You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3430 lines
116KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  53. #include <inttypes.h>
  54. #include <string.h>
  55. #include <math.h>
  56. #include <stdio.h>
  57. #include <unistd.h>
  58. #include "config.h"
  59. #include <assert.h>
  60. #if HAVE_SYS_MMAN_H
  61. #include <sys/mman.h>
  62. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  63. #define MAP_ANONYMOUS MAP_ANON
  64. #endif
  65. #endif
  66. #if HAVE_VIRTUALALLOC
  67. #define WIN32_LEAN_AND_MEAN
  68. #include <windows.h>
  69. #endif
  70. #include "swscale.h"
  71. #include "swscale_internal.h"
  72. #include "rgb2rgb.h"
  73. #include "libavutil/x86_cpu.h"
  74. #include "libavutil/bswap.h"
  75. unsigned swscale_version(void)
  76. {
  77. return LIBSWSCALE_VERSION_INT;
  78. }
  79. #undef MOVNTQ
  80. #undef PAVGB
  81. //#undef HAVE_MMX2
  82. //#define HAVE_AMD3DNOW
  83. //#undef HAVE_MMX
  84. //#undef ARCH_X86
  85. //#define WORDS_BIGENDIAN
  86. #define DITHER1XBPP
  87. #define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit
  88. #define RET 0xC3 //near return opcode for x86
  89. #ifdef M_PI
  90. #define PI M_PI
  91. #else
  92. #define PI 3.14159265358979323846
  93. #endif
  94. #define isSupportedIn(x) ( \
  95. (x)==PIX_FMT_YUV420P \
  96. || (x)==PIX_FMT_YUVA420P \
  97. || (x)==PIX_FMT_YUYV422 \
  98. || (x)==PIX_FMT_UYVY422 \
  99. || (x)==PIX_FMT_RGB32 \
  100. || (x)==PIX_FMT_RGB32_1 \
  101. || (x)==PIX_FMT_BGR24 \
  102. || (x)==PIX_FMT_BGR565 \
  103. || (x)==PIX_FMT_BGR555 \
  104. || (x)==PIX_FMT_BGR32 \
  105. || (x)==PIX_FMT_BGR32_1 \
  106. || (x)==PIX_FMT_RGB24 \
  107. || (x)==PIX_FMT_RGB565 \
  108. || (x)==PIX_FMT_RGB555 \
  109. || (x)==PIX_FMT_GRAY8 \
  110. || (x)==PIX_FMT_YUV410P \
  111. || (x)==PIX_FMT_YUV440P \
  112. || (x)==PIX_FMT_GRAY16BE \
  113. || (x)==PIX_FMT_GRAY16LE \
  114. || (x)==PIX_FMT_YUV444P \
  115. || (x)==PIX_FMT_YUV422P \
  116. || (x)==PIX_FMT_YUV411P \
  117. || (x)==PIX_FMT_PAL8 \
  118. || (x)==PIX_FMT_BGR8 \
  119. || (x)==PIX_FMT_RGB8 \
  120. || (x)==PIX_FMT_BGR4_BYTE \
  121. || (x)==PIX_FMT_RGB4_BYTE \
  122. || (x)==PIX_FMT_YUV440P \
  123. || (x)==PIX_FMT_MONOWHITE \
  124. || (x)==PIX_FMT_MONOBLACK \
  125. )
  126. #define isSupportedOut(x) ( \
  127. (x)==PIX_FMT_YUV420P \
  128. || (x)==PIX_FMT_YUVA420P \
  129. || (x)==PIX_FMT_YUYV422 \
  130. || (x)==PIX_FMT_UYVY422 \
  131. || (x)==PIX_FMT_YUV444P \
  132. || (x)==PIX_FMT_YUV422P \
  133. || (x)==PIX_FMT_YUV411P \
  134. || isRGB(x) \
  135. || isBGR(x) \
  136. || (x)==PIX_FMT_NV12 \
  137. || (x)==PIX_FMT_NV21 \
  138. || (x)==PIX_FMT_GRAY16BE \
  139. || (x)==PIX_FMT_GRAY16LE \
  140. || (x)==PIX_FMT_GRAY8 \
  141. || (x)==PIX_FMT_YUV410P \
  142. || (x)==PIX_FMT_YUV440P \
  143. )
  144. #define isPacked(x) ( \
  145. (x)==PIX_FMT_PAL8 \
  146. || (x)==PIX_FMT_YUYV422 \
  147. || (x)==PIX_FMT_UYVY422 \
  148. || isRGB(x) \
  149. || isBGR(x) \
  150. )
  151. #define usePal(x) ( \
  152. (x)==PIX_FMT_PAL8 \
  153. || (x)==PIX_FMT_BGR4_BYTE \
  154. || (x)==PIX_FMT_RGB4_BYTE \
  155. || (x)==PIX_FMT_BGR8 \
  156. || (x)==PIX_FMT_RGB8 \
  157. )
  158. #define RGB2YUV_SHIFT 15
  159. #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  160. #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  161. #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  162. #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  163. #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  164. #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  165. #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  166. #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  167. #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  168. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  169. static const double rgb2yuv_table[8][9]={
  170. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  171. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  172. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  173. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  174. {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
  175. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  176. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
  177. {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
  178. };
  179. /*
  180. NOTES
  181. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  182. TODO
  183. more intelligent misalignment avoidance for the horizontal scaler
  184. write special vertical cubic upscale version
  185. optimize C code (YV12 / minmax)
  186. add support for packed pixel YUV input & output
  187. add support for Y8 output
  188. optimize BGR24 & BGR32
  189. add BGR4 output support
  190. write special BGR->BGR scaler
  191. */
  192. #if ARCH_X86 && CONFIG_GPL
  193. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  194. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  195. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  196. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  197. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  198. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  199. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  200. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  201. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  202. 0x0103010301030103LL,
  203. 0x0200020002000200LL,};
  204. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  205. 0x0602060206020602LL,
  206. 0x0004000400040004LL,};
  207. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  208. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  209. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  210. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  211. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  212. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  213. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  214. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  215. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  216. #ifdef FAST_BGR2YV12
  217. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  218. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  219. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  220. #else
  221. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  222. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  223. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  224. #endif /* FAST_BGR2YV12 */
  225. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  226. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  227. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  228. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
  229. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
  230. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
  231. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
  232. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
  233. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
  234. {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
  235. {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
  236. };
  237. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
  238. #endif /* ARCH_X86 && CONFIG_GPL */
  239. // clipping helper table for C implementations:
  240. static unsigned char clip_table[768];
  241. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  242. static const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  243. { 1, 3, 1, 3, 1, 3, 1, 3, },
  244. { 2, 0, 2, 0, 2, 0, 2, 0, },
  245. };
  246. static const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  247. { 6, 2, 6, 2, 6, 2, 6, 2, },
  248. { 0, 4, 0, 4, 0, 4, 0, 4, },
  249. };
  250. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  251. { 17, 9, 23, 15, 16, 8, 22, 14, },
  252. { 5, 29, 3, 27, 4, 28, 2, 26, },
  253. { 21, 13, 19, 11, 20, 12, 18, 10, },
  254. { 0, 24, 6, 30, 1, 25, 7, 31, },
  255. { 16, 8, 22, 14, 17, 9, 23, 15, },
  256. { 4, 28, 2, 26, 5, 29, 3, 27, },
  257. { 20, 12, 18, 10, 21, 13, 19, 11, },
  258. { 1, 25, 7, 31, 0, 24, 6, 30, },
  259. };
  260. #if 0
  261. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  262. { 0, 48, 12, 60, 3, 51, 15, 63, },
  263. { 32, 16, 44, 28, 35, 19, 47, 31, },
  264. { 8, 56, 4, 52, 11, 59, 7, 55, },
  265. { 40, 24, 36, 20, 43, 27, 39, 23, },
  266. { 2, 50, 14, 62, 1, 49, 13, 61, },
  267. { 34, 18, 46, 30, 33, 17, 45, 29, },
  268. { 10, 58, 6, 54, 9, 57, 5, 53, },
  269. { 42, 26, 38, 22, 41, 25, 37, 21, },
  270. };
  271. #endif
  272. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  273. { 0, 55, 14, 68, 3, 58, 17, 72, },
  274. { 37, 18, 50, 32, 40, 22, 54, 35, },
  275. { 9, 64, 5, 59, 13, 67, 8, 63, },
  276. { 46, 27, 41, 23, 49, 31, 44, 26, },
  277. { 2, 57, 16, 71, 1, 56, 15, 70, },
  278. { 39, 21, 52, 34, 38, 19, 51, 33, },
  279. { 11, 66, 7, 62, 10, 65, 6, 60, },
  280. { 48, 30, 43, 25, 47, 29, 42, 24, },
  281. };
  282. #if 0
  283. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  284. { 68, 36, 92, 60, 66, 34, 90, 58, },
  285. { 20, 116, 12, 108, 18, 114, 10, 106, },
  286. { 84, 52, 76, 44, 82, 50, 74, 42, },
  287. { 0, 96, 24, 120, 6, 102, 30, 126, },
  288. { 64, 32, 88, 56, 70, 38, 94, 62, },
  289. { 16, 112, 8, 104, 22, 118, 14, 110, },
  290. { 80, 48, 72, 40, 86, 54, 78, 46, },
  291. { 4, 100, 28, 124, 2, 98, 26, 122, },
  292. };
  293. #endif
  294. #if 1
  295. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  296. {117, 62, 158, 103, 113, 58, 155, 100, },
  297. { 34, 199, 21, 186, 31, 196, 17, 182, },
  298. {144, 89, 131, 76, 141, 86, 127, 72, },
  299. { 0, 165, 41, 206, 10, 175, 52, 217, },
  300. {110, 55, 151, 96, 120, 65, 162, 107, },
  301. { 28, 193, 14, 179, 38, 203, 24, 189, },
  302. {138, 83, 124, 69, 148, 93, 134, 79, },
  303. { 7, 172, 48, 213, 3, 168, 45, 210, },
  304. };
  305. #elif 1
  306. // tries to correct a gamma of 1.5
  307. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  308. { 0, 143, 18, 200, 2, 156, 25, 215, },
  309. { 78, 28, 125, 64, 89, 36, 138, 74, },
  310. { 10, 180, 3, 161, 16, 195, 8, 175, },
  311. {109, 51, 93, 38, 121, 60, 105, 47, },
  312. { 1, 152, 23, 210, 0, 147, 20, 205, },
  313. { 85, 33, 134, 71, 81, 30, 130, 67, },
  314. { 14, 190, 6, 171, 12, 185, 5, 166, },
  315. {117, 57, 101, 44, 113, 54, 97, 41, },
  316. };
  317. #elif 1
  318. // tries to correct a gamma of 2.0
  319. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  320. { 0, 124, 8, 193, 0, 140, 12, 213, },
  321. { 55, 14, 104, 42, 66, 19, 119, 52, },
  322. { 3, 168, 1, 145, 6, 187, 3, 162, },
  323. { 86, 31, 70, 21, 99, 39, 82, 28, },
  324. { 0, 134, 11, 206, 0, 129, 9, 200, },
  325. { 62, 17, 114, 48, 58, 16, 109, 45, },
  326. { 5, 181, 2, 157, 4, 175, 1, 151, },
  327. { 95, 36, 78, 26, 90, 34, 74, 24, },
  328. };
  329. #else
  330. // tries to correct a gamma of 2.5
  331. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  332. { 0, 107, 3, 187, 0, 125, 6, 212, },
  333. { 39, 7, 86, 28, 49, 11, 102, 36, },
  334. { 1, 158, 0, 131, 3, 180, 1, 151, },
  335. { 68, 19, 52, 12, 81, 25, 64, 17, },
  336. { 0, 119, 5, 203, 0, 113, 4, 195, },
  337. { 45, 9, 96, 33, 42, 8, 91, 30, },
  338. { 2, 172, 1, 144, 2, 165, 0, 137, },
  339. { 77, 23, 60, 15, 72, 21, 56, 14, },
  340. };
  341. #endif
  342. const char *sws_format_name(enum PixelFormat format)
  343. {
  344. switch (format) {
  345. case PIX_FMT_YUV420P:
  346. return "yuv420p";
  347. case PIX_FMT_YUVA420P:
  348. return "yuva420p";
  349. case PIX_FMT_YUYV422:
  350. return "yuyv422";
  351. case PIX_FMT_RGB24:
  352. return "rgb24";
  353. case PIX_FMT_BGR24:
  354. return "bgr24";
  355. case PIX_FMT_YUV422P:
  356. return "yuv422p";
  357. case PIX_FMT_YUV444P:
  358. return "yuv444p";
  359. case PIX_FMT_RGB32:
  360. return "rgb32";
  361. case PIX_FMT_YUV410P:
  362. return "yuv410p";
  363. case PIX_FMT_YUV411P:
  364. return "yuv411p";
  365. case PIX_FMT_RGB565:
  366. return "rgb565";
  367. case PIX_FMT_RGB555:
  368. return "rgb555";
  369. case PIX_FMT_GRAY16BE:
  370. return "gray16be";
  371. case PIX_FMT_GRAY16LE:
  372. return "gray16le";
  373. case PIX_FMT_GRAY8:
  374. return "gray8";
  375. case PIX_FMT_MONOWHITE:
  376. return "mono white";
  377. case PIX_FMT_MONOBLACK:
  378. return "mono black";
  379. case PIX_FMT_PAL8:
  380. return "Palette";
  381. case PIX_FMT_YUVJ420P:
  382. return "yuvj420p";
  383. case PIX_FMT_YUVJ422P:
  384. return "yuvj422p";
  385. case PIX_FMT_YUVJ444P:
  386. return "yuvj444p";
  387. case PIX_FMT_XVMC_MPEG2_MC:
  388. return "xvmc_mpeg2_mc";
  389. case PIX_FMT_XVMC_MPEG2_IDCT:
  390. return "xvmc_mpeg2_idct";
  391. case PIX_FMT_UYVY422:
  392. return "uyvy422";
  393. case PIX_FMT_UYYVYY411:
  394. return "uyyvyy411";
  395. case PIX_FMT_RGB32_1:
  396. return "rgb32x";
  397. case PIX_FMT_BGR32_1:
  398. return "bgr32x";
  399. case PIX_FMT_BGR32:
  400. return "bgr32";
  401. case PIX_FMT_BGR565:
  402. return "bgr565";
  403. case PIX_FMT_BGR555:
  404. return "bgr555";
  405. case PIX_FMT_BGR8:
  406. return "bgr8";
  407. case PIX_FMT_BGR4:
  408. return "bgr4";
  409. case PIX_FMT_BGR4_BYTE:
  410. return "bgr4 byte";
  411. case PIX_FMT_RGB8:
  412. return "rgb8";
  413. case PIX_FMT_RGB4:
  414. return "rgb4";
  415. case PIX_FMT_RGB4_BYTE:
  416. return "rgb4 byte";
  417. case PIX_FMT_NV12:
  418. return "nv12";
  419. case PIX_FMT_NV21:
  420. return "nv21";
  421. case PIX_FMT_YUV440P:
  422. return "yuv440p";
  423. case PIX_FMT_VDPAU_H264:
  424. return "vdpau_h264";
  425. case PIX_FMT_VDPAU_MPEG1:
  426. return "vdpau_mpeg1";
  427. case PIX_FMT_VDPAU_MPEG2:
  428. return "vdpau_mpeg2";
  429. case PIX_FMT_VDPAU_WMV3:
  430. return "vdpau_wmv3";
  431. case PIX_FMT_VDPAU_VC1:
  432. return "vdpau_vc1";
  433. default:
  434. return "Unknown format";
  435. }
  436. }
  437. static inline void yuv2yuvXinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  438. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  439. const int16_t **alpSrc, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, uint8_t *aDest, int dstW, int chrDstW)
  440. {
  441. //FIXME Optimize (just quickly written not optimized..)
