You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4412 lines
155KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "vc1.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #include "msmpeg4data.h"
  35. #include "unary.h"
  36. #include "simple_idct.h"
  37. #include "mathops.h"
  38. #include "vdpau_internal.h"
  39. #undef NDEBUG
  40. #include <assert.h>
  41. #define MB_INTRA_VLC_BITS 9
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /**
  46. * Init VC-1 specific tables and VC1Context members
  47. * @param v The VC1Context to initialize
  48. * @return Status
  49. */
  50. static int vc1_init_common(VC1Context *v)
  51. {
  52. static int done = 0;
  53. int i = 0;
  54. v->hrd_rate = v->hrd_buffer = NULL;
  55. /* VLC tables */
  56. if(!done)
  57. {
  58. done = 1;
  59. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  60. ff_vc1_bfraction_bits, 1, 1,
  61. ff_vc1_bfraction_codes, 1, 1, 1);
  62. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  63. ff_vc1_norm2_bits, 1, 1,
  64. ff_vc1_norm2_codes, 1, 1, 1);
  65. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  66. ff_vc1_norm6_bits, 1, 1,
  67. ff_vc1_norm6_codes, 2, 2, 1);
  68. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  69. ff_vc1_imode_bits, 1, 1,
  70. ff_vc1_imode_codes, 1, 1, 1);
  71. for (i=0; i<3; i++)
  72. {
  73. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  74. ff_vc1_ttmb_bits[i], 1, 1,
  75. ff_vc1_ttmb_codes[i], 2, 2, 1);
  76. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  77. ff_vc1_ttblk_bits[i], 1, 1,
  78. ff_vc1_ttblk_codes[i], 1, 1, 1);
  79. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  80. ff_vc1_subblkpat_bits[i], 1, 1,
  81. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  82. }
  83. for(i=0; i<4; i++)
  84. {
  85. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  86. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  87. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  88. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  89. ff_vc1_cbpcy_p_bits[i], 1, 1,
  90. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  91. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  92. ff_vc1_mv_diff_bits[i], 1, 1,
  93. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  94. }
  95. for(i=0; i<8; i++)
  96. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  97. &vc1_ac_tables[i][0][1], 8, 4,
  98. &vc1_ac_tables[i][0][0], 8, 4, 1);
  99. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  100. &ff_msmp4_mb_i_table[0][1], 4, 2,
  101. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  102. }
  103. /* Other defaults */
  104. v->pq = -1;
  105. v->mvrange = 0; /* 7.1.1.18, p80 */
  106. return 0;
  107. }
  108. /***********************************************************************/
  109. /**
  110. * @defgroup vc1bitplane VC-1 Bitplane decoding
  111. * @see 8.7, p56
  112. * @{
  113. */
  114. /**
  115. * Imode types
  116. * @{
  117. */
  118. enum Imode {
  119. IMODE_RAW,
  120. IMODE_NORM2,
  121. IMODE_DIFF2,
  122. IMODE_NORM6,
  123. IMODE_DIFF6,
  124. IMODE_ROWSKIP,
  125. IMODE_COLSKIP
  126. };
  127. /** @} */ //imode defines
  128. /** Decode rows by checking if they are skipped
  129. * @param plane Buffer to store decoded bits
  130. * @param[in] width Width of this buffer
  131. * @param[in] height Height of this buffer
  132. * @param[in] stride of this buffer
  133. */
  134. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  135. int x, y;
  136. for (y=0; y<height; y++){
  137. if (!get_bits1(gb)) //rowskip
  138. memset(plane, 0, width);
  139. else
  140. for (x=0; x<width; x++)
  141. plane[x] = get_bits1(gb);
  142. plane += stride;
  143. }
  144. }
  145. /** Decode columns by checking if they are skipped
  146. * @param plane Buffer to store decoded bits
  147. * @param[in] width Width of this buffer
  148. * @param[in] height Height of this buffer
  149. * @param[in] stride of this buffer
  150. * @todo FIXME: Optimize
  151. */
  152. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  153. int x, y;
  154. for (x=0; x<width; x++){
  155. if (!get_bits1(gb)) //colskip
  156. for (y=0; y<height; y++)
  157. plane[y*stride] = 0;
  158. else
  159. for (y=0; y<height; y++)
  160. plane[y*stride] = get_bits1(gb);
  161. plane ++;
  162. }
  163. }
  164. /** Decode a bitplane's bits
  165. * @param data bitplane where to store the decode bits
  166. * @param[out] raw_flag pointer to the flag indicating that this bitplane is not coded explicitly
  167. * @param v VC-1 context for bit reading and logging
  168. * @return Status
  169. * @todo FIXME: Optimize
  170. */
  171. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  172. {
  173. GetBitContext *gb = &v->s.gb;
  174. int imode, x, y, code, offset;
  175. uint8_t invert, *planep = data;
  176. int width, height, stride;
  177. width = v->s.mb_width;
  178. height = v->s.mb_height;
  179. stride = v->s.mb_stride;
  180. invert = get_bits1(gb);
  181. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  182. *raw_flag = 0;
  183. switch (imode)
  184. {
  185. case IMODE_RAW:
  186. //Data is actually read in the MB layer (same for all tests == "raw")
  187. *raw_flag = 1; //invert ignored
  188. return invert;
  189. case IMODE_DIFF2:
  190. case IMODE_NORM2:
  191. if ((height * width) & 1)
  192. {
  193. *planep++ = get_bits1(gb);
  194. offset = 1;
  195. }
  196. else offset = 0;
  197. // decode bitplane as one long line
  198. for (y = offset; y < height * width; y += 2) {
  199. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  200. *planep++ = code & 1;
  201. offset++;
  202. if(offset == width) {
  203. offset = 0;
  204. planep += stride - width;
  205. }
  206. *planep++ = code >> 1;
  207. offset++;
  208. if(offset == width) {
  209. offset = 0;
  210. planep += stride - width;
  211. }
  212. }
  213. break;
  214. case IMODE_DIFF6:
  215. case IMODE_NORM6:
  216. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  217. for(y = 0; y < height; y+= 3) {
  218. for(x = width & 1; x < width; x += 2) {
  219. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  220. if(code < 0){
  221. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  222. return -1;
  223. }
  224. planep[x + 0] = (code >> 0) & 1;
  225. planep[x + 1] = (code >> 1) & 1;
  226. planep[x + 0 + stride] = (code >> 2) & 1;
  227. planep[x + 1 + stride] = (code >> 3) & 1;
  228. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  229. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  230. }
  231. planep += stride * 3;
  232. }
  233. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  234. } else { // 3x2
  235. planep += (height & 1) * stride;
  236. for(y = height & 1; y < height; y += 2) {
  237. for(x = width % 3; x < width; x += 3) {
  238. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  239. if(code < 0){
  240. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  241. return -1;
  242. }
  243. planep[x + 0] = (code >> 0) & 1;
  244. planep[x + 1] = (code >> 1) & 1;
  245. planep[x + 2] = (code >> 2) & 1;
  246. planep[x + 0 + stride] = (code >> 3) & 1;
  247. planep[x + 1 + stride] = (code >> 4) & 1;
  248. planep[x + 2 + stride] = (code >> 5) & 1;
  249. }
  250. planep += stride * 2;
  251. }
  252. x = width % 3;
  253. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  254. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  255. }
  256. break;
  257. case IMODE_ROWSKIP:
  258. decode_rowskip(data, width, height, stride, &v->s.gb);
  259. break;
  260. case IMODE_COLSKIP:
  261. decode_colskip(data, width, height, stride, &v->s.gb);
  262. break;
  263. default: break;
  264. }
  265. /* Applying diff operator */
  266. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  267. {
  268. planep = data;
  269. planep[0] ^= invert;
  270. for (x=1; x<width; x++)
  271. planep[x] ^= planep[x-1];
  272. for (y=1; y<height; y++)
  273. {
  274. planep += stride;
  275. planep[0] ^= planep[-stride];
  276. for (x=1; x<width; x++)
  277. {
  278. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  279. else planep[x] ^= planep[x-1];
  280. }
  281. }
  282. }
  283. else if (invert)
  284. {
  285. planep = data;
  286. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  287. }
  288. return (imode<<1) + invert;
  289. }
  290. /** @} */ //Bitplane group
  291. /**
  292. * VC-1 in-loop deblocking filter for one line
  293. * @param src source block type
  294. * @param stride block stride
  295. * @param pq block quantizer
  296. * @return whether other 3 pairs should be filtered or not
  297. * @see 8.6
  298. */
  299. static av_always_inline int vc1_filter_line(uint8_t* src, int stride, int pq){
  300. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  301. int a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
  302. int a0_sign = a0 >> 31; /* Store sign */
  303. a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
  304. if(a0 < pq){
  305. int a1 = FFABS((2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3);
  306. int a2 = FFABS((2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3);
  307. if(a1 < a0 || a2 < a0){
  308. int clip = src[-1*stride] - src[ 0*stride];
  309. int clip_sign = clip >> 31;
  310. clip = ((clip ^ clip_sign) - clip_sign)>>1;
  311. if(clip){
  312. int a3 = FFMIN(a1, a2);
  313. int d = 5 * (a3 - a0);
  314. int d_sign = (d >> 31);
  315. d = ((d ^ d_sign) - d_sign) >> 3;
  316. d_sign ^= a0_sign;
  317. if( d_sign ^ clip_sign )
  318. d = 0;
  319. else{
  320. d = FFMIN(d, clip);
  321. d = (d ^ d_sign) - d_sign; /* Restore sign */
  322. src[-1*stride] = cm[src[-1*stride] - d];
  323. src[ 0*stride] = cm[src[ 0*stride] + d];
  324. }
  325. return 1;
  326. }
  327. }
  328. }
  329. return 0;
  330. }
  331. /**
  332. * VC-1 in-loop deblocking filter
  333. * @param src source block type
  334. * @param step distance between horizontally adjacent elements
  335. * @param stride distance between vertically adjacent elements
  336. * @param len edge length to filter (4 or 8 pixels)
  337. * @param pq block quantizer
  338. * @see 8.6
  339. */
  340. static void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
  341. {
  342. int i;
  343. int filt3;
  344. for(i = 0; i < len; i += 4){
  345. filt3 = vc1_filter_line(src + 2*step, stride, pq);
  346. if(filt3){
  347. vc1_filter_line(src + 0*step, stride, pq);
  348. vc1_filter_line(src + 1*step, stride, pq);
  349. vc1_filter_line(src + 3*step, stride, pq);
  350. }
  351. src += step * 4;
  352. }
  353. }
  354. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  355. {
  356. int i, j;
  357. if(!s->first_slice_line)
  358. vc1_loop_filter(s->dest[0], 1, s->linesize, 16, pq);
  359. vc1_loop_filter(s->dest[0] + 8*s->linesize, 1, s->linesize, 16, pq);
  360. for(i = !s->mb_x*8; i < 16; i += 8)
  361. vc1_loop_filter(s->dest[0] + i, s->linesize, 1, 16, pq);
  362. for(j = 0; j < 2; j++){
  363. if(!s->first_slice_line)
  364. vc1_loop_filter(s->dest[j+1], 1, s->uvlinesize, 8, pq);
  365. if(s->mb_x)
  366. vc1_loop_filter(s->dest[j+1], s->uvlinesize, 1, 8, pq);
  367. }
  368. }
  369. /***********************************************************************/
  370. /** VOP Dquant decoding
  371. * @param v VC-1 Context
  372. */
  373. static int vop_dquant_decoding(VC1Context *v)
  374. {
  375. GetBitContext *gb = &v->s.gb;
  376. int pqdiff;
  377. //variable size
  378. if (v->dquant == 2)
  379. {
  380. pqdiff = get_bits(gb, 3);
  381. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  382. else v->altpq = v->pq + pqdiff + 1;
  383. }
  384. else
  385. {
  386. v->dquantfrm = get_bits1(gb);
  387. if ( v->dquantfrm )
  388. {
  389. v->dqprofile = get_bits(gb, 2);
  390. switch (v->dqprofile)
  391. {
  392. case DQPROFILE_SINGLE_EDGE:
  393. case DQPROFILE_DOUBLE_EDGES:
  394. v->dqsbedge = get_bits(gb, 2);
  395. break;
  396. case DQPROFILE_ALL_MBS:
  397. v->dqbilevel = get_bits1(gb);
  398. if(!v->dqbilevel)
  399. v->halfpq = 0;
  400. default: break; //Forbidden ?
