You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1685 lines
56KB

  1. /*
  2. * Motion estimation
  3. * Copyright (c) 2000,2001 Fabrice Bellard.
  4. * Copyright (c) 2002-2003 Michael Niedermayer
  5. *
  6. *
  7. * This library is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2 of the License, or (at your option) any later version.
  11. *
  12. * This library is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with this library; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. *
  21. * new Motion Estimation (X1/EPZS) by Michael Niedermayer <michaelni@gmx.at>
  22. */
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. //#undef NDEBUG
  29. //#include <assert.h>
  30. #define SQ(a) ((a)*(a))
  31. #define P_LEFT P[1]
  32. #define P_TOP P[2]
  33. #define P_TOPRIGHT P[3]
  34. #define P_MEDIAN P[4]
  35. #define P_MV1 P[9]
  36. static inline int sad_hpel_motion_search(MpegEncContext * s,
  37. int *mx_ptr, int *my_ptr, int dmin,
  38. int xmin, int ymin, int xmax, int ymax,
  39. int pred_x, int pred_y, Picture *picture,
  40. int n, int size, uint16_t * const mv_penalty);
  41. static inline int update_map_generation(MpegEncContext * s)
  42. {
  43. s->me.map_generation+= 1<<(ME_MAP_MV_BITS*2);
  44. if(s->me.map_generation==0){
  45. s->me.map_generation= 1<<(ME_MAP_MV_BITS*2);
  46. memset(s->me.map, 0, sizeof(uint32_t)*ME_MAP_SIZE);
  47. }
  48. return s->me.map_generation;
  49. }
  50. /* shape adaptive search stuff */
  51. typedef struct Minima{
  52. int height;
  53. int x, y;
  54. int checked;
  55. }Minima;
  56. static int minima_cmp(const void *a, const void *b){
  57. Minima *da = (Minima *) a;
  58. Minima *db = (Minima *) b;
  59. return da->height - db->height;
  60. }
  61. /* SIMPLE */
  62. #define RENAME(a) simple_ ## a
  63. #define CMP(d, x, y, size)\
  64. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride);
  65. #define CMP_HPEL(d, dx, dy, x, y, size)\
  66. {\
  67. const int dxy= (dx) + 2*(dy);\
  68. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, (16>>size));\
  69. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  70. }
  71. #define CMP_QPEL(d, dx, dy, x, y, size)\
  72. {\
  73. const int dxy= (dx) + 4*(dy);\
  74. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  75. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  76. }
  77. #include "motion_est_template.c"
  78. #undef RENAME
  79. #undef CMP
  80. #undef CMP_HPEL
  81. #undef CMP_QPEL
  82. #undef INIT
  83. /* SIMPLE CHROMA */
  84. #define RENAME(a) simple_chroma_ ## a
  85. #define CMP(d, x, y, size)\
  86. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride);\
  87. if(chroma_cmp){\
  88. int dxy= ((x)&1) + 2*((y)&1);\
  89. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  90. \
  91. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  92. d += chroma_cmp(s, s->me.scratchpad, src_u, uvstride);\
  93. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  94. d += chroma_cmp(s, s->me.scratchpad, src_v, uvstride);\
  95. }
  96. #define CMP_HPEL(d, dx, dy, x, y, size)\
  97. {\
  98. const int dxy= (dx) + 2*(dy);\
  99. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, (16>>size));\
  100. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  101. if(chroma_cmp_sub){\
  102. int cxy= (dxy) | ((x)&1) | (2*((y)&1));\
  103. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  104. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  105. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride);\
  106. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  107. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride);\
  108. }\
  109. }
  110. #define CMP_QPEL(d, dx, dy, x, y, size)\
  111. {\
  112. const int dxy= (dx) + 4*(dy);\
  113. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  114. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  115. if(chroma_cmp_sub){\
  116. int cxy, c;\
  117. int cx= (4*(x) + (dx))/2;\
  118. int cy= (4*(y) + (dy))/2;\
  119. cx= (cx>>1)|(cx&1);\
  120. cy= (cy>>1)|(cy&1);\
  121. cxy= (cx&1) + 2*(cy&1);\
  122. c= ((cx)>>1) + ((cy)>>1)*uvstride;\
  123. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  124. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride);\
  125. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  126. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride);\
  127. }\
  128. }
  129. #include "motion_est_template.c"
  130. #undef RENAME
  131. #undef CMP
  132. #undef CMP_HPEL
  133. #undef CMP_QPEL
  134. #undef INIT
  135. /* SIMPLE DIRECT HPEL */
  136. #define RENAME(a) simple_direct_hpel_ ## a
  137. //FIXME precalc divisions stuff
  138. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  139. if((x) >= xmin && 2*(x) + (dx) <= 2*xmax && (y) >= ymin && 2*(y) + (dy) <= 2*ymax){\
  140. const int hx= 2*(x) + (dx);\
  141. const int hy= 2*(y) + (dy);\
  142. if(s->mv_type==MV_TYPE_8X8){\
  143. int i;\
  144. for(i=0; i<4; i++){\
  145. int fx = s->me.direct_basis_mv[i][0] + hx;\
  146. int fy = s->me.direct_basis_mv[i][1] + hy;\
  147. int bx = hx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  148. int by = hy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  149. int fxy= (fx&1) + 2*(fy&1);\
  150. int bxy= (bx&1) + 2*(by&1);\
  151. \
  152. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  153. hpel_put[1][fxy](dst, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 8);\
  154. hpel_avg[1][bxy](dst, (ref2_y) + (bx>>1) + (by>>1)*(stride), stride, 8);\
  155. }\
  156. }else{\
  157. int fx = s->me.direct_basis_mv[0][0] + hx;\
  158. int fy = s->me.direct_basis_mv[0][1] + hy;\
  159. int bx = hx ? fx - s->me.co_located_mv[0][0] : (s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp);\
  160. int by = hy ? fy - s->me.co_located_mv[0][1] : (s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp);\
  161. int fxy= (fx&1) + 2*(fy&1);\
  162. int bxy= (bx&1) + 2*(by&1);\
  163. \
  164. assert((fx>>1) + 16*s->mb_x >= -16);\
  165. assert((fy>>1) + 16*s->mb_y >= -16);\
  166. assert((fx>>1) + 16*s->mb_x <= s->width);\
  167. assert((fy>>1) + 16*s->mb_y <= s->height);\
  168. assert((bx>>1) + 16*s->mb_x >= -16);\
  169. assert((by>>1) + 16*s->mb_y >= -16);\
  170. assert((bx>>1) + 16*s->mb_x <= s->width);\
  171. assert((by>>1) + 16*s->mb_y <= s->height);\
  172. \
  173. hpel_put[0][fxy](s->me.scratchpad, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 16);\
  174. hpel_avg[0][bxy](s->me.scratchpad, (ref2_y) + (bx>>1) + (by>>1)*(stride), stride, 16);\
  175. }\
  176. d = cmp_func(s, s->me.scratchpad, src_y, stride);\
  177. }else\
  178. d= 256*256*256*32;
  179. #define CMP_HPEL(d, dx, dy, x, y, size)\
  180. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  181. #define CMP(d, x, y, size)\
  182. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  183. #include "motion_est_template.c"
