You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1368 lines
39KB

  1. /*
  2. * The simplest AC-3 encoder
  3. * Copyright (c) 2000 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/ac3enc.c
  23. * The simplest AC-3 encoder.
  24. */
  25. //#define DEBUG
  26. //#define DEBUG_BITALLOC
  27. #include "libavutil/crc.h"
  28. #include "avcodec.h"
  29. #include "bitstream.h"
  30. #include "ac3.h"
  31. typedef struct AC3EncodeContext {
  32. PutBitContext pb;
  33. int nb_channels;
  34. int nb_all_channels;
  35. int lfe_channel;
  36. int bit_rate;
  37. unsigned int sample_rate;
  38. unsigned int bitstream_id;
  39. unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
  40. unsigned int frame_size; /* current frame size in words */
  41. unsigned int bits_written;
  42. unsigned int samples_written;
  43. int sr_shift;
  44. unsigned int frame_size_code;
  45. unsigned int sr_code; /* frequency */
  46. unsigned int channel_mode;
  47. int lfe;
  48. unsigned int bitstream_mode;
  49. short last_samples[AC3_MAX_CHANNELS][256];
  50. unsigned int chbwcod[AC3_MAX_CHANNELS];
  51. int nb_coefs[AC3_MAX_CHANNELS];
  52. /* bitrate allocation control */
  53. int slow_gain_code, slow_decay_code, fast_decay_code, db_per_bit_code, floor_code;
  54. AC3BitAllocParameters bit_alloc;
  55. int coarse_snr_offset;
  56. int fast_gain_code[AC3_MAX_CHANNELS];
  57. int fine_snr_offset[AC3_MAX_CHANNELS];
  58. /* mantissa encoding */
  59. int mant1_cnt, mant2_cnt, mant4_cnt;
  60. } AC3EncodeContext;
  61. static int16_t costab[64];
  62. static int16_t sintab[64];
  63. static int16_t xcos1[128];
  64. static int16_t xsin1[128];
  65. #define MDCT_NBITS 9
  66. #define N (1 << MDCT_NBITS)
  67. /* new exponents are sent if their Norm 1 exceed this number */
  68. #define EXP_DIFF_THRESHOLD 1000
  69. static inline int16_t fix15(float a)
  70. {
  71. int v;
  72. v = (int)(a * (float)(1 << 15));
  73. if (v < -32767)
  74. v = -32767;
  75. else if (v > 32767)
  76. v = 32767;
  77. return v;
  78. }
  79. typedef struct IComplex {
  80. short re,im;
  81. } IComplex;
  82. static av_cold void fft_init(int ln)
  83. {
  84. int i, n;
  85. float alpha;
  86. n = 1 << ln;
  87. for(i=0;i<(n/2);i++) {
  88. alpha = 2 * M_PI * (float)i / (float)n;
  89. costab[i] = fix15(cos(alpha));
  90. sintab[i] = fix15(sin(alpha));
  91. }
  92. }
  93. /* butter fly op */
  94. #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
  95. {\
  96. int ax, ay, bx, by;\
  97. bx=pre1;\
  98. by=pim1;\
  99. ax=qre1;\
  100. ay=qim1;\
  101. pre = (bx + ax) >> 1;\
  102. pim = (by + ay) >> 1;\
  103. qre = (bx - ax) >> 1;\
  104. qim = (by - ay) >> 1;\
  105. }
  106. #define CMUL(pre, pim, are, aim, bre, bim) \
  107. {\
  108. pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
  109. pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
  110. }
  111. /* do a 2^n point complex fft on 2^ln points. */
  112. static void fft(IComplex *z, int ln)
  113. {
  114. int j, l, np, np2;
  115. int nblocks, nloops;
  116. register IComplex *p,*q;
  117. int tmp_re, tmp_im;
  118. np = 1 << ln;
  119. /* reverse */
  120. for(j=0;j<np;j++) {
  121. int k = ff_reverse[j] >> (8 - ln);
  122. if (k < j)
  123. FFSWAP(IComplex, z[k], z[j]);
  124. }
  125. /* pass 0 */
  126. p=&z[0];
  127. j=(np >> 1);
  128. do {
  129. BF(p[0].re, p[0].im, p[1].re, p[1].im,
  130. p[0].re, p[0].im, p[1].re, p[1].im);
  131. p+=2;
  132. } while (--j != 0);
  133. /* pass 1 */
  134. p=&z[0];
  135. j=np >> 2;
  136. do {
  137. BF(p[0].re, p[0].im, p[2].re, p[2].im,
  138. p[0].re, p[0].im, p[2].re, p[2].im);
  139. BF(p[1].re, p[1].im, p[3].re, p[3].im,
  140. p[1].re, p[1].im, p[3].im, -p[3].re);
  141. p+=4;
  142. } while (--j != 0);
  143. /* pass 2 .. ln-1 */
  144. nblocks = np >> 3;
  145. nloops = 1 << 2;
  146. np2 = np >> 1;
  147. do {
  148. p = z;
  149. q = z + nloops;
  150. for (j = 0; j < nblocks; ++j) {
  151. BF(p->re, p->im, q->re, q->im,
  152. p->re, p->im, q->re, q->im);
  153. p++;
  154. q++;
  155. for(l = nblocks; l < np2; l += nblocks) {
  156. CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
  157. BF(p->re, p->im, q->re, q->im,
  158. p->re, p->im, tmp_re, tmp_im);
  159. p++;
  160. q++;
  161. }
  162. p += nloops;
  163. q += nloops;
  164. }
  165. nblocks = nblocks >> 1;
  166. nloops = nloops << 1;
  167. } while (nblocks != 0);
  168. }
  169. /* do a 512 point mdct */
  170. static void mdct512(int32_t *out, int16_t *in)
  171. {
  172. int i, re, im, re1, im1;
  173. int16_t rot[N];
  174. IComplex x[N/4];
  175. /* shift to simplify computations */
  176. for(i=0;i<N/4;i++)
  177. rot[i] = -in[i + 3*N/4];
  178. for(i=N/4;i<N;i++)
  179. rot[i] = in[i - N/4];