  401. }
  402. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  403. {
  404. pqdiff = get_bits(gb, 3);
  405. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  406. else v->altpq = v->pq + pqdiff + 1;
  407. }
  408. }
  409. }
  410. return 0;
  411. }
  412. /** Put block onto picture
  413. */
  414. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  415. {
  416. uint8_t *Y;
  417. int ys, us, vs;
  418. DSPContext *dsp = &v->s.dsp;
  419. if(v->rangeredfrm) {
  420. int i, j, k;
  421. for(k = 0; k < 6; k++)
  422. for(j = 0; j < 8; j++)
  423. for(i = 0; i < 8; i++)
  424. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  425. }
  426. ys = v->s.current_picture.linesize[0];
  427. us = v->s.current_picture.linesize[1];
  428. vs = v->s.current_picture.linesize[2];
  429. Y = v->s.dest[0];
  430. dsp->put_pixels_clamped(block[0], Y, ys);
  431. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  432. Y += ys * 8;
  433. dsp->put_pixels_clamped(block[2], Y, ys);
  434. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  435. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  436. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  437. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  438. }
  439. }
  440. /** Do motion compensation over 1 macroblock
  441. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  442. */
  443. static void vc1_mc_1mv(VC1Context *v, int dir)
  444. {
  445. MpegEncContext *s = &v->s;
  446. DSPContext *dsp = &v->s.dsp;
  447. uint8_t *srcY, *srcU, *srcV;
  448. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  449. if(!v->s.last_picture.data[0])return;
  450. mx = s->mv[dir][0][0];
  451. my = s->mv[dir][0][1];
  452. // store motion vectors for further use in B frames
  453. if(s->pict_type == FF_P_TYPE) {
  454. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  455. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  456. }
  457. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  458. uvmy = (my + ((my & 3) == 3)) >> 1;
  459. if(v->fastuvmc) {
  460. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  461. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  462. }
  463. if(!dir) {
  464. srcY = s->last_picture.data[0];
  465. srcU = s->last_picture.data[1];
  466. srcV = s->last_picture.data[2];
  467. } else {
  468. srcY = s->next_picture.data[0];
  469. srcU = s->next_picture.data[1];
  470. srcV = s->next_picture.data[2];
  471. }
  472. src_x = s->mb_x * 16 + (mx >> 2);
  473. src_y = s->mb_y * 16 + (my >> 2);
  474. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  475. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  476. if(v->profile != PROFILE_ADVANCED){
  477. src_x = av_clip( src_x, -16, s->mb_width * 16);
  478. src_y = av_clip( src_y, -16, s->mb_height * 16);
  479. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  480. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  481. }else{
  482. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  483. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  484. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  485. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  486. }
  487. srcY += src_y * s->linesize + src_x;
  488. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  489. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  490. /* for grayscale we should not try to read from unknown area */
  491. if(s->flags & CODEC_FLAG_GRAY) {
  492. srcU = s->edge_emu_buffer + 18 * s->linesize;
  493. srcV = s->edge_emu_buffer + 18 * s->linesize;
  494. }
  495. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  496. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  497. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  498. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  499. srcY -= s->mspel * (1 + s->linesize);
  500. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  501. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  502. srcY = s->edge_emu_buffer;
  503. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  504. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  505. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  506. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  507. srcU = uvbuf;
  508. srcV = uvbuf + 16;
  509. /* if we deal with range reduction we need to scale source blocks */
  510. if(v->rangeredfrm) {
  511. int i, j;
  512. uint8_t *src, *src2;
  513. src = srcY;
  514. for(j = 0; j < 17 + s->mspel*2; j++) {
  515. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  516. src += s->linesize;
  517. }
  518. src = srcU; src2 = srcV;
  519. for(j = 0; j < 9; j++) {
  520. for(i = 0; i < 9; i++) {
  521. src[i] = ((src[i] - 128) >> 1) + 128;
  522. src2[i] = ((src2[i] - 128) >> 1) + 128;
  523. }
  524. src += s->uvlinesize;
  525. src2 += s->uvlinesize;
  526. }
  527. }
  528. /* if we deal with intensity compensation we need to scale source blocks */
  529. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  530. int i, j;
  531. uint8_t *src, *src2;
  532. src = srcY;
  533. for(j = 0; j < 17 + s->mspel*2; j++) {
  534. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  535. src += s->linesize;
  536. }
  537. src = srcU; src2 = srcV;
  538. for(j = 0; j < 9; j++) {
  539. for(i = 0; i < 9; i++) {
  540. src[i] = v->lutuv[src[i]];
  541. src2[i] = v->lutuv[src2[i]];
  542. }
  543. src += s->uvlinesize;
  544. src2 += s->uvlinesize;
  545. }
  546. }
  547. srcY += s->mspel * (1 + s->linesize);
  548. }
  549. if(s->mspel) {
  550. dxy = ((my & 3) << 2) | (mx & 3);
  551. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  552. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  553. srcY += s->linesize * 8;
  554. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  555. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  556. } else { // hpel mc - always used for luma
  557. dxy = (my & 2) | ((mx & 2) >> 1);
  558. if(!v->rnd)
  559. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  560. else
  561. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  562. }
  563. if(s->flags & CODEC_FLAG_GRAY) return;
  564. /* Chroma MC always uses qpel bilinear */
  565. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  566. uvmx = (uvmx&3)<<1;
  567. uvmy = (uvmy&3)<<1;
  568. if(!v->rnd){
  569. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  570. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  571. }else{
  572. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  573. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  574. }
  575. }
  576. /** Do motion compensation for 4-MV macroblock - luminance block
  577. */
  578. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  579. {
  580. MpegEncContext *s = &v->s;
  581. DSPContext *dsp = &v->s.dsp;
  582. uint8_t *srcY;
  583. int dxy, mx, my, src_x, src_y;
  584. int off;
  585. if(!v->s.last_picture.data[0])return;
  586. mx = s->mv[0][n][0];
  587. my = s->mv[0][n][1];
  588. srcY = s->last_picture.data[0];
  589. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  590. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  591. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  592. if(v->profile != PROFILE_ADVANCED){
  593. src_x = av_clip( src_x, -16, s->mb_width * 16);
  594. src_y = av_clip( src_y, -16, s->mb_height * 16);
  595. }else{
  596. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  597. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  598. }
  599. srcY += src_y * s->linesize + src_x;
  600. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  601. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  602. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  603. srcY -= s->mspel * (1 + s->linesize);
  604. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  605. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  606. srcY = s->edge_emu_buffer;
  607. /* if we deal with range reduction we need to scale source blocks */
  608. if(v->rangeredfrm) {
  609. int i, j;
  610. uint8_t *src;
  611. src = srcY;
  612. for(j = 0; j < 9 + s->mspel*2; j++) {
  613. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  614. src += s->linesize;
  615. }
  616. }
  617. /* if we deal with intensity compensation we need to scale source blocks */
  618. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  619. int i, j;
  620. uint8_t *src;
  621. src = srcY;
  622. for(j = 0; j < 9 + s->mspel*2; j++) {
  623. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  624. src += s->linesize;
  625. }
  626. }
  627. srcY += s->mspel * (1 + s->linesize);
  628. }
  629. if(s->mspel) {
  630. dxy = ((my & 3) << 2) | (mx & 3);
  631. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  632. } else { // hpel mc - always used for luma
  633. dxy = (my & 2) | ((mx & 2) >> 1);
  634. if(!v->rnd)
  635. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  636. else
  637. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  638. }
  639. }
  640. static inline int median4(int a, int b, int c, int d)
  641. {
  642. if(a < b) {
  643. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  644. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  645. } else {
  646. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  647. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  648. }
  649. }
  650. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  651. */
  652. static void vc1_mc_4mv_chroma(VC1Context *v)
  653. {
  654. MpegEncContext *s = &v->s;
  655. DSPContext *dsp = &v->s.dsp;
  656. uint8_t *srcU, *srcV;
  657. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  658. int i, idx, tx = 0, ty = 0;
  659. int mvx[4], mvy[4], intra[4];
  660. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  661. if(!v->s.last_picture.data[0])return;
  662. if(s->flags & CODEC_FLAG_GRAY) return;
  663. for(i = 0; i < 4; i++) {
  664. mvx[i] = s->mv[0][i][0];
  665. mvy[i] = s->mv[0][i][1];
  666. intra[i] = v->mb_type[0][s->block_index[i]];
  667. }
  668. /* calculate chroma MV vector from four luma MVs */
  669. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  670. if(!idx) { // all blocks are inter
  671. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  672. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  673. } else if(count[idx] == 1) { // 3 inter blocks
  674. switch(idx) {
  675. case 0x1:
  676. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  677. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  678. break;
  679. case 0x2:
  680. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  681. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  682. break;
  683. case 0x4:
  684. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  685. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  686. break;
  687. case 0x8:
  688. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  689. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  690. break;
  691. }
  692. } else if(count[idx] == 2) {
  693. int t1 = 0, t2 = 0;
  694. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  695. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  696. tx = (mvx[t1] + mvx[t2]) / 2;
  697. ty = (mvy[t1] + mvy[t2]) / 2;
  698. } else {
  699. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  700. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  701. return; //no need to do MC for inter blocks
  702. }
  703. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  704. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  705. uvmx = (tx + ((tx&3) == 3)) >> 1;
  706. uvmy = (ty + ((ty&3) == 3)) >> 1;
  707. if(v->fastuvmc) {
  708. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  709. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  710. }
  711. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  712. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  713. if(v->profile != PROFILE_ADVANCED){
  714. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  715. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  716. }else{
  717. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  718. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  719. }
  720. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  721. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  722. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  723. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  724. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  725. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  726. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  727. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  728. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  729. srcU = s->edge_emu_buffer;
  730. srcV = s->edge_emu_buffer + 16;
  731. /* if we deal with range reduction we need to scale source blocks */
  732. if(v->rangeredfrm) {
  733. int i, j;
  734. uint8_t *src, *src2;
  735. src = srcU; src2 = srcV;
  736. for(j = 0; j < 9; j++) {
  737. for(i = 0; i < 9; i++) {
  738. src[i] = ((src[i] - 128) >> 1) + 128;
  739. src2[i] = ((src2[i] - 128) >> 1) + 128;
  740. }
  741. src += s->uvlinesize;
  742. src2 += s->uvlinesize;
  743. }
  744. }
  745. /* if we deal with intensity compensation we need to scale source blocks */
  746. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  747. int i, j;
  748. uint8_t *src, *src2;
  749. src = srcU; src2 = srcV;
  750. for(j = 0; j < 9; j++) {
  751. for(i = 0; i < 9; i++) {
  752. src[i] = v->lutuv[src[i]];
  753. src2[i] = v->lutuv[src2[i]];
  754. }
  755. src += s->uvlinesize;
  756. src2 += s->uvlinesize;
  757. }
  758. }
  759. }
  760. /* Chroma MC always uses qpel bilinear */
  761. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  762. uvmx = (uvmx&3)<<1;
  763. uvmy = (uvmy&3)<<1;
  764. if(!v->rnd){
  765. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  766. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  767. }else{
  768. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  769. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  770. }
  771. }
  772. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  773. /**
  774. * Decode Simple/Main Profiles sequence header
  775. * @see Figure 7-8, p16-17
  776. * @param avctx Codec context
  777. * @param gb GetBit context initialized from Codec context extra_data
  778. * @return Status
  779. */
  780. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  781. {
  782. VC1Context *v = avctx->priv_data;
  783. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  784. v->profile = get_bits(gb, 2);
  785. if (v->profile == PROFILE_COMPLEX)
  786. {
  787. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  788. }
  789. if (v->profile == PROFILE_ADVANCED)
  790. {
  791. v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
  792. v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
  793. return decode_sequence_header_adv(v, gb);
  794. }
  795. else
  796. {
  797. v->zz_8x4 = wmv2_scantableA;
  798. v->zz_4x8 = wmv2_scantableB;
  799. v->res_sm = get_bits(gb, 2); //reserved
  800. if (v->res_sm)
  801. {
  802. av_log(avctx, AV_LOG_ERROR,
  803. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  804. return -1;
  805. }
  806. }
  807. // (fps-2)/4 (->30)
  808. v->frmrtq_postproc = get_bits(gb, 3); //common
  809. // (bitrate-32kbps)/64kbps
  810. v->bitrtq_postproc = get_bits(gb, 5); //common
  811. v->s.loop_filter = get_bits1(gb); //common
  812. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  813. {
  814. av_log(avctx, AV_LOG_ERROR,
  815. "LOOPFILTER shell not be enabled in simple profile\n");
  816. }
  817. if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
  818. v->s.loop_filter = 0;
  819. v->res_x8 = get_bits1(gb); //reserved
  820. v->multires = get_bits1(gb);
  821. v->res_fasttx = get_bits1(gb);
  822. if (!v->res_fasttx)
  823. {
  824. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  825. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  826. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  827. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  828. }
  829. v->fastuvmc = get_bits1(gb); //common
  830. if (!v->profile && !v->fastuvmc)
  831. {
  832. av_log(avctx, AV_LOG_ERROR,
  833. "FASTUVMC unavailable in Simple Profile\n");
  834. return -1;
  835. }
  836. v->extended_mv = get_bits1(gb); //common
  837. if (!v->profile && v->extended_mv)
  838. {
  839. av_log(avctx, AV_LOG_ERROR,
  840. "Extended MVs unavailable in Simple Profile\n");
  841. return -1;
  842. }
  843. v->dquant = get_bits(gb, 2); //common
  844. v->vstransform = get_bits1(gb); //common
  845. v->res_transtab = get_bits1(gb);
  846. if (v->res_transtab)
  847. {
  848. av_log(avctx, AV_LOG_ERROR,
  849. "1 for reserved RES_TRANSTAB is forbidden\n");
  850. return -1;
  851. }
  852. v->overlap = get_bits1(gb); //common
  853. v->s.resync_marker = get_bits1(gb);
  854. v->rangered = get_bits1(gb);
  855. if (v->rangered && v->profile == PROFILE_SIMPLE)
  856. {
  857. av_log(avctx, AV_LOG_INFO,
  858. "RANGERED should be set to 0 in simple profile\n");
  859. }
  860. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  861. v->quantizer_mode = get_bits(gb, 2); //common
  862. v->finterpflag = get_bits1(gb); //common
  863. v->res_rtm_flag = get_bits1(gb); //reserved
  864. if (!v->res_rtm_flag)
  865. {
  866. // av_log(avctx, AV_LOG_ERROR,
  867. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  868. av_log(avctx, AV_LOG_ERROR,
  869. "Old WMV3 version detected, only I-frames will be decoded\n");
  870. //return -1;
  871. }
  872. //TODO: figure out what they mean (always 0x402F)
  873. if(!v->res_fasttx) skip_bits(gb, 16);
  874. av_log(avctx, AV_LOG_DEBUG,
  875. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  876. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  877. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  878. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  879. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  880. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  881. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  882. v->dquant, v->quantizer_mode, avctx->max_b_frames
  883. );
  884. return 0;
  885. }
  886. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  887. {
  888. v->res_rtm_flag = 1;
  889. v->level = get_bits(gb, 3);
  890. if(v->level >= 5)
  891. {
  892. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  893. }
  894. v->chromaformat = get_bits(gb, 2);
  895. if (v->chromaformat != 1)
  896. {
  897. av_log(v->s.avctx, AV_LOG_ERROR,
  898. "Only 4:2:0 chroma format supported\n");
  899. return -1;
  900. }
  901. // (fps-2)/4 (->30)
  902. v->frmrtq_postproc = get_bits(gb, 3); //common
  903. // (bitrate-32kbps)/64kbps
  904. v->bitrtq_postproc = get_bits(gb, 5); //common
  905. v->postprocflag = get_bits1(gb); //common
  906. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  907. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  908. v->s.avctx->width = v->s.avctx->coded_width;
  909. v->s.avctx->height = v->s.avctx->coded_height;
  910. v->broadcast = get_bits1(gb);
  911. v->interlace = get_bits1(gb);
  912. v->tfcntrflag = get_bits1(gb);
  913. v->finterpflag = get_bits1(gb);
  914. skip_bits1(gb); // reserved
  915. v->s.h_edge_pos = v->s.avctx->coded_width;
  916. v->s.v_edge_pos = v->s.avctx->coded_height;
  917. av_log(v->s.avctx, AV_LOG_DEBUG,
  918. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  919. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  920. "TFCTRflag=%i, FINTERPflag=%i\n",
  921. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  922. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  923. v->tfcntrflag, v->finterpflag
  924. );
  925. v->psf = get_bits1(gb);
  926. if(v->psf) { //PsF, 6.1.13
  927. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  928. return -1;
  929. }
  930. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  931. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  932. int w, h, ar = 0;
  933. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  934. v->s.avctx->coded_width = w = get_bits(gb, 14) + 1;
  935. v->s.avctx->coded_height = h = get_bits(gb, 14) + 1;
  936. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  937. if(get_bits1(gb))
  938. ar = get_bits(gb, 4);
  939. if(ar && ar < 14){
  940. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  941. }else if(ar == 15){
  942. w = get_bits(gb, 8);
  943. h = get_bits(gb, 8);
  944. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  945. }
  946. av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den);
  947. if(get_bits1(gb)){ //framerate stuff
  948. if(get_bits1(gb)) {
  949. v->s.avctx->time_base.num = 32;
  950. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  951. } else {
  952. int nr, dr;
  953. nr = get_bits(gb, 8);
  954. dr = get_bits(gb, 4);
  955. if(nr && nr < 8 && dr && dr < 3){
  956. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  957. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  958. }
  959. }
  960. }
  961. if(get_bits1(gb)){
  962. v->color_prim = get_bits(gb, 8);
  963. v->transfer_char = get_bits(gb, 8);
  964. v->matrix_coef = get_bits(gb, 8);
  965. }
  966. }
  967. v->hrd_param_flag = get_bits1(gb);
  968. if(v->hrd_param_flag) {
  969. int i;
  970. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  971. skip_bits(gb, 4); //bitrate exponent
  972. skip_bits(gb, 4); //buffer size exponent
  973. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  974. skip_bits(gb, 16); //hrd_rate[n]
  975. skip_bits(gb, 16); //hrd_buffer[n]
  976. }
  977. }
  978. return 0;
  979. }
  980. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  981. {
  982. VC1Context *v = avctx->priv_data;
  983. int i;
  984. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  985. v->broken_link = get_bits1(gb);
  986. v->closed_entry = get_bits1(gb);
  987. v->panscanflag = get_bits1(gb);
  988. v->refdist_flag = get_bits1(gb);
  989. v->s.loop_filter = get_bits1(gb);
  990. v->fastuvmc = get_bits1(gb);
  991. v->extended_mv = get_bits1(gb);
  992. v->dquant = get_bits(gb, 2);
  993. v->vstransform = get_bits1(gb);
  994. v->overlap = get_bits1(gb);
  995. v->quantizer_mode = get_bits(gb, 2);
  996. if(v->hrd_param_flag){
  997. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  998. skip_bits(gb, 8); //hrd_full[n]
  999. }
  1000. }
  1001. if(get_bits1(gb)){
  1002. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1003. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1004. }
  1005. if(v->extended_mv)
  1006. v->extended_dmv = get_bits1(gb);
  1007. if((v->range_mapy_flag = get_bits1(gb))) {
  1008. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1009. v->range_mapy = get_bits(gb, 3);
  1010. }
  1011. if((v->range_mapuv_flag = get_bits1(gb))) {
  1012. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1013. v->range_mapuv = get_bits(gb, 3);
  1014. }
  1015. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1016. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1017. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1018. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1019. v->broken_link, v->closed_entry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
  1020. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1021. return 0;
  1022. }
  1023. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1024. {
  1025. int pqindex, lowquant, status;
  1026. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1027. skip_bits(gb, 2); //framecnt unused
  1028. v->rangeredfrm = 0;
  1029. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  1030. v->s.pict_type = get_bits1(gb);
  1031. if (v->s.avctx->max_b_frames) {
  1032. if (!v->s.pict_type) {
  1033. if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
  1034. else v->s.pict_type = FF_B_TYPE;
  1035. } else v->s.pict_type = FF_P_TYPE;
  1036. } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
  1037. v->bi_type = 0;
  1038. if(v->s.pict_type == FF_B_TYPE) {
  1039. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1040. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  1041. if(v->bfraction == 0) {
  1042. v->s.pict_type = FF_BI_TYPE;
  1043. }
  1044. }
  1045. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1046. skip_bits(gb, 7); // skip buffer fullness
  1047. /* calculate RND */
  1048. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1049. v->rnd = 1;
  1050. if(v->s.pict_type == FF_P_TYPE)
  1051. v->rnd ^= 1;
  1052. /* Quantizer stuff */
  1053. pqindex = get_bits(gb, 5);
  1054. if(!pqindex) return -1;
  1055. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1056. v->pq = ff_vc1_pquant_table[0][pqindex];
  1057. else
  1058. v->pq = ff_vc1_pquant_table[1][pqindex];
  1059. v->pquantizer = 1;
  1060. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1061. v->pquantizer = pqindex < 9;
  1062. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1063. v->pquantizer = 0;
  1064. v->pqindex = pqindex;
  1065. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1066. else v->halfpq = 0;
  1067. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1068. v->pquantizer = get_bits1(gb);
  1069. v->dquantfrm = 0;
  1070. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  1071. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1072. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1073. v->range_x = 1 << (v->k_x - 1);
  1074. v->range_y = 1 << (v->k_y - 1);
  1075. if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
  1076. if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
  1077. v->x8_type = get_bits1(gb);
  1078. }else v->x8_type = 0;
  1079. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1080. // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1081. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1082. switch(v->s.pict_type) {
  1083. case FF_P_TYPE:
  1084. if (v->pq < 5) v->tt_index = 0;
  1085. else if(v->pq < 13) v->tt_index = 1;
  1086. else v->tt_index = 2;
  1087. lowquant = (v->pq > 12) ? 0 : 1;
  1088. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1089. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1090. {
  1091. int scale, shift, i;
  1092. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1093. v->lumscale = get_bits(gb, 6);
  1094. v->lumshift = get_bits(gb, 6);
  1095. v->use_ic = 1;
  1096. /* fill lookup tables for intensity compensation */
  1097. if(!v->lumscale) {
  1098. scale = -64;
  1099. shift = (255 - v->lumshift * 2) << 6;
  1100. if(v->lumshift > 31)
  1101. shift += 128 << 6;
  1102. } else {
  1103. scale = v->lumscale + 32;
  1104. if(v->lumshift > 31)
  1105. shift = (v->lumshift - 64) << 6;
  1106. else
  1107. shift = v->lumshift << 6;
  1108. }
  1109. for(i = 0; i < 256; i++) {
  1110. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1111. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1112. }
  1113. }
  1114. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1115. v->s.quarter_sample = 0;
  1116. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1117. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1118. v->s.quarter_sample = 0;
  1119. else
  1120. v->s.quarter_sample = 1;
  1121. } else
  1122. v->s.quarter_sample = 1;
  1123. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1124. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1125. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1126. || v->mv_mode == MV_PMODE_MIXED_MV)
  1127. {
  1128. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1129. if (status < 0) return -1;
  1130. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1131. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1132. } else {
  1133. v->mv_type_is_raw = 0;
  1134. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1135. }
  1136. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1137. if (status < 0) return -1;
  1138. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1139. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1140. /* Hopefully this is correct for P frames */
  1141. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1142. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1143. if (v->dquant)
  1144. {
  1145. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1146. vop_dquant_decoding(v);
  1147. }
  1148. v->ttfrm = 0; //FIXME Is that so ?