  184. #undef RENAME
  185. #undef CMP
  186. #undef CMP_HPEL
  187. #undef CMP_QPEL
  188. #undef INIT
  189. #undef CMP_DIRECT
  190. /* SIMPLE DIRECT QPEL */
  191. #define RENAME(a) simple_direct_qpel_ ## a
  192. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  193. if((x) >= xmin && 4*(x) + (dx) <= 4*xmax && (y) >= ymin && 4*(y) + (dy) <= 4*ymax){\
  194. const int qx= 4*(x) + (dx);\
  195. const int qy= 4*(y) + (dy);\
  196. if(s->mv_type==MV_TYPE_8X8){\
  197. int i;\
  198. for(i=0; i<4; i++){\
  199. int fx = s->me.direct_basis_mv[i][0] + qx;\
  200. int fy = s->me.direct_basis_mv[i][1] + qy;\
  201. int bx = qx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  202. int by = qy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  203. int fxy= (fx&3) + 4*(fy&3);\
  204. int bxy= (bx&3) + 4*(by&3);\
  205. \
  206. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  207. qpel_put[1][fxy](dst, (ref_y ) + (fx>>2) + (fy>>2)*(stride), stride);\
  208. qpel_avg[1][bxy](dst, (ref2_y) + (bx>>2) + (by>>2)*(stride), stride);\
  209. }\
  210. }else{\
  211. int fx = s->me.direct_basis_mv[0][0] + qx;\
  212. int fy = s->me.direct_basis_mv[0][1] + qy;\
  213. int bx = qx ? fx - s->me.co_located_mv[0][0] : s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp;\
  214. int by = qy ? fy - s->me.co_located_mv[0][1] : s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp;\
  215. int fxy= (fx&3) + 4*(fy&3);\
  216. int bxy= (bx&3) + 4*(by&3);\
  217. \
  218. qpel_put[1][fxy](s->me.scratchpad , (ref_y ) + (fx>>2) + (fy>>2)*(stride) , stride);\
  219. qpel_put[1][fxy](s->me.scratchpad + 8 , (ref_y ) + (fx>>2) + (fy>>2)*(stride) + 8 , stride);\
  220. qpel_put[1][fxy](s->me.scratchpad + 8*stride, (ref_y ) + (fx>>2) + (fy>>2)*(stride) + 8*stride, stride);\
  221. qpel_put[1][fxy](s->me.scratchpad + 8 + 8*stride, (ref_y ) + (fx>>2) + (fy>>2)*(stride) + 8 + 8*stride, stride);\
  222. qpel_avg[1][bxy](s->me.scratchpad , (ref2_y) + (bx>>2) + (by>>2)*(stride) , stride);\
  223. qpel_avg[1][bxy](s->me.scratchpad + 8 , (ref2_y) + (bx>>2) + (by>>2)*(stride) + 8 , stride);\
  224. qpel_avg[1][bxy](s->me.scratchpad + 8*stride, (ref2_y) + (bx>>2) + (by>>2)*(stride) + 8*stride, stride);\
  225. qpel_avg[1][bxy](s->me.scratchpad + 8 + 8*stride, (ref2_y) + (bx>>2) + (by>>2)*(stride) + 8 + 8*stride, stride);\
  226. }\
  227. d = cmp_func(s, s->me.scratchpad, src_y, stride);\
  228. }else\
  229. d= 256*256*256*32;
  230. #define CMP_QPEL(d, dx, dy, x, y, size)\
  231. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  232. #define CMP(d, x, y, size)\
  233. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  234. #include "motion_est_template.c"
  235. #undef RENAME
  236. #undef CMP
  237. #undef CMP_HPEL
  238. #undef CMP_QPEL
  239. #undef INIT
  240. #undef CMP__DIRECT
  241. static int zero_cmp(void *s, uint8_t *a, uint8_t *b, int stride){
  242. return 0;
  243. }
  244. static void set_cmp(MpegEncContext *s, me_cmp_func *cmp, int type){
  245. DSPContext* c= &s->dsp;
  246. int i;
  247. memset(cmp, 0, sizeof(void*)*11);
  248. switch(type&0xFF){
  249. case FF_CMP_SAD:
  250. cmp[0]= c->sad[0];
  251. cmp[1]= c->sad[1];
  252. break;
  253. case FF_CMP_SATD:
  254. cmp[0]= c->hadamard8_diff[0];
  255. cmp[1]= c->hadamard8_diff[1];
  256. break;
  257. case FF_CMP_SSE:
  258. cmp[0]= c->sse[0];
  259. cmp[1]= c->sse[1];
  260. break;
  261. case FF_CMP_DCT:
  262. cmp[0]= c->dct_sad[0];
  263. cmp[1]= c->dct_sad[1];
  264. break;
  265. case FF_CMP_PSNR:
  266. cmp[0]= c->quant_psnr[0];
  267. cmp[1]= c->quant_psnr[1];
  268. break;
  269. case FF_CMP_BIT:
  270. cmp[0]= c->bit[0];
  271. cmp[1]= c->bit[1];
  272. break;
  273. case FF_CMP_RD:
  274. cmp[0]= c->rd[0];
  275. cmp[1]= c->rd[1];
  276. break;
  277. case FF_CMP_ZERO:
  278. for(i=0; i<7; i++){
  279. cmp[i]= zero_cmp;
  280. }
  281. break;
  282. default:
  283. fprintf(stderr,"internal error in cmp function selection\n");
  284. }
  285. }
  286. static inline int get_penalty_factor(MpegEncContext *s, int type){
  287. switch(type&0xFF){
  288. default:
  289. case FF_CMP_SAD:
  290. return s->qscale*2;
  291. case FF_CMP_DCT:
  292. return s->qscale*3;
  293. case FF_CMP_SATD:
  294. return s->qscale*6;
  295. case FF_CMP_SSE:
  296. return s->qscale*s->qscale*2;
  297. case FF_CMP_BIT:
  298. return 1;
  299. case FF_CMP_RD:
  300. case FF_CMP_PSNR:
  301. return (s->qscale*s->qscale*185 + 64)>>7;
  302. }
  303. }
  304. void ff_init_me(MpegEncContext *s){
  305. set_cmp(s, s->dsp.me_pre_cmp, s->avctx->me_pre_cmp);
  306. set_cmp(s, s->dsp.me_cmp, s->avctx->me_cmp);
  307. set_cmp(s, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
  308. set_cmp(s, s->dsp.mb_cmp, s->avctx->mb_cmp);
  309. if(s->flags&CODEC_FLAG_QPEL){
  310. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  311. s->me.sub_motion_search= simple_chroma_qpel_motion_search;
  312. else
  313. s->me.sub_motion_search= simple_qpel_motion_search;
  314. }else{
  315. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  316. s->me.sub_motion_search= simple_chroma_hpel_motion_search;
  317. else if( s->avctx->me_sub_cmp == FF_CMP_SAD
  318. && s->avctx-> me_cmp == FF_CMP_SAD
  319. && s->avctx-> mb_cmp == FF_CMP_SAD)
  320. s->me.sub_motion_search= sad_hpel_motion_search;
  321. else
  322. s->me.sub_motion_search= simple_hpel_motion_search;
  323. }
  324. if(s->avctx->me_cmp&FF_CMP_CHROMA){
  325. s->me.motion_search[0]= simple_chroma_epzs_motion_search;
  326. s->me.motion_search[1]= simple_chroma_epzs_motion_search4;
  327. }else{
  328. s->me.motion_search[0]= simple_epzs_motion_search;
  329. s->me.motion_search[1]= simple_epzs_motion_search4;
  330. }
  331. if(s->avctx->me_pre_cmp&FF_CMP_CHROMA){
  332. s->me.pre_motion_search= simple_chroma_epzs_motion_search;
  333. }else{
  334. s->me.pre_motion_search= simple_epzs_motion_search;
  335. }
  336. if(s->flags&CODEC_FLAG_QPEL){
  337. if(s->avctx->mb_cmp&FF_CMP_CHROMA)
  338. s->me.get_mb_score= simple_chroma_qpel_get_mb_score;
  339. else
  340. s->me.get_mb_score= simple_qpel_get_mb_score;
  341. }else{
  342. if(s->avctx->mb_cmp&FF_CMP_CHROMA)
  343. s->me.get_mb_score= simple_chroma_hpel_get_mb_score;
  344. else
  345. s->me.get_mb_score= simple_hpel_get_mb_score;
  346. }
  347. }
  348. static int pix_dev(UINT8 * pix, int line_size, int mean)
  349. {
  350. int s, i, j;
  351. s = 0;
  352. for (i = 0; i < 16; i++) {
  353. for (j = 0; j < 16; j += 8) {
  354. s += ABS(pix[0]-mean);
  355. s += ABS(pix[1]-mean);
  356. s += ABS(pix[2]-mean);
  357. s += ABS(pix[3]-mean);
  358. s += ABS(pix[4]-mean);
  359. s += ABS(pix[5]-mean);
  360. s += ABS(pix[6]-mean);
  361. s += ABS(pix[7]-mean);
  362. pix += 8;
  363. }
  364. pix += line_size - 16;
  365. }
  366. return s;
  367. }