  180. /* pre rotation */
  181. for(i=0;i<N/4;i++) {
  182. re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
  183. im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
  184. CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
  185. }
  186. fft(x, MDCT_NBITS - 2);
  187. /* post rotation */
  188. for(i=0;i<N/4;i++) {
  189. re = x[i].re;
  190. im = x[i].im;
  191. CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
  192. out[2*i] = im1;
  193. out[N/2-1-2*i] = re1;
  194. }
  195. }
  196. /* XXX: use another norm ? */
  197. static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
  198. {
  199. int sum, i;
  200. sum = 0;
  201. for(i=0;i<n;i++) {
  202. sum += abs(exp1[i] - exp2[i]);
  203. }
  204. return sum;
  205. }
  206. static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  207. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  208. int ch, int is_lfe)
  209. {
  210. int i, j;
  211. int exp_diff;
  212. /* estimate if the exponent variation & decide if they should be
  213. reused in the next frame */
  214. exp_strategy[0][ch] = EXP_NEW;
  215. for(i=1;i<NB_BLOCKS;i++) {
  216. exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
  217. #ifdef DEBUG
  218. av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff);
  219. #endif
  220. if (exp_diff > EXP_DIFF_THRESHOLD)
  221. exp_strategy[i][ch] = EXP_NEW;
  222. else
  223. exp_strategy[i][ch] = EXP_REUSE;
  224. }
  225. if (is_lfe)
  226. return;
  227. /* now select the encoding strategy type : if exponents are often
  228. recoded, we use a coarse encoding */
  229. i = 0;
  230. while (i < NB_BLOCKS) {
  231. j = i + 1;
  232. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
  233. j++;
  234. switch(j - i) {
  235. case 1:
  236. exp_strategy[i][ch] = EXP_D45;
  237. break;
  238. case 2:
  239. case 3:
  240. exp_strategy[i][ch] = EXP_D25;
  241. break;
  242. default:
  243. exp_strategy[i][ch] = EXP_D15;
  244. break;
  245. }
  246. i = j;
  247. }
  248. }
  249. /* set exp[i] to min(exp[i], exp1[i]) */
  250. static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
  251. {
  252. int i;
  253. for(i=0;i<n;i++) {
  254. if (exp1[i] < exp[i])
  255. exp[i] = exp1[i];
  256. }
  257. }
  258. /* update the exponents so that they are the ones the decoder will
  259. decode. Return the number of bits used to code the exponents */
  260. static int encode_exp(uint8_t encoded_exp[N/2],
  261. uint8_t exp[N/2],
  262. int nb_exps,
  263. int exp_strategy)
  264. {
  265. int group_size, nb_groups, i, j, k, exp_min;
  266. uint8_t exp1[N/2];
  267. switch(exp_strategy) {
  268. case EXP_D15:
  269. group_size = 1;
  270. break;
  271. case EXP_D25:
  272. group_size = 2;
  273. break;
  274. default:
  275. case EXP_D45:
  276. group_size = 4;
  277. break;
  278. }
  279. nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
  280. /* for each group, compute the minimum exponent */
  281. exp1[0] = exp[0]; /* DC exponent is handled separately */
  282. k = 1;
  283. for(i=1;i<=nb_groups;i++) {
  284. exp_min = exp[k];
  285. assert(exp_min >= 0 && exp_min <= 24);
  286. for(j=1;j<group_size;j++) {
  287. if (exp[k+j] < exp_min)
  288. exp_min = exp[k+j];
  289. }
  290. exp1[i] = exp_min;
  291. k += group_size;
  292. }
  293. /* constraint for DC exponent */
  294. if (exp1[0] > 15)
  295. exp1[0] = 15;
  296. /* Decrease the delta between each groups to within 2
  297. * so that they can be differentially encoded */
  298. for (i=1;i<=nb_groups;i++)
  299. exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
  300. for (i=nb_groups-1;i>=0;i--)
  301. exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
  302. /* now we have the exponent values the decoder will see */
  303. encoded_exp[0] = exp1[0];
  304. k = 1;
  305. for(i=1;i<=nb_groups;i++) {
  306. for(j=0;j<group_size;j++) {
  307. encoded_exp[k+j] = exp1[i];
  308. }
  309. k += group_size;
  310. }
  311. #if defined(DEBUG)
  312. av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
  313. for(i=0;i<=nb_groups * group_size;i++) {
  314. av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
  315. }
  316. av_log(NULL, AV_LOG_DEBUG, "\n");
  317. #endif
  318. return 4 + (nb_groups / 3) * 7;
  319. }
  320. /* return the size in bits taken by the mantissa */
  321. static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
  322. {
  323. int bits, mant, i;
  324. bits = 0;
  325. for(i=0;i<nb_coefs;i++) {
  326. mant = m[i];
  327. switch(mant) {
  328. case 0:
  329. /* nothing */
  330. break;
  331. case 1:
  332. /* 3 mantissa in 5 bits */
  333. if (s->mant1_cnt == 0)
  334. bits += 5;
  335. if (++s->mant1_cnt == 3)
  336. s->mant1_cnt = 0;
  337. break;
  338. case 2:
