filtered video frame,
  1402. expressed in @var{TB} units, NAN if undefined
  1403. @item t
  1404. the PTS (Presentation TimeStamp) of the filtered video frame,
  1405. expressed in seconds, NAN if undefined
  1406. @item prev_pts
  1407. the PTS of the previously filtered video frame, NAN if undefined
  1408. @item prev_selected_pts
  1409. the PTS of the last previously filtered video frame, NAN if undefined
  1410. @item prev_selected_t
  1411. the PTS of the last previously selected video frame, NAN if undefined
  1412. @item start_pts
  1413. the PTS of the first video frame in the video, NAN if undefined
  1414. @item start_t
  1415. the time of the first video frame in the video, NAN if undefined
  1416. @item pict_type
  1417. the type of the filtered frame, can assume one of the following
  1418. values:
  1419. @table @option
  1420. @item I
  1421. @item P
  1422. @item B
  1423. @item S
  1424. @item SI
  1425. @item SP
  1426. @item BI
  1427. @end table
  1428. @item interlace_type
  1429. the frame interlace type, can assume one of the following values:
  1430. @table @option
  1431. @item PROGRESSIVE
  1432. the frame is progressive (not interlaced)
  1433. @item TOPFIRST
  1434. the frame is top-field-first
  1435. @item BOTTOMFIRST
  1436. the frame is bottom-field-first
  1437. @end table
  1438. @item key
  1439. 1 if the filtered frame is a key-frame, 0 otherwise
  1440. @end table
  1441. The default value of the select expression is "1".
  1442. Some examples follow:
  1443. @example
  1444. # select all frames in input
  1445. select
  1446. # the above is the same as:
  1447. select=expr=1
  1448. # skip all frames:
  1449. select=expr=0
  1450. # select only I-frames
  1451. select='expr=eq(pict_type\,I)'
  1452. # select one frame every 100
  1453. select='not(mod(n\,100))'
  1454. # select only frames contained in the 10-20 time interval
  1455. select='gte(t\,10)*lte(t\,20)'
  1456. # select only I frames contained in the 10-20 time interval
  1457. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1458. # select frames with a minimum distance of 10 seconds
  1459. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1460. @end example
  1461. @anchor{setdar}
  1462. @section setdar
  1463. Set the Display Aspect Ratio for the filter output video.
  1464. This is done by changing the specified Sample (aka Pixel) Aspect
  1465. Ratio, according to the following equation:
  1466. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1467. Keep in mind that this filter does not modify the pixel dimensions of
  1468. the video frame. Also the display aspect ratio set by this filter may
  1469. be changed by later filters in the filterchain, e.g. in case of
  1470. scaling or if another "setdar" or a "setsar" filter is applied.
  1471. This filter accepts the following options:
  1472. @table @option
  1473. @item dar
  1474. Output display aspect ratio, as a rational or a decimal number.
  1475. @end table
  1476. For example to change the display aspect ratio to 16:9, specify:
  1477. @example
  1478. setdar=dar=16/9
  1479. # the above is equivalent to
  1480. setdar=dar=1.77777
  1481. @end example
  1482. See also the @ref{setsar} filter documentation.
  1483. @section setpts
  1484. Change the PTS (presentation timestamp) of the input video frames.
  1485. This filter accepts the following options:
  1486. @table @option
  1487. @item expr
  1488. The expression which is evaluated for each frame to construct its timestamp.
  1489. @end table
  1490. The expression is evaluated through the eval API and can contain the following
  1491. constants:
  1492. @table @option
  1493. @item PTS
  1494. the presentation timestamp in input
  1495. @item PI
  1496. Greek PI
  1497. @item PHI
  1498. golden ratio
  1499. @item E
  1500. Euler number
  1501. @item N
  1502. the count of the input frame, starting from 0.