  442. int i;
  443. for (i=0; i<dstW; i++)
  444. {
  445. int val=1<<18;
  446. int j;
  447. for (j=0; j<lumFilterSize; j++)
  448. val += lumSrc[j][i] * lumFilter[j];
  449. dest[i]= av_clip_uint8(val>>19);
  450. }
  451. if (uDest)
  452. for (i=0; i<chrDstW; i++)
  453. {
  454. int u=1<<18;
  455. int v=1<<18;
  456. int j;
  457. for (j=0; j<chrFilterSize; j++)
  458. {
  459. u += chrSrc[j][i] * chrFilter[j];
  460. v += chrSrc[j][i + VOFW] * chrFilter[j];
  461. }
  462. uDest[i]= av_clip_uint8(u>>19);
  463. vDest[i]= av_clip_uint8(v>>19);
  464. }
  465. if (CONFIG_SWSCALE_ALPHA && aDest)
  466. for (i=0; i<dstW; i++){
  467. int val=1<<18;
  468. int j;
  469. for (j=0; j<lumFilterSize; j++)
  470. val += alpSrc[j][i] * lumFilter[j];
  471. aDest[i]= av_clip_uint8(val>>19);
  472. }
  473. }
  474. static inline void yuv2nv12XinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  475. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  476. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  477. {
  478. //FIXME Optimize (just quickly written not optimized..)
  479. int i;
  480. for (i=0; i<dstW; i++)
  481. {
  482. int val=1<<18;
  483. int j;
  484. for (j=0; j<lumFilterSize; j++)
  485. val += lumSrc[j][i] * lumFilter[j];
  486. dest[i]= av_clip_uint8(val>>19);
  487. }
  488. if (!uDest)
  489. return;
  490. if (dstFormat == PIX_FMT_NV12)
  491. for (i=0; i<chrDstW; i++)
  492. {
  493. int u=1<<18;
  494. int v=1<<18;
  495. int j;
  496. for (j=0; j<chrFilterSize; j++)
  497. {
  498. u += chrSrc[j][i] * chrFilter[j];
  499. v += chrSrc[j][i + VOFW] * chrFilter[j];
  500. }
  501. uDest[2*i]= av_clip_uint8(u>>19);
  502. uDest[2*i+1]= av_clip_uint8(v>>19);
  503. }
  504. else
  505. for (i=0; i<chrDstW; i++)
  506. {
  507. int u=1<<18;
  508. int v=1<<18;
  509. int j;
  510. for (j=0; j<chrFilterSize; j++)
  511. {
  512. u += chrSrc[j][i] * chrFilter[j];
  513. v += chrSrc[j][i + VOFW] * chrFilter[j];
  514. }
  515. uDest[2*i]= av_clip_uint8(v>>19);
  516. uDest[2*i+1]= av_clip_uint8(u>>19);
  517. }
  518. }
  519. #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha) \
  520. for (i=0; i<(dstW>>1); i++){\
  521. int j;\
  522. int Y1 = 1<<18;\
  523. int Y2 = 1<<18;\
  524. int U = 1<<18;\
  525. int V = 1<<18;\
  526. int av_unused A1, A2;\
  527. type av_unused *r, *b, *g;\
  528. const int i2= 2*i;\
  529. \
  530. for (j=0; j<lumFilterSize; j++)\
  531. {\
  532. Y1 += lumSrc[j][i2] * lumFilter[j];\
  533. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  534. }\
  535. for (j=0; j<chrFilterSize; j++)\
  536. {\
  537. U += chrSrc[j][i] * chrFilter[j];\
  538. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  539. }\
  540. Y1>>=19;\
  541. Y2>>=19;\
  542. U >>=19;\
  543. V >>=19;\
  544. if (alpha){\
  545. A1 = 1<<18;\
  546. A2 = 1<<18;\
  547. for (j=0; j<lumFilterSize; j++){\
  548. A1 += alpSrc[j][i2 ] * lumFilter[j];\
  549. A2 += alpSrc[j][i2+1] * lumFilter[j];\
  550. }\
  551. A1>>=19;\
  552. A2>>=19;\
  553. }\
  554. #define YSCALE_YUV_2_PACKEDX_C(type,alpha) \
  555. YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha)\
  556. if ((Y1|Y2|U|V)&256)\
  557. {\
  558. if (Y1>255) Y1=255; \
  559. else if (Y1<0)Y1=0; \
  560. if (Y2>255) Y2=255; \
  561. else if (Y2<0)Y2=0; \
  562. if (U>255) U=255; \
  563. else if (U<0) U=0; \
  564. if (V>255) V=255; \
  565. else if (V<0) V=0; \
  566. }\
  567. if (alpha && ((A1|A2)&256)){\
  568. A1=av_clip_uint8(A1);\
  569. A2=av_clip_uint8(A2);\
  570. }
  571. #define YSCALE_YUV_2_PACKEDX_FULL_C(rnd,alpha) \
  572. for (i=0; i<dstW; i++){\
  573. int j;\
  574. int Y = 0;\
  575. int U = -128<<19;\
  576. int V = -128<<19;\
  577. int av_unused A;\
  578. int R,G,B;\
  579. \
  580. for (j=0; j<lumFilterSize; j++){\
  581. Y += lumSrc[j][i ] * lumFilter[j];\
  582. }\
  583. for (j=0; j<chrFilterSize; j++){\
  584. U += chrSrc[j][i ] * chrFilter[j];\
  585. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  586. }\
  587. Y >>=10;\
  588. U >>=10;\
  589. V >>=10;\
  590. if (alpha){\
  591. A = rnd;\
  592. for (j=0; j<lumFilterSize; j++)\
  593. A += alpSrc[j][i ] * lumFilter[j];\
  594. A >>=19;\
  595. if (A&256)\
  596. A = av_clip_uint8(A);\
  597. }\
  598. #define YSCALE_YUV_2_RGBX_FULL_C(rnd,alpha) \
  599. YSCALE_YUV_2_PACKEDX_FULL_C(rnd>>3,alpha)\
  600. Y-= c->yuv2rgb_y_offset;\
  601. Y*= c->yuv2rgb_y_coeff;\
  602. Y+= rnd;\
  603. R= Y + V*c->yuv2rgb_v2r_coeff;\
  604. G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
  605. B= Y + U*c->yuv2rgb_u2b_coeff;\
  606. if ((R|G|B)&(0xC0000000)){\
  607. if (R>=(256<<22)) R=(256<<22)-1; \
  608. else if (R<0)R=0; \
  609. if (G>=(256<<22)) G=(256<<22)-1; \
  610. else if (G<0)G=0; \
  611. if (B>=(256<<22)) B=(256<<22)-1; \
  612. else if (B<0)B=0; \
  613. }\
  614. #define YSCALE_YUV_2_GRAY16_C \
  615. for (i=0; i<(dstW>>1); i++){\
  616. int j;\
  617. int Y1 = 1<<18;\
  618. int Y2 = 1<<18;\
  619. int U = 1<<18;\
  620. int V = 1<<18;\
  621. \
  622. const int i2= 2*i;\
  623. \
  624. for (j=0; j<lumFilterSize; j++)\
  625. {\
  626. Y1 += lumSrc[j][i2] * lumFilter[j];\
  627. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  628. }\
  629. Y1>>=11;\
  630. Y2>>=11;\
  631. if ((Y1|Y2|U|V)&65536)\
  632. {\
  633. if (Y1>65535) Y1=65535; \
  634. else if (Y1<0)Y1=0; \
  635. if (Y2>65535) Y2=65535; \
  636. else if (Y2<0)Y2=0; \
  637. }
  638. #define YSCALE_YUV_2_RGBX_C(type,alpha) \
  639. YSCALE_YUV_2_PACKEDX_C(type,alpha) /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\
  640. r = (type *)c->table_rV[V]; \
  641. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  642. b = (type *)c->table_bU[U]; \
  643. #define YSCALE_YUV_2_PACKED2_C(type,alpha) \
  644. for (i=0; i<(dstW>>1); i++){ \
  645. const int i2= 2*i; \
  646. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  647. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  648. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  649. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  650. type av_unused *r, *b, *g; \
  651. int av_unused A1, A2; \
  652. if (alpha){\
  653. A1= (abuf0[i2 ]*yalpha1+abuf1[i2 ]*yalpha)>>19; \
  654. A2= (abuf0[i2+1]*yalpha1+abuf1[i2+1]*yalpha)>>19; \
  655. }\
  656. #define YSCALE_YUV_2_GRAY16_2_C \
  657. for (i=0; i<(dstW>>1); i++){ \
  658. const int i2= 2*i; \
  659. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
  660. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
  661. #define YSCALE_YUV_2_RGB2_C(type,alpha) \
  662. YSCALE_YUV_2_PACKED2_C(type,alpha)\
  663. r = (type *)c->table_rV[V];\
  664. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  665. b = (type *)c->table_bU[U];\
  666. #define YSCALE_YUV_2_PACKED1_C(type,alpha) \
  667. for (i=0; i<(dstW>>1); i++){\
  668. const int i2= 2*i;\
  669. int Y1= buf0[i2 ]>>7;\
  670. int Y2= buf0[i2+1]>>7;\
  671. int U= (uvbuf1[i ])>>7;\
  672. int V= (uvbuf1[i+VOFW])>>7;\
  673. type av_unused *r, *b, *g;\
  674. int av_unused A1, A2;\
  675. if (alpha){\
  676. A1= abuf0[i2 ]>>7;\
  677. A2= abuf0[i2+1]>>7;\
  678. }\
  679. #define YSCALE_YUV_2_GRAY16_1_C \
  680. for (i=0; i<(dstW>>1); i++){\
  681. const int i2= 2*i;\
  682. int Y1= buf0[i2 ]<<1;\
  683. int Y2= buf0[i2+1]<<1;\
  684. #define YSCALE_YUV_2_RGB1_C(type,alpha) \
  685. YSCALE_YUV_2_PACKED1_C(type,alpha)\
  686. r = (type *)c->table_rV[V];\
  687. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  688. b = (type *)c->table_bU[U];\
  689. #define YSCALE_YUV_2_PACKED1B_C(type,alpha) \
  690. for (i=0; i<(dstW>>1); i++){\
  691. const int i2= 2*i;\
  692. int Y1= buf0[i2 ]>>7;\
  693. int Y2= buf0[i2+1]>>7;\
  694. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  695. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  696. type av_unused *r, *b, *g;\
  697. int av_unused A1, A2;\
  698. if (alpha){\
  699. A1= abuf0[i2 ]>>7;\
  700. A2= abuf0[i2+1]>>7;\
  701. }\
  702. #define YSCALE_YUV_2_RGB1B_C(type,alpha) \
  703. YSCALE_YUV_2_PACKED1B_C(type,alpha)\
  704. r = (type *)c->table_rV[V];\
  705. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  706. b = (type *)c->table_bU[U];\
  707. #define YSCALE_YUV_2_MONO2_C \
  708. const uint8_t * const d128=dither_8x8_220[y&7];\
  709. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  710. for (i=0; i<dstW-7; i+=8){\
  711. int acc;\
  712. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  713. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  714. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  715. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  716. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  717. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  718. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  719. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  720. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  721. dest++;\
  722. }\
  723. #define YSCALE_YUV_2_MONOX_C \
  724. const uint8_t * const d128=dither_8x8_220[y&7];\
  725. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  726. int acc=0;\
  727. for (i=0; i<dstW-1; i+=2){\
  728. int j;\
  729. int Y1=1<<18;\
  730. int Y2=1<<18;\
  731. \
  732. for (j=0; j<lumFilterSize; j++)\
  733. {\
  734. Y1 += lumSrc[j][i] * lumFilter[j];\
  735. Y2 += lumSrc[j][i+1] * lumFilter[j];\
  736. }\
  737. Y1>>=19;\
  738. Y2>>=19;\
  739. if ((Y1|Y2)&256)\
  740. {\
  741. if (Y1>255) Y1=255;\
  742. else if (Y1<0)Y1=0;\
  743. if (Y2>255) Y2=255;\
  744. else if (Y2<0)Y2=0;\
  745. }\
  746. acc+= acc + g[Y1+d128[(i+0)&7]];\
  747. acc+= acc + g[Y2+d128[(i+1)&7]];\
  748. if ((i&7)==6){\