  339. /* 3 mantissa in 7 bits */
  340. if (s->mant2_cnt == 0)
  341. bits += 7;
  342. if (++s->mant2_cnt == 3)
  343. s->mant2_cnt = 0;
  344. break;
  345. case 3:
  346. bits += 3;
  347. break;
  348. case 4:
  349. /* 2 mantissa in 7 bits */
  350. if (s->mant4_cnt == 0)
  351. bits += 7;
  352. if (++s->mant4_cnt == 2)
  353. s->mant4_cnt = 0;
  354. break;
  355. case 14:
  356. bits += 14;
  357. break;
  358. case 15:
  359. bits += 16;
  360. break;
  361. default:
  362. bits += mant - 1;
  363. break;
  364. }
  365. }
  366. return bits;
  367. }
  368. static void bit_alloc_masking(AC3EncodeContext *s,
  369. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  370. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  371. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  372. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50])
  373. {
  374. int blk, ch;
  375. int16_t band_psd[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  376. for(blk=0; blk<NB_BLOCKS; blk++) {
  377. for(ch=0;ch<s->nb_all_channels;ch++) {
  378. if(exp_strategy[blk][ch] == EXP_REUSE) {
  379. memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t));
  380. memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t));
  381. } else {
  382. ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
  383. s->nb_coefs[ch],
  384. psd[blk][ch], band_psd[blk][ch]);
  385. ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
  386. 0, s->nb_coefs[ch],
  387. ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
  388. ch == s->lfe_channel,
  389. DBA_NONE, 0, NULL, NULL, NULL,
  390. mask[blk][ch]);
  391. }
  392. }
  393. }
  394. }
  395. static int bit_alloc(AC3EncodeContext *s,
  396. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50],
  397. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  398. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  399. int frame_bits, int coarse_snr_offset, int fine_snr_offset)
  400. {
  401. int i, ch;
  402. int snr_offset;
  403. snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2;
  404. /* compute size */
  405. for(i=0;i<NB_BLOCKS;i++) {
  406. s->mant1_cnt = 0;
  407. s->mant2_cnt = 0;
  408. s->mant4_cnt = 0;
  409. for(ch=0;ch<s->nb_all_channels;ch++) {
  410. ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
  411. s->nb_coefs[ch], snr_offset,
  412. s->bit_alloc.floor, ff_ac3_bap_tab,
  413. bap[i][ch]);
  414. frame_bits += compute_mantissa_size(s, bap[i][ch],
  415. s->nb_coefs[ch]);
  416. }
  417. }
  418. #if 0
  419. printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
  420. coarse_snr_offset, fine_snr_offset, frame_bits,
  421. 16 * s->frame_size - ((frame_bits + 7) & ~7));
  422. #endif
  423. return 16 * s->frame_size - frame_bits;
  424. }
  425. #define SNR_INC1 4
  426. static int compute_bit_allocation(AC3EncodeContext *s,
  427. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  428. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  429. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  430. int frame_bits)
  431. {
  432. int i, ch;
  433. int coarse_snr_offset, fine_snr_offset;
  434. uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  435. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  436. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  437. static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
  438. /* init default parameters */
  439. s->slow_decay_code = 2;
  440. s->fast_decay_code = 1;
  441. s->slow_gain_code = 1;
  442. s->db_per_bit_code = 2;
  443. s->floor_code = 4;
  444. for(ch=0;ch<s->nb_all_channels;ch++)
  445. s->fast_gain_code[ch] = 4;
  446. /* compute real values */
  447. s->bit_alloc.sr_code = s->sr_code;
  448. s->bit_alloc.sr_shift = s->sr_shift;
  449. s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->sr_shift;
  450. s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->sr_shift;
  451. s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
  452. s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
  453. s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
  454. /* header size */
  455. frame_bits += 65;
  456. // if (s->channel_mode == 2)
  457. // frame_bits += 2;
  458. frame_bits += frame_bits_inc[s->channel_mode];
  459. /* audio blocks */
  460. for(i=0;i<NB_BLOCKS;i++) {
  461. frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
  462. if (s->channel_mode == AC3_CHMODE_STEREO) {
  463. frame_bits++; /* rematstr */
  464. if(i==0) frame_bits += 4;
  465. }
  466. frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
  467. if (s->lfe)
  468. frame_bits++; /* lfeexpstr */
  469. for(ch=0;ch<s->nb_channels;ch++) {
  470. if (exp_strategy[i][ch] != EXP_REUSE)
  471. frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