  1149. if (v->vstransform)
  1150. {
  1151. v->ttmbf = get_bits1(gb);
  1152. if (v->ttmbf)
  1153. {
  1154. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1155. }
  1156. } else {
  1157. v->ttmbf = 1;
  1158. v->ttfrm = TT_8X8;
  1159. }
  1160. break;
  1161. case FF_B_TYPE:
  1162. if (v->pq < 5) v->tt_index = 0;
  1163. else if(v->pq < 13) v->tt_index = 1;
  1164. else v->tt_index = 2;
  1165. lowquant = (v->pq > 12) ? 0 : 1;
  1166. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1167. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1168. v->s.mspel = v->s.quarter_sample;
  1169. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1170. if (status < 0) return -1;
  1171. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1172. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1173. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1174. if (status < 0) return -1;
  1175. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1176. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1177. v->s.mv_table_index = get_bits(gb, 2);
  1178. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1179. if (v->dquant)
  1180. {
  1181. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1182. vop_dquant_decoding(v);
  1183. }
  1184. v->ttfrm = 0;
  1185. if (v->vstransform)
  1186. {
  1187. v->ttmbf = get_bits1(gb);
  1188. if (v->ttmbf)
  1189. {
  1190. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1191. }
  1192. } else {
  1193. v->ttmbf = 1;
  1194. v->ttfrm = TT_8X8;
  1195. }
  1196. break;
  1197. }
  1198. if(!v->x8_type)
  1199. {
  1200. /* AC Syntax */
  1201. v->c_ac_table_index = decode012(gb);
  1202. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1203. {
  1204. v->y_ac_table_index = decode012(gb);
  1205. }
  1206. /* DC Syntax */
  1207. v->s.dc_table_index = get_bits1(gb);
  1208. }
  1209. if(v->s.pict_type == FF_BI_TYPE) {
  1210. v->s.pict_type = FF_B_TYPE;
  1211. v->bi_type = 1;
  1212. }
  1213. return 0;
  1214. }
  1215. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1216. {
  1217. int pqindex, lowquant;
  1218. int status;
  1219. v->p_frame_skipped = 0;
  1220. if(v->interlace){
  1221. v->fcm = decode012(gb);
  1222. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1223. }
  1224. switch(get_unary(gb, 0, 4)) {
  1225. case 0:
  1226. v->s.pict_type = FF_P_TYPE;
  1227. break;
  1228. case 1:
  1229. v->s.pict_type = FF_B_TYPE;
  1230. break;
  1231. case 2:
  1232. v->s.pict_type = FF_I_TYPE;
  1233. break;
  1234. case 3:
  1235. v->s.pict_type = FF_BI_TYPE;
  1236. break;
  1237. case 4:
  1238. v->s.pict_type = FF_P_TYPE; // skipped pic
  1239. v->p_frame_skipped = 1;
  1240. return 0;
  1241. }
  1242. if(v->tfcntrflag)
  1243. skip_bits(gb, 8);
  1244. if(v->broadcast) {
  1245. if(!v->interlace || v->psf) {
  1246. v->rptfrm = get_bits(gb, 2);
  1247. } else {
  1248. v->tff = get_bits1(gb);
  1249. v->rptfrm = get_bits1(gb);
  1250. }
  1251. }
  1252. if(v->panscanflag) {
  1253. //...
  1254. }
  1255. v->rnd = get_bits1(gb);
  1256. if(v->interlace)
  1257. v->uvsamp = get_bits1(gb);
  1258. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1259. if(v->s.pict_type == FF_B_TYPE) {
  1260. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1261. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  1262. if(v->bfraction == 0) {
  1263. v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
  1264. }
  1265. }
  1266. pqindex = get_bits(gb, 5);
  1267. if(!pqindex) return -1;
  1268. v->pqindex = pqindex;
  1269. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1270. v->pq = ff_vc1_pquant_table[0][pqindex];
  1271. else
  1272. v->pq = ff_vc1_pquant_table[1][pqindex];
  1273. v->pquantizer = 1;
  1274. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1275. v->pquantizer = pqindex < 9;
  1276. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1277. v->pquantizer = 0;
  1278. v->pqindex = pqindex;
  1279. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1280. else v->halfpq = 0;
  1281. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1282. v->pquantizer = get_bits1(gb);
  1283. if(v->postprocflag)
  1284. v->postproc = get_bits(gb, 2);
  1285. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1286. switch(v->s.pict_type) {
  1287. case FF_I_TYPE:
  1288. case FF_BI_TYPE:
  1289. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1290. if (status < 0) return -1;
  1291. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1292. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1293. v->condover = CONDOVER_NONE;
  1294. if(v->overlap && v->pq <= 8) {
  1295. v->condover = decode012(gb);
  1296. if(v->condover == CONDOVER_SELECT) {
  1297. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1298. if (status < 0) return -1;
  1299. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1300. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1301. }
  1302. }
  1303. break;
  1304. case FF_P_TYPE:
  1305. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1306. else v->mvrange = 0;
  1307. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1308. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1309. v->range_x = 1 << (v->k_x - 1);
  1310. v->range_y = 1 << (v->k_y - 1);
  1311. if (v->pq < 5) v->tt_index = 0;
  1312. else if(v->pq < 13) v->tt_index = 1;
  1313. else v->tt_index = 2;
  1314. lowquant = (v->pq > 12) ? 0 : 1;
  1315. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1316. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1317. {
  1318. int scale, shift, i;
  1319. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1320. v->lumscale = get_bits(gb, 6);
  1321. v->lumshift = get_bits(gb, 6);
  1322. /* fill lookup tables for intensity compensation */
  1323. if(!v->lumscale) {
  1324. scale = -64;
  1325. shift = (255 - v->lumshift * 2) << 6;
  1326. if(v->lumshift > 31)
  1327. shift += 128 << 6;
  1328. } else {
  1329. scale = v->lumscale + 32;
  1330. if(v->lumshift > 31)
  1331. shift = (v->lumshift - 64) << 6;
  1332. else
  1333. shift = v->lumshift << 6;
  1334. }
  1335. for(i = 0; i < 256; i++) {
  1336. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1337. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1338. }
  1339. v->use_ic = 1;
  1340. }
  1341. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1342. v->s.quarter_sample = 0;
  1343. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1344. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1345. v->s.quarter_sample = 0;
  1346. else
  1347. v->s.quarter_sample = 1;
  1348. } else
  1349. v->s.quarter_sample = 1;
  1350. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1351. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1352. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1353. || v->mv_mode == MV_PMODE_MIXED_MV)
  1354. {
  1355. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1356. if (status < 0) return -1;
  1357. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1358. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1359. } else {
  1360. v->mv_type_is_raw = 0;
  1361. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1362. }
  1363. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1364. if (status < 0) return -1;
  1365. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1366. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1367. /* Hopefully this is correct for P frames */
  1368. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1369. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1370. if (v->dquant)
  1371. {
  1372. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1373. vop_dquant_decoding(v);
  1374. }
  1375. v->ttfrm = 0; //FIXME Is that so ?
