You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

6209 lines
242KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 decoder
  26. */
  27. #include "internal.h"
  28. #include "avcodec.h"
  29. #include "error_resilience.h"
  30. #include "mpegutils.h"
  31. #include "mpegvideo.h"
  32. #include "h263.h"
  33. #include "h264chroma.h"
  34. #include "qpeldsp.h"
  35. #include "vc1.h"
  36. #include "vc1data.h"
  37. #include "vc1acdata.h"
  38. #include "msmpeg4data.h"
  39. #include "unary.h"
  40. #include "mathops.h"
  41. #undef NDEBUG
  42. #include <assert.h>
  43. #define MB_INTRA_VLC_BITS 9
  44. #define DC_VLC_BITS 9
  45. // offset tables for interlaced picture MVDATA decoding
  46. static const int offset_table1[9] = { 0, 1, 2, 4, 8, 16, 32, 64, 128 };
  47. static const int offset_table2[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
  48. /***********************************************************************/
  49. /**
  50. * @name VC-1 Bitplane decoding
  51. * @see 8.7, p56
  52. * @{
  53. */
  54. /**
  55. * Imode types
  56. * @{
  57. */
  58. enum Imode {
  59. IMODE_RAW,
  60. IMODE_NORM2,
  61. IMODE_DIFF2,
  62. IMODE_NORM6,
  63. IMODE_DIFF6,
  64. IMODE_ROWSKIP,
  65. IMODE_COLSKIP
  66. };
  67. /** @} */ //imode defines
  68. static void init_block_index(VC1Context *v)
  69. {
  70. MpegEncContext *s = &v->s;
  71. ff_init_block_index(s);
  72. if (v->field_mode && !(v->second_field ^ v->tff)) {
  73. s->dest[0] += s->current_picture_ptr->f->linesize[0];
  74. s->dest[1] += s->current_picture_ptr->f->linesize[1];
  75. s->dest[2] += s->current_picture_ptr->f->linesize[2];
  76. }
  77. }
  78. /** @} */ //Bitplane group
  79. static void vc1_put_signed_blocks_clamped(VC1Context *v)
  80. {
  81. MpegEncContext *s = &v->s;
  82. int topleft_mb_pos, top_mb_pos;
  83. int stride_y, fieldtx = 0;
  84. int v_dist;
  85. /* The put pixels loop is always one MB row behind the decoding loop,
  86. * because we can only put pixels when overlap filtering is done, and
  87. * for filtering of the bottom edge of a MB, we need the next MB row
  88. * present as well.
  89. * Within the row, the put pixels loop is also one MB col behind the
  90. * decoding loop. The reason for this is again, because for filtering
  91. * of the right MB edge, we need the next MB present. */
  92. if (!s->first_slice_line) {
  93. if (s->mb_x) {
  94. topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
  95. if (v->fcm == ILACE_FRAME)
  96. fieldtx = v->fieldtx_plane[topleft_mb_pos];
  97. stride_y = s->linesize << fieldtx;
  98. v_dist = (16 - fieldtx) >> (fieldtx == 0);
  99. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
  100. s->dest[0] - 16 * s->linesize - 16,
  101. stride_y);
  102. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
  103. s->dest[0] - 16 * s->linesize - 8,
  104. stride_y);
  105. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
  106. s->dest[0] - v_dist * s->linesize - 16,
  107. stride_y);
  108. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
  109. s->dest[0] - v_dist * s->linesize - 8,
  110. stride_y);
  111. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
  112. s->dest[1] - 8 * s->uvlinesize - 8,
  113. s->uvlinesize);
  114. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
  115. s->dest[2] - 8 * s->uvlinesize - 8,
  116. s->uvlinesize);
  117. }
  118. if (s->mb_x == s->mb_width - 1) {
  119. top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
  120. if (v->fcm == ILACE_FRAME)
  121. fieldtx = v->fieldtx_plane[top_mb_pos];
  122. stride_y = s->linesize << fieldtx;
  123. v_dist = fieldtx ? 15 : 8;
  124. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
  125. s->dest[0] - 16 * s->linesize,
  126. stride_y);
  127. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
  128. s->dest[0] - 16 * s->linesize + 8,
  129. stride_y);
  130. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
  131. s->dest[0] - v_dist * s->linesize,
  132. stride_y);
  133. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