  472. }
  473. frame_bits++; /* baie */
  474. frame_bits++; /* snr */
  475. frame_bits += 2; /* delta / skip */
  476. }
  477. frame_bits++; /* cplinu for block 0 */
  478. /* bit alloc info */
  479. /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
  480. /* csnroffset[6] */
  481. /* (fsnoffset[4] + fgaincod[4]) * c */
  482. frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
  483. /* auxdatae, crcrsv */
  484. frame_bits += 2;
  485. /* CRC */
  486. frame_bits += 16;
  487. /* calculate psd and masking curve before doing bit allocation */
  488. bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
  489. /* now the big work begins : do the bit allocation. Modify the snr
  490. offset until we can pack everything in the requested frame size */
  491. coarse_snr_offset = s->coarse_snr_offset;
  492. while (coarse_snr_offset >= 0 &&
  493. bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0)
  494. coarse_snr_offset -= SNR_INC1;
  495. if (coarse_snr_offset < 0) {
  496. av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
  497. return -1;
  498. }
  499. while ((coarse_snr_offset + SNR_INC1) <= 63 &&
  500. bit_alloc(s, mask, psd, bap1, frame_bits,
  501. coarse_snr_offset + SNR_INC1, 0) >= 0) {
  502. coarse_snr_offset += SNR_INC1;
  503. memcpy(bap, bap1, sizeof(bap1));
  504. }
  505. while ((coarse_snr_offset + 1) <= 63 &&
  506. bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) {
  507. coarse_snr_offset++;
  508. memcpy(bap, bap1, sizeof(bap1));
  509. }
  510. fine_snr_offset = 0;
  511. while ((fine_snr_offset + SNR_INC1) <= 15 &&
  512. bit_alloc(s, mask, psd, bap1, frame_bits,
  513. coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
  514. fine_snr_offset += SNR_INC1;
  515. memcpy(bap, bap1, sizeof(bap1));
  516. }
  517. while ((fine_snr_offset + 1) <= 15 &&
  518. bit_alloc(s, mask, psd, bap1, frame_bits,
  519. coarse_snr_offset, fine_snr_offset + 1) >= 0) {
  520. fine_snr_offset++;
  521. memcpy(bap, bap1, sizeof(bap1));
  522. }
  523. s->coarse_snr_offset = coarse_snr_offset;
  524. for(ch=0;ch<s->nb_all_channels;ch++)
  525. s->fine_snr_offset[ch] = fine_snr_offset;
  526. #if defined(DEBUG_BITALLOC)
  527. {
  528. int j;
  529. for(i=0;i<6;i++) {
  530. for(ch=0;ch<s->nb_all_channels;ch++) {
  531. printf("Block #%d Ch%d:\n", i, ch);
  532. printf("bap=");
  533. for(j=0;j<s->nb_coefs[ch];j++) {
  534. printf("%d ",bap[i][ch][j]);
  535. }
  536. printf("\n");
  537. }
  538. }
  539. }
  540. #endif
  541. return 0;
  542. }
  543. static av_cold int AC3_encode_init(AVCodecContext *avctx)
  544. {
  545. int freq = avctx->sample_rate;
  546. int bitrate = avctx->bit_rate;
  547. int channels = avctx->channels;
  548. AC3EncodeContext *s = avctx->priv_data;
  549. int i, j, ch;
  550. float alpha;
  551. int bw_code;
  552. static const uint8_t channel_mode_defs[6] = {
  553. 0x01, /* C */
  554. 0x02, /* L R */
  555. 0x03, /* L C R */
  556. 0x06, /* L R SL SR */
  557. 0x07, /* L C R SL SR */
  558. 0x07, /* L C R SL SR (+LFE) */
  559. };
  560. avctx->frame_size = AC3_FRAME_SIZE;
  561. ac3_common_init();
  562. /* number of channels */
  563. if (channels < 1 || channels > 6)
  564. return -1;
  565. s->channel_mode = channel_mode_defs[channels - 1];
  566. s->lfe = (channels == 6) ? 1 : 0;
  567. s->nb_all_channels = channels;
  568. s->nb_channels = channels > 5 ? 5 : channels;
  569. s->lfe_channel = s->lfe ? 5 : -1;
  570. /* frequency */
  571. for(i=0;i<3;i++) {
  572. for(j=0;j<3;j++)
  573. if ((ff_ac3_sample_rate_tab[j] >> i) == freq)
  574. goto found;
  575. }
  576. return -1;
  577. found:
  578. s->sample_rate = freq;
  579. s->sr_shift = i;
  580. s->sr_code = j;
  581. s->bitstream_id = 8 + s->sr_shift;
  582. s->bitstream_mode = 0; /* complete main audio service */
  583. /* bitrate & frame size */
  584. for(i=0;i<19;i++) {
  585. if ((ff_ac3_bitrate_tab[i] >> s->sr_shift)*1000 == bitrate)
  586. break;
  587. }
  588. if (i == 19)
  589. return -1;
  590. s->bit_rate = bitrate;
  591. s->frame_size_code = i << 1;
  592. s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->sr_code];
  593. s->bits_written = 0;
  594. s->samples_written = 0;
  595. s->frame_size = s->frame_size_min;
  596. /* bit allocation init */
  597. if(avctx->cutoff) {
  598. /* calculate bandwidth based on user-specified cutoff frequency */
  599. int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1);
  600. int fbw_coeffs = cutoff * 512 / s->sample_rate;
  601. bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
  602. } else {
  603. /* use default bandwidth setting */
  604. /* XXX: should compute the bandwidth according to the frame
  605. size, so that we avoid annoying high frequency artifacts */