  749. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  750. dest++;\
  751. }\
  752. }
  753. #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
  754. switch(c->dstFormat)\
  755. {\
  756. case PIX_FMT_RGBA:\
  757. case PIX_FMT_BGRA:\
  758. if (CONFIG_SMALL){\
  759. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  760. func(uint32_t,needAlpha)\
  761. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? (A1<<24) : 0);\
  762. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? (A2<<24) : 0);\
  763. }\
  764. }else{\
  765. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  766. func(uint32_t,1)\
  767. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (A1<<24);\
  768. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (A2<<24);\
  769. }\
  770. }else{\
  771. func(uint32_t,0)\
  772. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  773. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  774. }\
  775. }\
  776. }\
  777. break;\
  778. case PIX_FMT_ARGB:\
  779. case PIX_FMT_ABGR:\
  780. if (CONFIG_SMALL){\
  781. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\
  782. func(uint32_t,needAlpha)\
  783. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? A1 : 0);\
  784. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? A2 : 0);\
  785. }\
  786. }else{\
  787. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){\
  788. func(uint32_t,1)\
  789. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + A1;\
  790. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + A2;\
  791. }\
  792. }else{\
  793. func(uint32_t,0)\
  794. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  795. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  796. }\
  797. }\
  798. } \
  799. break;\
  800. case PIX_FMT_RGB24:\
  801. func(uint8_t,0)\
  802. ((uint8_t*)dest)[0]= r[Y1];\
  803. ((uint8_t*)dest)[1]= g[Y1];\
  804. ((uint8_t*)dest)[2]= b[Y1];\
  805. ((uint8_t*)dest)[3]= r[Y2];\
  806. ((uint8_t*)dest)[4]= g[Y2];\
  807. ((uint8_t*)dest)[5]= b[Y2];\
  808. dest+=6;\
  809. }\
  810. break;\
  811. case PIX_FMT_BGR24:\
  812. func(uint8_t,0)\
  813. ((uint8_t*)dest)[0]= b[Y1];\
  814. ((uint8_t*)dest)[1]= g[Y1];\
  815. ((uint8_t*)dest)[2]= r[Y1];\
  816. ((uint8_t*)dest)[3]= b[Y2];\
  817. ((uint8_t*)dest)[4]= g[Y2];\
  818. ((uint8_t*)dest)[5]= r[Y2];\
  819. dest+=6;\
  820. }\
  821. break;\
  822. case PIX_FMT_RGB565:\
  823. case PIX_FMT_BGR565:\
  824. {\
  825. const int dr1= dither_2x2_8[y&1 ][0];\
  826. const int dg1= dither_2x2_4[y&1 ][0];\
  827. const int db1= dither_2x2_8[(y&1)^1][0];\
  828. const int dr2= dither_2x2_8[y&1 ][1];\
  829. const int dg2= dither_2x2_4[y&1 ][1];\
  830. const int db2= dither_2x2_8[(y&1)^1][1];\
  831. func(uint16_t,0)\
  832. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  833. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  834. }\
  835. }\
  836. break;\
  837. case PIX_FMT_RGB555:\
  838. case PIX_FMT_BGR555:\
  839. {\
  840. const int dr1= dither_2x2_8[y&1 ][0];\
  841. const int dg1= dither_2x2_8[y&1 ][1];\
  842. const int db1= dither_2x2_8[(y&1)^1][0];\
  843. const int dr2= dither_2x2_8[y&1 ][1];\
  844. const int dg2= dither_2x2_8[y&1 ][0];\
  845. const int db2= dither_2x2_8[(y&1)^1][1];\
  846. func(uint16_t,0)\
  847. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  848. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  849. }\
  850. }\
  851. break;\
  852. case PIX_FMT_RGB8:\
  853. case PIX_FMT_BGR8:\
  854. {\
  855. const uint8_t * const d64= dither_8x8_73[y&7];\
  856. const uint8_t * const d32= dither_8x8_32[y&7];\
  857. func(uint8_t,0)\
  858. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  859. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  860. }\
  861. }\
  862. break;\
  863. case PIX_FMT_RGB4:\
  864. case PIX_FMT_BGR4:\
  865. {\
  866. const uint8_t * const d64= dither_8x8_73 [y&7];\
  867. const uint8_t * const d128=dither_8x8_220[y&7];\
  868. func(uint8_t,0)\
  869. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  870. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  871. }\
  872. }\
  873. break;\
  874. case PIX_FMT_RGB4_BYTE:\
  875. case PIX_FMT_BGR4_BYTE:\
  876. {\
  877. const uint8_t * const d64= dither_8x8_73 [y&7];\
  878. const uint8_t * const d128=dither_8x8_220[y&7];\
  879. func(uint8_t,0)\
  880. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  881. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  882. }\
  883. }\
  884. break;\
  885. case PIX_FMT_MONOBLACK:\
  886. case PIX_FMT_MONOWHITE:\
  887. {\
  888. func_monoblack\
  889. }\
  890. break;\
  891. case PIX_FMT_YUYV422:\
  892. func2\
  893. ((uint8_t*)dest)[2*i2+0]= Y1;\
  894. ((uint8_t*)dest)[2*i2+1]= U;\
  895. ((uint8_t*)dest)[2*i2+2]= Y2;\
  896. ((uint8_t*)dest)[2*i2+3]= V;\
  897. } \
  898. break;\
  899. case PIX_FMT_UYVY422:\
  900. func2\
  901. ((uint8_t*)dest)[2*i2+0]= U;\
  902. ((uint8_t*)dest)[2*i2+1]= Y1;\
  903. ((uint8_t*)dest)[2*i2+2]= V;\
  904. ((uint8_t*)dest)[2*i2+3]= Y2;\
  905. } \
  906. break;\
  907. case PIX_FMT_GRAY16BE:\
  908. func_g16\
  909. ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
  910. ((uint8_t*)dest)[2*i2+1]= Y1;\
  911. ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
  912. ((uint8_t*)dest)[2*i2+3]= Y2;\
  913. } \
  914. break;\
  915. case PIX_FMT_GRAY16LE:\
  916. func_g16\
  917. ((uint8_t*)dest)[2*i2+0]= Y1;\
  918. ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
  919. ((uint8_t*)dest)[2*i2+2]= Y2;\
  920. ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
  921. } \
  922. break;\
  923. }\
  924. static inline void yuv2packedXinC(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  925. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  926. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  927. {
  928. int i;
  929. YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void,0), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
  930. }
  931. static inline void yuv2rgbXinC_full(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize,
  932. const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize,
  933. const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
  934. {
  935. int i;
  936. int step= fmt_depth(c->dstFormat)/8;
  937. int aidx= 3;
  938. switch(c->dstFormat){
  939. case PIX_FMT_ARGB:
  940. dest++;
  941. aidx= 0;
  942. case PIX_FMT_RGB24:
  943. aidx--;
  944. case PIX_FMT_RGBA:
  945. if (CONFIG_SMALL){
  946. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  947. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  948. dest[aidx]= needAlpha ? A : 255;
  949. dest[0]= R>>22;
  950. dest[1]= G>>22;
  951. dest[2]= B>>22;
  952. dest+= step;
  953. }
  954. }else{
  955. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  956. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  957. dest[aidx]= A;
  958. dest[0]= R>>22;
  959. dest[1]= G>>22;
  960. dest[2]= B>>22;
  961. dest+= step;
  962. }
  963. }else{
  964. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  965. dest[aidx]= 255;
  966. dest[0]= R>>22;
  967. dest[1]= G>>22;
  968. dest[2]= B>>22;
  969. dest+= step;
  970. }
  971. }
  972. }
  973. break;
  974. case PIX_FMT_ABGR:
  975. dest++;
  976. aidx= 0;
  977. case PIX_FMT_BGR24:
  978. aidx--;
  979. case PIX_FMT_BGRA:
  980. if (CONFIG_SMALL){
  981. int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;
  982. YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha)
  983. dest[aidx]= needAlpha ? A : 255;
  984. dest[0]= B>>22;
  985. dest[1]= G>>22;
  986. dest[2]= R>>22;
  987. dest+= step;
  988. }
  989. }else{
  990. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  991. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1)
  992. dest[aidx]= A;
  993. dest[0]= B>>22;
  994. dest[1]= G>>22;
  995. dest[2]= R>>22;
  996. dest+= step;
  997. }
  998. }else{
  999. YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0)
  1000. dest[aidx]= 255;
  1001. dest[0]= B>>22;
  1002. dest[1]= G>>22;
  1003. dest[2]= R>>22;
  1004. dest+= step;
  1005. }
  1006. }
  1007. }
  1008. break;
  1009. default:
  1010. assert(0);
  1011. }
  1012. }
  1013. static void fillPlane(uint8_t* plane, int stride, int width, int height, int y, uint8_t val){
  1014. int i;
  1015. uint8_t *ptr = plane + stride*y;
  1016. for (i=0; i<height; i++){
  1017. memset(ptr, val, width);
  1018. ptr += stride;
  1019. }
  1020. }
  1021. //Note: we have C, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one
  1022. //Plain C versions
  1023. #if !HAVE_MMX || CONFIG_RUNTIME_CPUDETECT || !CONFIG_GPL
  1024. #define COMPILE_C
  1025. #endif
  1026. #if ARCH_PPC
  1027. #if (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1028. #undef COMPILE_C
  1029. #define COMPILE_ALTIVEC
  1030. #endif
  1031. #endif //ARCH_PPC
  1032. #if ARCH_X86
  1033. #if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1034. #define COMPILE_MMX
  1035. #endif
  1036. #if (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1037. #define COMPILE_MMX2
  1038. #endif
  1039. #if ((HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
  1040. #define COMPILE_3DNOW
  1041. #endif
  1042. #endif //ARCH_X86
  1043. #undef HAVE_MMX
  1044. #undef HAVE_MMX2
  1045. #undef HAVE_AMD3DNOW
  1046. #undef HAVE_ALTIVEC
  1047. #define HAVE_MMX 0
  1048. #define HAVE_MMX2 0
  1049. #define HAVE_AMD3DNOW 0
  1050. #define HAVE_ALTIVEC 0
  1051. #ifdef COMPILE_C
  1052. #define RENAME(a) a ## _C
  1053. #include "swscale_template.c"
  1054. #endif
  1055. #ifdef COMPILE_ALTIVEC
  1056. #undef RENAME
  1057. #undef HAVE_ALTIVEC
  1058. #define HAVE_ALTIVEC 1
  1059. #define RENAME(a) a ## _altivec