  134. s->dest[0] - v_dist * s->linesize + 8,
  135. stride_y);
  136. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
  137. s->dest[1] - 8 * s->uvlinesize,
  138. s->uvlinesize);
  139. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
  140. s->dest[2] - 8 * s->uvlinesize,
  141. s->uvlinesize);
  142. }
  143. }
  144. #define inc_blk_idx(idx) do { \
  145. idx++; \
  146. if (idx >= v->n_allocated_blks) \
  147. idx = 0; \
  148. } while (0)
  149. inc_blk_idx(v->topleft_blk_idx);
  150. inc_blk_idx(v->top_blk_idx);
  151. inc_blk_idx(v->left_blk_idx);
  152. inc_blk_idx(v->cur_blk_idx);
  153. }
  154. static void vc1_loop_filter_iblk(VC1Context *v, int pq)
  155. {
  156. MpegEncContext *s = &v->s;
  157. int j;
  158. if (!s->first_slice_line) {
  159. v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  160. if (s->mb_x)
  161. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  162. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  163. for (j = 0; j < 2; j++) {
  164. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1], s->uvlinesize, pq);
  165. if (s->mb_x)
  166. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  167. }
  168. }
  169. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8 * s->linesize, s->linesize, pq);
  170. if (s->mb_y == s->end_mb_y - 1) {
  171. if (s->mb_x) {
  172. v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
  173. v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
  174. v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
  175. }
  176. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
  177. }
  178. }
  179. static void vc1_loop_filter_iblk_delayed(VC1Context *v, int pq)
  180. {
  181. MpegEncContext *s = &v->s;
  182. int j;
  183. /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
  184. * means it runs two rows/cols behind the decoding loop. */
  185. if (!s->first_slice_line) {
  186. if (s->mb_x) {
  187. if (s->mb_y >= s->start_mb_y + 2) {
  188. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  189. if (s->mb_x >= 2)
  190. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
  191. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
  192. for (j = 0; j < 2; j++) {
  193. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  194. if (s->mb_x >= 2) {
  195. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
  196. }
  197. }
  198. }
  199. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
  200. }
  201. if (s->mb_x == s->mb_width - 1) {
  202. if (s->mb_y >= s->start_mb_y + 2) {
  203. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  204. if (s->mb_x)
  205. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
  206. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
  207. for (j = 0; j < 2; j++) {
  208. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  209. if (s->mb_x >= 2) {
  210. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize, s->uvlinesize, pq);
  211. }
  212. }
  213. }
  214. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
  215. }
  216. if (s->mb_y == s->end_mb_y) {
  217. if (s->mb_x) {
  218. if (s->mb_x >= 2)
  219. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  220. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
  221. if (s->mb_x >= 2) {
  222. for (j = 0; j < 2; j++) {
  223. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  224. }
  225. }
  226. }
  227. if (s->mb_x == s->mb_width - 1) {
  228. if (s->mb_x)
  229. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  230. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  231. if (s->mb_x) {
  232. for (j = 0; j < 2; j++) {
  233. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  234. }
  235. }
  236. }
  237. }
  238. }
  239. }
  240. static void vc1_smooth_overlap_filter_iblk(VC1Context *v)
  241. {
  242. MpegEncContext *s = &v->s;
  243. int mb_pos;
  244. if (v->condover == CONDOVER_NONE)
  245. return;
  246. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  247. /* Within a MB, the horizontal overlap always runs before the vertical.