  606. bw_code = 50;
  607. }
  608. for(ch=0;ch<s->nb_channels;ch++) {
  609. /* bandwidth for each channel */
  610. s->chbwcod[ch] = bw_code;
  611. s->nb_coefs[ch] = bw_code * 3 + 73;
  612. }
  613. if (s->lfe) {
  614. s->nb_coefs[s->lfe_channel] = 7; /* fixed */
  615. }
  616. /* initial snr offset */
  617. s->coarse_snr_offset = 40;
  618. /* mdct init */
  619. fft_init(MDCT_NBITS - 2);
  620. for(i=0;i<N/4;i++) {
  621. alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
  622. xcos1[i] = fix15(-cos(alpha));
  623. xsin1[i] = fix15(-sin(alpha));
  624. }
  625. avctx->coded_frame= avcodec_alloc_frame();
  626. avctx->coded_frame->key_frame= 1;
  627. return 0;
  628. }
  629. /* output the AC-3 frame header */
  630. static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
  631. {
  632. init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
  633. put_bits(&s->pb, 16, 0x0b77); /* frame header */
  634. put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
  635. put_bits(&s->pb, 2, s->sr_code);
  636. put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min));
  637. put_bits(&s->pb, 5, s->bitstream_id);
  638. put_bits(&s->pb, 3, s->bitstream_mode);
  639. put_bits(&s->pb, 3, s->channel_mode);
  640. if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
  641. put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
  642. if (s->channel_mode & 0x04)
  643. put_bits(&s->pb, 2, 1); /* XXX -6 dB */
  644. if (s->channel_mode == AC3_CHMODE_STEREO)
  645. put_bits(&s->pb, 2, 0); /* surround not indicated */
  646. put_bits(&s->pb, 1, s->lfe); /* LFE */
  647. put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
  648. put_bits(&s->pb, 1, 0); /* no compression control word */
  649. put_bits(&s->pb, 1, 0); /* no lang code */
  650. put_bits(&s->pb, 1, 0); /* no audio production info */
  651. put_bits(&s->pb, 1, 0); /* no copyright */
  652. put_bits(&s->pb, 1, 1); /* original bitstream */
  653. put_bits(&s->pb, 1, 0); /* no time code 1 */
  654. put_bits(&s->pb, 1, 0); /* no time code 2 */
  655. put_bits(&s->pb, 1, 0); /* no additional bit stream info */
  656. }
  657. /* symetric quantization on 'levels' levels */
  658. static inline int sym_quant(int c, int e, int levels)
  659. {
  660. int v;
  661. if (c >= 0) {
  662. v = (levels * (c << e)) >> 24;
  663. v = (v + 1) >> 1;
  664. v = (levels >> 1) + v;
  665. } else {
  666. v = (levels * ((-c) << e)) >> 24;
  667. v = (v + 1) >> 1;
  668. v = (levels >> 1) - v;
  669. }
  670. assert (v >= 0 && v < levels);
  671. return v;
  672. }
  673. /* asymetric quantization on 2^qbits levels */
  674. static inline int asym_quant(int c, int e, int qbits)
  675. {
  676. int lshift, m, v;
  677. lshift = e + qbits - 24;
  678. if (lshift >= 0)
  679. v = c << lshift;
  680. else
  681. v = c >> (-lshift);
  682. /* rounding */
  683. v = (v + 1) >> 1;
  684. m = (1 << (qbits-1));
  685. if (v >= m)
  686. v = m - 1;
  687. assert(v >= -m);
  688. return v & ((1 << qbits)-1);
  689. }
  690. /* Output one audio block. There are NB_BLOCKS audio blocks in one AC-3
  691. frame */
  692. static void output_audio_block(AC3EncodeContext *s,
  693. uint8_t exp_strategy[AC3_MAX_CHANNELS],
  694. uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
  695. uint8_t bap[AC3_MAX_CHANNELS][N/2],
  696. int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
  697. int8_t global_exp[AC3_MAX_CHANNELS],
  698. int block_num)
  699. {
  700. int ch, nb_groups, group_size, i, baie, rbnd;
  701. uint8_t *p;
  702. uint16_t qmant[AC3_MAX_CHANNELS][N/2];
  703. int exp0, exp1;
  704. int mant1_cnt, mant2_cnt, mant4_cnt;
  705. uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
  706. int delta0, delta1, delta2;
  707. for(ch=0;ch<s->nb_channels;ch++)
  708. put_bits(&s->pb, 1, 0); /* 512 point MDCT */
  709. for(ch=0;ch<s->nb_channels;ch++)
  710. put_bits(&s->pb, 1, 1); /* no dither */
  711. put_bits(&s->pb, 1, 0); /* no dynamic range */
  712. if (block_num == 0) {
  713. /* for block 0, even if no coupling, we must say it. This is a
  714. waste of bit :-) */
  715. put_bits(&s->pb, 1, 1); /* coupling strategy present */
  716. put_bits(&s->pb, 1, 0); /* no coupling strategy */
  717. } else {
  718. put_bits(&s->pb, 1, 0); /* no new coupling strategy */
  719. }
  720. if (s->channel_mode == AC3_CHMODE_STEREO)
  721. {
  722. if(block_num==0)
  723. {
  724. /* first block must define rematrixing (rematstr) */
  725. put_bits(&s->pb, 1, 1);
  726. /* dummy rematrixing rematflg(1:4)=0 */
  727. for (rbnd=0;rbnd<4;rbnd++)
  728. put_bits(&s->pb, 1, 0);
  729. }
  730. else
  731. {
  732. /* no matrixing (but should be used in the future) */
  733. put_bits(&s->pb, 1, 0);
  734. }
  735. }