  1060. #include "swscale_template.c"
  1061. #endif
  1062. #if ARCH_X86
  1063. //MMX versions
  1064. #ifdef COMPILE_MMX
  1065. #undef RENAME
  1066. #undef HAVE_MMX
  1067. #undef HAVE_MMX2
  1068. #undef HAVE_AMD3DNOW
  1069. #define HAVE_MMX 1
  1070. #define HAVE_MMX2 0
  1071. #define HAVE_AMD3DNOW 0
  1072. #define RENAME(a) a ## _MMX
  1073. #include "swscale_template.c"
  1074. #endif
  1075. //MMX2 versions
  1076. #ifdef COMPILE_MMX2
  1077. #undef RENAME
  1078. #undef HAVE_MMX
  1079. #undef HAVE_MMX2
  1080. #undef HAVE_AMD3DNOW
  1081. #define HAVE_MMX 1
  1082. #define HAVE_MMX2 1
  1083. #define HAVE_AMD3DNOW 0
  1084. #define RENAME(a) a ## _MMX2
  1085. #include "swscale_template.c"
  1086. #endif
  1087. //3DNOW versions
  1088. #ifdef COMPILE_3DNOW
  1089. #undef RENAME
  1090. #undef HAVE_MMX
  1091. #undef HAVE_MMX2
  1092. #undef HAVE_AMD3DNOW
  1093. #define HAVE_MMX 1
  1094. #define HAVE_MMX2 0
  1095. #define HAVE_AMD3DNOW 1
  1096. #define RENAME(a) a ## _3DNow
  1097. #include "swscale_template.c"
  1098. #endif
  1099. #endif //ARCH_X86
  1100. // minor note: the HAVE_xyz are messed up after this line so don't use them
  1101. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  1102. {
  1103. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  1104. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  1105. else return getSplineCoeff( 0.0,
  1106. b+ 2.0*c + 3.0*d,
  1107. c + 3.0*d,
  1108. -b- 3.0*c - 6.0*d,
  1109. dist-1.0);
  1110. }
  1111. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  1112. int srcW, int dstW, int filterAlign, int one, int flags,
  1113. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  1114. {
  1115. int i;
  1116. int filterSize;
  1117. int filter2Size;
  1118. int minFilterSize;
  1119. int64_t *filter=NULL;
  1120. int64_t *filter2=NULL;
  1121. const int64_t fone= 1LL<<54;
  1122. int ret= -1;
  1123. #if ARCH_X86
  1124. if (flags & SWS_CPU_CAPS_MMX)
  1125. __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  1126. #endif
  1127. // NOTE: the +1 is for the MMX scaler which reads over the end
  1128. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  1129. if (FFABS(xInc - 0x10000) <10) // unscaled
  1130. {
  1131. int i;
  1132. filterSize= 1;
  1133. filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
  1134. for (i=0; i<dstW; i++)
  1135. {
  1136. filter[i*filterSize]= fone;
  1137. (*filterPos)[i]=i;
  1138. }
  1139. }
  1140. else if (flags&SWS_POINT) // lame looking point sampling mode
  1141. {
  1142. int i;
  1143. int xDstInSrc;
  1144. filterSize= 1;
  1145. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1146. xDstInSrc= xInc/2 - 0x8000;
  1147. for (i=0; i<dstW; i++)
  1148. {
  1149. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1150. (*filterPos)[i]= xx;
  1151. filter[i]= fone;
  1152. xDstInSrc+= xInc;
  1153. }
  1154. }
  1155. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  1156. {
  1157. int i;
  1158. int xDstInSrc;
  1159. if (flags&SWS_BICUBIC) filterSize= 4;
  1160. else if (flags&SWS_X ) filterSize= 4;
  1161. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  1162. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1163. xDstInSrc= xInc/2 - 0x8000;
  1164. for (i=0; i<dstW; i++)
  1165. {
  1166. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1167. int j;
  1168. (*filterPos)[i]= xx;
  1169. //bilinear upscale / linear interpolate / area averaging
  1170. for (j=0; j<filterSize; j++)
  1171. {
  1172. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  1173. if (coeff<0) coeff=0;
  1174. filter[i*filterSize + j]= coeff;
  1175. xx++;
  1176. }
  1177. xDstInSrc+= xInc;
  1178. }
  1179. }
  1180. else
  1181. {
  1182. int xDstInSrc;
  1183. int sizeFactor;
  1184. if (flags&SWS_BICUBIC) sizeFactor= 4;
  1185. else if (flags&SWS_X) sizeFactor= 8;
  1186. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  1187. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  1188. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  1189. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  1190. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  1191. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  1192. else {
  1193. sizeFactor= 0; //GCC warning killer
  1194. assert(0);
  1195. }
  1196. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  1197. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  1198. if (filterSize > srcW-2) filterSize=srcW-2;
  1199. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1200. xDstInSrc= xInc - 0x10000;
  1201. for (i=0; i<dstW; i++)
  1202. {
  1203. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  1204. int j;
  1205. (*filterPos)[i]= xx;
  1206. for (j=0; j<filterSize; j++)
  1207. {
  1208. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  1209. double floatd;
  1210. int64_t coeff;
  1211. if (xInc > 1<<16)
  1212. d= d*dstW/srcW;
  1213. floatd= d * (1.0/(1<<30));
  1214. if (flags & SWS_BICUBIC)
  1215. {
  1216. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  1217. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  1218. int64_t dd = ( d*d)>>30;
  1219. int64_t ddd= (dd*d)>>30;
  1220. if (d < 1LL<<30)
  1221. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  1222. else if (d < 1LL<<31)
  1223. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  1224. else
  1225. coeff=0.0;
  1226. coeff *= fone>>(30+24);
  1227. }
  1228. /* else if (flags & SWS_X)
  1229. {
  1230. double p= param ? param*0.01 : 0.3;
  1231. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1232. coeff*= pow(2.0, - p*d*d);
  1233. }*/
  1234. else if (flags & SWS_X)
  1235. {
  1236. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1237. double c;
  1238. if (floatd<1.0)
  1239. c = cos(floatd*PI);
  1240. else
  1241. c=-1.0;
  1242. if (c<0.0) c= -pow(-c, A);
  1243. else c= pow( c, A);
  1244. coeff= (c*0.5 + 0.5)*fone;
  1245. }
  1246. else if (flags & SWS_AREA)
  1247. {
  1248. int64_t d2= d - (1<<29);
  1249. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  1250. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  1251. else coeff=0.0;
  1252. coeff *= fone>>(30+16);
  1253. }
  1254. else if (flags & SWS_GAUSS)
  1255. {
  1256. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1257. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  1258. }
  1259. else if (flags & SWS_SINC)
  1260. {
  1261. coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
  1262. }
  1263. else if (flags & SWS_LANCZOS)
  1264. {
  1265. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1266. coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
  1267. if (floatd>p) coeff=0;
  1268. }
  1269. else if (flags & SWS_BILINEAR)
  1270. {
  1271. coeff= (1<<30) - d;
  1272. if (coeff<0) coeff=0;
  1273. coeff *= fone >> 30;
  1274. }
  1275. else if (flags & SWS_SPLINE)
  1276. {
  1277. double p=-2.196152422706632;
  1278. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  1279. }
  1280. else {
  1281. coeff= 0.0; //GCC warning killer
  1282. assert(0);
  1283. }
  1284. filter[i*filterSize + j]= coeff;
  1285. xx++;
  1286. }
  1287. xDstInSrc+= 2*xInc;
  1288. }
  1289. }
  1290. /* apply src & dst Filter to filter -> filter2
  1291. av_free(filter);
  1292. */
  1293. assert(filterSize>0);
  1294. filter2Size= filterSize;
  1295. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1296. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1297. assert(filter2Size>0);
  1298. filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
  1299. for (i=0; i<dstW; i++)
  1300. {
  1301. int j, k;
  1302. if(srcFilter){
  1303. for (k=0; k<srcFilter->length; k++){
  1304. for (j=0; j<filterSize; j++)
  1305. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  1306. }
  1307. }else{
  1308. for (j=0; j<filterSize; j++)
  1309. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  1310. }
  1311. //FIXME dstFilter
  1312. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1313. }
  1314. av_freep(&filter);
  1315. /* try to reduce the filter-size (step1 find size and shift left) */
  1316. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1317. minFilterSize= 0;
  1318. for (i=dstW-1; i>=0; i--)
  1319. {
  1320. int min= filter2Size;
  1321. int j;
  1322. int64_t cutOff=0.0;
  1323. /* get rid off near zero elements on the left by shifting left */
  1324. for (j=0; j<filter2Size; j++)
  1325. {
  1326. int k;
  1327. cutOff += FFABS(filter2[i*filter2Size]);
  1328. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1329. /* preserve monotonicity because the core can't handle the filter otherwise */
  1330. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1331. // move filter coefficients left
  1332. for (k=1; k<filter2Size; k++)
  1333. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1334. filter2[i*filter2Size + k - 1]= 0;
  1335. (*filterPos)[i]++;
  1336. }
  1337. cutOff=0;
  1338. /* count near zeros on the right */
  1339. for (j=filter2Size-1; j>0; j--)
  1340. {
  1341. cutOff += FFABS(filter2[i*filter2Size + j]);
  1342. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1343. min--;
  1344. }
  1345. if (min>minFilterSize) minFilterSize= min;
  1346. }
  1347. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1348. // we can handle the special case 4,
  1349. // so we don't want to go to the full 8
  1350. if (minFilterSize < 5)
  1351. filterAlign = 4;
  1352. // We really don't want to waste our time
  1353. // doing useless computation, so fall back on
  1354. // the scalar C code for very small filters.
  1355. // Vectorizing is worth it only if you have a
  1356. // decent-sized vector.