  1376. if (v->vstransform)
  1377. {
  1378. v->ttmbf = get_bits1(gb);
  1379. if (v->ttmbf)
  1380. {
  1381. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1382. }
  1383. } else {
  1384. v->ttmbf = 1;
  1385. v->ttfrm = TT_8X8;
  1386. }
  1387. break;
  1388. case FF_B_TYPE:
  1389. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1390. else v->mvrange = 0;
  1391. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1392. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1393. v->range_x = 1 << (v->k_x - 1);
  1394. v->range_y = 1 << (v->k_y - 1);
  1395. if (v->pq < 5) v->tt_index = 0;
  1396. else if(v->pq < 13) v->tt_index = 1;
  1397. else v->tt_index = 2;
  1398. lowquant = (v->pq > 12) ? 0 : 1;
  1399. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1400. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1401. v->s.mspel = v->s.quarter_sample;
  1402. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1403. if (status < 0) return -1;
  1404. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1405. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1406. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1407. if (status < 0) return -1;
  1408. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1409. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1410. v->s.mv_table_index = get_bits(gb, 2);
  1411. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1412. if (v->dquant)
  1413. {
  1414. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1415. vop_dquant_decoding(v);
  1416. }
  1417. v->ttfrm = 0;
  1418. if (v->vstransform)
  1419. {
  1420. v->ttmbf = get_bits1(gb);
  1421. if (v->ttmbf)
  1422. {
  1423. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1424. }
  1425. } else {
  1426. v->ttmbf = 1;
  1427. v->ttfrm = TT_8X8;
  1428. }
  1429. break;
  1430. }
  1431. /* AC Syntax */
  1432. v->c_ac_table_index = decode012(gb);
  1433. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1434. {
  1435. v->y_ac_table_index = decode012(gb);
  1436. }
  1437. /* DC Syntax */
  1438. v->s.dc_table_index = get_bits1(gb);
  1439. if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
  1440. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1441. vop_dquant_decoding(v);
  1442. }
  1443. v->bi_type = 0;
  1444. if(v->s.pict_type == FF_BI_TYPE) {
  1445. v->s.pict_type = FF_B_TYPE;
  1446. v->bi_type = 1;
  1447. }
  1448. return 0;
  1449. }
  1450. /***********************************************************************/
  1451. /**
  1452. * @defgroup vc1block VC-1 Block-level functions
  1453. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1454. * @{
  1455. */
  1456. /**
  1457. * @def GET_MQUANT
  1458. * @brief Get macroblock-level quantizer scale
  1459. */
  1460. #define GET_MQUANT() \
  1461. if (v->dquantfrm) \
  1462. { \
  1463. int edges = 0; \
  1464. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1465. { \
  1466. if (v->dqbilevel) \
  1467. { \
  1468. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1469. } \
  1470. else \
  1471. { \
  1472. mqdiff = get_bits(gb, 3); \
  1473. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1474. else mquant = get_bits(gb, 5); \
  1475. } \
  1476. } \
  1477. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1478. edges = 1 << v->dqsbedge; \
  1479. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1480. edges = (3 << v->dqsbedge) % 15; \
  1481. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1482. edges = 15; \
  1483. if((edges&1) && !s->mb_x) \
  1484. mquant = v->altpq; \
  1485. if((edges&2) && s->first_slice_line) \
  1486. mquant = v->altpq; \
  1487. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1488. mquant = v->altpq; \
  1489. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1490. mquant = v->altpq; \
  1491. }
  1492. /**
  1493. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1494. * @brief Get MV differentials
  1495. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1496. * @param _dmv_x Horizontal differential for decoded MV
  1497. * @param _dmv_y Vertical differential for decoded MV
  1498. */
  1499. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1500. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1501. VC1_MV_DIFF_VLC_BITS, 2); \
  1502. if (index > 36) \
  1503. { \
  1504. mb_has_coeffs = 1; \
  1505. index -= 37; \
  1506. } \
  1507. else mb_has_coeffs = 0; \
  1508. s->mb_intra = 0; \
  1509. if (!index) { _dmv_x = _dmv_y = 0; } \
  1510. else if (index == 35) \
  1511. { \
  1512. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1513. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1514. } \
  1515. else if (index == 36) \
  1516. { \
  1517. _dmv_x = 0; \
  1518. _dmv_y = 0; \
  1519. s->mb_intra = 1; \
  1520. } \
  1521. else \
  1522. { \
  1523. index1 = index%6; \
  1524. if (!s->quarter_sample && index1 == 5) val = 1; \
  1525. else val = 0; \
  1526. if(size_table[index1] - val > 0) \
  1527. val = get_bits(gb, size_table[index1] - val); \
  1528. else val = 0; \
  1529. sign = 0 - (val&1); \
  1530. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1531. \
  1532. index1 = index/6; \
  1533. if (!s->quarter_sample && index1 == 5) val = 1; \
  1534. else val = 0; \
  1535. if(size_table[index1] - val > 0) \
  1536. val = get_bits(gb, size_table[index1] - val); \
  1537. else val = 0; \
  1538. sign = 0 - (val&1); \
  1539. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1540. }
  1541. /** Predict and set motion vector
  1542. */
  1543. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1544. {
  1545. int xy, wrap, off = 0;
  1546. int16_t *A, *B, *C;
  1547. int px, py;
  1548. int sum;
  1549. /* scale MV difference to be quad-pel */
  1550. dmv_x <<= 1 - s->quarter_sample;
  1551. dmv_y <<= 1 - s->quarter_sample;
  1552. wrap = s->b8_stride;
  1553. xy = s->block_index[n];
  1554. if(s->mb_intra){
  1555. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1556. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1557. s->current_picture.motion_val[1][xy][0] = 0;
  1558. s->current_picture.motion_val[1][xy][1] = 0;
  1559. if(mv1) { /* duplicate motion data for 1-MV block */
  1560. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1561. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1562. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1563. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1564. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1565. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1566. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1567. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1568. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1569. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1570. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1571. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1572. }
  1573. return;
  1574. }
  1575. C = s->current_picture.motion_val[0][xy - 1];
  1576. A = s->current_picture.motion_val[0][xy - wrap];
  1577. if(mv1)
  1578. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1579. else {
  1580. //in 4-MV mode different blocks have different B predictor position
  1581. switch(n){
  1582. case 0:
  1583. off = (s->mb_x > 0) ? -1 : 1;
  1584. break;
  1585. case 1:
  1586. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1587. break;
  1588. case 2:
  1589. off = 1;
  1590. break;
  1591. case 3:
  1592. off = -1;
  1593. }
  1594. }
  1595. B = s->current_picture.motion_val[0][xy - wrap + off];
  1596. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1597. if(s->mb_width == 1) {
  1598. px = A[0];
  1599. py = A[1];
  1600. } else {
  1601. px = mid_pred(A[0], B[0], C[0]);
  1602. py = mid_pred(A[1], B[1], C[1]);
  1603. }
  1604. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1605. px = C[0];
  1606. py = C[1];
  1607. } else {
  1608. px = py = 0;
  1609. }
  1610. /* Pullback MV as specified in 8.3.5.3.4 */
  1611. {
  1612. int qx, qy, X, Y;
  1613. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1614. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1615. X = (s->mb_width << 6) - 4;
  1616. Y = (s->mb_height << 6) - 4;
  1617. if(mv1) {
  1618. if(qx + px < -60) px = -60 - qx;
  1619. if(qy + py < -60) py = -60 - qy;
  1620. } else {
  1621. if(qx + px < -28) px = -28 - qx;
  1622. if(qy + py < -28) py = -28 - qy;
  1623. }
  1624. if(qx + px > X) px = X - qx;
  1625. if(qy + py > Y) py = Y - qy;
  1626. }
  1627. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1628. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1629. if(is_intra[xy - wrap])
  1630. sum = FFABS(px) + FFABS(py);
  1631. else
  1632. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1633. if(sum > 32) {
  1634. if(get_bits1(&s->gb)) {
  1635. px = A[0];
  1636. py = A[1];
  1637. } else {
  1638. px = C[0];
  1639. py = C[1];
  1640. }
  1641. } else {
  1642. if(is_intra[xy - 1])
  1643. sum = FFABS(px) + FFABS(py);
  1644. else
  1645. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1646. if(sum > 32) {
  1647. if(get_bits1(&s->gb)) {
  1648. px = A[0];
  1649. py = A[1];
  1650. } else {
  1651. px = C[0];
  1652. py = C[1];
  1653. }
  1654. }
  1655. }
  1656. }
  1657. /* store MV using signed modulus of MV range defined in 4.11 */
  1658. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1659. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1660. if(mv1) { /* duplicate motion data for 1-MV block */
  1661. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1662. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1663. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1664. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1665. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1666. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1667. }
  1668. }
  1669. /** Motion compensation for direct or interpolated blocks in B-frames
  1670. */
  1671. static void vc1_interp_mc(VC1Context *v)
  1672. {
  1673. MpegEncContext *s = &v->s;
  1674. DSPContext *dsp = &v->s.dsp;
  1675. uint8_t *srcY, *srcU, *srcV;
  1676. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1677. if(!v->s.next_picture.data[0])return;
  1678. mx = s->mv[1][0][0];
  1679. my = s->mv[1][0][1];
  1680. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1681. uvmy = (my + ((my & 3) == 3)) >> 1;
  1682. if(v->fastuvmc) {
  1683. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1684. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1685. }
  1686. srcY = s->next_picture.data[0];
  1687. srcU = s->next_picture.data[1];
  1688. srcV = s->next_picture.data[2];
  1689. src_x = s->mb_x * 16 + (mx >> 2);
  1690. src_y = s->mb_y * 16 + (my >> 2);
  1691. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1692. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1693. if(v->profile != PROFILE_ADVANCED){
  1694. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1695. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1696. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1697. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1698. }else{
  1699. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1700. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1701. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1702. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1703. }
  1704. srcY += src_y * s->linesize + src_x;
  1705. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1706. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1707. /* for grayscale we should not try to read from unknown area */
  1708. if(s->flags & CODEC_FLAG_GRAY) {
  1709. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1710. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1711. }
  1712. if(v->rangeredfrm
  1713. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1714. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1715. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1716. srcY -= s->mspel * (1 + s->linesize);
  1717. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1718. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1719. srcY = s->edge_emu_buffer;
  1720. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1721. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1722. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1723. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1724. srcU = uvbuf;
  1725. srcV = uvbuf + 16;
  1726. /* if we deal with range reduction we need to scale source blocks */
  1727. if(v->rangeredfrm) {
  1728. int i, j;
  1729. uint8_t *src, *src2;
  1730. src = srcY;
  1731. for(j = 0; j < 17 + s->mspel*2; j++) {
  1732. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1733. src += s->linesize;
  1734. }
  1735. src = srcU; src2 = srcV;
  1736. for(j = 0; j < 9; j++) {
  1737. for(i = 0; i < 9; i++) {
  1738. src[i] = ((src[i] - 128) >> 1) + 128;
  1739. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1740. }
  1741. src += s->uvlinesize;
  1742. src2 += s->uvlinesize;
  1743. }
  1744. }
  1745. srcY += s->mspel * (1 + s->linesize);
  1746. }
  1747. mx >>= 1;
  1748. my >>= 1;
  1749. dxy = ((my & 1) << 1) | (mx & 1);
  1750. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1751. if(s->flags & CODEC_FLAG_GRAY) return;
  1752. /* Chroma MC always uses qpel blilinear */
  1753. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1754. uvmx = (uvmx&3)<<1;
  1755. uvmy = (uvmy&3)<<1;
  1756. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1757. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1758. }
  1759. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1760. {
  1761. int n = bfrac;
  1762. #if B_FRACTION_DEN==256
  1763. if(inv)
  1764. n -= 256;
  1765. if(!qs)
  1766. return 2 * ((value * n + 255) >> 9);
  1767. return (value * n + 128) >> 8;
  1768. #else
  1769. if(inv)
  1770. n -= B_FRACTION_DEN;
  1771. if(!qs)
  1772. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1773. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1774. #endif
  1775. }
  1776. /** Reconstruct motion vector for B-frame and do motion compensation
  1777. */
  1778. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1779. {
  1780. if(v->use_ic) {
  1781. v->mv_mode2 = v->mv_mode;
  1782. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1783. }
  1784. if(direct) {
  1785. vc1_mc_1mv(v, 0);
  1786. vc1_interp_mc(v);
  1787. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1788. return;
  1789. }
  1790. if(mode == BMV_TYPE_INTERPOLATED) {
  1791. vc1_mc_1mv(v, 0);
  1792. vc1_interp_mc(v);
  1793. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1794. return;
  1795. }
  1796. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1797. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1798. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1799. }
  1800. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1801. {
  1802. MpegEncContext *s = &v->s;
  1803. int xy, wrap, off = 0;
  1804. int16_t *A, *B, *C;
  1805. int px, py;
  1806. int sum;
  1807. int r_x, r_y;
  1808. const uint8_t *is_intra = v->mb_type[0];
  1809. r_x = v->range_x;
  1810. r_y = v->range_y;
  1811. /* scale MV difference to be quad-pel */
  1812. dmv_x[0] <<= 1 - s->quarter_sample;
  1813. dmv_y[0] <<= 1 - s->quarter_sample;
  1814. dmv_x[1] <<= 1 - s->quarter_sample;
  1815. dmv_y[1] <<= 1 - s->quarter_sample;
  1816. wrap = s->b8_stride;
  1817. xy = s->block_index[0];
  1818. if(s->mb_intra) {
  1819. s->current_picture.motion_val[0][xy][0] =
  1820. s->current_picture.motion_val[0][xy][1] =
  1821. s->current_picture.motion_val[1][xy][0] =
  1822. s->current_picture.motion_val[1][xy][1] = 0;
  1823. return;
  1824. }
  1825. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1826. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1827. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1828. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1829. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1830. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1831. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1832. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1833. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1834. if(direct) {
  1835. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1836. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1837. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1838. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1839. return;
  1840. }
  1841. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1842. C = s->current_picture.motion_val[0][xy - 2];
  1843. A = s->current_picture.motion_val[0][xy - wrap*2];
  1844. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1845. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1846. if(!s->mb_x) C[0] = C[1] = 0;
  1847. if(!s->first_slice_line) { // predictor A is not out of bounds
  1848. if(s->mb_width == 1) {
  1849. px = A[0];
  1850. py = A[1];
  1851. } else {
  1852. px = mid_pred(A[0], B[0], C[0]);
  1853. py = mid_pred(A[1], B[1], C[1]);
  1854. }
  1855. } else if(s->mb_x) { // predictor C is not out of bounds
  1856. px = C[0];
  1857. py = C[1];
  1858. } else {
  1859. px = py = 0;
  1860. }
  1861. /* Pullback MV as specified in 8.3.5.3.4 */
  1862. {
  1863. int qx, qy, X, Y;
  1864. if(v->profile < PROFILE_ADVANCED) {
  1865. qx = (s->mb_x << 5);
  1866. qy = (s->mb_y << 5);
  1867. X = (s->mb_width << 5) - 4;
  1868. Y = (s->mb_height << 5) - 4;
  1869. if(qx + px < -28) px = -28 - qx;
  1870. if(qy + py < -28) py = -28 - qy;
  1871. if(qx + px > X) px = X - qx;
  1872. if(qy + py > Y) py = Y - qy;
  1873. } else {
  1874. qx = (s->mb_x << 6);
  1875. qy = (s->mb_y << 6);
  1876. X = (s->mb_width << 6) - 4;
  1877. Y = (s->mb_height << 6) - 4;
  1878. if(qx + px < -60) px = -60 - qx;
  1879. if(qy + py < -60) py = -60 - qy;
  1880. if(qx + px > X) px = X - qx;
  1881. if(qy + py > Y) py = Y - qy;
  1882. }
  1883. }
  1884. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1885. if(0 && !s->first_slice_line && s->mb_x) {
  1886. if(is_intra[xy - wrap])
  1887. sum = FFABS(px) + FFABS(py);
  1888. else