  736. #if defined(DEBUG)
  737. {
  738. static int count = 0;
  739. av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
  740. }
  741. #endif
  742. /* exponent strategy */
  743. for(ch=0;ch<s->nb_channels;ch++) {
  744. put_bits(&s->pb, 2, exp_strategy[ch]);
  745. }
  746. if (s->lfe) {
  747. put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
  748. }
  749. for(ch=0;ch<s->nb_channels;ch++) {
  750. if (exp_strategy[ch] != EXP_REUSE)
  751. put_bits(&s->pb, 6, s->chbwcod[ch]);
  752. }
  753. /* exponents */
  754. for (ch = 0; ch < s->nb_all_channels; ch++) {
  755. switch(exp_strategy[ch]) {
  756. case EXP_REUSE:
  757. continue;
  758. case EXP_D15:
  759. group_size = 1;
  760. break;
  761. case EXP_D25:
  762. group_size = 2;
  763. break;
  764. default:
  765. case EXP_D45:
  766. group_size = 4;
  767. break;
  768. }
  769. nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
  770. p = encoded_exp[ch];
  771. /* first exponent */
  772. exp1 = *p++;
  773. put_bits(&s->pb, 4, exp1);
  774. /* next ones are delta encoded */
  775. for(i=0;i<nb_groups;i++) {
  776. /* merge three delta in one code */
  777. exp0 = exp1;
  778. exp1 = p[0];
  779. p += group_size;
  780. delta0 = exp1 - exp0 + 2;
  781. exp0 = exp1;
  782. exp1 = p[0];
  783. p += group_size;
  784. delta1 = exp1 - exp0 + 2;
  785. exp0 = exp1;
  786. exp1 = p[0];
  787. p += group_size;
  788. delta2 = exp1 - exp0 + 2;
  789. put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
  790. }
  791. if (ch != s->lfe_channel)
  792. put_bits(&s->pb, 2, 0); /* no gain range info */
  793. }
  794. /* bit allocation info */
  795. baie = (block_num == 0);
  796. put_bits(&s->pb, 1, baie);
  797. if (baie) {
  798. put_bits(&s->pb, 2, s->slow_decay_code);
  799. put_bits(&s->pb, 2, s->fast_decay_code);
  800. put_bits(&s->pb, 2, s->slow_gain_code);
  801. put_bits(&s->pb, 2, s->db_per_bit_code);
  802. put_bits(&s->pb, 3, s->floor_code);
  803. }
  804. /* snr offset */
  805. put_bits(&s->pb, 1, baie); /* always present with bai */
  806. if (baie) {
  807. put_bits(&s->pb, 6, s->coarse_snr_offset);
  808. for(ch=0;ch<s->nb_all_channels;ch++) {
  809. put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
  810. put_bits(&s->pb, 3, s->fast_gain_code[ch]);
  811. }
  812. }
  813. put_bits(&s->pb, 1, 0); /* no delta bit allocation */
  814. put_bits(&s->pb, 1, 0); /* no data to skip */
  815. /* mantissa encoding : we use two passes to handle the grouping. A
  816. one pass method may be faster, but it would necessitate to
  817. modify the output stream. */
  818. /* first pass: quantize */
  819. mant1_cnt = mant2_cnt = mant4_cnt = 0;
  820. qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
  821. for (ch = 0; ch < s->nb_all_channels; ch++) {
  822. int b, c, e, v;
  823. for(i=0;i<s->nb_coefs[ch];i++) {
  824. c = mdct_coefs[ch][i];
  825. e = encoded_exp[ch][i] - global_exp[ch];
  826. b = bap[ch][i];
  827. switch(b) {
  828. case 0:
  829. v = 0;
  830. break;
  831. case 1:
  832. v = sym_quant(c, e, 3);
  833. switch(mant1_cnt) {
  834. case 0:
  835. qmant1_ptr = &qmant[ch][i];
  836. v = 9 * v;
  837. mant1_cnt = 1;
  838. break;
  839. case 1:
  840. *qmant1_ptr += 3 * v;
  841. mant1_cnt = 2;
  842. v = 128;
  843. break;
  844. default:
  845. *qmant1_ptr += v;
  846. mant1_cnt = 0;
  847. v = 128;
  848. break;
  849. }
  850. break;
  851. case 2:
  852. v = sym_quant(c, e, 5);
  853. switch(mant2_cnt) {
  854. case 0:
  855. qmant2_ptr = &qmant[ch][i];
  856. v = 25 * v;
  857. mant2_cnt = 1;
  858. break;
  859. case 1:
  860. *qmant2_ptr += 5 * v;
  861. mant2_cnt = 2;
  862. v = 128;
  863. break;
  864. default:
  865. *qmant2_ptr += v;
  866. mant2_cnt = 0;
  867. v = 128;
  868. break;
  869. }
  870. break;
  871. case 3:
  872. v = sym_quant(c, e, 7);
  873. break;
  874. case 4:
  875. v = sym_quant(c, e, 11);
  876. switch(mant4_cnt) {
  877. case 0:
  878. qmant4_ptr = &qmant[ch][i];
  879. v = 11 * v;
  880. mant4_cnt = 1;
  881. break;
  882. default:
  883. *qmant4_ptr += v;
  884. mant4_cnt = 0;
  885. v = 128;
  886. break;
  887. }
  888. break;
  889. case 5:
  890. v = sym_quant(c, e, 15);
  891. break;
  892. case 14:
  893. v = asym_quant(c, e, 14);
  894. break;
  895. case 15:
  896. v = asym_quant(c, e, 16);
  897. break;
  898. default:
  899. v = asym_quant(c, e, b - 1);
  900. break;
  901. }
  902. qmant[ch][i] = v;
  903. }
  904. }
  905. /* second pass : output the values */
  906. for (ch = 0; ch < s->nb_all_channels; ch++) {
  907. int b, q;
  908. for(i=0;i<s->nb_coefs[ch];i++) {
  909. q = qmant[ch][i];
  910. b = bap[ch][i];
  911. switch(b) {
  912. case 0:
  913. break;
  914. case 1:
  915. if (q != 128)
  916. put_bits(&s->pb, 5, q);