  1503. @item STARTPTS
  1504. the PTS of the first video frame
  1505. @item INTERLACED
  1506. tell if the current frame is interlaced
  1507. @item PREV_INPTS
  1508. previous input PTS
  1509. @item PREV_OUTPTS
  1510. previous output PTS
  1511. @item RTCTIME
  1512. wallclock (RTC) time in microseconds
  1513. @item RTCSTART
  1514. wallclock (RTC) time at the start of the movie in microseconds
  1515. @item TB
  1516. timebase of the input timestamps
  1517. @end table
  1518. Some examples follow:
  1519. @example
  1520. # start counting PTS from zero
  1521. setpts=expr=PTS-STARTPTS
  1522. # fast motion
  1523. setpts=expr=0.5*PTS
  1524. # slow motion
  1525. setpts=2.0*PTS
  1526. # fixed rate 25 fps
  1527. setpts=N/(25*TB)
  1528. # fixed rate 25 fps with some jitter
  1529. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1530. # generate timestamps from a "live source" and rebase onto the current timebase
  1531. setpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  1532. @end example
  1533. @anchor{setsar}
  1534. @section setsar
  1535. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1536. Note that as a consequence of the application of this filter, the
  1537. output display aspect ratio will change according to the following
  1538. equation:
  1539. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1540. Keep in mind that the sample aspect ratio set by this filter may be
  1541. changed by later filters in the filterchain, e.g. if another "setsar"
  1542. or a "setdar" filter is applied.
  1543. This filter accepts the following options:
  1544. @table @option
  1545. @item sar
  1546. Output sample aspect ratio, as a rational or decimal number.
  1547. @end table
  1548. For example to change the sample aspect ratio to 10:11, specify:
  1549. @example
  1550. setsar=sar=10/11
  1551. @end example
  1552. @section settb
  1553. Set the timebase to use for the output frames timestamps.
  1554. It is mainly useful for testing timebase configuration.
  1555. This filter accepts the following options:
  1556. @table @option
  1557. @item expr
  1558. The expression which is evaluated into the output timebase.
  1559. @end table
  1560. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1561. default timebase), and "intb" (the input timebase).
  1562. The default value for the input is "intb".
  1563. Follow some examples.
  1564. @example
  1565. # set the timebase to 1/25
  1566. settb=expr=1/25
  1567. # set the timebase to 1/10
  1568. settb=expr=0.1
  1569. #set the timebase to 1001/1000
  1570. settb=1+0.001
  1571. #set the timebase to 2*intb
  1572. settb=2*intb
  1573. #set the default timebase value
  1574. settb=AVTB
  1575. @end example
  1576. @section showinfo
  1577. Show a line containing various information for each input video frame.
  1578. The input video is not modified.
  1579. The shown line contains a sequence of key/value pairs of the form
  1580. @var{key}:@var{value}.
  1581. A description of each shown parameter follows:
  1582. @table @option
  1583. @item n
  1584. sequential number of the input frame, starting from 0
  1585. @item pts
  1586. Presentation TimeStamp of the input frame, expressed as a number of
  1587. time base units. The time base unit depends on the filter input pad.
  1588. @item pts_time
  1589. Presentation TimeStamp of the input frame, expressed as a number of
  1590. seconds
  1591. @item pos
  1592. position of the frame in the input stream, -1 if this information in
  1593. unavailable and/or meaningless (for example in case of synthetic video)
  1594. @item fmt
  1595. pixel format name
  1596. @item sar
  1597. sample aspect ratio of the input frame, expressed in the form
  1598. @var{num}/@var{den}
  1599. @item s
  1600. size of the input frame, expressed in the form
  1601. @var{width}x@var{height}
  1602. @item i
  1603. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1604. for bottom field first)
  1605. @item iskey
  1606. 1 if the frame is a key frame, 0 otherwise
  1607. @item type
  1608. picture type of the input frame ("I" for an I-frame, "P" for a
  1609. P-frame, "B" for a B-frame, "?" for unknown type).
  1610. Check also the documentation of the @code{AVPictureType} enum and of
  1611. the @code{av_get_picture_type_char} function defined in
  1612. @file{libavutil/avutil.h}.
  1613. @item checksum
  1614. Adler-32 checksum of all the planes of the input frame
  1615. @item plane_checksum
  1616. Adler-32 checksum of each plane of the input frame, expressed in the form
  1617. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1618. @end table
  1619. @section split
  1620. Split input video into several identical outputs.
  1621. The filter accepts a single parameter which specifies the number of outputs. If
  1622. unspecified, it defaults to 2.
  1623. For example
  1624. @example
  1625. avconv -i INPUT -filter_complex split=5 OUTPUT
  1626. @end example
  1627. will create 5 copies of the input video.
  1628. @section transpose
  1629. Transpose rows with columns in the input video and optionally flip it.
  1630. This filter accepts the following options:
  1631. @table @option
  1632. @item dir
  1633. The direction of the transpose.
  1634. @end table
  1635. The direction can assume the following values:
  1636. @table @samp
  1637. @item cclock_flip
  1638. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1639. @example
  1640. L.R L.l
  1641. . . -> . .