  368. static inline void no_motion_search(MpegEncContext * s,
  369. int *mx_ptr, int *my_ptr)
  370. {
  371. *mx_ptr = 16 * s->mb_x;
  372. *my_ptr = 16 * s->mb_y;
  373. }
  374. static int full_motion_search(MpegEncContext * s,
  375. int *mx_ptr, int *my_ptr, int range,
  376. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  377. {
  378. int x1, y1, x2, y2, xx, yy, x, y;
  379. int mx, my, dmin, d;
  380. UINT8 *pix;
  381. xx = 16 * s->mb_x;
  382. yy = 16 * s->mb_y;
  383. x1 = xx - range + 1; /* we loose one pixel to avoid boundary pb with half pixel pred */
  384. if (x1 < xmin)
  385. x1 = xmin;
  386. x2 = xx + range - 1;
  387. if (x2 > xmax)
  388. x2 = xmax;
  389. y1 = yy - range + 1;
  390. if (y1 < ymin)
  391. y1 = ymin;
  392. y2 = yy + range - 1;
  393. if (y2 > ymax)
  394. y2 = ymax;
  395. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  396. dmin = 0x7fffffff;
  397. mx = 0;
  398. my = 0;
  399. for (y = y1; y <= y2; y++) {
  400. for (x = x1; x <= x2; x++) {
  401. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x,
  402. s->linesize);
  403. if (d < dmin ||
  404. (d == dmin &&
  405. (abs(x - xx) + abs(y - yy)) <
  406. (abs(mx - xx) + abs(my - yy)))) {
  407. dmin = d;
  408. mx = x;
  409. my = y;
  410. }
  411. }
  412. }
  413. *mx_ptr = mx;
  414. *my_ptr = my;
  415. #if 0
  416. if (*mx_ptr < -(2 * range) || *mx_ptr >= (2 * range) ||
  417. *my_ptr < -(2 * range) || *my_ptr >= (2 * range)) {
  418. fprintf(stderr, "error %d %d\n", *mx_ptr, *my_ptr);
  419. }
  420. #endif
  421. return dmin;
  422. }
  423. static int log_motion_search(MpegEncContext * s,
  424. int *mx_ptr, int *my_ptr, int range,
  425. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  426. {
  427. int x1, y1, x2, y2, xx, yy, x, y;
  428. int mx, my, dmin, d;
  429. UINT8 *pix;
  430. xx = s->mb_x << 4;
  431. yy = s->mb_y << 4;
  432. /* Left limit */
  433. x1 = xx - range;
  434. if (x1 < xmin)
  435. x1 = xmin;
  436. /* Right limit */
  437. x2 = xx + range;
  438. if (x2 > xmax)
  439. x2 = xmax;
  440. /* Upper limit */
  441. y1 = yy - range;
  442. if (y1 < ymin)
  443. y1 = ymin;
  444. /* Lower limit */
  445. y2 = yy + range;
  446. if (y2 > ymax)
  447. y2 = ymax;
  448. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  449. dmin = 0x7fffffff;
  450. mx = 0;
  451. my = 0;
  452. do {
  453. for (y = y1; y <= y2; y += range) {
  454. for (x = x1; x <= x2; x += range) {
  455. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  456. if (d < dmin || (d == dmin && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  457. dmin = d;
  458. mx = x;
  459. my = y;
  460. }
  461. }
  462. }
  463. range = range >> 1;
  464. x1 = mx - range;
  465. if (x1 < xmin)
  466. x1 = xmin;
  467. x2 = mx + range;
  468. if (x2 > xmax)
  469. x2 = xmax;
  470. y1 = my - range;
  471. if (y1 < ymin)
  472. y1 = ymin;
  473. y2 = my + range;
  474. if (y2 > ymax)
  475. y2 = ymax;
  476. } while (range >= 1);
  477. #ifdef DEBUG
  478. fprintf(stderr, "log - MX: %d\tMY: %d\n", mx, my);
  479. #endif
  480. *mx_ptr = mx;
  481. *my_ptr = my;
  482. return dmin;
  483. }
  484. static int phods_motion_search(MpegEncContext * s,
  485. int *mx_ptr, int *my_ptr, int range,
  486. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  487. {
  488. int x1, y1, x2, y2, xx, yy, x, y, lastx, d;
  489. int mx, my, dminx, dminy;
  490. UINT8 *pix;
  491. xx = s->mb_x << 4;
  492. yy = s->mb_y << 4;
  493. /* Left limit */
  494. x1 = xx - range;
  495. if (x1 < xmin)
  496. x1 = xmin;
  497. /* Right limit */
  498. x2 = xx + range;
  499. if (x2 > xmax)
  500. x2 = xmax;
  501. /* Upper limit */
  502. y1 = yy - range;
  503. if (y1 < ymin)
  504. y1 = ymin;
  505. /* Lower limit */
  506. y2 = yy + range;
  507. if (y2 > ymax)
  508. y2 = ymax;
  509. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  510. mx = 0;
  511. my = 0;
  512. x = xx;
  513. y = yy;
  514. do {
  515. dminx = 0x7fffffff;
  516. dminy = 0x7fffffff;
  517. lastx = x;
  518. for (x = x1; x <= x2; x += range) {
  519. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  520. if (d < dminx || (d == dminx && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  521. dminx = d;
  522. mx = x;
  523. }
  524. }
  525. x = lastx;
  526. for (y = y1; y <= y2; y += range) {
  527. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  528. if (d < dminy || (d == dminy && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  529. dminy = d;
  530. my = y;
  531. }
  532. }
  533. range = range >> 1;
  534. x = mx;
  535. y = my;
  536. x1 = mx - range;
  537. if (x1 < xmin)
  538. x1 = xmin;
  539. x2 = mx + range;
  540. if (x2 > xmax)
  541. x2 = xmax;
  542. y1 = my - range;
  543. if (y1 < ymin)
  544. y1 = ymin;
  545. y2 = my + range;
  546. if (y2 > ymax)
  547. y2 = ymax;
  548. } while (range >= 1);
  549. #ifdef DEBUG
  550. fprintf(stderr, "phods - MX: %d\tMY: %d\n", mx, my);
  551. #endif
  552. /* half pixel search */
  553. *mx_ptr = mx;
  554. *my_ptr = my;
  555. return dminy;
  556. }
  557. #define Z_THRESHOLD 256
  558. #define CHECK_SAD_HALF_MV(suffix, x, y) \
  559. {\
  560. d= pix_abs_ ## suffix(pix, ptr+((x)>>1), s->linesize);\
  561. d += (mv_penalty[pen_x + x] + mv_penalty[pen_y + y])*penalty_factor;\
  562. COPY3_IF_LT(dminh, d, dx, x, dy, y)\
  563. }
  564. static inline int sad_hpel_motion_search(MpegEncContext * s,
  565. int *mx_ptr, int *my_ptr, int dmin,
  566. int xmin, int ymin, int xmax, int ymax,
  567. int pred_x, int pred_y, Picture *picture,
  568. int n, int size, uint16_t * const mv_penalty)
  569. {
  570. uint8_t *ref_picture= picture->data[0];
  571. uint32_t *score_map= s->me.score_map;
  572. const int penalty_factor= s->me.sub_penalty_factor;
  573. int mx, my, xx, yy, dminh;
  574. UINT8 *pix, *ptr;
  575. op_pixels_abs_func pix_abs_x2;
  576. op_pixels_abs_func pix_abs_y2;
  577. op_pixels_abs_func pix_abs_xy2;
  578. if(size==0){
  579. pix_abs_x2 = s->dsp.pix_abs16x16_x2;
  580. pix_abs_y2 = s->dsp.pix_abs16x16_y2;
  581. pix_abs_xy2= s->dsp.pix_abs16x16_xy2;
  582. }else{
  583. pix_abs_x2 = s->dsp.pix_abs8x8_x2;
  584. pix_abs_y2 = s->dsp.pix_abs8x8_y2;
  585. pix_abs_xy2= s->dsp.pix_abs8x8_xy2;
  586. }
  587. if(s->me.skip){
  588. // printf("S");
  589. *mx_ptr = 0;
  590. *my_ptr = 0;
  591. return dmin;
  592. }
  593. // printf("N");
  594. xx = 16 * s->mb_x + 8*(n&1);
  595. yy = 16 * s->mb_y + 8*(n>>1);
  596. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  597. mx = *mx_ptr;
  598. my = *my_ptr;
  599. ptr = ref_picture + ((yy + my) * s->linesize) + (xx + mx);
  600. dminh = dmin;
  601. if (mx > xmin && mx < xmax &&
  602. my > ymin && my < ymax) {
  603. int dx=0, dy=0;
  604. int d, pen_x, pen_y;
  605. const int index= (my<<ME_MAP_SHIFT) + mx;