  917. break;
  918. case 2:
  919. if (q != 128)
  920. put_bits(&s->pb, 7, q);
  921. break;
  922. case 3:
  923. put_bits(&s->pb, 3, q);
  924. break;
  925. case 4:
  926. if (q != 128)
  927. put_bits(&s->pb, 7, q);
  928. break;
  929. case 14:
  930. put_bits(&s->pb, 14, q);
  931. break;
  932. case 15:
  933. put_bits(&s->pb, 16, q);
  934. break;
  935. default:
  936. put_bits(&s->pb, b - 1, q);
  937. break;
  938. }
  939. }
  940. }
  941. }
  942. #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
  943. static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
  944. {
  945. unsigned int c;
  946. c = 0;
  947. while (a) {
  948. if (a & 1)
  949. c ^= b;
  950. a = a >> 1;
  951. b = b << 1;
  952. if (b & (1 << 16))
  953. b ^= poly;
  954. }
  955. return c;
  956. }
  957. static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
  958. {
  959. unsigned int r;
  960. r = 1;
  961. while (n) {
  962. if (n & 1)
  963. r = mul_poly(r, a, poly);
  964. a = mul_poly(a, a, poly);
  965. n >>= 1;
  966. }
  967. return r;
  968. }
  969. /* compute log2(max(abs(tab[]))) */
  970. static int log2_tab(int16_t *tab, int n)
  971. {
  972. int i, v;
  973. v = 0;
  974. for(i=0;i<n;i++) {
  975. v |= abs(tab[i]);
  976. }
  977. return av_log2(v);
  978. }
  979. static void lshift_tab(int16_t *tab, int n, int lshift)
  980. {
  981. int i;
  982. if (lshift > 0) {
  983. for(i=0;i<n;i++) {
  984. tab[i] <<= lshift;
  985. }
  986. } else if (lshift < 0) {
  987. lshift = -lshift;
  988. for(i=0;i<n;i++) {
  989. tab[i] >>= lshift;
  990. }
  991. }
  992. }
  993. /* fill the end of the frame and compute the two crcs */
  994. static int output_frame_end(AC3EncodeContext *s)
  995. {
  996. int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
  997. uint8_t *frame;
  998. frame_size = s->frame_size; /* frame size in words */
  999. /* align to 8 bits */
  1000. flush_put_bits(&s->pb);
  1001. /* add zero bytes to reach the frame size */
  1002. frame = s->pb.buf;
  1003. n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2;
  1004. assert(n >= 0);
  1005. if(n>0)
  1006. memset(pbBufPtr(&s->pb), 0, n);
  1007. /* Now we must compute both crcs : this is not so easy for crc1
  1008. because it is at the beginning of the data... */
  1009. frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
  1010. crc1 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1011. frame + 4, 2 * frame_size_58 - 4));
  1012. /* XXX: could precompute crc_inv */
  1013. crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
  1014. crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
  1015. AV_WB16(frame+2,crc1);
  1016. crc2 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1017. frame + 2 * frame_size_58,
  1018. (frame_size - frame_size_58) * 2 - 2));
  1019. AV_WB16(frame+2*frame_size-2,crc2);
  1020. // printf("n=%d frame_size=%d\n", n, frame_size);
  1021. return frame_size * 2;
  1022. }
  1023. static int AC3_encode_frame(AVCodecContext *avctx,
  1024. unsigned char *frame, int buf_size, void *data)
  1025. {
  1026. AC3EncodeContext *s = avctx->priv_data;
  1027. int16_t *samples = data;
  1028. int i, j, k, v, ch;
  1029. int16_t input_samples[N];
  1030. int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1031. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1032. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
  1033. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1034. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1035. int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
  1036. int frame_bits;
  1037. frame_bits = 0;
  1038. for(ch=0;ch<s->nb_all_channels;ch++) {
  1039. /* fixed mdct to the six sub blocks & exponent computation */
  1040. for(i=0;i<NB_BLOCKS;i++) {
  1041. int16_t *sptr;
  1042. int sinc;
  1043. /* compute input samples */
  1044. memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(int16_t));
  1045. sinc = s->nb_all_channels;
  1046. sptr = samples + (sinc * (N/2) * i) + ch;
  1047. for(j=0;j<N/2;j++) {
  1048. v = *sptr;
  1049. input_samples[j + N/2] = v;
  1050. s->last_samples[ch][j] = v;
  1051. sptr += sinc;
  1052. }
  1053. /* apply the MDCT window */
  1054. for(j=0;j<N/2;j++) {
  1055. input_samples[j] = MUL16(input_samples[j],
  1056. ff_ac3_window[j]) >> 15;
  1057. input_samples[N-j-1] = MUL16(input_samples[N-j-1],
  1058. ff_ac3_window[j]) >> 15;
  1059. }
  1060. /* Normalize the samples to use the maximum available
  1061. precision */
  1062. v = 14 - log2_tab(input_samples, N);
  1063. if (v < 0)
  1064. v = 0;
  1065. exp_samples[i][ch] = v - 9;
  1066. lshift_tab(input_samples, N, v);
  1067. /* do the MDCT */
  1068. mdct512(mdct_coef[i][ch], input_samples);