  1357. if (minFilterSize < 3)
  1358. filterAlign = 1;
  1359. }
  1360. if (flags & SWS_CPU_CAPS_MMX) {
  1361. // special case for unscaled vertical filtering
  1362. if (minFilterSize == 1 && filterAlign == 2)
  1363. filterAlign= 1;
  1364. }
  1365. assert(minFilterSize > 0);
  1366. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1367. assert(filterSize > 0);
  1368. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  1369. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  1370. goto error;
  1371. *outFilterSize= filterSize;
  1372. if (flags&SWS_PRINT_INFO)
  1373. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1374. /* try to reduce the filter-size (step2 reduce it) */
  1375. for (i=0; i<dstW; i++)
  1376. {
  1377. int j;
  1378. for (j=0; j<filterSize; j++)
  1379. {
  1380. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  1381. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1382. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  1383. filter[i*filterSize + j]= 0;
  1384. }
  1385. }
  1386. //FIXME try to align filterPos if possible
  1387. //fix borders
  1388. for (i=0; i<dstW; i++)
  1389. {
  1390. int j;
  1391. if ((*filterPos)[i] < 0)
  1392. {
  1393. // move filter coefficients left to compensate for filterPos
  1394. for (j=1; j<filterSize; j++)
  1395. {
  1396. int left= FFMAX(j + (*filterPos)[i], 0);
  1397. filter[i*filterSize + left] += filter[i*filterSize + j];
  1398. filter[i*filterSize + j]=0;
  1399. }
  1400. (*filterPos)[i]= 0;
  1401. }
  1402. if ((*filterPos)[i] + filterSize > srcW)
  1403. {
  1404. int shift= (*filterPos)[i] + filterSize - srcW;
  1405. // move filter coefficients right to compensate for filterPos
  1406. for (j=filterSize-2; j>=0; j--)
  1407. {
  1408. int right= FFMIN(j + shift, filterSize-1);
  1409. filter[i*filterSize +right] += filter[i*filterSize +j];
  1410. filter[i*filterSize +j]=0;
  1411. }
  1412. (*filterPos)[i]= srcW - filterSize;
  1413. }
  1414. }
  1415. // Note the +1 is for the MMX scaler which reads over the end
  1416. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1417. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1418. /* normalize & store in outFilter */
  1419. for (i=0; i<dstW; i++)
  1420. {
  1421. int j;
  1422. int64_t error=0;
  1423. int64_t sum=0;
  1424. for (j=0; j<filterSize; j++)
  1425. {
  1426. sum+= filter[i*filterSize + j];
  1427. }
  1428. sum= (sum + one/2)/ one;
  1429. for (j=0; j<*outFilterSize; j++)
  1430. {
  1431. int64_t v= filter[i*filterSize + j] + error;
  1432. int intV= ROUNDED_DIV(v, sum);
  1433. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1434. error= v - intV*sum;
  1435. }
  1436. }
  1437. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1438. for (i=0; i<*outFilterSize; i++)
  1439. {
  1440. int j= dstW*(*outFilterSize);
  1441. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1442. }
  1443. ret=0;
  1444. error:
  1445. av_free(filter);
  1446. av_free(filter2);
  1447. return ret;
  1448. }
  1449. #ifdef COMPILE_MMX2
  1450. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1451. {
  1452. uint8_t *fragmentA;
  1453. x86_reg imm8OfPShufW1A;
  1454. x86_reg imm8OfPShufW2A;
  1455. x86_reg fragmentLengthA;
  1456. uint8_t *fragmentB;
  1457. x86_reg imm8OfPShufW1B;
  1458. x86_reg imm8OfPShufW2B;
  1459. x86_reg fragmentLengthB;
  1460. int fragmentPos;
  1461. int xpos, i;
  1462. // create an optimized horizontal scaling routine
  1463. //code fragment
  1464. __asm__ volatile(
  1465. "jmp 9f \n\t"
  1466. // Begin
  1467. "0: \n\t"
  1468. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1469. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1470. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1471. "punpcklbw %%mm7, %%mm1 \n\t"
  1472. "punpcklbw %%mm7, %%mm0 \n\t"
  1473. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1474. "1: \n\t"
  1475. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1476. "2: \n\t"
  1477. "psubw %%mm1, %%mm0 \n\t"
  1478. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1479. "pmullw %%mm3, %%mm0 \n\t"
  1480. "psllw $7, %%mm1 \n\t"
  1481. "paddw %%mm1, %%mm0 \n\t"
  1482. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1483. "add $8, %%"REG_a" \n\t"
  1484. // End
  1485. "9: \n\t"
  1486. // "int $3 \n\t"
  1487. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1488. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1489. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1490. "dec %1 \n\t"
  1491. "dec %2 \n\t"
  1492. "sub %0, %1 \n\t"
  1493. "sub %0, %2 \n\t"
  1494. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1495. "sub %0, %3 \n\t"
  1496. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1497. "=r" (fragmentLengthA)
  1498. );
  1499. __asm__ volatile(
  1500. "jmp 9f \n\t"
  1501. // Begin
  1502. "0: \n\t"
  1503. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1504. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1505. "punpcklbw %%mm7, %%mm0 \n\t"
  1506. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1507. "1: \n\t"
  1508. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1509. "2: \n\t"
  1510. "psubw %%mm1, %%mm0 \n\t"
  1511. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1512. "pmullw %%mm3, %%mm0 \n\t"
  1513. "psllw $7, %%mm1 \n\t"
  1514. "paddw %%mm1, %%mm0 \n\t"
  1515. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1516. "add $8, %%"REG_a" \n\t"
  1517. // End
  1518. "9: \n\t"
  1519. // "int $3 \n\t"
  1520. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1521. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1522. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1523. "dec %1 \n\t"
  1524. "dec %2 \n\t"
  1525. "sub %0, %1 \n\t"
  1526. "sub %0, %2 \n\t"
  1527. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1528. "sub %0, %3 \n\t"
  1529. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1530. "=r" (fragmentLengthB)
  1531. );
  1532. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1533. fragmentPos=0;
  1534. for (i=0; i<dstW/numSplits; i++)
  1535. {
  1536. int xx=xpos>>16;
  1537. if ((i&3) == 0)
  1538. {
  1539. int a=0;
  1540. int b=((xpos+xInc)>>16) - xx;
  1541. int c=((xpos+xInc*2)>>16) - xx;
  1542. int d=((xpos+xInc*3)>>16) - xx;
  1543. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1544. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1545. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1546. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1547. filterPos[i/2]= xx;
  1548. if (d+1<4)
  1549. {
  1550. int maxShift= 3-(d+1);
  1551. int shift=0;
  1552. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1553. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1554. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1555. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1556. a | (b<<2) | (c<<4) | (d<<6);
  1557. if (i+3>=dstW) shift=maxShift; //avoid overread
  1558. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1559. if (shift && i>=shift)
  1560. {
  1561. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1562. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1563. filterPos[i/2]-=shift;
  1564. }
  1565. fragmentPos+= fragmentLengthB;
  1566. }
  1567. else
  1568. {
  1569. int maxShift= 3-d;
  1570. int shift=0;
  1571. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1572. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1573. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1574. a | (b<<2) | (c<<4) | (d<<6);
  1575. if (i+4>=dstW) shift=maxShift; //avoid overread
  1576. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1577. if (shift && i>=shift)
  1578. {
  1579. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1580. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1581. filterPos[i/2]-=shift;
  1582. }
  1583. fragmentPos+= fragmentLengthA;
  1584. }
  1585. funnyCode[fragmentPos]= RET;
  1586. }
  1587. xpos+=xInc;
  1588. }
  1589. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  1590. }
  1591. #endif /* COMPILE_MMX2 */
  1592. static void globalInit(void){
  1593. // generating tables:
  1594. int i;
  1595. for (i=0; i<768; i++){
  1596. int c= av_clip_uint8(i-256);
  1597. clip_table[i]=c;
  1598. }
  1599. }
  1600. static SwsFunc getSwsFunc(SwsContext *c)
  1601. {
  1602. int flags = c->flags;
  1603. #if CONFIG_RUNTIME_CPUDETECT && CONFIG_GPL
  1604. #if ARCH_X86
  1605. // ordered per speed fastest first
  1606. if (flags & SWS_CPU_CAPS_MMX2) {
  1607. sws_init_swScale_MMX2(c);
  1608. return swScale_MMX2;
  1609. } else if (flags & SWS_CPU_CAPS_3DNOW) {
  1610. sws_init_swScale_3DNow(c);
  1611. return swScale_3DNow;
  1612. } else if (flags & SWS_CPU_CAPS_MMX) {
  1613. sws_init_swScale_MMX(c);
  1614. return swScale_MMX;
  1615. } else {
  1616. sws_init_swScale_C(c);
  1617. return swScale_C;
  1618. }
  1619. #else
  1620. #if ARCH_PPC
  1621. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1622. sws_init_swScale_altivec(c);
  1623. return swScale_altivec;
  1624. } else {
  1625. sws_init_swScale_C(c);
  1626. return swScale_C;
  1627. }
  1628. #endif
  1629. sws_init_swScale_C(c);
  1630. return swScale_C;
  1631. #endif /* ARCH_X86 */
  1632. #else //CONFIG_RUNTIME_CPUDETECT
  1633. #if HAVE_MMX2
  1634. sws_init_swScale_MMX2(c);
  1635. return swScale_MMX2;
  1636. #elif HAVE_AMD3DNOW
  1637. sws_init_swScale_3DNow(c);
  1638. return swScale_3DNow;
  1639. #elif HAVE_MMX
  1640. sws_init_swScale_MMX(c);
  1641. return swScale_MMX;
  1642. #elif HAVE_ALTIVEC
  1643. sws_init_swScale_altivec(c);
  1644. return swScale_altivec;
  1645. #else
  1646. sws_init_swScale_C(c);
  1647. return swScale_C;
  1648. #endif
  1649. #endif //!CONFIG_RUNTIME_CPUDETECT
  1650. }
  1651. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1652. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1653. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1654. /* Copy Y plane */
  1655. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1656. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1657. else
  1658. {
  1659. int i;
  1660. const uint8_t *srcPtr= src[0];
  1661. uint8_t *dstPtr= dst;
  1662. for (i=0; i<srcSliceH; i++)
  1663. {
  1664. memcpy(dstPtr, srcPtr, c->srcW);
  1665. srcPtr+= srcStride[0];
  1666. dstPtr+= dstStride[0];
  1667. }
  1668. }
  1669. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1670. if (c->dstFormat == PIX_FMT_NV12)
  1671. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1672. else
  1673. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1674. return srcSliceH;
  1675. }
  1676. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1677. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1678. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1679. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1680. return srcSliceH;
  1681. }
  1682. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1683. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1684. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1685. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1686. return srcSliceH;
  1687. }
  1688. static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1689. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1690. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1691. yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1692. return srcSliceH;
  1693. }
  1694. static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1695. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1696. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1697. yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1698. return srcSliceH;
  1699. }
  1700. static int YUYV2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1701. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1702. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1703. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1704. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1705. yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1706. if (dstParam[3])
  1707. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1708. return srcSliceH;
  1709. }
  1710. static int YUYV2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1711. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1712. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1713. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1714. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1715. yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1716. return srcSliceH;
  1717. }
  1718. static int UYVY2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1719. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1720. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1721. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1722. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1723. uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1724. if (dstParam[3])
  1725. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1726. return srcSliceH;
  1727. }
  1728. static int UYVY2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1729. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1730. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1731. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1732. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1733. uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1734. return srcSliceH;
  1735. }
  1736. static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1737. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1738. const enum PixelFormat srcFormat= c->srcFormat;
  1739. const enum PixelFormat dstFormat= c->dstFormat;
  1740. void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
  1741. const uint8_t *palette)=NULL;
  1742. int i;
  1743. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1744. uint8_t *srcPtr= src[0];
  1745. if (!usePal(srcFormat))
  1746. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1747. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1748. switch(dstFormat){
  1749. case PIX_FMT_RGB32 : conv = palette8topacked32; break;
  1750. case PIX_FMT_BGR32 : conv = palette8topacked32; break;
  1751. case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
  1752. case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
  1753. case PIX_FMT_RGB24 : conv = palette8topacked24; break;
  1754. case PIX_FMT_BGR24 : conv = palette8topacked24; break;
  1755. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1756. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1757. }
  1758. for (i=0; i<srcSliceH; i++) {
  1759. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  1760. srcPtr+= srcStride[0];
  1761. dstPtr+= dstStride[0];
  1762. }
  1763. return srcSliceH;
  1764. }
  1765. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  1766. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1767. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1768. const enum PixelFormat srcFormat= c->srcFormat;
  1769. const enum PixelFormat dstFormat= c->dstFormat;
  1770. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1771. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1772. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1773. const int dstId= fmt_depth(dstFormat) >> 2;
  1774. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1775. /* BGR -> BGR */
  1776. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1777. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1778. switch(srcId | (dstId<<4)){
  1779. case 0x34: conv= rgb16to15; break;
  1780. case 0x36: conv= rgb24to15; break;
  1781. case 0x38: conv= rgb32to15; break;
  1782. case 0x43: conv= rgb15to16; break;
  1783. case 0x46: conv= rgb24to16; break;
  1784. case 0x48: conv= rgb32to16; break;
  1785. case 0x63: conv= rgb15to24; break;
  1786. case 0x64: conv= rgb16to24; break;
  1787. case 0x68: conv= rgb32to24; break;
  1788. case 0x83: conv= rgb15to32; break;
  1789. case 0x84: conv= rgb16to32; break;
  1790. case 0x86: conv= rgb24to32; break;
  1791. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1792. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1793. }
  1794. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1795. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1796. switch(srcId | (dstId<<4)){