  248. * To accomplish that, we run the H on left and internal borders of the
  249. * currently decoded MB. Then, we wait for the next overlap iteration
  250. * to do H overlap on the right edge of this MB, before moving over and
  251. * running the V overlap. Therefore, the V overlap makes us trail by one
  252. * MB col and the H overlap filter makes us trail by one MB row. This
  253. * is reflected in the time at which we run the put_pixels loop. */
  254. if (v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
  255. if (s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  256. v->over_flags_plane[mb_pos - 1])) {
  257. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][1],
  258. v->block[v->cur_blk_idx][0]);
  259. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][3],
  260. v->block[v->cur_blk_idx][2]);
  261. if (!(s->flags & CODEC_FLAG_GRAY)) {
  262. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][4],
  263. v->block[v->cur_blk_idx][4]);
  264. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][5],
  265. v->block[v->cur_blk_idx][5]);
  266. }
  267. }
  268. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][0],
  269. v->block[v->cur_blk_idx][1]);
  270. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][2],
  271. v->block[v->cur_blk_idx][3]);
  272. if (s->mb_x == s->mb_width - 1) {
  273. if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  274. v->over_flags_plane[mb_pos - s->mb_stride])) {
  275. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][2],
  276. v->block[v->cur_blk_idx][0]);
  277. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][3],
  278. v->block[v->cur_blk_idx][1]);
  279. if (!(s->flags & CODEC_FLAG_GRAY)) {
  280. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][4],
  281. v->block[v->cur_blk_idx][4]);
  282. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][5],
  283. v->block[v->cur_blk_idx][5]);
  284. }
  285. }
  286. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][0],
  287. v->block[v->cur_blk_idx][2]);
  288. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][1],
  289. v->block[v->cur_blk_idx][3]);
  290. }
  291. }
  292. if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
  293. if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  294. v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
  295. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][2],
  296. v->block[v->left_blk_idx][0]);
  297. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][3],
  298. v->block[v->left_blk_idx][1]);
  299. if (!(s->flags & CODEC_FLAG_GRAY)) {
  300. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][4],
  301. v->block[v->left_blk_idx][4]);
  302. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][5],
  303. v->block[v->left_blk_idx][5]);
  304. }
  305. }
  306. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][0],
  307. v->block[v->left_blk_idx][2]);
  308. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][1],
  309. v->block[v->left_blk_idx][3]);
  310. }
  311. }
  312. /** Do motion compensation over 1 macroblock
  313. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  314. */
  315. static void vc1_mc_1mv(VC1Context *v, int dir)
  316. {
  317. MpegEncContext *s = &v->s;
  318. H264ChromaContext *h264chroma = &v->h264chroma;
  319. uint8_t *srcY, *srcU, *srcV;
  320. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  321. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  322. int i;
  323. uint8_t (*luty)[256], (*lutuv)[256];
  324. int use_ic;
  325. if ((!v->field_mode ||
  326. (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
  327. !v->s.last_picture.f->data[0])
  328. return;
  329. mx = s->mv[dir][0][0];
  330. my = s->mv[dir][0][1];
  331. // store motion vectors for further use in B frames
  332. if (s->pict_type == AV_PICTURE_TYPE_P) {
  333. for (i = 0; i < 4; i++) {
  334. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][0] = mx;
  335. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][1] = my;
  336. }
  337. }
  338. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  339. uvmy = (my + ((my & 3) == 3)) >> 1;
  340. v->luma_mv[s->mb_x][0] = uvmx;
  341. v->luma_mv[s->mb_x][1] = uvmy;
  342. if (v->field_mode &&
  343. v->cur_field_type != v->ref_field_type[dir]) {
  344. my = my - 2 + 4 * v->cur_field_type;
  345. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  346. }
  347. // fastuvmc shall be ignored for interlaced frame picture
  348. if (v->fastuvmc && (v->fcm != ILACE_FRAME)) {