  1642. l.r R.r
  1643. @end example
  1644. @item clock
  1645. Rotate by 90 degrees clockwise, that is:
  1646. @example
  1647. L.R l.L
  1648. . . -> . .
  1649. l.r r.R
  1650. @end example
  1651. @item cclock
  1652. Rotate by 90 degrees counterclockwise, that is:
  1653. @example
  1654. L.R R.r
  1655. . . -> . .
  1656. l.r L.l
  1657. @end example
  1658. @item clock_flip
  1659. Rotate by 90 degrees clockwise and vertically flip, that is:
  1660. @example
  1661. L.R r.R
  1662. . . -> . .
  1663. l.r l.L
  1664. @end example
  1665. @end table
  1666. @section trim
  1667. Trim the input so that the output contains one continuous subpart of the input.
  1668. This filter accepts the following options:
  1669. @table @option
  1670. @item start
  1671. Timestamp (in seconds) of the start of the kept section. I.e. the frame with the
  1672. timestamp @var{start} will be the first frame in the output.
  1673. @item end
  1674. Timestamp (in seconds) of the first frame that will be dropped. I.e. the frame
  1675. immediately preceding the one with the timestamp @var{end} will be the last
  1676. frame in the output.
  1677. @item start_pts
  1678. Same as @var{start}, except this option sets the start timestamp in timebase
  1679. units instead of seconds.
  1680. @item end_pts
  1681. Same as @var{end}, except this option sets the end timestamp in timebase units
  1682. instead of seconds.
  1683. @item duration
  1684. Maximum duration of the output in seconds.
  1685. @item start_frame
  1686. Number of the first frame that should be passed to output.
  1687. @item end_frame
  1688. Number of the first frame that should be dropped.
  1689. @end table
  1690. Note that the first two sets of the start/end options and the @option{duration}
  1691. option look at the frame timestamp, while the _frame variants simply count the
  1692. frames that pass through the filter. Also note that this filter does not modify
  1693. the timestamps. If you wish that the output timestamps start at zero, insert a
  1694. setpts filter after the trim filter.
  1695. If multiple start or end options are set, this filter tries to be greedy and
  1696. keep all the frames that match at least one of the specified constraints. To keep
  1697. only the part that matches all the constraints at once, chain multiple trim
  1698. filters.
  1699. The defaults are such that all the input is kept. So it is possible to set e.g.
  1700. just the end values to keep everything before the specified time.
  1701. Examples:
  1702. @itemize
  1703. @item
  1704. drop everything except the second minute of input
  1705. @example
  1706. avconv -i INPUT -vf trim=60:120
  1707. @end example
  1708. @item
  1709. keep only the first second
  1710. @example
  1711. avconv -i INPUT -vf trim=duration=1
  1712. @end example
  1713. @end itemize
  1714. @section unsharp
  1715. Sharpen or blur the input video.
  1716. It accepts the following parameters:
  1717. @table @option
  1718. @item luma_msize_x
  1719. Set the luma matrix horizontal size. It can be an integer between 3
  1720. and 13, default value is 5.
  1721. @item luma_msize_y
  1722. Set the luma matrix vertical size. It can be an integer between 3
  1723. and 13, default value is 5.
  1724. @item luma_amount
  1725. Set the luma effect strength. It can be a float number between -2.0
  1726. and 5.0, default value is 1.0.
  1727. @item chroma_msize_x
  1728. Set the chroma matrix horizontal size. It can be an integer between 3
  1729. and 13, default value is 5.
  1730. @item chroma_msize_y
  1731. Set the chroma matrix vertical size. It can be an integer between 3
  1732. and 13, default value is 5.
  1733. @item chroma_amount
  1734. Set the chroma effect strength. It can be a float number between -2.0
  1735. and 5.0, default value is 0.0.
  1736. @end table
  1737. Negative values for the amount will blur the input video, while positive
  1738. values will sharpen. All parameters are optional and default to the
  1739. equivalent of the string '5:5:1.0:5:5:0.0'.
  1740. @example
  1741. # Strong luma sharpen effect parameters
  1742. unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5
  1743. # Strong blur of both luma and chroma parameters
  1744. unsharp=7:7:-2:7:7:-2
  1745. # Use the default values with @command{avconv}
  1746. ./avconv -i in.avi -vf "unsharp" out.mp4
  1747. @end example
  1748. @section vflip
  1749. Flip the input video vertically.
  1750. @example
  1751. ./avconv -i in.avi -vf "vflip" out.avi
  1752. @end example
  1753. @section yadif
  1754. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1755. filter").