  1889. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1890. if(sum > 32) {
  1891. if(get_bits1(&s->gb)) {
  1892. px = A[0];
  1893. py = A[1];
  1894. } else {
  1895. px = C[0];
  1896. py = C[1];
  1897. }
  1898. } else {
  1899. if(is_intra[xy - 2])
  1900. sum = FFABS(px) + FFABS(py);
  1901. else
  1902. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1903. if(sum > 32) {
  1904. if(get_bits1(&s->gb)) {
  1905. px = A[0];
  1906. py = A[1];
  1907. } else {
  1908. px = C[0];
  1909. py = C[1];
  1910. }
  1911. }
  1912. }
  1913. }
  1914. /* store MV using signed modulus of MV range defined in 4.11 */
  1915. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1916. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1917. }
  1918. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1919. C = s->current_picture.motion_val[1][xy - 2];
  1920. A = s->current_picture.motion_val[1][xy - wrap*2];
  1921. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1922. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1923. if(!s->mb_x) C[0] = C[1] = 0;
  1924. if(!s->first_slice_line) { // predictor A is not out of bounds
  1925. if(s->mb_width == 1) {
  1926. px = A[0];
  1927. py = A[1];
  1928. } else {
  1929. px = mid_pred(A[0], B[0], C[0]);
  1930. py = mid_pred(A[1], B[1], C[1]);
  1931. }
  1932. } else if(s->mb_x) { // predictor C is not out of bounds
  1933. px = C[0];
  1934. py = C[1];
  1935. } else {
  1936. px = py = 0;
  1937. }
  1938. /* Pullback MV as specified in 8.3.5.3.4 */
  1939. {
  1940. int qx, qy, X, Y;
  1941. if(v->profile < PROFILE_ADVANCED) {
  1942. qx = (s->mb_x << 5);
  1943. qy = (s->mb_y << 5);
  1944. X = (s->mb_width << 5) - 4;
  1945. Y = (s->mb_height << 5) - 4;
  1946. if(qx + px < -28) px = -28 - qx;
  1947. if(qy + py < -28) py = -28 - qy;
  1948. if(qx + px > X) px = X - qx;
  1949. if(qy + py > Y) py = Y - qy;
  1950. } else {
  1951. qx = (s->mb_x << 6);
  1952. qy = (s->mb_y << 6);
  1953. X = (s->mb_width << 6) - 4;
  1954. Y = (s->mb_height << 6) - 4;
  1955. if(qx + px < -60) px = -60 - qx;
  1956. if(qy + py < -60) py = -60 - qy;
  1957. if(qx + px > X) px = X - qx;
  1958. if(qy + py > Y) py = Y - qy;
  1959. }
  1960. }
  1961. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1962. if(0 && !s->first_slice_line && s->mb_x) {
  1963. if(is_intra[xy - wrap])
  1964. sum = FFABS(px) + FFABS(py);
  1965. else
  1966. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1967. if(sum > 32) {
  1968. if(get_bits1(&s->gb)) {
  1969. px = A[0];
  1970. py = A[1];
  1971. } else {
  1972. px = C[0];
  1973. py = C[1];
  1974. }
  1975. } else {
  1976. if(is_intra[xy - 2])
  1977. sum = FFABS(px) + FFABS(py);
  1978. else
  1979. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1980. if(sum > 32) {
  1981. if(get_bits1(&s->gb)) {
  1982. px = A[0];
  1983. py = A[1];
  1984. } else {
  1985. px = C[0];
  1986. py = C[1];
  1987. }
  1988. }
  1989. }
  1990. }
  1991. /* store MV using signed modulus of MV range defined in 4.11 */
  1992. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1993. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1994. }
  1995. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1996. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1997. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1998. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1999. }
  2000. /** Get predicted DC value for I-frames only
  2001. * prediction dir: left=0, top=1
  2002. * @param s MpegEncContext
  2003. * @param overlap flag indicating that overlap filtering is used
  2004. * @param pq integer part of picture quantizer
  2005. * @param[in] n block index in the current MB
  2006. * @param dc_val_ptr Pointer to DC predictor
  2007. * @param dir_ptr Prediction direction for use in AC prediction
  2008. */
  2009. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2010. int16_t **dc_val_ptr, int *dir_ptr)
  2011. {
  2012. int a, b, c, wrap, pred, scale;
  2013. int16_t *dc_val;
  2014. static const uint16_t dcpred[32] = {
  2015. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2016. 114, 102, 93, 85, 79, 73, 68, 64,
  2017. 60, 57, 54, 51, 49, 47, 45, 43,
  2018. 41, 39, 38, 37, 35, 34, 33
  2019. };
  2020. /* find prediction - wmv3_dc_scale always used here in fact */
  2021. if (n < 4) scale = s->y_dc_scale;
  2022. else scale = s->c_dc_scale;
  2023. wrap = s->block_wrap[n];
  2024. dc_val= s->dc_val[0] + s->block_index[n];
  2025. /* B A
  2026. * C X
  2027. */
  2028. c = dc_val[ - 1];
  2029. b = dc_val[ - 1 - wrap];
  2030. a = dc_val[ - wrap];
  2031. if (pq < 9 || !overlap)
  2032. {
  2033. /* Set outer values */
  2034. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2035. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2036. }
  2037. else
  2038. {
  2039. /* Set outer values */
  2040. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2041. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2042. }
  2043. if (abs(a - b) <= abs(b - c)) {
  2044. pred = c;
  2045. *dir_ptr = 1;//left
  2046. } else {
  2047. pred = a;
  2048. *dir_ptr = 0;//top
  2049. }
  2050. /* update predictor */
  2051. *dc_val_ptr = &dc_val[0];
  2052. return pred;
  2053. }
  2054. /** Get predicted DC value
  2055. * prediction dir: left=0, top=1
  2056. * @param s MpegEncContext
  2057. * @param overlap flag indicating that overlap filtering is used
  2058. * @param pq integer part of picture quantizer
  2059. * @param[in] n block index in the current MB
  2060. * @param a_avail flag indicating top block availability
  2061. * @param c_avail flag indicating left block availability
  2062. * @param dc_val_ptr Pointer to DC predictor
  2063. * @param dir_ptr Prediction direction for use in AC prediction
  2064. */
  2065. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2066. int a_avail, int c_avail,
  2067. int16_t **dc_val_ptr, int *dir_ptr)
  2068. {
  2069. int a, b, c, wrap, pred, scale;
  2070. int16_t *dc_val;
  2071. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2072. int q1, q2 = 0;
  2073. /* find prediction - wmv3_dc_scale always used here in fact */
  2074. if (n < 4) scale = s->y_dc_scale;
  2075. else scale = s->c_dc_scale;
  2076. wrap = s->block_wrap[n];
  2077. dc_val= s->dc_val[0] + s->block_index[n];
  2078. /* B A
  2079. * C X
  2080. */
  2081. c = dc_val[ - 1];
  2082. b = dc_val[ - 1 - wrap];
  2083. a = dc_val[ - wrap];
  2084. /* scale predictors if needed */
  2085. q1 = s->current_picture.qscale_table[mb_pos];
  2086. if(c_avail && (n!= 1 && n!=3)) {
  2087. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2088. if(q2 && q2 != q1)
  2089. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2090. }
  2091. if(a_avail && (n!= 2 && n!=3)) {
  2092. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2093. if(q2 && q2 != q1)
  2094. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2095. }
  2096. if(a_avail && c_avail && (n!=3)) {
  2097. int off = mb_pos;
  2098. if(n != 1) off--;
  2099. if(n != 2) off -= s->mb_stride;
  2100. q2 = s->current_picture.qscale_table[off];
  2101. if(q2 && q2 != q1)
  2102. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2103. }
  2104. if(a_avail && c_avail) {
  2105. if(abs(a - b) <= abs(b - c)) {
  2106. pred = c;
  2107. *dir_ptr = 1;//left
  2108. } else {
  2109. pred = a;
  2110. *dir_ptr = 0;//top
  2111. }
  2112. } else if(a_avail) {
  2113. pred = a;
  2114. *dir_ptr = 0;//top
  2115. } else if(c_avail) {
  2116. pred = c;
  2117. *dir_ptr = 1;//left
  2118. } else {
  2119. pred = 0;
  2120. *dir_ptr = 1;//left
  2121. }
  2122. /* update predictor */
  2123. *dc_val_ptr = &dc_val[0];
  2124. return pred;
  2125. }
  2126. /** @} */ // Block group
  2127. /**
  2128. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2129. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2130. * @{
  2131. */
  2132. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2133. {
  2134. int xy, wrap, pred, a, b, c;
  2135. xy = s->block_index[n];
  2136. wrap = s->b8_stride;
  2137. /* B C
  2138. * A X
  2139. */
  2140. a = s->coded_block[xy - 1 ];
  2141. b = s->coded_block[xy - 1 - wrap];
  2142. c = s->coded_block[xy - wrap];
  2143. if (b == c) {
  2144. pred = a;
  2145. } else {
  2146. pred = c;
  2147. }
  2148. /* store value */
  2149. *coded_block_ptr = &s->coded_block[xy];
  2150. return pred;
  2151. }
  2152. /**
  2153. * Decode one AC coefficient
  2154. * @param v The VC1 context
  2155. * @param last Last coefficient
  2156. * @param skip How much zero coefficients to skip
  2157. * @param value Decoded AC coefficient value
  2158. * @param codingset set of VLC to decode data
  2159. * @see 8.1.3.4
  2160. */
  2161. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2162. {
  2163. GetBitContext *gb = &v->s.gb;
  2164. int index, escape, run = 0, level = 0, lst = 0;
  2165. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2166. if (index != vc1_ac_sizes[codingset] - 1) {
  2167. run = vc1_index_decode_table[codingset][index][0];
  2168. level = vc1_index_decode_table[codingset][index][1];
  2169. lst = index >= vc1_last_decode_table[codingset];
  2170. if(get_bits1(gb))
  2171. level = -level;
  2172. } else {
  2173. escape = decode210(gb);
  2174. if (escape != 2) {
  2175. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2176. run = vc1_index_decode_table[codingset][index][0];
  2177. level = vc1_index_decode_table[codingset][index][1];
  2178. lst = index >= vc1_last_decode_table[codingset];
  2179. if(escape == 0) {
  2180. if(lst)
  2181. level += vc1_last_delta_level_table[codingset][run];
  2182. else
  2183. level += vc1_delta_level_table[codingset][run];
  2184. } else {
  2185. if(lst)
  2186. run += vc1_last_delta_run_table[codingset][level] + 1;
  2187. else
  2188. run += vc1_delta_run_table[codingset][level] + 1;
  2189. }
  2190. if(get_bits1(gb))
  2191. level = -level;
  2192. } else {
  2193. int sign;
  2194. lst = get_bits1(gb);
  2195. if(v->s.esc3_level_length == 0) {
  2196. if(v->pq < 8 || v->dquantfrm) { // table 59
  2197. v->s.esc3_level_length = get_bits(gb, 3);
  2198. if(!v->s.esc3_level_length)
  2199. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2200. } else { //table 60
  2201. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2202. }
  2203. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2204. }
  2205. run = get_bits(gb, v->s.esc3_run_length);
  2206. sign = get_bits1(gb);
  2207. level = get_bits(gb, v->s.esc3_level_length);
  2208. if(sign)
  2209. level = -level;
  2210. }
  2211. }
  2212. *last = lst;
  2213. *skip = run;
  2214. *value = level;
  2215. }
  2216. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2217. * @param v VC1Context
  2218. * @param block block to decode
  2219. * @param[in] n subblock index
  2220. * @param coded are AC coeffs present or not
  2221. * @param codingset set of VLC to decode data
  2222. */
  2223. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2224. {
  2225. GetBitContext *gb = &v->s.gb;
  2226. MpegEncContext *s = &v->s;
  2227. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2228. int run_diff, i;
  2229. int16_t *dc_val;
  2230. int16_t *ac_val, *ac_val2;
  2231. int dcdiff;
  2232. /* Get DC differential */
  2233. if (n < 4) {
  2234. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2235. } else {
  2236. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2237. }
  2238. if (dcdiff < 0){
  2239. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2240. return -1;
  2241. }
  2242. if (dcdiff)
  2243. {
  2244. if (dcdiff == 119 /* ESC index value */)
  2245. {
  2246. /* TODO: Optimize */
  2247. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2248. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2249. else dcdiff = get_bits(gb, 8);
  2250. }
  2251. else
  2252. {
  2253. if (v->pq == 1)
  2254. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2255. else if (v->pq == 2)
  2256. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2257. }
  2258. if (get_bits1(gb))
  2259. dcdiff = -dcdiff;
  2260. }
  2261. /* Prediction */
  2262. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2263. *dc_val = dcdiff;
  2264. /* Store the quantized DC coeff, used for prediction */
  2265. if (n < 4) {
  2266. block[0] = dcdiff * s->y_dc_scale;
  2267. } else {
  2268. block[0] = dcdiff * s->c_dc_scale;
  2269. }
  2270. /* Skip ? */
  2271. run_diff = 0;
  2272. i = 0;
  2273. if (!coded) {
  2274. goto not_coded;
  2275. }
  2276. //AC Decoding
  2277. i = 1;
  2278. {
  2279. int last = 0, skip, value;
  2280. const int8_t *zz_table;
  2281. int scale;
  2282. int k;
  2283. scale = v->pq * 2 + v->halfpq;
  2284. if(v->s.ac_pred) {
  2285. if(!dc_pred_dir)
  2286. zz_table = wmv1_scantable[2];
  2287. else
  2288. zz_table = wmv1_scantable[3];
  2289. } else
  2290. zz_table = wmv1_scantable[1];
  2291. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2292. ac_val2 = ac_val;
  2293. if(dc_pred_dir) //left
  2294. ac_val -= 16;
  2295. else //top
  2296. ac_val -= 16 * s->block_wrap[n];
  2297. while (!last) {
  2298. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2299. i += skip;
  2300. if(i > 63)
  2301. break;
  2302. block[zz_table[i++]] = value;
  2303. }
  2304. /* apply AC prediction if needed */
  2305. if(s->ac_pred) {
  2306. if(dc_pred_dir) { //left
  2307. for(k = 1; k < 8; k++)
  2308. block[k << 3] += ac_val[k];
  2309. } else { //top
  2310. for(k = 1; k < 8; k++)
  2311. block[k] += ac_val[k + 8];
  2312. }
  2313. }
  2314. /* save AC coeffs for further prediction */
  2315. for(k = 1; k < 8; k++) {
  2316. ac_val2[k] = block[k << 3];
  2317. ac_val2[k + 8] = block[k];
  2318. }
  2319. /* scale AC coeffs */
  2320. for(k = 1; k < 64; k++)
  2321. if(block[k]) {
  2322. block[k] *= scale;
  2323. if(!v->pquantizer)
  2324. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2325. }
  2326. if(s->ac_pred) i = 63;
  2327. }
  2328. not_coded:
  2329. if(!coded) {
  2330. int k, scale;
  2331. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2332. ac_val2 = ac_val;
  2333. scale = v->pq * 2 + v->halfpq;
  2334. memset(ac_val2, 0, 16 * 2);
  2335. if(dc_pred_dir) {//left
  2336. ac_val -= 16;
  2337. if(s->ac_pred)
  2338. memcpy(ac_val2, ac_val, 8 * 2);
  2339. } else {//top
  2340. ac_val -= 16 * s->block_wrap[n];
  2341. if(s->ac_pred)
  2342. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2343. }
  2344. /* apply AC prediction if needed */
  2345. if(s->ac_pred) {
  2346. if(dc_pred_dir) { //left
  2347. for(k = 1; k < 8; k++) {
  2348. block[k << 3] = ac_val[k] * scale;
  2349. if(!v->pquantizer && block[k << 3])
  2350. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2351. }
  2352. } else { //top
  2353. for(k = 1; k < 8; k++) {
  2354. block[k] = ac_val[k + 8] * scale;
  2355. if(!v->pquantizer && block[k])
  2356. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2357. }
  2358. }
  2359. i = 63;
  2360. }
  2361. }
  2362. s->block_last_index[n] = i;
  2363. return 0;
  2364. }
  2365. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2366. * @param v VC1Context
  2367. * @param block block to decode
  2368. * @param[in] n subblock number
  2369. * @param coded are AC coeffs present or not
  2370. * @param codingset set of VLC to decode data
  2371. * @param mquant quantizer value for this macroblock
  2372. */
  2373. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2374. {
  2375. GetBitContext *gb = &v->s.gb;
  2376. MpegEncContext *s = &v->s;
  2377. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2378. int run_diff, i;
  2379. int16_t *dc_val;
  2380. int16_t *ac_val, *ac_val2;
  2381. int dcdiff;
  2382. int a_avail = v->a_avail, c_avail = v->c_avail;
  2383. int use_pred = s->ac_pred;
  2384. int scale;
  2385. int q1, q2 = 0;
  2386. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2387. /* Get DC differential */
  2388. if (n < 4) {
  2389. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2390. } else {
  2391. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2392. }
  2393. if (dcdiff < 0){
  2394. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2395. return -1;
  2396. }
  2397. if (dcdiff)
  2398. {
  2399. if (dcdiff == 119 /* ESC index value */)
  2400. {
  2401. /* TODO: Optimize */
  2402. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2403. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2404. else dcdiff = get_bits(gb, 8);
  2405. }
  2406. else
  2407. {
  2408. if (mquant == 1)
  2409. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2410. else if (mquant == 2)
  2411. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2412. }
  2413. if (get_bits1(gb))
  2414. dcdiff = -dcdiff;
  2415. }
  2416. /* Prediction */
  2417. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2418. *dc_val = dcdiff;
  2419. /* Store the quantized DC coeff, used for prediction */
  2420. if (n < 4) {
  2421. block[0] = dcdiff * s->y_dc_scale;
  2422. } else {
  2423. block[0] = dcdiff * s->c_dc_scale;
  2424. }
  2425. /* Skip ? */
  2426. run_diff = 0;
  2427. i = 0;
  2428. //AC Decoding
  2429. i = 1;
  2430. /* check if AC is needed at all */
  2431. if(!a_avail && !c_avail) use_pred = 0;
  2432. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2433. ac_val2 = ac_val;
  2434. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2435. if(dc_pred_dir) //left
  2436. ac_val -= 16;
  2437. else //top
  2438. ac_val -= 16 * s->block_wrap[n];
  2439. q1 = s->current_picture.qscale_table[mb_pos];
  2440. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2441. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2442. if(dc_pred_dir && n==1) q2 = q1;
  2443. if(!dc_pred_dir && n==2) q2 = q1;
  2444. if(n==3) q2 = q1;
  2445. if(coded) {
  2446. int last = 0, skip, value;
  2447. const int8_t *zz_table;
  2448. int k;
  2449. if(v->s.ac_pred) {
  2450. if(!dc_pred_dir)
  2451. zz_table = wmv1_scantable[2];
  2452. else
  2453. zz_table = wmv1_scantable[3];
  2454. } else
  2455. zz_table = wmv1_scantable[1];
  2456. while (!last) {
  2457. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2458. i += skip;
  2459. if(i > 63)
  2460. break;