  1797. case 0x33: conv= rgb15tobgr15; break;
  1798. case 0x34: conv= rgb16tobgr15; break;
  1799. case 0x36: conv= rgb24tobgr15; break;
  1800. case 0x38: conv= rgb32tobgr15; break;
  1801. case 0x43: conv= rgb15tobgr16; break;
  1802. case 0x44: conv= rgb16tobgr16; break;
  1803. case 0x46: conv= rgb24tobgr16; break;
  1804. case 0x48: conv= rgb32tobgr16; break;
  1805. case 0x63: conv= rgb15tobgr24; break;
  1806. case 0x64: conv= rgb16tobgr24; break;
  1807. case 0x66: conv= rgb24tobgr24; break;
  1808. case 0x68: conv= rgb32tobgr24; break;
  1809. case 0x83: conv= rgb15tobgr32; break;
  1810. case 0x84: conv= rgb16tobgr32; break;
  1811. case 0x86: conv= rgb24tobgr32; break;
  1812. case 0x88: conv= rgb32tobgr32; break;
  1813. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1814. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1815. }
  1816. }else{
  1817. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1818. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1819. }
  1820. if(conv)
  1821. {
  1822. uint8_t *srcPtr= src[0];
  1823. if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
  1824. srcPtr += ALT32_CORR;
  1825. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  1826. conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1827. else
  1828. {
  1829. int i;
  1830. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1831. for (i=0; i<srcSliceH; i++)
  1832. {
  1833. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1834. srcPtr+= srcStride[0];
  1835. dstPtr+= dstStride[0];
  1836. }
  1837. }
  1838. }
  1839. return srcSliceH;
  1840. }
  1841. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1842. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1843. rgb24toyv12(
  1844. src[0],
  1845. dst[0]+ srcSliceY *dstStride[0],
  1846. dst[1]+(srcSliceY>>1)*dstStride[1],
  1847. dst[2]+(srcSliceY>>1)*dstStride[2],
  1848. c->srcW, srcSliceH,
  1849. dstStride[0], dstStride[1], srcStride[0]);
  1850. if (dst[3])
  1851. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1852. return srcSliceH;
  1853. }
  1854. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1855. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1856. int i;
  1857. /* copy Y */
  1858. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1859. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1860. else{
  1861. uint8_t *srcPtr= src[0];
  1862. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1863. for (i=0; i<srcSliceH; i++)
  1864. {
  1865. memcpy(dstPtr, srcPtr, c->srcW);
  1866. srcPtr+= srcStride[0];
  1867. dstPtr+= dstStride[0];
  1868. }
  1869. }
  1870. if (c->dstFormat==PIX_FMT_YUV420P || c->dstFormat==PIX_FMT_YUVA420P){
  1871. planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
  1872. planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
  1873. }else{
  1874. planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
  1875. planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
  1876. }
  1877. if (dst[3])
  1878. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  1879. return srcSliceH;
  1880. }
  1881. /* unscaled copy like stuff (assumes nearly identical formats) */
  1882. static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1883. int srcSliceH, uint8_t* dst[], int dstStride[])
  1884. {
  1885. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1886. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1887. else
  1888. {
  1889. int i;
  1890. uint8_t *srcPtr= src[0];
  1891. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1892. int length=0;
  1893. /* universal length finder */
  1894. while(length+c->srcW <= FFABS(dstStride[0])
  1895. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  1896. assert(length!=0);
  1897. for (i=0; i<srcSliceH; i++)
  1898. {
  1899. memcpy(dstPtr, srcPtr, length);
  1900. srcPtr+= srcStride[0];
  1901. dstPtr+= dstStride[0];
  1902. }
  1903. }
  1904. return srcSliceH;
  1905. }
  1906. static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1907. int srcSliceH, uint8_t* dst[], int dstStride[])
  1908. {
  1909. int plane;
  1910. for (plane=0; plane<4; plane++)
  1911. {
  1912. int length= (plane==0 || plane==3) ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1913. int y= (plane==0 || plane==3) ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1914. int height= (plane==0 || plane==3) ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1915. if (!dst[plane]) continue;
  1916. // ignore palette for GRAY8
  1917. if (plane == 1 && !dst[2]) continue;
  1918. if (!src[plane] || (plane == 1 && !src[2]))
  1919. fillPlane(dst[plane], dstStride[plane], length, height, y, (plane==3) ? 255 : 128);
  1920. else
  1921. {
  1922. if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  1923. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1924. else
  1925. {
  1926. int i;
  1927. uint8_t *srcPtr= src[plane];
  1928. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1929. for (i=0; i<height; i++)
  1930. {
  1931. memcpy(dstPtr, srcPtr, length);
  1932. srcPtr+= srcStride[plane];
  1933. dstPtr+= dstStride[plane];
  1934. }
  1935. }
  1936. }
  1937. }
  1938. return srcSliceH;
  1939. }
  1940. static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1941. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1942. int length= c->srcW;
  1943. int y= srcSliceY;
  1944. int height= srcSliceH;
  1945. int i, j;
  1946. uint8_t *srcPtr= src[0];
  1947. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1948. if (!isGray(c->dstFormat)){
  1949. int height= -((-srcSliceH)>>c->chrDstVSubSample);
  1950. memset(dst[1], 128, dstStride[1]*height);
  1951. memset(dst[2], 128, dstStride[2]*height);
  1952. }
  1953. if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
  1954. for (i=0; i<height; i++)
  1955. {
  1956. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  1957. srcPtr+= srcStride[0];
  1958. dstPtr+= dstStride[0];
  1959. }
  1960. if (dst[3])
  1961. fillPlane(dst[3], dstStride[3], length, height, y, 255);
  1962. return srcSliceH;
  1963. }
  1964. static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1965. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1966. int length= c->srcW;
  1967. int y= srcSliceY;
  1968. int height= srcSliceH;
  1969. int i, j;
  1970. uint8_t *srcPtr= src[0];
  1971. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1972. for (i=0; i<height; i++)
  1973. {
  1974. for (j=0; j<length; j++)
  1975. {
  1976. dstPtr[j<<1] = srcPtr[j];
  1977. dstPtr[(j<<1)+1] = srcPtr[j];
  1978. }
  1979. srcPtr+= srcStride[0];
  1980. dstPtr+= dstStride[0];
  1981. }
  1982. return srcSliceH;
  1983. }
  1984. static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1985. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1986. int length= c->srcW;
  1987. int y= srcSliceY;
  1988. int height= srcSliceH;
  1989. int i, j;
  1990. uint16_t *srcPtr= (uint16_t*)src[0];
  1991. uint16_t *dstPtr= (uint16_t*)(dst[0] + dstStride[0]*y/2);
  1992. for (i=0; i<height; i++)
  1993. {
  1994. for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
  1995. srcPtr+= srcStride[0]/2;
  1996. dstPtr+= dstStride[0]/2;
  1997. }
  1998. return srcSliceH;
  1999. }
  2000. static void getSubSampleFactors(int *h, int *v, int format){
  2001. switch(format){
  2002. case PIX_FMT_UYVY422:
  2003. case PIX_FMT_YUYV422:
  2004. *h=1;
  2005. *v=0;
  2006. break;
  2007. case PIX_FMT_YUV420P:
  2008. case PIX_FMT_YUVA420P:
  2009. case PIX_FMT_GRAY16BE:
  2010. case PIX_FMT_GRAY16LE:
  2011. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  2012. case PIX_FMT_NV12:
  2013. case PIX_FMT_NV21:
  2014. *h=1;
  2015. *v=1;
  2016. break;
  2017. case PIX_FMT_YUV440P:
  2018. *h=0;
  2019. *v=1;
  2020. break;
  2021. case PIX_FMT_YUV410P:
  2022. *h=2;
  2023. *v=2;
  2024. break;
  2025. case PIX_FMT_YUV444P:
  2026. *h=0;
  2027. *v=0;
  2028. break;
  2029. case PIX_FMT_YUV422P:
  2030. *h=1;
  2031. *v=0;
  2032. break;
  2033. case PIX_FMT_YUV411P:
  2034. *h=2;
  2035. *v=0;
  2036. break;
  2037. default:
  2038. *h=0;
  2039. *v=0;
  2040. break;
  2041. }
  2042. }
  2043. static uint16_t roundToInt16(int64_t f){
  2044. int r= (f + (1<<15))>>16;
  2045. if (r<-0x7FFF) return 0x8000;
  2046. else if (r> 0x7FFF) return 0x7FFF;
  2047. else return r;
  2048. }
  2049. /**
  2050. * @param inv_table the yuv2rgb coefficients, normally ff_yuv2rgb_coeffs[x]
  2051. * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
  2052. * @return -1 if not supported
  2053. */
  2054. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  2055. int64_t crv = inv_table[0];
  2056. int64_t cbu = inv_table[1];
  2057. int64_t cgu = -inv_table[2];
  2058. int64_t cgv = -inv_table[3];
  2059. int64_t cy = 1<<16;
  2060. int64_t oy = 0;
  2061. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  2062. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  2063. c->brightness= brightness;
  2064. c->contrast = contrast;
  2065. c->saturation= saturation;
  2066. c->srcRange = srcRange;
  2067. c->dstRange = dstRange;
  2068. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return 0;
  2069. c->uOffset= 0x0400040004000400LL;
  2070. c->vOffset= 0x0400040004000400LL;
  2071. if (!srcRange){
  2072. cy= (cy*255) / 219;
  2073. oy= 16<<16;
  2074. }else{
  2075. crv= (crv*224) / 255;
  2076. cbu= (cbu*224) / 255;
  2077. cgu= (cgu*224) / 255;
  2078. cgv= (cgv*224) / 255;
  2079. }
  2080. cy = (cy *contrast )>>16;
  2081. crv= (crv*contrast * saturation)>>32;
  2082. cbu= (cbu*contrast * saturation)>>32;
  2083. cgu= (cgu*contrast * saturation)>>32;
  2084. cgv= (cgv*contrast * saturation)>>32;
  2085. oy -= 256*brightness;
  2086. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  2087. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  2088. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  2089. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  2090. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  2091. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  2092. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  2093. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  2094. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  2095. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  2096. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  2097. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  2098. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  2099. //FIXME factorize
  2100. #ifdef COMPILE_ALTIVEC
  2101. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  2102. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  2103. #endif
  2104. return 0;
  2105. }
  2106. /**
  2107. * @return -1 if not supported
  2108. */
  2109. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  2110. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  2111. *inv_table = c->srcColorspaceTable;
  2112. *table = c->dstColorspaceTable;
  2113. *srcRange = c->srcRange;
  2114. *dstRange = c->dstRange;
  2115. *brightness= c->brightness;
  2116. *contrast = c->contrast;
  2117. *saturation= c->saturation;
  2118. return 0;
  2119. }
  2120. static int handle_jpeg(enum PixelFormat *format)
  2121. {
  2122. switch (*format) {
  2123. case PIX_FMT_YUVJ420P:
  2124. *format = PIX_FMT_YUV420P;
  2125. return 1;
  2126. case PIX_FMT_YUVJ422P:
  2127. *format = PIX_FMT_YUV422P;
  2128. return 1;
  2129. case PIX_FMT_YUVJ444P:
  2130. *format = PIX_FMT_YUV444P;
  2131. return 1;
  2132. case PIX_FMT_YUVJ440P:
  2133. *format = PIX_FMT_YUV440P;
  2134. return 1;
  2135. default:
  2136. return 0;
  2137. }
  2138. }
  2139. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  2140. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
  2141. SwsContext *c;
  2142. int i;
  2143. int usesVFilter, usesHFilter;
  2144. int unscaled, needsDither;
  2145. int srcRange, dstRange;
  2146. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  2147. #if ARCH_X86
  2148. if (flags & SWS_CPU_CAPS_MMX)
  2149. __asm__ volatile("emms\n\t"::: "memory");
  2150. #endif
  2151. #if !CONFIG_RUNTIME_CPUDETECT || !CONFIG_GPL //ensure that the flags match the compiled variant if cpudetect is off
  2152. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  2153. #if HAVE_MMX2
  2154. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  2155. #elif HAVE_AMD3DNOW
  2156. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  2157. #elif HAVE_MMX
  2158. flags |= SWS_CPU_CAPS_MMX;
  2159. #elif HAVE_ALTIVEC
  2160. flags |= SWS_CPU_CAPS_ALTIVEC;
  2161. #elif ARCH_BFIN
  2162. flags |= SWS_CPU_CAPS_BFIN;
  2163. #endif
  2164. #endif /* CONFIG_RUNTIME_CPUDETECT */
  2165. if (clip_table[512] != 255) globalInit();
  2166. if (!rgb15to16) sws_rgb2rgb_init(flags);
  2167. unscaled = (srcW == dstW && srcH == dstH);
  2168. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  2169. && (fmt_depth(dstFormat))<24
  2170. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  2171. srcRange = handle_jpeg(&srcFormat);
  2172. dstRange = handle_jpeg(&dstFormat);
  2173. if (!isSupportedIn(srcFormat))
  2174. {
  2175. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  2176. return NULL;
  2177. }
  2178. if (!isSupportedOut(dstFormat))
  2179. {
  2180. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  2181. return NULL;
  2182. }
  2183. i= flags & ( SWS_POINT
  2184. |SWS_AREA
  2185. |SWS_BILINEAR
  2186. |SWS_FAST_BILINEAR
  2187. |SWS_BICUBIC
  2188. |SWS_X
  2189. |SWS_GAUSS
  2190. |SWS_LANCZOS
  2191. |SWS_SINC
  2192. |SWS_SPLINE
  2193. |SWS_BICUBLIN);
  2194. if(!i || (i & (i-1)))
  2195. {
  2196. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
  2197. return NULL;
  2198. }
  2199. /* sanity check */
  2200. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  2201. {
  2202. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  2203. srcW, srcH, dstW, dstH);
  2204. return NULL;
  2205. }
  2206. if(srcW > VOFW || dstW > VOFW){
  2207. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  2208. return NULL;
  2209. }
  2210. if (!dstFilter) dstFilter= &dummyFilter;
  2211. if (!srcFilter) srcFilter= &dummyFilter;
  2212. c= av_mallocz(sizeof(SwsContext));
  2213. c->av_class = &sws_context_class;
  2214. c->srcW= srcW;
  2215. c->srcH= srcH;
  2216. c->dstW= dstW;
  2217. c->dstH= dstH;
  2218. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  2219. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  2220. c->flags= flags;
  2221. c->dstFormat= dstFormat;
  2222. c->srcFormat= srcFormat;
  2223. c->vRounder= 4* 0x0001000100010001ULL;
  2224. usesHFilter= usesVFilter= 0;
  2225. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  2226. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  2227. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  2228. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  2229. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  2230. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  2231. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  2232. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  2233. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  2234. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  2235. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  2236. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  2237. // drop some chroma lines if the user wants it
  2238. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  2239. c->chrSrcVSubSample+= c->vChrDrop;
  2240. // drop every other pixel for chroma calculation unless user wants full chroma
  2241. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  2242. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  2243. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  2244. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  2245. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2246. c->chrSrcHSubSample=1;
  2247. if (param){
  2248. c->param[0] = param[0];
  2249. c->param[1] = param[1];
  2250. }else{
  2251. c->param[0] =
  2252. c->param[1] = SWS_PARAM_DEFAULT;
  2253. }
  2254. c->chrIntHSubSample= c->chrDstHSubSample;
  2255. c->chrIntVSubSample= c->chrSrcVSubSample;
  2256. // Note the -((-x)>>y) is so that we always round toward +inf.