  606. const int t= score_map[(index-(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  607. const int l= score_map[(index- 1 )&(ME_MAP_SIZE-1)];
  608. const int r= score_map[(index+ 1 )&(ME_MAP_SIZE-1)];
  609. const int b= score_map[(index+(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  610. mx<<=1;
  611. my<<=1;
  612. pen_x= pred_x + mx;
  613. pen_y= pred_y + my;
  614. ptr-= s->linesize;
  615. if(t<=b){
  616. CHECK_SAD_HALF_MV(y2 , 0, -1)
  617. if(l<=r){
  618. CHECK_SAD_HALF_MV(xy2, -1, -1)
  619. if(t+r<=b+l){
  620. CHECK_SAD_HALF_MV(xy2, +1, -1)
  621. ptr+= s->linesize;
  622. }else{
  623. ptr+= s->linesize;
  624. CHECK_SAD_HALF_MV(xy2, -1, +1)
  625. }
  626. CHECK_SAD_HALF_MV(x2 , -1, 0)
  627. }else{
  628. CHECK_SAD_HALF_MV(xy2, +1, -1)
  629. if(t+l<=b+r){
  630. CHECK_SAD_HALF_MV(xy2, -1, -1)
  631. ptr+= s->linesize;
  632. }else{
  633. ptr+= s->linesize;
  634. CHECK_SAD_HALF_MV(xy2, +1, +1)
  635. }
  636. CHECK_SAD_HALF_MV(x2 , +1, 0)
  637. }
  638. }else{
  639. if(l<=r){
  640. if(t+l<=b+r){
  641. CHECK_SAD_HALF_MV(xy2, -1, -1)
  642. ptr+= s->linesize;
  643. }else{
  644. ptr+= s->linesize;
  645. CHECK_SAD_HALF_MV(xy2, +1, +1)
  646. }
  647. CHECK_SAD_HALF_MV(x2 , -1, 0)
  648. CHECK_SAD_HALF_MV(xy2, -1, +1)
  649. }else{
  650. if(t+r<=b+l){
  651. CHECK_SAD_HALF_MV(xy2, +1, -1)
  652. ptr+= s->linesize;
  653. }else{
  654. ptr+= s->linesize;
  655. CHECK_SAD_HALF_MV(xy2, -1, +1)
  656. }
  657. CHECK_SAD_HALF_MV(x2 , +1, 0)
  658. CHECK_SAD_HALF_MV(xy2, +1, +1)
  659. }
  660. CHECK_SAD_HALF_MV(y2 , 0, +1)
  661. }
  662. mx+=dx;
  663. my+=dy;
  664. }else{
  665. mx<<=1;
  666. my<<=1;
  667. }
  668. *mx_ptr = mx;
  669. *my_ptr = my;
  670. return dminh;
  671. }
  672. static inline void set_p_mv_tables(MpegEncContext * s, int mx, int my, int mv4)
  673. {
  674. const int xy= s->mb_x + 1 + (s->mb_y + 1)*(s->mb_width + 2);
  675. s->p_mv_table[xy][0] = mx;
  676. s->p_mv_table[xy][1] = my;
  677. /* has allready been set to the 4 MV if 4MV is done */
  678. if(mv4){
  679. int mot_xy= s->block_index[0];
  680. s->motion_val[mot_xy ][0]= mx;
  681. s->motion_val[mot_xy ][1]= my;
  682. s->motion_val[mot_xy+1][0]= mx;
  683. s->motion_val[mot_xy+1][1]= my;
  684. mot_xy += s->block_wrap[0];
  685. s->motion_val[mot_xy ][0]= mx;
  686. s->motion_val[mot_xy ][1]= my;
  687. s->motion_val[mot_xy+1][0]= mx;
  688. s->motion_val[mot_xy+1][1]= my;
  689. }
  690. }
  691. static inline void get_limits(MpegEncContext *s, int *range, int *xmin, int *ymin, int *xmax, int *ymax, int f_code)
  692. {
  693. *range = 8 * (1 << (f_code - 1));
  694. /* XXX: temporary kludge to avoid overflow for msmpeg4 */
  695. if (s->out_format == FMT_H263 && !s->h263_msmpeg4)
  696. *range *= 2;
  697. if (s->unrestricted_mv) {
  698. *xmin = -16;
  699. *ymin = -16;
  700. if (s->h263_plus)
  701. *range *= 2;
  702. if(s->avctx->codec->id!=CODEC_ID_MPEG4){
  703. *xmax = s->mb_width*16;
  704. *ymax = s->mb_height*16;
  705. }else {
  706. *xmax = s->width;
  707. *ymax = s->height;
  708. }
  709. } else {
  710. *xmin = 0;
  711. *ymin = 0;
  712. *xmax = s->mb_width*16 - 16;
  713. *ymax = s->mb_height*16 - 16;
  714. }
  715. }
  716. static inline int h263_mv4_search(MpegEncContext *s, int xmin, int ymin, int xmax, int ymax, int mx, int my, int shift)
  717. {
  718. int block;
  719. int P[10][2];
  720. int dmin_sum=0, mx4_sum=0, my4_sum=0;
  721. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  722. for(block=0; block<4; block++){
  723. int mx4, my4;
  724. int pred_x4, pred_y4;
  725. int dmin4;
  726. static const int off[4]= {2, 1, 1, -1};
  727. const int mot_stride = s->block_wrap[0];
  728. const int mot_xy = s->block_index[block];
  729. // const int block_x= (block&1);
  730. // const int block_y= (block>>1);
  731. #if 1 // this saves us a bit of cliping work and shouldnt affect compression in a negative way
  732. const int rel_xmin4= xmin;
  733. const int rel_xmax4= xmax;
  734. const int rel_ymin4= ymin;
  735. const int rel_ymax4= ymax;
  736. #else
  737. const int rel_xmin4= xmin - block_x*8;
  738. const int rel_xmax4= xmax - block_x*8 + 8;
  739. const int rel_ymin4= ymin - block_y*8;
  740. const int rel_ymax4= ymax - block_y*8 + 8;
  741. #endif
  742. P_LEFT[0] = s->motion_val[mot_xy - 1][0];
  743. P_LEFT[1] = s->motion_val[mot_xy - 1][1];
  744. if(P_LEFT[0] > (rel_xmax4<<shift)) P_LEFT[0] = (rel_xmax4<<shift);
  745. /* special case for first line */
  746. if (s->mb_y == 0 && block<2) {
  747. pred_x4= P_LEFT[0];
  748. pred_y4= P_LEFT[1];
  749. } else {
  750. P_TOP[0] = s->motion_val[mot_xy - mot_stride ][0];
  751. P_TOP[1] = s->motion_val[mot_xy - mot_stride ][1];
  752. P_TOPRIGHT[0] = s->motion_val[mot_xy - mot_stride + off[block]][0];
  753. P_TOPRIGHT[1] = s->motion_val[mot_xy - mot_stride + off[block]][1];
  754. if(P_TOP[1] > (rel_ymax4<<shift)) P_TOP[1] = (rel_ymax4<<shift);
  755. if(P_TOPRIGHT[0] < (rel_xmin4<<shift)) P_TOPRIGHT[0]= (rel_xmin4<<shift);
  756. if(P_TOPRIGHT[0] > (rel_xmax4<<shift)) P_TOPRIGHT[0]= (rel_xmax4<<shift);
  757. if(P_TOPRIGHT[1] > (rel_ymax4<<shift)) P_TOPRIGHT[1]= (rel_ymax4<<shift);
  758. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  759. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  760. // if(s->out_format == FMT_H263){
  761. pred_x4 = P_MEDIAN[0];
  762. pred_y4 = P_MEDIAN[1];
  763. #if 0
  764. }else { /* mpeg1 at least */
  765. pred_x4= P_LEFT[0];
  766. pred_y4= P_LEFT[1];
  767. }
  768. #endif
  769. }
  770. P_MV1[0]= mx;
  771. P_MV1[1]= my;
  772. dmin4 = s->me.motion_search[1](s, block, &mx4, &my4, P, pred_x4, pred_y4, rel_xmin4, rel_ymin4, rel_xmax4, rel_ymax4,
  773. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  774. dmin4= s->me.sub_motion_search(s, &mx4, &my4, dmin4, rel_xmin4, rel_ymin4, rel_xmax4, rel_ymax4,
  775. pred_x4, pred_y4, &s->last_picture, block, 1, mv_penalty);
  776. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]){
  777. int dxy;
  778. const int offset= ((block&1) + (block>>1)*s->linesize)*8;
  779. uint8_t *dest_y = s->me.scratchpad + offset;
  780. if(s->quarter_sample){
  781. uint8_t *ref= s->last_picture.data[0] + (s->mb_x*16 + (mx4>>2)) + (s->mb_y*16 + (my4>>2))*s->linesize + offset;
  782. dxy = ((my4 & 3) << 2) | (mx4 & 3);
  783. if(s->no_rounding)
  784. s->dsp.put_no_rnd_qpel_pixels_tab[1][dxy](dest_y , ref , s->linesize);
  785. else
  786. s->dsp.put_qpel_pixels_tab [1][dxy](dest_y , ref , s->linesize);
  787. }else{
  788. uint8_t *ref= s->last_picture.data[0] + (s->mb_x*16 + (mx4>>1)) + (s->mb_y*16 + (my4>>1))*s->linesize + offset;
  789. dxy = ((my4 & 1) << 1) | (mx4 & 1);
  790. if(s->no_rounding)
  791. s->dsp.put_no_rnd_pixels_tab[1][dxy](dest_y , ref , s->linesize, 8);
  792. else
  793. s->dsp.put_pixels_tab [1][dxy](dest_y , ref , s->linesize, 8);
  794. }
  795. dmin_sum+= (mv_penalty[mx4-pred_x4] + mv_penalty[my4-pred_y4])*s->me.mb_penalty_factor;