  1756. This filter accepts the following options:
  1757. @table @option
  1758. @item mode
  1759. The interlacing mode to adopt, accepts one of the following values:
  1760. @table @option
  1761. @item 0
  1762. output 1 frame for each frame
  1763. @item 1
  1764. output 1 frame for each field
  1765. @item 2
  1766. like 0 but skips spatial interlacing check
  1767. @item 3
  1768. like 1 but skips spatial interlacing check
  1769. @end table
  1770. Default value is 0.
  1771. @item parity
  1772. The picture field parity assumed for the input interlaced video, accepts one of
  1773. the following values:
  1774. @table @option
  1775. @item 0
  1776. assume top field first
  1777. @item 1
  1778. assume bottom field first
  1779. @item -1
  1780. enable automatic detection
  1781. @end table
  1782. Default value is -1.
  1783. If interlacing is unknown or decoder does not export this information,
  1784. top field first will be assumed.
  1785. @item auto
  1786. Whether deinterlacer should trust the interlaced flag and only deinterlace
  1787. frames marked as interlaced
  1788. @table @option
  1789. @item 0
  1790. deinterlace all frames
  1791. @item 1
  1792. only deinterlace frames marked as interlaced
  1793. @end table
  1794. Default value is 0.
  1795. @end table
  1796. @c man end VIDEO FILTERS
  1797. @chapter Video Sources
  1798. @c man begin VIDEO SOURCES
  1799. Below is a description of the currently available video sources.
  1800. @section buffer
  1801. Buffer video frames, and make them available to the filter chain.
  1802. This source is mainly intended for a programmatic use, in particular
  1803. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1804. This filter accepts the following parameters:
  1805. @table @option
  1806. @item width
  1807. Input video width.
  1808. @item height
  1809. Input video height.
  1810. @item pix_fmt
  1811. Name of the input video pixel format.
  1812. @item time_base
  1813. The time base used for input timestamps.
  1814. @item sar
  1815. Sample (pixel) aspect ratio of the input video.
  1816. @end table
  1817. For example:
  1818. @example
  1819. buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1
  1820. @end example
  1821. will instruct the source to accept video frames with size 320x240 and
  1822. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1823. square pixels (1:1 sample aspect ratio).
  1824. @section color
  1825. Provide an uniformly colored input.
  1826. It accepts the following parameters:
  1827. @table @option
  1828. @item color
  1829. Specify the color of the source. It can be the name of a color (case
  1830. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1831. alpha specifier. The default value is "black".
  1832. @item size
  1833. Specify the size of the sourced video, it may be a string of the form
  1834. @var{width}x@var{height}, or the name of a size abbreviation. The
  1835. default value is "320x240".
  1836. @item framerate
  1837. Specify the frame rate of the sourced video, as the number of frames
  1838. generated per second. It has to be a string in the format
  1839. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1840. number or a valid video frame rate abbreviation. The default value is
  1841. "25".
  1842. @end table
  1843. For example the following graph description will generate a red source
  1844. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1845. frames per second, which will be overlayed over the source connected
  1846. to the pad with identifier "in".
  1847. @example
  1848. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1849. @end example
  1850. @section movie
  1851. Read a video stream from a movie container.
  1852. Note that this source is a hack that bypasses the standard input path. It can be
  1853. useful in applications that do not support arbitrary filter graphs, but its use
  1854. is discouraged in those that do. Specifically in @command{avconv} this filter
  1855. should never be used, the @option{-filter_complex} option fully replaces it.
  1856. This filter accepts the following options:
  1857. @table @option
  1858. @item filename
  1859. The name of the resource to read (not necessarily a file but also a device or a
  1860. stream accessed through some protocol).
  1861. @item format_name, f
  1862. Specifies the format assumed for the movie to read, and can be either
  1863. the name of a container or an input device. If not specified the
  1864. format is guessed from @var{movie_name} or by probing.
  1865. @item seek_point, sp
  1866. Specifies the seek point in seconds, the frames will be output
  1867. starting from this seek point, the parameter is evaluated with
  1868. @code{av_strtod} so the numerical value may be suffixed by an IS
  1869. postfix. Default value is "0".
  1870. @item stream_index, si
  1871. Specifies the index of the video stream to read. If the value is -1,
  1872. the best suited video stream will be automatically selected. Default
  1873. value is "-1".