  2461. block[zz_table[i++]] = value;
  2462. }
  2463. /* apply AC prediction if needed */
  2464. if(use_pred) {
  2465. /* scale predictors if needed*/
  2466. if(q2 && q1!=q2) {
  2467. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2468. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2469. if(dc_pred_dir) { //left
  2470. for(k = 1; k < 8; k++)
  2471. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2472. } else { //top
  2473. for(k = 1; k < 8; k++)
  2474. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2475. }
  2476. } else {
  2477. if(dc_pred_dir) { //left
  2478. for(k = 1; k < 8; k++)
  2479. block[k << 3] += ac_val[k];
  2480. } else { //top
  2481. for(k = 1; k < 8; k++)
  2482. block[k] += ac_val[k + 8];
  2483. }
  2484. }
  2485. }
  2486. /* save AC coeffs for further prediction */
  2487. for(k = 1; k < 8; k++) {
  2488. ac_val2[k] = block[k << 3];
  2489. ac_val2[k + 8] = block[k];
  2490. }
  2491. /* scale AC coeffs */
  2492. for(k = 1; k < 64; k++)
  2493. if(block[k]) {
  2494. block[k] *= scale;
  2495. if(!v->pquantizer)
  2496. block[k] += (block[k] < 0) ? -mquant : mquant;
  2497. }
  2498. if(use_pred) i = 63;
  2499. } else { // no AC coeffs
  2500. int k;
  2501. memset(ac_val2, 0, 16 * 2);
  2502. if(dc_pred_dir) {//left
  2503. if(use_pred) {
  2504. memcpy(ac_val2, ac_val, 8 * 2);
  2505. if(q2 && q1!=q2) {
  2506. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2507. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2508. for(k = 1; k < 8; k++)
  2509. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2510. }
  2511. }
  2512. } else {//top
  2513. if(use_pred) {
  2514. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2515. if(q2 && q1!=q2) {
  2516. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2517. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2518. for(k = 1; k < 8; k++)
  2519. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2520. }
  2521. }
  2522. }
  2523. /* apply AC prediction if needed */
  2524. if(use_pred) {
  2525. if(dc_pred_dir) { //left
  2526. for(k = 1; k < 8; k++) {
  2527. block[k << 3] = ac_val2[k] * scale;
  2528. if(!v->pquantizer && block[k << 3])
  2529. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2530. }
  2531. } else { //top
  2532. for(k = 1; k < 8; k++) {
  2533. block[k] = ac_val2[k + 8] * scale;
  2534. if(!v->pquantizer && block[k])
  2535. block[k] += (block[k] < 0) ? -mquant : mquant;
  2536. }
  2537. }
  2538. i = 63;
  2539. }
  2540. }
  2541. s->block_last_index[n] = i;
  2542. return 0;
  2543. }
  2544. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2545. * @param v VC1Context
  2546. * @param block block to decode
  2547. * @param[in] n subblock index
  2548. * @param coded are AC coeffs present or not
  2549. * @param mquant block quantizer
  2550. * @param codingset set of VLC to decode data
  2551. */
  2552. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2553. {
  2554. GetBitContext *gb = &v->s.gb;
  2555. MpegEncContext *s = &v->s;
  2556. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2557. int run_diff, i;
  2558. int16_t *dc_val;
  2559. int16_t *ac_val, *ac_val2;
  2560. int dcdiff;
  2561. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2562. int a_avail = v->a_avail, c_avail = v->c_avail;
  2563. int use_pred = s->ac_pred;
  2564. int scale;
  2565. int q1, q2 = 0;
  2566. /* XXX: Guard against dumb values of mquant */
  2567. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2568. /* Set DC scale - y and c use the same */
  2569. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2570. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2571. /* Get DC differential */
  2572. if (n < 4) {
  2573. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2574. } else {
  2575. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2576. }
  2577. if (dcdiff < 0){
  2578. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2579. return -1;
  2580. }
  2581. if (dcdiff)
  2582. {
  2583. if (dcdiff == 119 /* ESC index value */)
  2584. {
  2585. /* TODO: Optimize */
  2586. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2587. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2588. else dcdiff = get_bits(gb, 8);
  2589. }
  2590. else
  2591. {
  2592. if (mquant == 1)
  2593. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2594. else if (mquant == 2)
  2595. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2596. }
  2597. if (get_bits1(gb))
  2598. dcdiff = -dcdiff;
  2599. }
  2600. /* Prediction */
  2601. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2602. *dc_val = dcdiff;
  2603. /* Store the quantized DC coeff, used for prediction */
  2604. if (n < 4) {
  2605. block[0] = dcdiff * s->y_dc_scale;
  2606. } else {
  2607. block[0] = dcdiff * s->c_dc_scale;
  2608. }
  2609. /* Skip ? */
  2610. run_diff = 0;
  2611. i = 0;
  2612. //AC Decoding
  2613. i = 1;
  2614. /* check if AC is needed at all and adjust direction if needed */
  2615. if(!a_avail) dc_pred_dir = 1;
  2616. if(!c_avail) dc_pred_dir = 0;
  2617. if(!a_avail && !c_avail) use_pred = 0;
  2618. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2619. ac_val2 = ac_val;
  2620. scale = mquant * 2 + v->halfpq;
  2621. if(dc_pred_dir) //left
  2622. ac_val -= 16;
  2623. else //top
  2624. ac_val -= 16 * s->block_wrap[n];
  2625. q1 = s->current_picture.qscale_table[mb_pos];
  2626. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2627. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2628. if(dc_pred_dir && n==1) q2 = q1;
  2629. if(!dc_pred_dir && n==2) q2 = q1;
  2630. if(n==3) q2 = q1;
  2631. if(coded) {
  2632. int last = 0, skip, value;
  2633. const int8_t *zz_table;
  2634. int k;
  2635. zz_table = wmv1_scantable[0];
  2636. while (!last) {
  2637. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2638. i += skip;
  2639. if(i > 63)
  2640. break;
  2641. block[zz_table[i++]] = value;
  2642. }
  2643. /* apply AC prediction if needed */
  2644. if(use_pred) {
  2645. /* scale predictors if needed*/
  2646. if(q2 && q1!=q2) {
  2647. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2648. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2649. if(dc_pred_dir) { //left
  2650. for(k = 1; k < 8; k++)
  2651. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2652. } else { //top
  2653. for(k = 1; k < 8; k++)
  2654. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2655. }
  2656. } else {
  2657. if(dc_pred_dir) { //left
  2658. for(k = 1; k < 8; k++)
  2659. block[k << 3] += ac_val[k];
  2660. } else { //top
  2661. for(k = 1; k < 8; k++)
  2662. block[k] += ac_val[k + 8];
  2663. }
  2664. }
  2665. }
  2666. /* save AC coeffs for further prediction */
  2667. for(k = 1; k < 8; k++) {
  2668. ac_val2[k] = block[k << 3];
  2669. ac_val2[k + 8] = block[k];
  2670. }
  2671. /* scale AC coeffs */
  2672. for(k = 1; k < 64; k++)
  2673. if(block[k]) {
  2674. block[k] *= scale;
  2675. if(!v->pquantizer)
  2676. block[k] += (block[k] < 0) ? -mquant : mquant;
  2677. }
  2678. if(use_pred) i = 63;
  2679. } else { // no AC coeffs
  2680. int k;
  2681. memset(ac_val2, 0, 16 * 2);
  2682. if(dc_pred_dir) {//left
  2683. if(use_pred) {
  2684. memcpy(ac_val2, ac_val, 8 * 2);
  2685. if(q2 && q1!=q2) {
  2686. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2687. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2688. for(k = 1; k < 8; k++)
  2689. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2690. }
  2691. }
  2692. } else {//top
  2693. if(use_pred) {
  2694. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2695. if(q2 && q1!=q2) {
  2696. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2697. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2698. for(k = 1; k < 8; k++)
  2699. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2700. }
  2701. }
  2702. }
  2703. /* apply AC prediction if needed */
  2704. if(use_pred) {
  2705. if(dc_pred_dir) { //left
  2706. for(k = 1; k < 8; k++) {
  2707. block[k << 3] = ac_val2[k] * scale;
  2708. if(!v->pquantizer && block[k << 3])
  2709. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2710. }
  2711. } else { //top
  2712. for(k = 1; k < 8; k++) {
  2713. block[k] = ac_val2[k + 8] * scale;
  2714. if(!v->pquantizer && block[k])
  2715. block[k] += (block[k] < 0) ? -mquant : mquant;
  2716. }
  2717. }
  2718. i = 63;
  2719. }
  2720. }
  2721. s->block_last_index[n] = i;
  2722. return 0;
  2723. }
  2724. /** Decode P block
  2725. */
  2726. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2727. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  2728. {
  2729. MpegEncContext *s = &v->s;
  2730. GetBitContext *gb = &s->gb;
  2731. int i, j;
  2732. int subblkpat = 0;
  2733. int scale, off, idx, last, skip, value;
  2734. int ttblk = ttmb & 7;
  2735. int pat = 0;
  2736. if(ttmb == -1) {
  2737. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2738. }
  2739. if(ttblk == TT_4X4) {
  2740. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2741. }
  2742. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2743. subblkpat = decode012(gb);
  2744. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2745. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2746. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2747. }
  2748. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2749. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2750. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2751. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2752. ttblk = TT_8X4;
  2753. }
  2754. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2755. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2756. ttblk = TT_4X8;
  2757. }
  2758. switch(ttblk) {
  2759. case TT_8X8:
  2760. pat = 0xF;
  2761. i = 0;
  2762. last = 0;
  2763. while (!last) {
  2764. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2765. i += skip;
  2766. if(i > 63)
  2767. break;
  2768. idx = wmv1_scantable[0][i++];
  2769. block[idx] = value * scale;
  2770. if(!v->pquantizer)
  2771. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2772. }
  2773. if(!skip_block){
  2774. s->dsp.vc1_inv_trans_8x8(block);
  2775. s->dsp.add_pixels_clamped(block, dst, linesize);
  2776. if(apply_filter && cbp_top & 0xC)
  2777. vc1_loop_filter(dst, 1, linesize, 8, mquant);
  2778. if(apply_filter && cbp_left & 0xA)
  2779. vc1_loop_filter(dst, linesize, 1, 8, mquant);
  2780. }
  2781. break;
  2782. case TT_4X4:
  2783. pat = ~subblkpat & 0xF;
  2784. for(j = 0; j < 4; j++) {
  2785. last = subblkpat & (1 << (3 - j));
  2786. i = 0;
  2787. off = (j & 1) * 4 + (j & 2) * 16;
  2788. while (!last) {
  2789. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2790. i += skip;
  2791. if(i > 15)
  2792. break;
  2793. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2794. block[idx + off] = value * scale;
  2795. if(!v->pquantizer)
  2796. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2797. }
  2798. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2799. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2800. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  2801. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, 1, linesize, 4, mquant);
  2802. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  2803. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, linesize, 1, 4, mquant);
  2804. }
  2805. }
  2806. break;
  2807. case TT_8X4:
  2808. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2809. for(j = 0; j < 2; j++) {
  2810. last = subblkpat & (1 << (1 - j));
  2811. i = 0;
  2812. off = j * 32;
  2813. while (!last) {
  2814. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2815. i += skip;
  2816. if(i > 31)
  2817. break;
  2818. idx = v->zz_8x4[i++]+off;
  2819. block[idx] = value * scale;
  2820. if(!v->pquantizer)
  2821. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2822. }
  2823. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2824. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2825. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  2826. vc1_loop_filter(dst + j*4*linesize, 1, linesize, 8, mquant);
  2827. if(apply_filter && cbp_left & (2 << j))
  2828. vc1_loop_filter(dst + j*4*linesize, linesize, 1, 4, mquant);
  2829. }
  2830. }
  2831. break;
  2832. case TT_4X8:
  2833. pat = ~(subblkpat*5) & 0xF;
  2834. for(j = 0; j < 2; j++) {
  2835. last = subblkpat & (1 << (1 - j));
  2836. i = 0;
  2837. off = j * 4;
  2838. while (!last) {
  2839. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2840. i += skip;
  2841. if(i > 31)
  2842. break;
  2843. idx = v->zz_4x8[i++]+off;
  2844. block[idx] = value * scale;
  2845. if(!v->pquantizer)
  2846. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2847. }
  2848. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2849. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2850. if(apply_filter && cbp_top & (2 << j))
  2851. vc1_loop_filter(dst + j*4, 1, linesize, 4, mquant);
  2852. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  2853. vc1_loop_filter(dst + j*4, linesize, 1, 8, mquant);
  2854. }
  2855. }
  2856. break;
  2857. }
  2858. return pat;
  2859. }
  2860. /** @} */ // Macroblock group
  2861. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  2862. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2863. /** Decode one P-frame MB (in Simple/Main profile)
  2864. */
  2865. static int vc1_decode_p_mb(VC1Context *v)
  2866. {
  2867. MpegEncContext *s = &v->s;
  2868. GetBitContext *gb = &s->gb;
  2869. int i, j;
  2870. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2871. int cbp; /* cbp decoding stuff */
  2872. int mqdiff, mquant; /* MB quantization */
  2873. int ttmb = v->ttfrm; /* MB Transform type */
  2874. int mb_has_coeffs = 1; /* last_flag */
  2875. int dmv_x, dmv_y; /* Differential MV components */
  2876. int index, index1; /* LUT indexes */
  2877. int val, sign; /* temp values */
  2878. int first_block = 1;
  2879. int dst_idx, off;
  2880. int skipped, fourmv;
  2881. int block_cbp = 0, pat;
  2882. int apply_loop_filter;
  2883. mquant = v->pq; /* Loosy initialization */
  2884. if (v->mv_type_is_raw)
  2885. fourmv = get_bits1(gb);
  2886. else
  2887. fourmv = v->mv_type_mb_plane[mb_pos];
  2888. if (v->skip_is_raw)
  2889. skipped = get_bits1(gb);
  2890. else
  2891. skipped = v->s.mbskip_table[mb_pos];
  2892. s->dsp.clear_blocks(s->block[0]);
  2893. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2894. if (!fourmv) /* 1MV mode */
  2895. {
  2896. if (!skipped)
  2897. {
  2898. GET_MVDATA(dmv_x, dmv_y);
  2899. if (s->mb_intra) {
  2900. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2901. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2902. }
  2903. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2904. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2905. /* FIXME Set DC val for inter block ? */
  2906. if (s->mb_intra && !mb_has_coeffs)
  2907. {
  2908. GET_MQUANT();
  2909. s->ac_pred = get_bits1(gb);
  2910. cbp = 0;
  2911. }
  2912. else if (mb_has_coeffs)
  2913. {
  2914. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2915. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2916. GET_MQUANT();
  2917. }
  2918. else
  2919. {
  2920. mquant = v->pq;
  2921. cbp = 0;
  2922. }
  2923. s->current_picture.qscale_table[mb_pos] = mquant;
  2924. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2925. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2926. VC1_TTMB_VLC_BITS, 2);
  2927. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2928. dst_idx = 0;
  2929. for (i=0; i<6; i++)
  2930. {
  2931. s->dc_val[0][s->block_index[i]] = 0;
  2932. dst_idx += i >> 2;
  2933. val = ((cbp >> (5 - i)) & 1);
  2934. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2935. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2936. if(s->mb_intra) {
  2937. /* check if prediction blocks A and C are available */
  2938. v->a_avail = v->c_avail = 0;
  2939. if(i == 2 || i == 3 || !s->first_slice_line)
  2940. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2941. if(i == 1 || i == 3 || s->mb_x)
  2942. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2943. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2944. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2945. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2946. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2947. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2948. if(v->pq >= 9 && v->overlap) {
  2949. if(v->c_avail)
  2950. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2951. if(v->a_avail)
  2952. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2953. }
  2954. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2955. int left_cbp, top_cbp;
  2956. if(i & 4){
  2957. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2958. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2959. }else{
  2960. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2961. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2962. }
  2963. if(left_cbp & 0xC)
  2964. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  2965. if(top_cbp & 0xA)
  2966. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  2967. }
  2968. block_cbp |= 0xF << (i << 2);
  2969. } else if(val) {
  2970. int left_cbp = 0, top_cbp = 0, filter = 0;
  2971. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2972. filter = 1;
  2973. if(i & 4){
  2974. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2975. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2976. }else{
  2977. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2978. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2979. }
  2980. if(left_cbp & 0xC)
  2981. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  2982. if(top_cbp & 0xA)
  2983. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  2984. }
  2985. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2986. block_cbp |= pat << (i << 2);
  2987. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2988. first_block = 0;
  2989. }
  2990. }
  2991. }
  2992. else //Skipped
  2993. {
  2994. s->mb_intra = 0;
  2995. for(i = 0; i < 6; i++) {