  796. }else
  797. dmin_sum+= dmin4;
  798. if(s->quarter_sample){
  799. mx4_sum+= mx4/2;
  800. my4_sum+= my4/2;
  801. }else{
  802. mx4_sum+= mx4;
  803. my4_sum+= my4;
  804. }
  805. s->motion_val[ s->block_index[block] ][0]= mx4;
  806. s->motion_val[ s->block_index[block] ][1]= my4;
  807. }
  808. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]){
  809. dmin_sum += s->dsp.mb_cmp[0](s, s->new_picture.data[0] + s->mb_x*16 + s->mb_y*16*s->linesize, s->me.scratchpad, s->linesize);
  810. }
  811. if(s->avctx->mb_cmp&FF_CMP_CHROMA){
  812. int dxy;
  813. int mx, my;
  814. int offset;
  815. mx= ff_h263_round_chroma(mx4_sum);
  816. my= ff_h263_round_chroma(my4_sum);
  817. dxy = ((my & 1) << 1) | (mx & 1);
  818. offset= (s->mb_x*8 + (mx>>1)) + (s->mb_y*8 + (my>>1))*s->uvlinesize;
  819. if(s->no_rounding){
  820. s->dsp.put_no_rnd_pixels_tab[1][dxy](s->me.scratchpad , s->last_picture.data[1] + offset, s->uvlinesize, 8);
  821. s->dsp.put_no_rnd_pixels_tab[1][dxy](s->me.scratchpad+8 , s->last_picture.data[2] + offset, s->uvlinesize, 8);
  822. }else{
  823. s->dsp.put_pixels_tab [1][dxy](s->me.scratchpad , s->last_picture.data[1] + offset, s->uvlinesize, 8);
  824. s->dsp.put_pixels_tab [1][dxy](s->me.scratchpad+8 , s->last_picture.data[2] + offset, s->uvlinesize, 8);
  825. }
  826. dmin_sum += s->dsp.mb_cmp[1](s, s->new_picture.data[1] + s->mb_x*8 + s->mb_y*8*s->uvlinesize, s->me.scratchpad , s->uvlinesize);
  827. dmin_sum += s->dsp.mb_cmp[1](s, s->new_picture.data[2] + s->mb_x*8 + s->mb_y*8*s->uvlinesize, s->me.scratchpad+8, s->uvlinesize);
  828. }
  829. switch(s->avctx->mb_cmp&0xFF){
  830. /*case FF_CMP_SSE:
  831. return dmin_sum+ 32*s->qscale*s->qscale;*/
  832. case FF_CMP_RD:
  833. return dmin_sum;
  834. default:
  835. return dmin_sum+ 11*s->me.mb_penalty_factor;
  836. }
  837. }
  838. void ff_estimate_p_frame_motion(MpegEncContext * s,
  839. int mb_x, int mb_y)
  840. {
  841. UINT8 *pix, *ppix;
  842. int sum, varc, vard, mx, my, range, dmin, xx, yy;
  843. int xmin, ymin, xmax, ymax;
  844. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  845. int pred_x=0, pred_y=0;
  846. int P[10][2];
  847. const int shift= 1+s->quarter_sample;
  848. int mb_type=0;
  849. uint8_t *ref_picture= s->last_picture.data[0];
  850. Picture * const pic= &s->current_picture;
  851. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  852. assert(s->quarter_sample==0 || s->quarter_sample==1);
  853. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  854. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  855. s->me.mb_penalty_factor = get_penalty_factor(s, s->avctx->mb_cmp);
  856. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, s->f_code);
  857. rel_xmin= xmin - mb_x*16;
  858. rel_xmax= xmax - mb_x*16;
  859. rel_ymin= ymin - mb_y*16;
  860. rel_ymax= ymax - mb_y*16;
  861. s->me.skip=0;
  862. switch(s->me_method) {
  863. case ME_ZERO:
  864. default:
  865. no_motion_search(s, &mx, &my);
  866. mx-= mb_x*16;
  867. my-= mb_y*16;
  868. dmin = 0;
  869. break;
  870. case ME_FULL:
  871. dmin = full_motion_search(s, &mx, &my, range, xmin, ymin, xmax, ymax, ref_picture);
  872. mx-= mb_x*16;
  873. my-= mb_y*16;
  874. break;
  875. case ME_LOG:
  876. dmin = log_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  877. mx-= mb_x*16;
  878. my-= mb_y*16;
  879. break;
  880. case ME_PHODS:
  881. dmin = phods_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  882. mx-= mb_x*16;
  883. my-= mb_y*16;
  884. break;
  885. case ME_X1:
  886. case ME_EPZS:
  887. {
  888. const int mot_stride = s->block_wrap[0];
  889. const int mot_xy = s->block_index[0];
  890. P_LEFT[0] = s->motion_val[mot_xy - 1][0];
  891. P_LEFT[1] = s->motion_val[mot_xy - 1][1];
  892. if(P_LEFT[0] > (rel_xmax<<shift)) P_LEFT[0] = (rel_xmax<<shift);
  893. if(mb_y) {
  894. P_TOP[0] = s->motion_val[mot_xy - mot_stride ][0];
  895. P_TOP[1] = s->motion_val[mot_xy - mot_stride ][1];
  896. P_TOPRIGHT[0] = s->motion_val[mot_xy - mot_stride + 2][0];
  897. P_TOPRIGHT[1] = s->motion_val[mot_xy - mot_stride + 2][1];
  898. if(P_TOP[1] > (rel_ymax<<shift)) P_TOP[1] = (rel_ymax<<shift);
  899. if(P_TOPRIGHT[0] < (rel_xmin<<shift)) P_TOPRIGHT[0]= (rel_xmin<<shift);
  900. if(P_TOPRIGHT[1] > (rel_ymax<<shift)) P_TOPRIGHT[1]= (rel_ymax<<shift);
  901. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  902. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  903. if(s->out_format == FMT_H263){
  904. pred_x = P_MEDIAN[0];
  905. pred_y = P_MEDIAN[1];
  906. }else { /* mpeg1 at least */
  907. pred_x= P_LEFT[0];
  908. pred_y= P_LEFT[1];
  909. }
  910. }else{
  911. pred_x= P_LEFT[0];
  912. pred_y= P_LEFT[1];
  913. }
  914. }
  915. dmin = s->me.motion_search[0](s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  916. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  917. break;
  918. }
  919. /* intra / predictive decision */
  920. xx = mb_x * 16;
  921. yy = mb_y * 16;
  922. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  923. /* At this point (mx,my) are full-pell and the relative displacement */
  924. ppix = ref_picture + ((yy+my) * s->linesize) + (xx+mx);
  925. sum = s->dsp.pix_sum(pix, s->linesize);
  926. varc = (s->dsp.pix_norm1(pix, s->linesize) - (((unsigned)(sum*sum))>>8) + 500 + 128)>>8;
  927. vard = (s->dsp.sse[0](NULL, pix, ppix, s->linesize)+128)>>8;
  928. //printf("%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  929. pic->mb_var [s->mb_width * mb_y + mb_x] = varc;
  930. pic->mc_mb_var[s->mb_width * mb_y + mb_x] = vard;
  931. pic->mb_mean [s->mb_width * mb_y + mb_x] = (sum+128)>>8;
  932. // pic->mb_cmp_score[s->mb_width * mb_y + mb_x] = dmin;
  933. pic->mb_var_sum += varc;
  934. pic->mc_mb_var_sum += vard;
  935. //printf("E%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  936. #if 0
  937. printf("varc=%4d avg_var=%4d (sum=%4d) vard=%4d mx=%2d my=%2d\n",
  938. varc, s->avg_mb_var, sum, vard, mx - xx, my - yy);
  939. #endif
  940. if(s->flags&CODEC_FLAG_HQ){
  941. if (vard <= 64 || vard < varc)
  942. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  943. else
  944. s->scene_change_score+= s->qscale;
  945. if (vard*2 + 200 > varc)
  946. mb_type|= MB_TYPE_INTRA;
  947. if (varc*2 + 200 > vard){
  948. mb_type|= MB_TYPE_INTER;
  949. s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  950. pred_x, pred_y, &s->last_picture, 0, 0, mv_penalty);
  951. }else{
  952. mx <<=shift;
  953. my <<=shift;
  954. }
  955. if((s->flags&CODEC_FLAG_4MV)
  956. && !s->me.skip && varc>50 && vard>10){
  957. h263_mv4_search(s, rel_xmin, rel_ymin, rel_xmax, rel_ymax, mx, my, shift);
  958. mb_type|=MB_TYPE_INTER4V;
  959. set_p_mv_tables(s, mx, my, 0);
  960. }else
  961. set_p_mv_tables(s, mx, my, 1);
  962. }else{
  963. mb_type= MB_TYPE_INTER;