  2257. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  2258. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  2259. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  2260. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  2261. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  2262. /* unscaled special cases */
  2263. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
  2264. {
  2265. /* yv12_to_nv12 */
  2266. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  2267. {
  2268. c->swScale= PlanarToNV12Wrapper;
  2269. }
  2270. /* yuv2bgr */
  2271. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat))
  2272. && !(flags & SWS_ACCURATE_RND) && !(dstH&1))
  2273. {
  2274. c->swScale= ff_yuv2rgb_get_func_ptr(c);
  2275. }
  2276. if (srcFormat==PIX_FMT_YUV410P && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_BITEXACT))
  2277. {
  2278. c->swScale= yvu9toyv12Wrapper;
  2279. }
  2280. /* bgr24toYV12 */
  2281. if (srcFormat==PIX_FMT_BGR24 && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_ACCURATE_RND))
  2282. c->swScale= bgr24toyv12Wrapper;
  2283. /* RGB/BGR -> RGB/BGR (no dither needed forms) */
  2284. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  2285. && (isBGR(dstFormat) || isRGB(dstFormat))
  2286. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  2287. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  2288. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  2289. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  2290. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  2291. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  2292. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  2293. && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
  2294. && dstFormat != PIX_FMT_RGB32_1
  2295. && dstFormat != PIX_FMT_BGR32_1
  2296. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2297. c->swScale= rgb2rgbWrapper;
  2298. if ((usePal(srcFormat) && (
  2299. dstFormat == PIX_FMT_RGB32 ||
  2300. dstFormat == PIX_FMT_RGB32_1 ||
  2301. dstFormat == PIX_FMT_RGB24 ||
  2302. dstFormat == PIX_FMT_BGR32 ||
  2303. dstFormat == PIX_FMT_BGR32_1 ||
  2304. dstFormat == PIX_FMT_BGR24)))
  2305. c->swScale= pal2rgbWrapper;
  2306. if (srcFormat == PIX_FMT_YUV422P)
  2307. {
  2308. if (dstFormat == PIX_FMT_YUYV422)
  2309. c->swScale= YUV422PToYuy2Wrapper;
  2310. else if (dstFormat == PIX_FMT_UYVY422)
  2311. c->swScale= YUV422PToUyvyWrapper;
  2312. }
  2313. /* LQ converters if -sws 0 or -sws 4*/
  2314. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  2315. /* yv12_to_yuy2 */
  2316. if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P)
  2317. {
  2318. if (dstFormat == PIX_FMT_YUYV422)
  2319. c->swScale= PlanarToYuy2Wrapper;
  2320. else if (dstFormat == PIX_FMT_UYVY422)
  2321. c->swScale= PlanarToUyvyWrapper;
  2322. }
  2323. }
  2324. if(srcFormat == PIX_FMT_YUYV422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2325. c->swScale= YUYV2YUV420Wrapper;
  2326. if(srcFormat == PIX_FMT_UYVY422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  2327. c->swScale= UYVY2YUV420Wrapper;
  2328. if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
  2329. c->swScale= YUYV2YUV422Wrapper;
  2330. if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
  2331. c->swScale= UYVY2YUV422Wrapper;
  2332. #ifdef COMPILE_ALTIVEC
  2333. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  2334. !(c->flags & SWS_BITEXACT) &&
  2335. srcFormat == PIX_FMT_YUV420P) {
  2336. // unscaled YV12 -> packed YUV, we want speed
  2337. if (dstFormat == PIX_FMT_YUYV422)
  2338. c->swScale= yv12toyuy2_unscaled_altivec;
  2339. else if (dstFormat == PIX_FMT_UYVY422)
  2340. c->swScale= yv12touyvy_unscaled_altivec;
  2341. }
  2342. #endif
  2343. /* simple copy */
  2344. if ( srcFormat == dstFormat
  2345. || (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P)
  2346. || (srcFormat == PIX_FMT_YUV420P && dstFormat == PIX_FMT_YUVA420P)
  2347. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  2348. || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
  2349. {
  2350. if (isPacked(c->srcFormat))
  2351. c->swScale= packedCopy;
  2352. else /* Planar YUV or gray */
  2353. c->swScale= planarCopy;
  2354. }
  2355. /* gray16{le,be} conversions */
  2356. if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
  2357. {
  2358. c->swScale= gray16togray;
  2359. }
  2360. if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
  2361. {
  2362. c->swScale= graytogray16;
  2363. }
  2364. if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
  2365. {
  2366. c->swScale= gray16swap;
  2367. }
  2368. #if ARCH_BFIN
  2369. if (flags & SWS_CPU_CAPS_BFIN)
  2370. ff_bfin_get_unscaled_swscale (c);
  2371. #endif
  2372. if (c->swScale){
  2373. if (flags&SWS_PRINT_INFO)
  2374. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2375. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2376. return c;
  2377. }
  2378. }
  2379. if (flags & SWS_CPU_CAPS_MMX2)
  2380. {
  2381. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2382. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2383. {
  2384. if (flags&SWS_PRINT_INFO)
  2385. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  2386. }
  2387. if (usesHFilter) c->canMMX2BeUsed=0;
  2388. }
  2389. else
  2390. c->canMMX2BeUsed=0;
  2391. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2392. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2393. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2394. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2395. // n-2 is the last chrominance sample available
  2396. // this is not perfect, but no one should notice the difference, the more correct variant
  2397. // would be like the vertical one, but that would require some special code for the
  2398. // first and last pixel
  2399. if (flags&SWS_FAST_BILINEAR)
  2400. {
  2401. if (c->canMMX2BeUsed)
  2402. {
  2403. c->lumXInc+= 20;
  2404. c->chrXInc+= 20;
  2405. }
  2406. //we don't use the x86 asm scaler if MMX is available
  2407. else if (flags & SWS_CPU_CAPS_MMX)
  2408. {
  2409. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2410. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2411. }
  2412. }
  2413. /* precalculate horizontal scaler filter coefficients */
  2414. {
  2415. const int filterAlign=
  2416. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2417. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2418. 1;
  2419. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2420. srcW , dstW, filterAlign, 1<<14,
  2421. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2422. srcFilter->lumH, dstFilter->lumH, c->param);
  2423. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2424. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2425. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2426. srcFilter->chrH, dstFilter->chrH, c->param);
  2427. #define MAX_FUNNY_CODE_SIZE 10000
  2428. #if defined(COMPILE_MMX2)
  2429. // can't downscale !!!
  2430. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2431. {
  2432. #ifdef MAP_ANONYMOUS
  2433. c->funnyYCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2434. c->funnyUVCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2435. #elif HAVE_VIRTUALALLOC
  2436. c->funnyYCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2437. c->funnyUVCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2438. #else
  2439. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2440. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2441. #endif
  2442. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2443. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2444. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2445. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2446. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2447. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2448. }
  2449. #endif /* defined(COMPILE_MMX2) */
  2450. } // initialize horizontal stuff
  2451. /* precalculate vertical scaler filter coefficients */
  2452. {
  2453. const int filterAlign=
  2454. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2455. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2456. 1;
  2457. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2458. srcH , dstH, filterAlign, (1<<12),
  2459. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2460. srcFilter->lumV, dstFilter->lumV, c->param);
  2461. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2462. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  2463. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2464. srcFilter->chrV, dstFilter->chrV, c->param);
  2465. #if HAVE_ALTIVEC
  2466. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2467. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2468. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2469. int j;
  2470. short *p = (short *)&c->vYCoeffsBank[i];
  2471. for (j=0;j<8;j++)
  2472. p[j] = c->vLumFilter[i];
  2473. }
  2474. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2475. int j;
  2476. short *p = (short *)&c->vCCoeffsBank[i];
  2477. for (j=0;j<8;j++)
  2478. p[j] = c->vChrFilter[i];
  2479. }
  2480. #endif
  2481. }
  2482. // calculate buffer sizes so that they won't run out while handling these damn slices
  2483. c->vLumBufSize= c->vLumFilterSize;
  2484. c->vChrBufSize= c->vChrFilterSize;
  2485. for (i=0; i<dstH; i++)
  2486. {
  2487. int chrI= i*c->chrDstH / dstH;
  2488. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2489. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2490. nextSlice>>= c->chrSrcVSubSample;
  2491. nextSlice<<= c->chrSrcVSubSample;
  2492. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2493. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2494. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2495. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2496. }
  2497. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2498. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2499. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2500. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  2501. c->alpPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2502. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  2503. /* align at 16 bytes for AltiVec */
  2504. for (i=0; i<c->vLumBufSize; i++)
  2505. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2506. for (i=0; i<c->vChrBufSize; i++)
  2507. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2508. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  2509. for (i=0; i<c->vLumBufSize; i++)
  2510. c->alpPixBuf[i]= c->alpPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2511. //try to avoid drawing green stuff between the right end and the stride end
  2512. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2513. assert(2*VOFW == VOF);
  2514. assert(c->chrDstH <= dstH);
  2515. if (flags&SWS_PRINT_INFO)
  2516. {
  2517. #ifdef DITHER1XBPP
  2518. const char *dither= " dithered";
  2519. #else
  2520. const char *dither= "";
  2521. #endif
  2522. if (flags&SWS_FAST_BILINEAR)
  2523. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2524. else if (flags&SWS_BILINEAR)
  2525. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2526. else if (flags&SWS_BICUBIC)
  2527. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2528. else if (flags&SWS_X)
  2529. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2530. else if (flags&SWS_POINT)
  2531. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2532. else if (flags&SWS_AREA)
  2533. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2534. else if (flags&SWS_BICUBLIN)
  2535. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2536. else if (flags&SWS_GAUSS)
  2537. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2538. else if (flags&SWS_SINC)
  2539. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2540. else if (flags&SWS_LANCZOS)
  2541. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2542. else if (flags&SWS_SPLINE)
  2543. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2544. else
  2545. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2546. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2547. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2548. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2549. else
  2550. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2551. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2552. if (flags & SWS_CPU_CAPS_MMX2)
  2553. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2554. else if (flags & SWS_CPU_CAPS_3DNOW)
  2555. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2556. else if (flags & SWS_CPU_CAPS_MMX)
  2557. av_log(c, AV_LOG_INFO, "using MMX\n");
  2558. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2559. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2560. else
  2561. av_log(c, AV_LOG_INFO, "using C\n");
  2562. }
  2563. if (flags & SWS_PRINT_INFO)
  2564. {
  2565. if (flags & SWS_CPU_CAPS_MMX)
  2566. {
  2567. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2568. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2569. else
  2570. {
  2571. if (c->hLumFilterSize==4)
  2572. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2573. else if (c->hLumFilterSize==8)
  2574. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2575. else
  2576. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2577. if (c->hChrFilterSize==4)
  2578. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2579. else if (c->hChrFilterSize==8)
  2580. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2581. else
  2582. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2583. }
  2584. }
  2585. else
  2586. {
  2587. #if ARCH_X86
  2588. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  2589. #else
  2590. if (flags & SWS_FAST_BILINEAR)
  2591. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2592. else
  2593. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2594. #endif
  2595. }
  2596. if (isPlanarYUV(dstFormat))
  2597. {
  2598. if (c->vLumFilterSize==1)
  2599. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2600. else
  2601. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2602. }
  2603. else
  2604. {
  2605. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2606. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2607. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2608. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2609. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2610. else
  2611. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2612. }
  2613. if (dstFormat==PIX_FMT_BGR24)
  2614. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  2615. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2616. else if (dstFormat==PIX_FMT_RGB32)
  2617. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2618. else if (dstFormat==PIX_FMT_BGR565)
  2619. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2620. else if (dstFormat==PIX_FMT_BGR555)
  2621. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2622. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2623. }
  2624. if (flags & SWS_PRINT_INFO)
  2625. {
  2626. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2627. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2628. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2629. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2630. }
  2631. c->swScale= getSwsFunc(c);
  2632. return c;
  2633. }
  2634. /**
  2635. * swscale wrapper, so we don't need to export the SwsContext.
  2636. * Assumes planar YUV to be in YUV order instead of YVU.