  2996. v->mb_type[0][s->block_index[i]] = 0;
  2997. s->dc_val[0][s->block_index[i]] = 0;
  2998. }
  2999. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3000. s->current_picture.qscale_table[mb_pos] = 0;
  3001. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3002. vc1_mc_1mv(v, 0);
  3003. return 0;
  3004. }
  3005. } //1MV mode
  3006. else //4MV mode
  3007. {
  3008. if (!skipped /* unskipped MB */)
  3009. {
  3010. int intra_count = 0, coded_inter = 0;
  3011. int is_intra[6], is_coded[6];
  3012. /* Get CBPCY */
  3013. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3014. for (i=0; i<6; i++)
  3015. {
  3016. val = ((cbp >> (5 - i)) & 1);
  3017. s->dc_val[0][s->block_index[i]] = 0;
  3018. s->mb_intra = 0;
  3019. if(i < 4) {
  3020. dmv_x = dmv_y = 0;
  3021. s->mb_intra = 0;
  3022. mb_has_coeffs = 0;
  3023. if(val) {
  3024. GET_MVDATA(dmv_x, dmv_y);
  3025. }
  3026. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3027. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3028. intra_count += s->mb_intra;
  3029. is_intra[i] = s->mb_intra;
  3030. is_coded[i] = mb_has_coeffs;
  3031. }
  3032. if(i&4){
  3033. is_intra[i] = (intra_count >= 3);
  3034. is_coded[i] = val;
  3035. }
  3036. if(i == 4) vc1_mc_4mv_chroma(v);
  3037. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3038. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3039. }
  3040. // if there are no coded blocks then don't do anything more
  3041. if(!intra_count && !coded_inter) return 0;
  3042. dst_idx = 0;
  3043. GET_MQUANT();
  3044. s->current_picture.qscale_table[mb_pos] = mquant;
  3045. /* test if block is intra and has pred */
  3046. {
  3047. int intrapred = 0;
  3048. for(i=0; i<6; i++)
  3049. if(is_intra[i]) {
  3050. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3051. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3052. intrapred = 1;
  3053. break;
  3054. }
  3055. }
  3056. if(intrapred)s->ac_pred = get_bits1(gb);
  3057. else s->ac_pred = 0;
  3058. }
  3059. if (!v->ttmbf && coded_inter)
  3060. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3061. for (i=0; i<6; i++)
  3062. {
  3063. dst_idx += i >> 2;
  3064. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3065. s->mb_intra = is_intra[i];
  3066. if (is_intra[i]) {
  3067. /* check if prediction blocks A and C are available */
  3068. v->a_avail = v->c_avail = 0;
  3069. if(i == 2 || i == 3 || !s->first_slice_line)
  3070. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3071. if(i == 1 || i == 3 || s->mb_x)
  3072. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3073. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3074. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3075. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3076. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3077. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3078. if(v->pq >= 9 && v->overlap) {
  3079. if(v->c_avail)
  3080. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3081. if(v->a_avail)
  3082. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3083. }
  3084. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3085. int left_cbp, top_cbp;
  3086. if(i & 4){
  3087. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3088. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3089. }else{
  3090. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3091. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3092. }
  3093. if(left_cbp & 0xC)
  3094. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  3095. if(top_cbp & 0xA)
  3096. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  3097. }
  3098. block_cbp |= 0xF << (i << 2);
  3099. } else if(is_coded[i]) {
  3100. int left_cbp = 0, top_cbp = 0, filter = 0;
  3101. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3102. filter = 1;
  3103. if(i & 4){
  3104. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3105. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3106. }else{
  3107. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3108. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3109. }
  3110. if(left_cbp & 0xC)
  3111. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  3112. if(top_cbp & 0xA)
  3113. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  3114. }
  3115. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  3116. block_cbp |= pat << (i << 2);
  3117. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3118. first_block = 0;
  3119. }
  3120. }
  3121. return 0;
  3122. }
  3123. else //Skipped MB
  3124. {
  3125. s->mb_intra = 0;
  3126. s->current_picture.qscale_table[mb_pos] = 0;
  3127. for (i=0; i<6; i++) {
  3128. v->mb_type[0][s->block_index[i]] = 0;
  3129. s->dc_val[0][s->block_index[i]] = 0;
  3130. }
  3131. for (i=0; i<4; i++)
  3132. {
  3133. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3134. vc1_mc_4mv_luma(v, i);
  3135. }
  3136. vc1_mc_4mv_chroma(v);
  3137. s->current_picture.qscale_table[mb_pos] = 0;
  3138. return 0;
  3139. }
  3140. }
  3141. v->cbp[s->mb_x] = block_cbp;
  3142. /* Should never happen */
  3143. return -1;
  3144. }
  3145. /** Decode one B-frame MB (in Main profile)
  3146. */
  3147. static void vc1_decode_b_mb(VC1Context *v)
  3148. {
  3149. MpegEncContext *s = &v->s;
  3150. GetBitContext *gb = &s->gb;
  3151. int i, j;
  3152. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3153. int cbp = 0; /* cbp decoding stuff */
  3154. int mqdiff, mquant; /* MB quantization */
  3155. int ttmb = v->ttfrm; /* MB Transform type */
  3156. int mb_has_coeffs = 0; /* last_flag */
  3157. int index, index1; /* LUT indexes */
  3158. int val, sign; /* temp values */
  3159. int first_block = 1;
  3160. int dst_idx, off;
  3161. int skipped, direct;
  3162. int dmv_x[2], dmv_y[2];
  3163. int bmvtype = BMV_TYPE_BACKWARD;
  3164. mquant = v->pq; /* Loosy initialization */
  3165. s->mb_intra = 0;
  3166. if (v->dmb_is_raw)
  3167. direct = get_bits1(gb);
  3168. else
  3169. direct = v->direct_mb_plane[mb_pos];
  3170. if (v->skip_is_raw)
  3171. skipped = get_bits1(gb);
  3172. else
  3173. skipped = v->s.mbskip_table[mb_pos];
  3174. s->dsp.clear_blocks(s->block[0]);
  3175. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3176. for(i = 0; i < 6; i++) {
  3177. v->mb_type[0][s->block_index[i]] = 0;
  3178. s->dc_val[0][s->block_index[i]] = 0;
  3179. }
  3180. s->current_picture.qscale_table[mb_pos] = 0;
  3181. if (!direct) {
  3182. if (!skipped) {
  3183. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3184. dmv_x[1] = dmv_x[0];
  3185. dmv_y[1] = dmv_y[0];
  3186. }
  3187. if(skipped || !s->mb_intra) {
  3188. bmvtype = decode012(gb);
  3189. switch(bmvtype) {
  3190. case 0:
  3191. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3192. break;
  3193. case 1:
  3194. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3195. break;
  3196. case 2:
  3197. bmvtype = BMV_TYPE_INTERPOLATED;
  3198. dmv_x[0] = dmv_y[0] = 0;
  3199. }
  3200. }
  3201. }
  3202. for(i = 0; i < 6; i++)
  3203. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3204. if (skipped) {
  3205. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3206. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3207. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3208. return;
  3209. }
  3210. if (direct) {
  3211. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3212. GET_MQUANT();
  3213. s->mb_intra = 0;
  3214. mb_has_coeffs = 0;
  3215. s->current_picture.qscale_table[mb_pos] = mquant;
  3216. if(!v->ttmbf)
  3217. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3218. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3219. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3220. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3221. } else {
  3222. if(!mb_has_coeffs && !s->mb_intra) {
  3223. /* no coded blocks - effectively skipped */
  3224. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3225. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3226. return;
  3227. }
  3228. if(s->mb_intra && !mb_has_coeffs) {
  3229. GET_MQUANT();
  3230. s->current_picture.qscale_table[mb_pos] = mquant;
  3231. s->ac_pred = get_bits1(gb);
  3232. cbp = 0;
  3233. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3234. } else {
  3235. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3236. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3237. if(!mb_has_coeffs) {
  3238. /* interpolated skipped block */
  3239. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3240. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3241. return;
  3242. }
  3243. }
  3244. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3245. if(!s->mb_intra) {
  3246. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3247. }
  3248. if(s->mb_intra)
  3249. s->ac_pred = get_bits1(gb);
  3250. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3251. GET_MQUANT();
  3252. s->current_picture.qscale_table[mb_pos] = mquant;
  3253. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3254. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3255. }
  3256. }
  3257. dst_idx = 0;
  3258. for (i=0; i<6; i++)
  3259. {
  3260. s->dc_val[0][s->block_index[i]] = 0;
  3261. dst_idx += i >> 2;
  3262. val = ((cbp >> (5 - i)) & 1);
  3263. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3264. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3265. if(s->mb_intra) {
  3266. /* check if prediction blocks A and C are available */
  3267. v->a_avail = v->c_avail = 0;
  3268. if(i == 2 || i == 3 || !s->first_slice_line)
  3269. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3270. if(i == 1 || i == 3 || s->mb_x)
  3271. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3272. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3273. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3274. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3275. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3276. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3277. } else if(val) {
  3278. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  3279. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3280. first_block = 0;
  3281. }
  3282. }
  3283. }
  3284. /** Decode blocks of I-frame
  3285. */
  3286. static void vc1_decode_i_blocks(VC1Context *v)
  3287. {
  3288. int k, j;
  3289. MpegEncContext *s = &v->s;
  3290. int cbp, val;
  3291. uint8_t *coded_val;
  3292. int mb_pos;
  3293. /* select codingmode used for VLC tables selection */
  3294. switch(v->y_ac_table_index){
  3295. case 0:
  3296. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3297. break;
  3298. case 1:
  3299. v->codingset = CS_HIGH_MOT_INTRA;
  3300. break;
  3301. case 2:
  3302. v->codingset = CS_MID_RATE_INTRA;
  3303. break;
  3304. }
  3305. switch(v->c_ac_table_index){
  3306. case 0:
  3307. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3308. break;
  3309. case 1:
  3310. v->codingset2 = CS_HIGH_MOT_INTER;
  3311. break;
  3312. case 2:
  3313. v->codingset2 = CS_MID_RATE_INTER;
  3314. break;
  3315. }
  3316. /* Set DC scale - y and c use the same */
  3317. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3318. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3319. //do frame decode
  3320. s->mb_x = s->mb_y = 0;
  3321. s->mb_intra = 1;
  3322. s->first_slice_line = 1;
  3323. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3324. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3325. ff_init_block_index(s);
  3326. ff_update_block_index(s);
  3327. s->dsp.clear_blocks(s->block[0]);
  3328. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3329. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3330. s->current_picture.qscale_table[mb_pos] = v->pq;
  3331. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3332. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3333. // do actual MB decoding and displaying
  3334. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3335. v->s.ac_pred = get_bits1(&v->s.gb);
  3336. for(k = 0; k < 6; k++) {
  3337. val = ((cbp >> (5 - k)) & 1);
  3338. if (k < 4) {
  3339. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3340. val = val ^ pred;
  3341. *coded_val = val;
  3342. }
  3343. cbp |= val << (5 - k);
  3344. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3345. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3346. if(v->pq >= 9 && v->overlap) {
  3347. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3348. }
  3349. }
  3350. vc1_put_block(v, s->block);
  3351. if(v->pq >= 9 && v->overlap) {
  3352. if(s->mb_x) {
  3353. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3354. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3355. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3356. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3357. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3358. }
  3359. }
  3360. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3361. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3362. if(!s->first_slice_line) {
  3363. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3364. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3365. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3366. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3367. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3368. }
  3369. }
  3370. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3371. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3372. }
  3373. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3374. if(get_bits_count(&s->gb) > v->bits) {
  3375. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3376. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3377. return;
  3378. }
  3379. }
  3380. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3381. s->first_slice_line = 0;
  3382. }
  3383. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3384. }
  3385. /** Decode blocks of I-frame for advanced profile
  3386. */
  3387. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3388. {
  3389. int k, j;
  3390. MpegEncContext *s = &v->s;
  3391. int cbp, val;
  3392. uint8_t *coded_val;
  3393. int mb_pos;
  3394. int mquant = v->pq;
  3395. int mqdiff;
  3396. int overlap;
  3397. GetBitContext *gb = &s->gb;
  3398. /* select codingmode used for VLC tables selection */
  3399. switch(v->y_ac_table_index){
  3400. case 0:
  3401. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3402. break;
  3403. case 1:
  3404. v->codingset = CS_HIGH_MOT_INTRA;
  3405. break;
  3406. case 2:
  3407. v->codingset = CS_MID_RATE_INTRA;
  3408. break;
  3409. }
  3410. switch(v->c_ac_table_index){
  3411. case 0:
  3412. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3413. break;
  3414. case 1:
  3415. v->codingset2 = CS_HIGH_MOT_INTER;
  3416. break;
  3417. case 2:
  3418. v->codingset2 = CS_MID_RATE_INTER;
  3419. break;
  3420. }
  3421. //do frame decode
  3422. s->mb_x = s->mb_y = 0;
  3423. s->mb_intra = 1;
  3424. s->first_slice_line = 1;
  3425. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3426. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3427. ff_init_block_index(s);
  3428. ff_update_block_index(s);
  3429. s->dsp.clear_blocks(s->block[0]);
  3430. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3431. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3432. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3433. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3434. // do actual MB decoding and displaying
  3435. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3436. if(v->acpred_is_raw)
  3437. v->s.ac_pred = get_bits1(&v->s.gb);
  3438. else
  3439. v->s.ac_pred = v->acpred_plane[mb_pos];
  3440. if(v->condover == CONDOVER_SELECT) {
  3441. if(v->overflg_is_raw)
  3442. overlap = get_bits1(&v->s.gb);
  3443. else
  3444. overlap = v->over_flags_plane[mb_pos];
  3445. } else
  3446. overlap = (v->condover == CONDOVER_ALL);
  3447. GET_MQUANT();
  3448. s->current_picture.qscale_table[mb_pos] = mquant;
  3449. /* Set DC scale - y and c use the same */
  3450. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3451. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3452. for(k = 0; k < 6; k++) {
  3453. val = ((cbp >> (5 - k)) & 1);
  3454. if (k < 4) {
  3455. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3456. val = val ^ pred;
  3457. *coded_val = val;
  3458. }
  3459. cbp |= val << (5 - k);
  3460. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3461. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3462. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3463. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3464. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3465. }
  3466. vc1_put_block(v, s->block);
  3467. if(overlap) {
  3468. if(s->mb_x) {
  3469. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3470. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3471. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3472. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3473. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3474. }
  3475. }
  3476. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3477. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3478. if(!s->first_slice_line) {
  3479. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3480. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3481. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3482. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3483. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3484. }
  3485. }
  3486. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3487. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3488. }
  3489. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3490. if(get_bits_count(&s->gb) > v->bits) {
  3491. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3492. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3493. return;
  3494. }
  3495. }
  3496. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3497. s->first_slice_line = 0;
  3498. }
  3499. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3500. }
  3501. static void vc1_decode_p_blocks(VC1Context *v)