  964. dmin= s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  965. pred_x, pred_y, &s->last_picture, 0, 0, mv_penalty);
  966. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  967. dmin= s->me.get_mb_score(s, mx, my, pred_x, pred_y, &s->last_picture, mv_penalty);
  968. if((s->flags&CODEC_FLAG_4MV)
  969. && !s->me.skip && varc>50 && vard>10){
  970. int dmin4= h263_mv4_search(s, rel_xmin, rel_ymin, rel_xmax, rel_ymax, mx, my, shift);
  971. if(dmin4 < dmin){
  972. mb_type= MB_TYPE_INTER4V;
  973. dmin=dmin4;
  974. }
  975. }
  976. pic->mb_cmp_score[s->mb_width * mb_y + mb_x] = dmin;
  977. set_p_mv_tables(s, mx, my, mb_type!=MB_TYPE_INTER4V);
  978. if (vard <= 64 || vard < varc) {
  979. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  980. }else{
  981. s->scene_change_score+= s->qscale;
  982. }
  983. }
  984. s->mb_type[mb_y*s->mb_width + mb_x]= mb_type;
  985. }
  986. int ff_pre_estimate_p_frame_motion(MpegEncContext * s,
  987. int mb_x, int mb_y)
  988. {
  989. int mx, my, range, dmin;
  990. int xmin, ymin, xmax, ymax;
  991. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  992. int pred_x=0, pred_y=0;
  993. int P[10][2];
  994. const int shift= 1+s->quarter_sample;
  995. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  996. const int mv_stride= s->mb_width + 2;
  997. const int xy= mb_x + 1 + (mb_y + 1)*mv_stride;
  998. assert(s->quarter_sample==0 || s->quarter_sample==1);
  999. s->me.pre_penalty_factor = get_penalty_factor(s, s->avctx->me_pre_cmp);
  1000. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, s->f_code);
  1001. rel_xmin= xmin - mb_x*16;
  1002. rel_xmax= xmax - mb_x*16;
  1003. rel_ymin= ymin - mb_y*16;
  1004. rel_ymax= ymax - mb_y*16;
  1005. s->me.skip=0;
  1006. P_LEFT[0] = s->p_mv_table[xy + 1][0];
  1007. P_LEFT[1] = s->p_mv_table[xy + 1][1];
  1008. if(P_LEFT[0] < (rel_xmin<<shift)) P_LEFT[0] = (rel_xmin<<shift);
  1009. /* special case for first line */
  1010. if (mb_y == s->mb_height-1) {
  1011. pred_x= P_LEFT[0];
  1012. pred_y= P_LEFT[1];
  1013. P_TOP[0]= P_TOPRIGHT[0]= P_MEDIAN[0]=
  1014. P_TOP[1]= P_TOPRIGHT[1]= P_MEDIAN[1]= 0; //FIXME
  1015. } else {
  1016. P_TOP[0] = s->p_mv_table[xy + mv_stride ][0];
  1017. P_TOP[1] = s->p_mv_table[xy + mv_stride ][1];
  1018. P_TOPRIGHT[0] = s->p_mv_table[xy + mv_stride - 1][0];
  1019. P_TOPRIGHT[1] = s->p_mv_table[xy + mv_stride - 1][1];
  1020. if(P_TOP[1] < (rel_ymin<<shift)) P_TOP[1] = (rel_ymin<<shift);
  1021. if(P_TOPRIGHT[0] > (rel_xmax<<shift)) P_TOPRIGHT[0]= (rel_xmax<<shift);
  1022. if(P_TOPRIGHT[1] < (rel_ymin<<shift)) P_TOPRIGHT[1]= (rel_ymin<<shift);
  1023. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1024. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1025. pred_x = P_MEDIAN[0];
  1026. pred_y = P_MEDIAN[1];
  1027. }
  1028. dmin = s->me.pre_motion_search(s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1029. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  1030. s->p_mv_table[xy][0] = mx<<shift;
  1031. s->p_mv_table[xy][1] = my<<shift;
  1032. return dmin;
  1033. }
  1034. int ff_estimate_motion_b(MpegEncContext * s,
  1035. int mb_x, int mb_y, int16_t (*mv_table)[2], Picture *picture, int f_code)
  1036. {
  1037. int mx, my, range, dmin;
  1038. int xmin, ymin, xmax, ymax;
  1039. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  1040. int pred_x=0, pred_y=0;
  1041. int P[10][2];
  1042. const int shift= 1+s->quarter_sample;
  1043. const int mot_stride = s->mb_width + 2;
  1044. const int mot_xy = (mb_y + 1)*mot_stride + mb_x + 1;
  1045. uint8_t * const ref_picture= picture->data[0];
  1046. uint16_t * const mv_penalty= s->me.mv_penalty[f_code] + MAX_MV;
  1047. int mv_scale;
  1048. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  1049. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  1050. s->me.mb_penalty_factor = get_penalty_factor(s, s->avctx->mb_cmp);
  1051. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, f_code);
  1052. rel_xmin= xmin - mb_x*16;
  1053. rel_xmax= xmax - mb_x*16;
  1054. rel_ymin= ymin - mb_y*16;
  1055. rel_ymax= ymax - mb_y*16;
  1056. switch(s->me_method) {
  1057. case ME_ZERO:
  1058. default:
  1059. no_motion_search(s, &mx, &my);
  1060. dmin = 0;
  1061. mx-= mb_x*16;
  1062. my-= mb_y*16;
  1063. break;
  1064. case ME_FULL:
  1065. dmin = full_motion_search(s, &mx, &my, range, xmin, ymin, xmax, ymax, ref_picture);
  1066. mx-= mb_x*16;
  1067. my-= mb_y*16;
  1068. break;
  1069. case ME_LOG:
  1070. dmin = log_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  1071. mx-= mb_x*16;
  1072. my-= mb_y*16;
  1073. break;
  1074. case ME_PHODS:
  1075. dmin = phods_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  1076. mx-= mb_x*16;
  1077. my-= mb_y*16;
  1078. break;
  1079. case ME_X1:
  1080. case ME_EPZS:
  1081. {
  1082. P_LEFT[0] = mv_table[mot_xy - 1][0];
  1083. P_LEFT[1] = mv_table[mot_xy - 1][1];
  1084. if(P_LEFT[0] > (rel_xmax<<shift)) P_LEFT[0] = (rel_xmax<<shift);
  1085. /* special case for first line */
  1086. if (mb_y) {
  1087. P_TOP[0] = mv_table[mot_xy - mot_stride ][0];
  1088. P_TOP[1] = mv_table[mot_xy - mot_stride ][1];
  1089. P_TOPRIGHT[0] = mv_table[mot_xy - mot_stride + 1 ][0];
  1090. P_TOPRIGHT[1] = mv_table[mot_xy - mot_stride + 1 ][1];
  1091. if(P_TOP[1] > (rel_ymax<<shift)) P_TOP[1]= (rel_ymax<<shift);
  1092. if(P_TOPRIGHT[0] < (rel_xmin<<shift)) P_TOPRIGHT[0]= (rel_xmin<<shift);
  1093. if(P_TOPRIGHT[1] > (rel_ymax<<shift)) P_TOPRIGHT[1]= (rel_ymax<<shift);
  1094. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1095. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1096. }
  1097. pred_x= P_LEFT[0];
  1098. pred_y= P_LEFT[1];
  1099. }
  1100. if(mv_table == s->b_forw_mv_table){
  1101. mv_scale= (s->pb_time<<16) / (s->pp_time<<shift);
  1102. }else{
  1103. mv_scale= ((s->pb_time - s->pp_time)<<16) / (s->pp_time<<shift);
  1104. }
  1105. dmin = s->me.motion_search[0](s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1106. picture, s->p_mv_table, mv_scale, mv_penalty);
  1107. break;
  1108. }
  1109. dmin= s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1110. pred_x, pred_y, picture, 0, 0, mv_penalty);
  1111. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1112. dmin= s->me.get_mb_score(s, mx, my, pred_x, pred_y, picture, mv_penalty);
  1113. //printf("%d %d %d %d//", s->mb_x, s->mb_y, mx, my);
  1114. // s->mb_type[mb_y*s->mb_width + mb_x]= mb_type;
  1115. mv_table[mot_xy][0]= mx;
  1116. mv_table[mot_xy][1]= my;
  1117. return dmin;
  1118. }
  1119. static inline int check_bidir_mv(MpegEncContext * s,
  1120. int mb_x, int mb_y,
  1121. int motion_fx, int motion_fy,
  1122. int motion_bx, int motion_by,
  1123. int pred_fx, int pred_fy,
  1124. int pred_bx, int pred_by)
  1125. {
  1126. //FIXME optimize?
  1127. //FIXME move into template?