  1069. /* compute "exponents". We take into account the
  1070. normalization there */
  1071. for(j=0;j<N/2;j++) {
  1072. int e;
  1073. v = abs(mdct_coef[i][ch][j]);
  1074. if (v == 0)
  1075. e = 24;
  1076. else {
  1077. e = 23 - av_log2(v) + exp_samples[i][ch];
  1078. if (e >= 24) {
  1079. e = 24;
  1080. mdct_coef[i][ch][j] = 0;
  1081. }
  1082. }
  1083. exp[i][ch][j] = e;
  1084. }
  1085. }
  1086. compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
  1087. /* compute the exponents as the decoder will see them. The
  1088. EXP_REUSE case must be handled carefully : we select the
  1089. min of the exponents */
  1090. i = 0;
  1091. while (i < NB_BLOCKS) {
  1092. j = i + 1;
  1093. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
  1094. exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
  1095. j++;
  1096. }
  1097. frame_bits += encode_exp(encoded_exp[i][ch],
  1098. exp[i][ch], s->nb_coefs[ch],
  1099. exp_strategy[i][ch]);
  1100. /* copy encoded exponents for reuse case */
  1101. for(k=i+1;k<j;k++) {
  1102. memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
  1103. s->nb_coefs[ch] * sizeof(uint8_t));
  1104. }
  1105. i = j;
  1106. }
  1107. }
  1108. /* adjust for fractional frame sizes */
  1109. while(s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
  1110. s->bits_written -= s->bit_rate;
  1111. s->samples_written -= s->sample_rate;
  1112. }
  1113. s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
  1114. s->bits_written += s->frame_size * 16;
  1115. s->samples_written += AC3_FRAME_SIZE;
  1116. compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
  1117. /* everything is known... let's output the frame */
  1118. output_frame_header(s, frame);
  1119. for(i=0;i<NB_BLOCKS;i++) {
  1120. output_audio_block(s, exp_strategy[i], encoded_exp[i],
  1121. bap[i], mdct_coef[i], exp_samples[i], i);
  1122. }
  1123. return output_frame_end(s);
  1124. }
  1125. static av_cold int AC3_encode_close(AVCodecContext *avctx)
  1126. {
  1127. av_freep(&avctx->coded_frame);
  1128. return 0;
  1129. }
  1130. #if 0
  1131. /*************************************************************************/
  1132. /* TEST */
  1133. #undef random
  1134. #define FN (N/4)
  1135. void fft_test(void)
  1136. {
  1137. IComplex in[FN], in1[FN];
  1138. int k, n, i;
  1139. float sum_re, sum_im, a;
  1140. /* FFT test */
  1141. for(i=0;i<FN;i++) {
  1142. in[i].re = random() % 65535 - 32767;
  1143. in[i].im = random() % 65535 - 32767;
  1144. in1[i] = in[i];
  1145. }
  1146. fft(in, 7);
  1147. /* do it by hand */
  1148. for(k=0;k<FN;k++) {
  1149. sum_re = 0;
  1150. sum_im = 0;
  1151. for(n=0;n<FN;n++) {
  1152. a = -2 * M_PI * (n * k) / FN;
  1153. sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
  1154. sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
  1155. }
  1156. printf("%3d: %6d,%6d %6.0f,%6.0f\n",
  1157. k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
  1158. }
  1159. }
  1160. void mdct_test(void)
  1161. {
  1162. int16_t input[N];
  1163. int32_t output[N/2];
  1164. float input1[N];
  1165. float output1[N/2];
  1166. float s, a, err, e, emax;
  1167. int i, k, n;
  1168. for(i=0;i<N;i++) {
  1169. input[i] = (random() % 65535 - 32767) * 9 / 10;
  1170. input1[i] = input[i];
  1171. }
  1172. mdct512(output, input);
  1173. /* do it by hand */
  1174. for(k=0;k<N/2;k++) {
  1175. s = 0;
  1176. for(n=0;n<N;n++) {
  1177. a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
  1178. s += input1[n] * cos(a);
  1179. }
  1180. output1[k] = -2 * s / N;
  1181. }
  1182. err = 0;
  1183. emax = 0;
  1184. for(i=0;i<N/2;i++) {
  1185. printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
  1186. e = output[i] - output1[i];
  1187. if (e > emax)
  1188. emax = e;
  1189. err += e * e;
  1190. }
  1191. printf("err2=%f emax=%f\n", err / (N/2), emax);
  1192. }
  1193. void test_ac3(void)
  1194. {
  1195. AC3EncodeContext ctx;
  1196. unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
  1197. short samples[AC3_FRAME_SIZE];
  1198. int ret, i;
  1199. AC3_encode_init(&ctx, 44100, 64000, 1);
  1200. fft_test();
  1201. mdct_test();
  1202. for(i=0;i<AC3_FRAME_SIZE;i++)
  1203. samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
  1204. ret = AC3_encode_frame(&ctx, frame, samples);
  1205. printf("ret=%d\n", ret);
  1206. }
  1207. #endif
  1208. AVCodec ac3_encoder = {
  1209. "ac3",
  1210. CODEC_TYPE_AUDIO,
  1211. CODEC_ID_AC3,
  1212. sizeof(AC3EncodeContext),
  1213. AC3_encode_init,
  1214. AC3_encode_frame,
  1215. AC3_encode_close,
  1216. NULL,
  1217. .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  1218. .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
  1219. };