  3502. {
  3503. MpegEncContext *s = &v->s;
  3504. /* select codingmode used for VLC tables selection */
  3505. switch(v->c_ac_table_index){
  3506. case 0:
  3507. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3508. break;
  3509. case 1:
  3510. v->codingset = CS_HIGH_MOT_INTRA;
  3511. break;
  3512. case 2:
  3513. v->codingset = CS_MID_RATE_INTRA;
  3514. break;
  3515. }
  3516. switch(v->c_ac_table_index){
  3517. case 0:
  3518. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3519. break;
  3520. case 1:
  3521. v->codingset2 = CS_HIGH_MOT_INTER;
  3522. break;
  3523. case 2:
  3524. v->codingset2 = CS_MID_RATE_INTER;
  3525. break;
  3526. }
  3527. s->first_slice_line = 1;
  3528. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  3529. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3530. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3531. ff_init_block_index(s);
  3532. ff_update_block_index(s);
  3533. s->dsp.clear_blocks(s->block[0]);
  3534. vc1_decode_p_mb(v);
  3535. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3536. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3537. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3538. return;
  3539. }
  3540. }
  3541. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  3542. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3543. s->first_slice_line = 0;
  3544. }
  3545. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3546. }
  3547. static void vc1_decode_b_blocks(VC1Context *v)
  3548. {
  3549. MpegEncContext *s = &v->s;
  3550. /* select codingmode used for VLC tables selection */
  3551. switch(v->c_ac_table_index){
  3552. case 0:
  3553. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3554. break;
  3555. case 1:
  3556. v->codingset = CS_HIGH_MOT_INTRA;
  3557. break;
  3558. case 2:
  3559. v->codingset = CS_MID_RATE_INTRA;
  3560. break;
  3561. }
  3562. switch(v->c_ac_table_index){
  3563. case 0:
  3564. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3565. break;
  3566. case 1:
  3567. v->codingset2 = CS_HIGH_MOT_INTER;
  3568. break;
  3569. case 2:
  3570. v->codingset2 = CS_MID_RATE_INTER;
  3571. break;
  3572. }
  3573. s->first_slice_line = 1;
  3574. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3575. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3576. ff_init_block_index(s);
  3577. ff_update_block_index(s);
  3578. s->dsp.clear_blocks(s->block[0]);
  3579. vc1_decode_b_mb(v);
  3580. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3581. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3582. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3583. return;
  3584. }
  3585. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[s->mb_x + s->mb_y *s->mb_stride]);
  3586. }
  3587. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3588. s->first_slice_line = 0;
  3589. }
  3590. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3591. }
  3592. static void vc1_decode_skip_blocks(VC1Context *v)
  3593. {
  3594. MpegEncContext *s = &v->s;
  3595. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3596. s->first_slice_line = 1;
  3597. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3598. s->mb_x = 0;
  3599. ff_init_block_index(s);
  3600. ff_update_block_index(s);
  3601. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3602. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3603. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3604. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3605. s->first_slice_line = 0;
  3606. }
  3607. s->pict_type = FF_P_TYPE;
  3608. }
  3609. static void vc1_decode_blocks(VC1Context *v)
  3610. {
  3611. v->s.esc3_level_length = 0;
  3612. if(v->x8_type){
  3613. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3614. }else{
  3615. switch(v->s.pict_type) {
  3616. case FF_I_TYPE:
  3617. if(v->profile == PROFILE_ADVANCED)
  3618. vc1_decode_i_blocks_adv(v);
  3619. else
  3620. vc1_decode_i_blocks(v);
  3621. break;
  3622. case FF_P_TYPE:
  3623. if(v->p_frame_skipped)
  3624. vc1_decode_skip_blocks(v);
  3625. else
  3626. vc1_decode_p_blocks(v);
  3627. break;
  3628. case FF_B_TYPE:
  3629. if(v->bi_type){
  3630. if(v->profile == PROFILE_ADVANCED)
  3631. vc1_decode_i_blocks_adv(v);
  3632. else
  3633. vc1_decode_i_blocks(v);
  3634. }else
  3635. vc1_decode_b_blocks(v);
  3636. break;
  3637. }
  3638. }
  3639. }
  3640. /** Find VC-1 marker in buffer
  3641. * @return position where next marker starts or end of buffer if no marker found
  3642. */
  3643. static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
  3644. {
  3645. uint32_t mrk = 0xFFFFFFFF;
  3646. if(end-src < 4) return end;
  3647. while(src < end){
  3648. mrk = (mrk << 8) | *src++;
  3649. if(IS_MARKER(mrk))
  3650. return src-4;
  3651. }
  3652. return end;
  3653. }
  3654. static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
  3655. {
  3656. int dsize = 0, i;
  3657. if(size < 4){
  3658. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3659. return size;
  3660. }
  3661. for(i = 0; i < size; i++, src++) {
  3662. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3663. dst[dsize++] = src[1];
  3664. src++;
  3665. i++;
  3666. } else
  3667. dst[dsize++] = *src;
  3668. }
  3669. return dsize;
  3670. }
  3671. /** Initialize a VC1/WMV3 decoder
  3672. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3673. * @todo TODO: Decypher remaining bits in extra_data
  3674. */
  3675. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3676. {
  3677. VC1Context *v = avctx->priv_data;
  3678. MpegEncContext *s = &v->s;
  3679. GetBitContext gb;
  3680. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3681. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3682. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  3683. else
  3684. avctx->pix_fmt = PIX_FMT_GRAY8;
  3685. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  3686. v->s.avctx = avctx;
  3687. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3688. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3689. if(avctx->idct_algo==FF_IDCT_AUTO){
  3690. avctx->idct_algo=FF_IDCT_WMV2;
  3691. }
  3692. if(ff_h263_decode_init(avctx) < 0)
  3693. return -1;
  3694. if (vc1_init_common(v) < 0) return -1;
  3695. avctx->coded_width = avctx->width;
  3696. avctx->coded_height = avctx->height;
  3697. if (avctx->codec_id == CODEC_ID_WMV3)
  3698. {
  3699. int count = 0;
  3700. // looks like WMV3 has a sequence header stored in the extradata
  3701. // advanced sequence header may be before the first frame
  3702. // the last byte of the extradata is a version number, 1 for the
  3703. // samples we can decode
  3704. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3705. if (decode_sequence_header(avctx, &gb) < 0)
  3706. return -1;
  3707. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3708. if (count>0)
  3709. {
  3710. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3711. count, get_bits(&gb, count));
  3712. }
  3713. else if (count < 0)
  3714. {
  3715. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3716. }
  3717. } else { // VC1/WVC1
  3718. const uint8_t *start = avctx->extradata;
  3719. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3720. const uint8_t *next;
  3721. int size, buf2_size;
  3722. uint8_t *buf2 = NULL;
  3723. int seq_initialized = 0, ep_initialized = 0;
  3724. if(avctx->extradata_size < 16) {
  3725. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3726. return -1;
  3727. }
  3728. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3729. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3730. next = start;
  3731. for(; next < end; start = next){
  3732. next = find_next_marker(start + 4, end);
  3733. size = next - start - 4;
  3734. if(size <= 0) continue;
  3735. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3736. init_get_bits(&gb, buf2, buf2_size * 8);
  3737. switch(AV_RB32(start)){
  3738. case VC1_CODE_SEQHDR:
  3739. if(decode_sequence_header(avctx, &gb) < 0){
  3740. av_free(buf2);
  3741. return -1;
  3742. }
  3743. seq_initialized = 1;
  3744. break;
  3745. case VC1_CODE_ENTRYPOINT:
  3746. if(decode_entry_point(avctx, &gb) < 0){
  3747. av_free(buf2);
  3748. return -1;
  3749. }
  3750. ep_initialized = 1;
  3751. break;
  3752. }
  3753. }
  3754. av_free(buf2);
  3755. if(!seq_initialized || !ep_initialized){
  3756. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3757. return -1;
  3758. }
  3759. }
  3760. avctx->has_b_frames= !!(avctx->max_b_frames);
  3761. s->low_delay = !avctx->has_b_frames;
  3762. s->mb_width = (avctx->coded_width+15)>>4;
  3763. s->mb_height = (avctx->coded_height+15)>>4;
  3764. /* Allocate mb bitplanes */
  3765. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3766. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3767. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3768. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3769. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3770. v->cbp = v->cbp_base + s->mb_stride;
  3771. /* allocate block type info in that way so it could be used with s->block_index[] */
  3772. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3773. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3774. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3775. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3776. /* Init coded blocks info */
  3777. if (v->profile == PROFILE_ADVANCED)
  3778. {
  3779. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3780. // return -1;
  3781. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3782. // return -1;
  3783. }
  3784. ff_intrax8_common_init(&v->x8,s);
  3785. return 0;
  3786. }
  3787. /** Decode a VC1/WMV3 frame
  3788. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3789. */
  3790. static int vc1_decode_frame(AVCodecContext *avctx,
  3791. void *data, int *data_size,
  3792. AVPacket *avpkt)
  3793. {
  3794. const uint8_t *buf = avpkt->data;
  3795. int buf_size = avpkt->size;
  3796. VC1Context *v = avctx->priv_data;
  3797. MpegEncContext *s = &v->s;
  3798. AVFrame *pict = data;
  3799. uint8_t *buf2 = NULL;
  3800. const uint8_t *buf_start = buf;
  3801. /* no supplementary picture */
  3802. if (buf_size == 0) {
  3803. /* special case for last picture */
  3804. if (s->low_delay==0 && s->next_picture_ptr) {
  3805. *pict= *(AVFrame*)s->next_picture_ptr;
  3806. s->next_picture_ptr= NULL;
  3807. *data_size = sizeof(AVFrame);
  3808. }
  3809. return 0;
  3810. }
  3811. /* We need to set current_picture_ptr before reading the header,
  3812. * otherwise we cannot store anything in there. */
  3813. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3814. int i= ff_find_unused_picture(s, 0);
  3815. s->current_picture_ptr= &s->picture[i];
  3816. }
  3817. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3818. if (v->profile < PROFILE_ADVANCED)
  3819. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  3820. else
  3821. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  3822. }
  3823. //for advanced profile we may need to parse and unescape data
  3824. if (avctx->codec_id == CODEC_ID_VC1) {
  3825. int buf_size2 = 0;
  3826. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3827. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3828. const uint8_t *start, *end, *next;
  3829. int size;
  3830. next = buf;
  3831. for(start = buf, end = buf + buf_size; next < end; start = next){
  3832. next = find_next_marker(start + 4, end);
  3833. size = next - start - 4;
  3834. if(size <= 0) continue;
  3835. switch(AV_RB32(start)){
  3836. case VC1_CODE_FRAME:
  3837. if (avctx->hwaccel ||
  3838. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3839. buf_start = start;
  3840. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3841. break;
  3842. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3843. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3844. init_get_bits(&s->gb, buf2, buf_size2*8);
  3845. decode_entry_point(avctx, &s->gb);
  3846. break;
  3847. case VC1_CODE_SLICE:
  3848. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3849. av_free(buf2);
  3850. return -1;
  3851. }
  3852. }
  3853. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3854. const uint8_t *divider;
  3855. divider = find_next_marker(buf, buf + buf_size);
  3856. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3857. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3858. av_free(buf2);
  3859. return -1;
  3860. }
  3861. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3862. // TODO
  3863. av_free(buf2);return -1;
  3864. }else{
  3865. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3866. }
  3867. init_get_bits(&s->gb, buf2, buf_size2*8);
  3868. } else
  3869. init_get_bits(&s->gb, buf, buf_size*8);
  3870. // do parse frame header
  3871. if(v->profile < PROFILE_ADVANCED) {
  3872. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3873. av_free(buf2);
  3874. return -1;
  3875. }
  3876. } else {
  3877. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3878. av_free(buf2);
  3879. return -1;
  3880. }
  3881. }
  3882. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  3883. av_free(buf2);
  3884. return -1;
  3885. }
  3886. // for hurry_up==5
  3887. s->current_picture.pict_type= s->pict_type;
  3888. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  3889. /* skip B-frames if we don't have reference frames */
  3890. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  3891. av_free(buf2);
  3892. return -1;//buf_size;
  3893. }
  3894. /* skip b frames if we are in a hurry */
  3895. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  3896. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  3897. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3898. || avctx->skip_frame >= AVDISCARD_ALL) {
  3899. av_free(buf2);
  3900. return buf_size;
  3901. }
  3902. /* skip everything if we are in a hurry>=5 */
  3903. if(avctx->hurry_up>=5) {
  3904. av_free(buf2);
  3905. return -1;//buf_size;
  3906. }
  3907. if(s->next_p_frame_damaged){
  3908. if(s->pict_type==FF_B_TYPE)
  3909. return buf_size;
  3910. else
  3911. s->next_p_frame_damaged=0;
  3912. }
  3913. if(MPV_frame_start(s, avctx) < 0) {
  3914. av_free(buf2);
  3915. return -1;
  3916. }
  3917. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3918. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3919. if ((CONFIG_VC1_VDPAU_DECODER || CONFIG_WMV3_VDPAU_DECODER)
  3920. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3921. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3922. else if (avctx->hwaccel) {
  3923. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  3924. return -1;
  3925. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  3926. return -1;
  3927. if (avctx->hwaccel->end_frame(avctx) < 0)
  3928. return -1;
  3929. } else {
  3930. ff_er_frame_start(s);
  3931. v->bits = buf_size * 8;
  3932. vc1_decode_blocks(v);
  3933. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3934. // if(get_bits_count(&s->gb) > buf_size * 8)
  3935. // return -1;
  3936. ff_er_frame_end(s);
  3937. }
  3938. MPV_frame_end(s);
  3939. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3940. assert(s->current_picture.pict_type == s->pict_type);
  3941. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3942. *pict= *(AVFrame*)s->current_picture_ptr;
  3943. } else if (s->last_picture_ptr != NULL) {
  3944. *pict= *(AVFrame*)s->last_picture_ptr;
  3945. }
  3946. if(s->last_picture_ptr || s->low_delay){
  3947. *data_size = sizeof(AVFrame);
  3948. ff_print_debug_info(s, pict);
  3949. }
  3950. /* Return the Picture timestamp as the frame number */
  3951. /* we subtract 1 because it is added on utils.c */
  3952. avctx->frame_number = s->picture_number - 1;
  3953. av_free(buf2);
  3954. return buf_size;
  3955. }
  3956. /** Close a VC1/WMV3 decoder
  3957. * @warning Initial try at using MpegEncContext stuff
  3958. */
  3959. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3960. {
  3961. VC1Context *v = avctx->priv_data;
  3962. av_freep(&v->hrd_rate);
  3963. av_freep(&v->hrd_buffer);
  3964. MPV_common_end(&v->s);
  3965. av_freep(&v->mv_type_mb_plane);
  3966. av_freep(&v->direct_mb_plane);
  3967. av_freep(&v->acpred_plane);
  3968. av_freep(&v->over_flags_plane);
  3969. av_freep(&v->mb_type_base);
  3970. av_freep(&v->cbp_base);
  3971. ff_intrax8_common_end(&v->x8);
  3972. return 0;
  3973. }
  3974. AVCodec vc1_decoder = {
  3975. "vc1",
  3976. CODEC_TYPE_VIDEO,
  3977. CODEC_ID_VC1,
  3978. sizeof(VC1Context),
  3979. vc1_decode_init,
  3980. NULL,
  3981. vc1_decode_end,
  3982. vc1_decode_frame,
  3983. CODEC_CAP_DELAY,
  3984. NULL,
  3985. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3986. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3987. };
  3988. AVCodec wmv3_decoder = {
  3989. "wmv3",
  3990. CODEC_TYPE_VIDEO,
  3991. CODEC_ID_WMV3,
  3992. sizeof(VC1Context),
  3993. vc1_decode_init,
  3994. NULL,
  3995. vc1_decode_end,
  3996. vc1_decode_frame,
  3997. CODEC_CAP_DELAY,
  3998. NULL,
  3999. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  4000. .pix_fmts = ff_hwaccel_pixfmt_list_420
  4001. };
  4002. #if CONFIG_WMV3_VDPAU_DECODER
  4003. AVCodec wmv3_vdpau_decoder = {
  4004. "wmv3_vdpau",
  4005. CODEC_TYPE_VIDEO,
  4006. CODEC_ID_WMV3,
  4007. sizeof(VC1Context),
  4008. vc1_decode_init,
  4009. NULL,
  4010. vc1_decode_end,
  4011. vc1_decode_frame,
  4012. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  4013. NULL,
  4014. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  4015. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
  4016. };
  4017. #endif
  4018. #if CONFIG_VC1_VDPAU_DECODER
  4019. AVCodec vc1_vdpau_decoder = {
  4020. "vc1_vdpau",
  4021. CODEC_TYPE_VIDEO,
  4022. CODEC_ID_VC1,
  4023. sizeof(VC1Context),
  4024. vc1_decode_init,
  4025. NULL,
  4026. vc1_decode_end,
  4027. vc1_decode_frame,
  4028. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  4029. NULL,
  4030. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  4031. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
  4032. };
  4033. #endif