  2637. */
  2638. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2639. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2640. int i;
  2641. uint8_t* src2[4]= {src[0], src[1], src[2], src[3]};
  2642. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2643. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2644. return 0;
  2645. }
  2646. if (c->sliceDir == 0) {
  2647. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2648. }
  2649. if (usePal(c->srcFormat)){
  2650. for (i=0; i<256; i++){
  2651. int p, r, g, b,y,u,v;
  2652. if(c->srcFormat == PIX_FMT_PAL8){
  2653. p=((uint32_t*)(src[1]))[i];
  2654. r= (p>>16)&0xFF;
  2655. g= (p>> 8)&0xFF;
  2656. b= p &0xFF;
  2657. }else if(c->srcFormat == PIX_FMT_RGB8){
  2658. r= (i>>5 )*36;
  2659. g= ((i>>2)&7)*36;
  2660. b= (i&3 )*85;
  2661. }else if(c->srcFormat == PIX_FMT_BGR8){
  2662. b= (i>>6 )*85;
  2663. g= ((i>>3)&7)*36;
  2664. r= (i&7 )*36;
  2665. }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
  2666. r= (i>>3 )*255;
  2667. g= ((i>>1)&3)*85;
  2668. b= (i&1 )*255;
  2669. }else {
  2670. assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
  2671. b= (i>>3 )*255;
  2672. g= ((i>>1)&3)*85;
  2673. r= (i&1 )*255;
  2674. }
  2675. y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2676. u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2677. v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2678. c->pal_yuv[i]= y + (u<<8) + (v<<16);
  2679. switch(c->dstFormat) {
  2680. case PIX_FMT_BGR32:
  2681. #ifndef WORDS_BIGENDIAN
  2682. case PIX_FMT_RGB24:
  2683. #endif
  2684. c->pal_rgb[i]= r + (g<<8) + (b<<16);
  2685. break;
  2686. case PIX_FMT_BGR32_1:
  2687. #ifdef WORDS_BIGENDIAN
  2688. case PIX_FMT_BGR24:
  2689. #endif
  2690. c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
  2691. break;
  2692. case PIX_FMT_RGB32_1:
  2693. #ifdef WORDS_BIGENDIAN
  2694. case PIX_FMT_RGB24:
  2695. #endif
  2696. c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
  2697. break;
  2698. case PIX_FMT_RGB32:
  2699. #ifndef WORDS_BIGENDIAN
  2700. case PIX_FMT_BGR24:
  2701. #endif
  2702. default:
  2703. c->pal_rgb[i]= b + (g<<8) + (r<<16);
  2704. }
  2705. }
  2706. }
  2707. // copy strides, so they can safely be modified
  2708. if (c->sliceDir == 1) {
  2709. // slices go from top to bottom
  2710. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2], srcStride[3]};
  2711. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2], dstStride[3]};
  2712. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
  2713. } else {
  2714. // slices go from bottom to top => we flip the image internally
  2715. uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
  2716. dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
  2717. dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2],
  2718. dst[3] + (c->dstH-1)*dstStride[3]};
  2719. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2], -srcStride[3]};
  2720. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2], -dstStride[3]};
  2721. src2[0] += (srcSliceH-1)*srcStride[0];
  2722. if (!usePal(c->srcFormat))
  2723. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2724. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2725. src2[3] += (srcSliceH-1)*srcStride[3];
  2726. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2727. }
  2728. }
  2729. #if LIBSWSCALE_VERSION_MAJOR < 1
  2730. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2731. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2732. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2733. }
  2734. #endif
  2735. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2736. float lumaSharpen, float chromaSharpen,
  2737. float chromaHShift, float chromaVShift,
  2738. int verbose)
  2739. {
  2740. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2741. if (lumaGBlur!=0.0){
  2742. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2743. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2744. }else{
  2745. filter->lumH= sws_getIdentityVec();
  2746. filter->lumV= sws_getIdentityVec();
  2747. }
  2748. if (chromaGBlur!=0.0){
  2749. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2750. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2751. }else{
  2752. filter->chrH= sws_getIdentityVec();
  2753. filter->chrV= sws_getIdentityVec();
  2754. }
  2755. if (chromaSharpen!=0.0){
  2756. SwsVector *id= sws_getIdentityVec();
  2757. sws_scaleVec(filter->chrH, -chromaSharpen);
  2758. sws_scaleVec(filter->chrV, -chromaSharpen);
  2759. sws_addVec(filter->chrH, id);
  2760. sws_addVec(filter->chrV, id);
  2761. sws_freeVec(id);
  2762. }
  2763. if (lumaSharpen!=0.0){
  2764. SwsVector *id= sws_getIdentityVec();
  2765. sws_scaleVec(filter->lumH, -lumaSharpen);
  2766. sws_scaleVec(filter->lumV, -lumaSharpen);
  2767. sws_addVec(filter->lumH, id);
  2768. sws_addVec(filter->lumV, id);
  2769. sws_freeVec(id);
  2770. }
  2771. if (chromaHShift != 0.0)
  2772. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2773. if (chromaVShift != 0.0)
  2774. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2775. sws_normalizeVec(filter->chrH, 1.0);
  2776. sws_normalizeVec(filter->chrV, 1.0);
  2777. sws_normalizeVec(filter->lumH, 1.0);
  2778. sws_normalizeVec(filter->lumV, 1.0);
  2779. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  2780. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  2781. return filter;
  2782. }
  2783. SwsVector *sws_getGaussianVec(double variance, double quality){
  2784. const int length= (int)(variance*quality + 0.5) | 1;
  2785. int i;
  2786. double *coeff= av_malloc(length*sizeof(double));
  2787. double middle= (length-1)*0.5;
  2788. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2789. vec->coeff= coeff;
  2790. vec->length= length;
  2791. for (i=0; i<length; i++)
  2792. {
  2793. double dist= i-middle;
  2794. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2795. }
  2796. sws_normalizeVec(vec, 1.0);
  2797. return vec;
  2798. }
  2799. SwsVector *sws_getConstVec(double c, int length){
  2800. int i;
  2801. double *coeff= av_malloc(length*sizeof(double));
  2802. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2803. vec->coeff= coeff;
  2804. vec->length= length;
  2805. for (i=0; i<length; i++)
  2806. coeff[i]= c;
  2807. return vec;
  2808. }
  2809. SwsVector *sws_getIdentityVec(void){
  2810. return sws_getConstVec(1.0, 1);
  2811. }
  2812. double sws_dcVec(SwsVector *a){
  2813. int i;
  2814. double sum=0;
  2815. for (i=0; i<a->length; i++)
  2816. sum+= a->coeff[i];
  2817. return sum;
  2818. }
  2819. void sws_scaleVec(SwsVector *a, double scalar){
  2820. int i;
  2821. for (i=0; i<a->length; i++)
  2822. a->coeff[i]*= scalar;
  2823. }
  2824. void sws_normalizeVec(SwsVector *a, double height){
  2825. sws_scaleVec(a, height/sws_dcVec(a));
  2826. }
  2827. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2828. int length= a->length + b->length - 1;
  2829. double *coeff= av_malloc(length*sizeof(double));
  2830. int i, j;
  2831. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2832. vec->coeff= coeff;
  2833. vec->length= length;
  2834. for (i=0; i<length; i++) coeff[i]= 0.0;
  2835. for (i=0; i<a->length; i++)
  2836. {
  2837. for (j=0; j<b->length; j++)
  2838. {
  2839. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2840. }
  2841. }
  2842. return vec;
  2843. }
  2844. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2845. int length= FFMAX(a->length, b->length);
  2846. double *coeff= av_malloc(length*sizeof(double));
  2847. int i;
  2848. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2849. vec->coeff= coeff;
  2850. vec->length= length;
  2851. for (i=0; i<length; i++) coeff[i]= 0.0;
  2852. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2853. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2854. return vec;
  2855. }
  2856. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2857. int length= FFMAX(a->length, b->length);
  2858. double *coeff= av_malloc(length*sizeof(double));
  2859. int i;
  2860. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2861. vec->coeff= coeff;
  2862. vec->length= length;
  2863. for (i=0; i<length; i++) coeff[i]= 0.0;
  2864. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2865. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2866. return vec;
  2867. }
  2868. /* shift left / or right if "shift" is negative */
  2869. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2870. int length= a->length + FFABS(shift)*2;
  2871. double *coeff= av_malloc(length*sizeof(double));
  2872. int i;
  2873. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2874. vec->coeff= coeff;
  2875. vec->length= length;
  2876. for (i=0; i<length; i++) coeff[i]= 0.0;
  2877. for (i=0; i<a->length; i++)
  2878. {
  2879. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2880. }
  2881. return vec;
  2882. }
  2883. void sws_shiftVec(SwsVector *a, int shift){
  2884. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2885. av_free(a->coeff);
  2886. a->coeff= shifted->coeff;
  2887. a->length= shifted->length;
  2888. av_free(shifted);
  2889. }
  2890. void sws_addVec(SwsVector *a, SwsVector *b){
  2891. SwsVector *sum= sws_sumVec(a, b);
  2892. av_free(a->coeff);
  2893. a->coeff= sum->coeff;
  2894. a->length= sum->length;
  2895. av_free(sum);
  2896. }
  2897. void sws_subVec(SwsVector *a, SwsVector *b){
  2898. SwsVector *diff= sws_diffVec(a, b);
  2899. av_free(a->coeff);
  2900. a->coeff= diff->coeff;
  2901. a->length= diff->length;
  2902. av_free(diff);
  2903. }
  2904. void sws_convVec(SwsVector *a, SwsVector *b){
  2905. SwsVector *conv= sws_getConvVec(a, b);
  2906. av_free(a->coeff);
  2907. a->coeff= conv->coeff;
  2908. a->length= conv->length;
  2909. av_free(conv);
  2910. }
  2911. SwsVector *sws_cloneVec(SwsVector *a){
  2912. double *coeff= av_malloc(a->length*sizeof(double));
  2913. int i;
  2914. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2915. vec->coeff= coeff;
  2916. vec->length= a->length;
  2917. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2918. return vec;
  2919. }
  2920. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level){
  2921. int i;
  2922. double max=0;
  2923. double min=0;
  2924. double range;
  2925. for (i=0; i<a->length; i++)
  2926. if (a->coeff[i]>max) max= a->coeff[i];
  2927. for (i=0; i<a->length; i++)
  2928. if (a->coeff[i]<min) min= a->coeff[i];
  2929. range= max - min;
  2930. for (i=0; i<a->length; i++)
  2931. {
  2932. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2933. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  2934. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  2935. av_log(log_ctx, log_level, "|\n");
  2936. }
  2937. }
  2938. #if LIBSWSCALE_VERSION_MAJOR < 1
  2939. void sws_printVec(SwsVector *a){
  2940. sws_printVec2(a, NULL, AV_LOG_DEBUG);
  2941. }
  2942. #endif
  2943. void sws_freeVec(SwsVector *a){
  2944. if (!a) return;
  2945. av_freep(&a->coeff);
  2946. a->length=0;
  2947. av_free(a);
  2948. }
  2949. void sws_freeFilter(SwsFilter *filter){
  2950. if (!filter) return;
  2951. if (filter->lumH) sws_freeVec(filter->lumH);
  2952. if (filter->lumV) sws_freeVec(filter->lumV);
  2953. if (filter->chrH) sws_freeVec(filter->chrH);
  2954. if (filter->chrV) sws_freeVec(filter->chrV);
  2955. av_free(filter);
  2956. }
  2957. void sws_freeContext(SwsContext *c){
  2958. int i;
  2959. if (!c) return;
  2960. if (c->lumPixBuf)
  2961. {
  2962. for (i=0; i<c->vLumBufSize; i++)
  2963. av_freep(&c->lumPixBuf[i]);
  2964. av_freep(&c->lumPixBuf);
  2965. }
  2966. if (c->chrPixBuf)
  2967. {
  2968. for (i=0; i<c->vChrBufSize; i++)
  2969. av_freep(&c->chrPixBuf[i]);
  2970. av_freep(&c->chrPixBuf);
  2971. }
  2972. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf){
  2973. for (i=0; i<c->vLumBufSize; i++)
  2974. av_freep(&c->alpPixBuf[i]);
  2975. av_freep(&c->alpPixBuf);
  2976. }
  2977. av_freep(&c->vLumFilter);
  2978. av_freep(&c->vChrFilter);
  2979. av_freep(&c->hLumFilter);
  2980. av_freep(&c->hChrFilter);
  2981. #if HAVE_ALTIVEC
  2982. av_freep(&c->vYCoeffsBank);
  2983. av_freep(&c->vCCoeffsBank);
  2984. #endif
  2985. av_freep(&c->vLumFilterPos);
  2986. av_freep(&c->vChrFilterPos);
  2987. av_freep(&c->hLumFilterPos);
  2988. av_freep(&c->hChrFilterPos);
  2989. #if ARCH_X86 && CONFIG_GPL
  2990. #ifdef MAP_ANONYMOUS
  2991. if (c->funnyYCode ) munmap(c->funnyYCode , MAX_FUNNY_CODE_SIZE);
  2992. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  2993. #elif HAVE_VIRTUALALLOC
  2994. if (c->funnyYCode ) VirtualFree(c->funnyYCode , MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  2995. if (c->funnyUVCode) VirtualFree(c->funnyUVCode, MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  2996. #else
  2997. av_free(c->funnyYCode );
  2998. av_free(c->funnyUVCode);
  2999. #endif
  3000. c->funnyYCode=NULL;
  3001. c->funnyUVCode=NULL;
  3002. #endif /* ARCH_X86 && CONFIG_GPL */
  3003. av_freep(&c->lumMmx2Filter);
  3004. av_freep(&c->chrMmx2Filter);
  3005. av_freep(&c->lumMmx2FilterPos);
  3006. av_freep(&c->chrMmx2FilterPos);
  3007. av_freep(&c->yuvTable);
  3008. av_free(c);
  3009. }
  3010. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  3011. int srcW, int srcH, enum PixelFormat srcFormat,
  3012. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  3013. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
  3014. {
  3015. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  3016. if (!param)
  3017. param = default_param;
  3018. if (context) {
  3019. if (context->srcW != srcW || context->srcH != srcH ||
  3020. context->srcFormat != srcFormat ||
  3021. context->dstW != dstW || context->dstH != dstH ||
  3022. context->dstFormat != dstFormat || context->flags != flags ||
  3023. context->param[0] != param[0] || context->param[1] != param[1])
  3024. {
  3025. sws_freeContext(context);
  3026. context = NULL;
  3027. }
  3028. }
  3029. if (!context) {
  3030. return sws_getContext(srcW, srcH, srcFormat,
  3031. dstW, dstH, dstFormat, flags,
  3032. srcFilter, dstFilter, param);
  3033. }
  3034. return context;
  3035. }