  1128. //FIXME better f_code prediction (max mv & distance)
  1129. UINT16 *mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV; // f_code of the prev frame
  1130. uint8_t *dest_y = s->me.scratchpad;
  1131. uint8_t *ptr;
  1132. int dxy;
  1133. int src_x, src_y;
  1134. int fbmin;
  1135. if(s->quarter_sample){
  1136. dxy = ((motion_fy & 3) << 2) | (motion_fx & 3);
  1137. src_x = mb_x * 16 + (motion_fx >> 2);
  1138. src_y = mb_y * 16 + (motion_fy >> 2);
  1139. assert(src_x >=-16 && src_x<=s->width);
  1140. assert(src_y >=-16 && src_y<=s->height);
  1141. ptr = s->last_picture.data[0] + (src_y * s->linesize) + src_x;
  1142. s->dsp.put_qpel_pixels_tab[0][dxy](dest_y , ptr , s->linesize);
  1143. dxy = ((motion_by & 3) << 2) | (motion_bx & 3);
  1144. src_x = mb_x * 16 + (motion_bx >> 2);
  1145. src_y = mb_y * 16 + (motion_by >> 2);
  1146. assert(src_x >=-16 && src_x<=s->width);
  1147. assert(src_y >=-16 && src_y<=s->height);
  1148. ptr = s->next_picture.data[0] + (src_y * s->linesize) + src_x;
  1149. s->dsp.avg_qpel_pixels_tab[0][dxy](dest_y , ptr , s->linesize);
  1150. }else{
  1151. dxy = ((motion_fy & 1) << 1) | (motion_fx & 1);
  1152. src_x = mb_x * 16 + (motion_fx >> 1);
  1153. src_y = mb_y * 16 + (motion_fy >> 1);
  1154. assert(src_x >=-16 && src_x<=s->width);
  1155. assert(src_y >=-16 && src_y<=s->height);
  1156. ptr = s->last_picture.data[0] + (src_y * s->linesize) + src_x;
  1157. s->dsp.put_pixels_tab[0][dxy](dest_y , ptr , s->linesize, 16);
  1158. dxy = ((motion_by & 1) << 1) | (motion_bx & 1);
  1159. src_x = mb_x * 16 + (motion_bx >> 1);
  1160. src_y = mb_y * 16 + (motion_by >> 1);
  1161. assert(src_x >=-16 && src_x<=s->width);
  1162. assert(src_y >=-16 && src_y<=s->height);
  1163. ptr = s->next_picture.data[0] + (src_y * s->linesize) + src_x;
  1164. s->dsp.avg_pixels_tab[0][dxy](dest_y , ptr , s->linesize, 16);
  1165. }
  1166. fbmin = (mv_penalty[motion_fx-pred_fx] + mv_penalty[motion_fy-pred_fy])*s->me.mb_penalty_factor
  1167. +(mv_penalty[motion_bx-pred_bx] + mv_penalty[motion_by-pred_by])*s->me.mb_penalty_factor
  1168. + s->dsp.mb_cmp[0](s, s->new_picture.data[0] + mb_x*16 + mb_y*16*s->linesize, dest_y, s->linesize);
  1169. if(s->avctx->mb_cmp&FF_CMP_CHROMA){
  1170. }
  1171. //FIXME CHROMA !!!
  1172. return fbmin;
  1173. }
  1174. /* refine the bidir vectors in hq mode and return the score in both lq & hq mode*/
  1175. static inline int bidir_refine(MpegEncContext * s,
  1176. int mb_x, int mb_y)
  1177. {
  1178. const int mot_stride = s->mb_width + 2;
  1179. const int xy = (mb_y + 1)*mot_stride + mb_x + 1;
  1180. int fbmin;
  1181. int pred_fx= s->b_bidir_forw_mv_table[xy-1][0];
  1182. int pred_fy= s->b_bidir_forw_mv_table[xy-1][1];
  1183. int pred_bx= s->b_bidir_back_mv_table[xy-1][0];
  1184. int pred_by= s->b_bidir_back_mv_table[xy-1][1];
  1185. int motion_fx= s->b_bidir_forw_mv_table[xy][0]= s->b_forw_mv_table[xy][0];
  1186. int motion_fy= s->b_bidir_forw_mv_table[xy][1]= s->b_forw_mv_table[xy][1];
  1187. int motion_bx= s->b_bidir_back_mv_table[xy][0]= s->b_back_mv_table[xy][0];
  1188. int motion_by= s->b_bidir_back_mv_table[xy][1]= s->b_back_mv_table[xy][1];
  1189. //FIXME do refinement and add flag
  1190. fbmin= check_bidir_mv(s, mb_x, mb_y,
  1191. motion_fx, motion_fy,
  1192. motion_bx, motion_by,
  1193. pred_fx, pred_fy,
  1194. pred_bx, pred_by);
  1195. return fbmin;
  1196. }
  1197. static inline int direct_search(MpegEncContext * s,
  1198. int mb_x, int mb_y)
  1199. {
  1200. int P[10][2];
  1201. const int mot_stride = s->mb_width + 2;
  1202. const int mot_xy = (mb_y + 1)*mot_stride + mb_x + 1;
  1203. const int shift= 1+s->quarter_sample;
  1204. int dmin, i;
  1205. const int time_pp= s->pp_time;
  1206. const int time_pb= s->pb_time;
  1207. int mx, my, xmin, xmax, ymin, ymax;
  1208. int16_t (*mv_table)[2]= s->b_direct_mv_table;
  1209. uint16_t * const mv_penalty= s->me.mv_penalty[1] + MAX_MV;
  1210. ymin= xmin=(-32)>>shift;
  1211. ymax= xmax= 31>>shift;
  1212. if(s->co_located_type_table[mb_x + mb_y*s->mb_width]==CO_LOCATED_TYPE_4MV){
  1213. s->mv_type= MV_TYPE_8X8;
  1214. }else{
  1215. s->mv_type= MV_TYPE_16X16;
  1216. }
  1217. for(i=0; i<4; i++){
  1218. int index= s->block_index[i];
  1219. int min, max;
  1220. s->me.co_located_mv[i][0]= s->motion_val[index][0];
  1221. s->me.co_located_mv[i][1]= s->motion_val[index][1];
  1222. s->me.direct_basis_mv[i][0]= s->me.co_located_mv[i][0]*time_pb/time_pp + ((i& 1)<<(shift+3));
  1223. s->me.direct_basis_mv[i][1]= s->me.co_located_mv[i][1]*time_pb/time_pp + ((i>>1)<<(shift+3));
  1224. // s->me.direct_basis_mv[1][i][0]= s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + ((i &1)<<(shift+3);
  1225. // s->me.direct_basis_mv[1][i][1]= s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + ((i>>1)<<(shift+3);
  1226. max= FFMAX(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1227. min= FFMIN(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1228. max+= (2*mb_x + (i& 1))*8 + 1; // +-1 is for the simpler rounding
  1229. min+= (2*mb_x + (i& 1))*8 - 1;
  1230. xmax= FFMIN(xmax, s->width - max);
  1231. xmin= FFMAX(xmin, - 16 - min);
  1232. max= FFMAX(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1233. min= FFMIN(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1234. max+= (2*mb_y + (i>>1))*8 + 1; // +-1 is for the simpler rounding
  1235. min+= (2*mb_y + (i>>1))*8 - 1;
  1236. ymax= FFMIN(ymax, s->height - max);
  1237. ymin= FFMAX(ymin, - 16 - min);
  1238. if(s->mv_type == MV_TYPE_16X16) break;
  1239. }
  1240. assert(xmax <= 15 && ymax <= 15 && xmin >= -16 && ymin >= -16);
  1241. if(xmax < 0 || xmin >0 || ymax < 0 || ymin > 0){
  1242. s->b_direct_mv_table[mot_xy][0]= 0;
  1243. s->b_direct_mv_table[mot_xy][1]= 0;
  1244. return 256*256*256*64;
  1245. }
  1246. P_LEFT[0] = clip(mv_table[mot_xy - 1][0], xmin<<shift, xmax<<shift);
  1247. P_LEFT[1] = clip(mv_table[mot_xy - 1][1], ymin<<shift, ymax<<shift);
  1248. /* special case for first line */
  1249. if (mb_y) {
  1250. P_TOP[0] = clip(mv_table[mot_xy - mot_stride ][0], xmin<<shift, xmax<<shift);
  1251. P_TOP[1] = clip(mv_table[mot_xy - mot_stride ][1], ymin<<shift, ymax<<shift);
  1252. P_TOPRIGHT[0] = clip(mv_table[mot_xy - mot_stride + 1 ][0], xmin<<shift, xmax<<shift);
  1253. P_TOPRIGHT[1] = clip(mv_table[mot_xy - mot_stride + 1 ][1], ymin<<shift, ymax<<shift);
  1254. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1255. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1256. }
  1257. //FIXME direct_search ptr in context!!! (needed for chroma anyway or this will get messy)
  1258. if(s->flags&CODEC_FLAG_QPEL){
  1259. dmin = simple_direct_qpel_epzs_motion_search(s, 0, &mx, &my, P, 0, 0, xmin, ymin, xmax, ymax,
  1260. &s->last_picture, mv_table, 1<<14, mv_penalty);
  1261. dmin = simple_direct_qpel_qpel_motion_search(s, &mx, &my, dmin, xmin, ymin, xmax, ymax,