  1874. @end table
  1875. This filter allows to overlay a second video on top of main input of
  1876. a filtergraph as shown in this graph:
  1877. @example
  1878. input -----------> deltapts0 --> overlay --> output
  1879. ^
  1880. |
  1881. movie --> scale--> deltapts1 -------+
  1882. @end example
  1883. Some examples follow:
  1884. @example
  1885. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1886. # on top of the input labelled as "in".
  1887. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1888. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1889. # read from a video4linux2 device, and overlay it on top of the input
  1890. # labelled as "in"
  1891. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1892. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1893. @end example
  1894. @section nullsrc
  1895. Null video source, never return images. It is mainly useful as a
  1896. template and to be employed in analysis / debugging tools.
  1897. It accepts as optional parameter a string of the form
  1898. @var{width}:@var{height}:@var{timebase}.
  1899. @var{width} and @var{height} specify the size of the configured
  1900. source. The default values of @var{width} and @var{height} are
  1901. respectively 352 and 288 (corresponding to the CIF size format).
  1902. @var{timebase} specifies an arithmetic expression representing a
  1903. timebase. The expression can contain the constants "PI", "E", "PHI",
  1904. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1905. @section frei0r_src
  1906. Provide a frei0r source.
  1907. To enable compilation of this filter you need to install the frei0r
  1908. header and configure Libav with --enable-frei0r.
  1909. This source accepts the following options:
  1910. @table @option
  1911. @item size
  1912. The size of the video to generate, may be a string of the form
  1913. @var{width}x@var{height} or a frame size abbreviation.
  1914. @item framerate
  1915. Framerate of the generated video, may be a string of the form
  1916. @var{num}/@var{den} or a frame rate abbreviation.
  1917. @item filter_name
  1918. The name to the frei0r source to load. For more information regarding frei0r and
  1919. how to set the parameters read the section @ref{frei0r} in the description of
  1920. the video filters.
  1921. @item filter_params
  1922. A '|'-separated list of parameters to pass to the frei0r source.
  1923. @end table
  1924. Some examples follow:
  1925. @example
  1926. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1927. # which is overlayed on the overlay filter main input
  1928. frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay
  1929. @end example
  1930. @section rgbtestsrc, testsrc
  1931. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1932. detecting RGB vs BGR issues. You should see a red, green and blue
  1933. stripe from top to bottom.
  1934. The @code{testsrc} source generates a test video pattern, showing a
  1935. color pattern, a scrolling gradient and a timestamp. This is mainly
  1936. intended for testing purposes.
  1937. The sources accept the following options:
  1938. @table @option
  1939. @item size, s
  1940. Specify the size of the sourced video, it may be a string of the form
  1941. @var{width}x@var{height}, or the name of a size abbreviation. The
  1942. default value is "320x240".
  1943. @item rate, r
  1944. Specify the frame rate of the sourced video, as the number of frames
  1945. generated per second. It has to be a string in the format
  1946. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1947. number or a valid video frame rate abbreviation. The default value is
  1948. "25".
  1949. @item sar
  1950. Set the sample aspect ratio of the sourced video.
  1951. @item duration
  1952. Set the video duration of the sourced video. The accepted syntax is:
  1953. @example
  1954. [-]HH[:MM[:SS[.m...]]]
  1955. [-]S+[.m...]
  1956. @end example
  1957. See also the function @code{av_parse_time()}.
  1958. If not specified, or the expressed duration is negative, the video is
  1959. supposed to be generated forever.
  1960. @end table
  1961. For example the following:
  1962. @example
  1963. testsrc=duration=5.3:size=qcif:rate=10
  1964. @end example
  1965. will generate a video with a duration of 5.3 seconds, with size
  1966. 176x144 and a framerate of 10 frames per second.
  1967. @c man end VIDEO SOURCES
  1968. @chapter Video Sinks
  1969. @c man begin VIDEO SINKS
  1970. Below is a description of the currently available video sinks.
  1971. @section buffersink
  1972. Buffer video frames, and make them available to the end of the filter
  1973. graph.
  1974. This sink is intended for a programmatic use through the interface defined in
  1975. @file{libavfilter/buffersink.h}.
  1976. @section nullsink
  1977. Null video sink, do absolutely nothing with the input video. It is
  1978. mainly useful as a template and to be employed in analysis / debugging
  1979. tools.
  1980. @c man end VIDEO SINKS