  1262. 0, 0, &s->last_picture, 0, 0, mv_penalty);
  1263. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1264. dmin= simple_direct_qpel_qpel_get_mb_score(s, mx, my, 0, 0, &s->last_picture, mv_penalty);
  1265. }else{
  1266. dmin = simple_direct_hpel_epzs_motion_search(s, 0, &mx, &my, P, 0, 0, xmin, ymin, xmax, ymax,
  1267. &s->last_picture, mv_table, 1<<15, mv_penalty);
  1268. dmin = simple_direct_hpel_hpel_motion_search(s, &mx, &my, dmin, xmin, ymin, xmax, ymax,
  1269. 0, 0, &s->last_picture, 0, 0, mv_penalty);
  1270. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1271. dmin= simple_direct_hpel_hpel_get_mb_score(s, mx, my, 0, 0, &s->last_picture, mv_penalty);
  1272. }
  1273. s->b_direct_mv_table[mot_xy][0]= mx;
  1274. s->b_direct_mv_table[mot_xy][1]= my;
  1275. return dmin;
  1276. }
  1277. void ff_estimate_b_frame_motion(MpegEncContext * s,
  1278. int mb_x, int mb_y)
  1279. {
  1280. const int penalty_factor= s->me.mb_penalty_factor;
  1281. int fmin, bmin, dmin, fbmin;
  1282. int type=0;
  1283. dmin= direct_search(s, mb_x, mb_y);
  1284. fmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_forw_mv_table, &s->last_picture, s->f_code) + 3*penalty_factor;
  1285. bmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_back_mv_table, &s->next_picture, s->b_code) + 2*penalty_factor;
  1286. //printf(" %d %d ", s->b_forw_mv_table[xy][0], s->b_forw_mv_table[xy][1]);
  1287. fbmin= bidir_refine(s, mb_x, mb_y) + penalty_factor;
  1288. //printf("%d %d %d %d\n", dmin, fmin, bmin, fbmin);
  1289. {
  1290. int score= fmin;
  1291. type = MB_TYPE_FORWARD;
  1292. // RAL: No MB_TYPE_DIRECT in MPEG-1 video (only MPEG-4)
  1293. if (s->codec_id != CODEC_ID_MPEG1VIDEO && dmin <= score){
  1294. score = dmin;
  1295. type = MB_TYPE_DIRECT;
  1296. }
  1297. if(bmin<score){
  1298. score=bmin;
  1299. type= MB_TYPE_BACKWARD;
  1300. }
  1301. if(fbmin<score){
  1302. score=fbmin;
  1303. type= MB_TYPE_BIDIR;
  1304. }
  1305. score= ((unsigned)(score*score + 128*256))>>16;
  1306. s->current_picture.mc_mb_var_sum += score;
  1307. s->current_picture.mc_mb_var[mb_y*s->mb_width + mb_x] = score; //FIXME use SSE
  1308. }
  1309. if(s->flags&CODEC_FLAG_HQ){
  1310. type= MB_TYPE_FORWARD | MB_TYPE_BACKWARD | MB_TYPE_BIDIR | MB_TYPE_DIRECT; //FIXME something smarter
  1311. if(dmin>256*256*16) type&= ~MB_TYPE_DIRECT; //dont try direct mode if its invalid for this MB
  1312. }
  1313. s->mb_type[mb_y*s->mb_width + mb_x]= type;
  1314. }
  1315. /* find best f_code for ME which do unlimited searches */
  1316. int ff_get_best_fcode(MpegEncContext * s, int16_t (*mv_table)[2], int type)
  1317. {
  1318. if(s->me_method>=ME_EPZS){
  1319. int score[8];
  1320. int i, y;
  1321. UINT8 * fcode_tab= s->fcode_tab;
  1322. int best_fcode=-1;
  1323. int best_score=-10000000;
  1324. for(i=0; i<8; i++) score[i]= s->mb_num*(8-i);
  1325. for(y=0; y<s->mb_height; y++){
  1326. int x;
  1327. int xy= (y+1)* (s->mb_width+2) + 1;
  1328. i= y*s->mb_width;
  1329. for(x=0; x<s->mb_width; x++){
  1330. if(s->mb_type[i] & type){
  1331. int fcode= FFMAX(fcode_tab[mv_table[xy][0] + MAX_MV],
  1332. fcode_tab[mv_table[xy][1] + MAX_MV]);
  1333. int j;
  1334. for(j=0; j<fcode && j<8; j++){
  1335. if(s->pict_type==B_TYPE || s->current_picture.mc_mb_var[i] < s->current_picture.mb_var[i])
  1336. score[j]-= 170;
  1337. }
  1338. }
  1339. i++;
  1340. xy++;
  1341. }
  1342. }
  1343. for(i=1; i<8; i++){
  1344. if(score[i] > best_score){
  1345. best_score= score[i];
  1346. best_fcode= i;
  1347. }
  1348. // printf("%d %d\n", i, score[i]);
  1349. }
  1350. // printf("fcode: %d type: %d\n", i, s->pict_type);
  1351. return best_fcode;
  1352. /* for(i=0; i<=MAX_FCODE; i++){
  1353. printf("%d ", mv_num[i]);
  1354. }
  1355. printf("\n");*/
  1356. }else{
  1357. return 1;
  1358. }
  1359. }
  1360. void ff_fix_long_p_mvs(MpegEncContext * s)
  1361. {
  1362. const int f_code= s->f_code;
  1363. int y;
  1364. UINT8 * fcode_tab= s->fcode_tab;
  1365. //int clip=0;
  1366. //int noclip=0;
  1367. /* clip / convert to intra 16x16 type MVs */
  1368. for(y=0; y<s->mb_height; y++){
  1369. int x;
  1370. int xy= (y+1)* (s->mb_width+2)+1;
  1371. int i= y*s->mb_width;
  1372. for(x=0; x<s->mb_width; x++){
  1373. if(s->mb_type[i]&MB_TYPE_INTER){
  1374. if( fcode_tab[s->p_mv_table[xy][0] + MAX_MV] > f_code
  1375. || fcode_tab[s->p_mv_table[xy][0] + MAX_MV] == 0
  1376. || fcode_tab[s->p_mv_table[xy][1] + MAX_MV] > f_code
  1377. || fcode_tab[s->p_mv_table[xy][1] + MAX_MV] == 0 ){
  1378. s->mb_type[i] &= ~MB_TYPE_INTER;
  1379. s->mb_type[i] |= MB_TYPE_INTRA;
  1380. s->p_mv_table[xy][0] = 0;
  1381. s->p_mv_table[xy][1] = 0;
  1382. //clip++;
  1383. }
  1384. //else
  1385. // noclip++;
  1386. }
  1387. xy++;
  1388. i++;
  1389. }
  1390. }
  1391. //printf("%d no:%d %d//\n", clip, noclip, f_code);
  1392. if(s->flags&CODEC_FLAG_4MV){
  1393. const int wrap= 2+ s->mb_width*2;
  1394. /* clip / convert to intra 8x8 type MVs */
  1395. for(y=0; y<s->mb_height; y++){
  1396. int xy= (y*2 + 1)*wrap + 1;
  1397. int i= y*s->mb_width;
  1398. int x;
  1399. for(x=0; x<s->mb_width; x++){
  1400. if(s->mb_type[i]&MB_TYPE_INTER4V){
  1401. int block;
  1402. for(block=0; block<4; block++){
  1403. int off= (block& 1) + (block>>1)*wrap;
  1404. int mx= s->motion_val[ xy + off ][0];
  1405. int my= s->motion_val[ xy + off ][1];
  1406. if( fcode_tab[mx + MAX_MV] > f_code
  1407. || fcode_tab[mx + MAX_MV] == 0
  1408. || fcode_tab[my + MAX_MV] > f_code
  1409. || fcode_tab[my + MAX_MV] == 0 ){
  1410. s->mb_type[i] &= ~MB_TYPE_INTER4V;
  1411. s->mb_type[i] |= MB_TYPE_INTRA;
  1412. }
  1413. }
  1414. }
  1415. xy+=2;
  1416. i++;
  1417. }
  1418. }
  1419. }
  1420. }
  1421. void ff_fix_long_b_mvs(MpegEncContext * s, int16_t (*mv_table)[2], int f_code, int type)
  1422. {
  1423. int y;
  1424. UINT8 * fcode_tab= s->fcode_tab;
  1425. // RAL: 8 in MPEG-1, 16 in MPEG-4
  1426. int range = (((s->codec_id == CODEC_ID_MPEG1VIDEO) ? 8 : 16) << f_code);
  1427. /* clip / convert to intra 16x16 type MVs */
  1428. for(y=0; y<s->mb_height; y++){
  1429. int x;
  1430. int xy= (y+1)* (s->mb_width+2)+1;
  1431. int i= y*s->mb_width;
  1432. for(x=0; x<s->mb_width; x++)
  1433. {
  1434. if (s->mb_type[i] & type) // RAL: "type" test added...
  1435. {
  1436. if (fcode_tab[mv_table[xy][0] + MAX_MV] > f_code || fcode_tab[mv_table[xy][0] + MAX_MV] == 0)
  1437. {
  1438. if(mv_table[xy][0]>0)
  1439. mv_table[xy][0]= range-1;
  1440. else
  1441. mv_table[xy][0]= -range;
  1442. }
  1443. if (fcode_tab[mv_table[xy][1] + MAX_MV] > f_code || fcode_tab[mv_table[xy][1] + MAX_MV] == 0)
  1444. {
  1445. if(mv_table[xy][1]>0)
  1446. mv_table[xy][1]= range-1;
  1447. else
  1448. mv_table[xy][1]= -range;
  1449. }
  1450. }
  1451. xy++;
  1452. i++;
  1453. }
  1454. }
  1455. }