  349. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  350. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  351. }
  352. if (!dir) {
  353. if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
  354. srcY = s->current_picture.f->data[0];
  355. srcU = s->current_picture.f->data[1];
  356. srcV = s->current_picture.f->data[2];
  357. luty = v->curr_luty;
  358. lutuv = v->curr_lutuv;
  359. use_ic = v->curr_use_ic;
  360. } else {
  361. srcY = s->last_picture.f->data[0];
  362. srcU = s->last_picture.f->data[1];
  363. srcV = s->last_picture.f->data[2];
  364. luty = v->last_luty;
  365. lutuv = v->last_lutuv;
  366. use_ic = v->last_use_ic;
  367. }
  368. } else {
  369. srcY = s->next_picture.f->data[0];
  370. srcU = s->next_picture.f->data[1];
  371. srcV = s->next_picture.f->data[2];
  372. luty = v->next_luty;
  373. lutuv = v->next_lutuv;
  374. use_ic = v->next_use_ic;
  375. }
  376. if (!srcY || !srcU) {
  377. av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n");
  378. return;
  379. }
  380. src_x = s->mb_x * 16 + (mx >> 2);
  381. src_y = s->mb_y * 16 + (my >> 2);
  382. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  383. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  384. if (v->profile != PROFILE_ADVANCED) {
  385. src_x = av_clip( src_x, -16, s->mb_width * 16);
  386. src_y = av_clip( src_y, -16, s->mb_height * 16);
  387. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  388. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  389. } else {
  390. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  391. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  392. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  393. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  394. }
  395. srcY += src_y * s->linesize + src_x;
  396. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  397. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  398. if (v->field_mode && v->ref_field_type[dir]) {
  399. srcY += s->current_picture_ptr->f->linesize[0];
  400. srcU += s->current_picture_ptr->f->linesize[1];
  401. srcV += s->current_picture_ptr->f->linesize[2];
  402. }
  403. /* for grayscale we should not try to read from unknown area */
  404. if (s->flags & CODEC_FLAG_GRAY) {
  405. srcU = s->edge_emu_buffer + 18 * s->linesize;
  406. srcV = s->edge_emu_buffer + 18 * s->linesize;
  407. }
  408. if (v->rangeredfrm || use_ic
  409. || s->h_edge_pos < 22 || v_edge_pos < 22
  410. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3
  411. || (unsigned)(src_y - 1) > v_edge_pos - (my&3) - 16 - 3) {
  412. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  413. srcY -= s->mspel * (1 + s->linesize);
  414. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY,
  415. s->linesize, s->linesize,
  416. 17 + s->mspel * 2, 17 + s->mspel * 2,
  417. src_x - s->mspel, src_y - s->mspel,
  418. s->h_edge_pos, v_edge_pos);
  419. srcY = s->edge_emu_buffer;
  420. s->vdsp.emulated_edge_mc(uvbuf, srcU,
  421. s->uvlinesize, s->uvlinesize,
  422. 8 + 1, 8 + 1,
  423. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  424. s->vdsp.emulated_edge_mc(uvbuf + 16, srcV,
  425. s->uvlinesize, s->uvlinesize,
  426. 8 + 1, 8 + 1,
  427. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  428. srcU = uvbuf;
  429. srcV = uvbuf + 16;
  430. /* if we deal with range reduction we need to scale source blocks */
  431. if (v->rangeredfrm) {
  432. int i, j;
  433. uint8_t *src, *src2;
  434. src = srcY;
  435. for (j = 0; j < 17 + s->mspel * 2; j++) {
  436. for (i = 0; i < 17 + s->mspel * 2; i++)
  437. src[i] = ((src[i] - 128) >> 1) + 128;
  438. src += s->linesize;
  439. }
  440. src = srcU;
  441. src2 = srcV;
  442. for (j = 0; j < 9; j++) {
  443. for (i = 0; i < 9; i++) {
  444. src[i] = ((src[i] - 128) >> 1) + 128;
  445. src2[i] = ((src2[i] - 128) >> 1) + 128;
  446. }
  447. src += s->uvlinesize;
  448. src2 += s->uvlinesize;
  449. }
  450. }
  451. /* if we deal with intensity compensation we need to scale source blocks */
  452. if (use_ic) {
  453. int i, j;
  454. uint8_t *src, *src2;
  455. src = srcY;
  456. for (j = 0; j < 17 + s->mspel * 2; j++) {
  457. int f = v->field_mode ? v->ref_field_type[dir] : ((j + src_y - s->mspel) & 1) ;
  458. for (i = 0; i < 17 + s->mspel * 2; i++)
  459. src[i] = luty[f][src[i]];
  460. src += s->linesize;
  461. }
  462. src = srcU;
  463. src2 = srcV;
  464. for (j = 0; j < 9; j++) {
  465. int f = v->field_mode ? v->ref_field_type[dir] : ((j + uvsrc_y) & 1);
  466. for (i = 0; i < 9; i++) {
  467. src[i] = lutuv[f][src[i]];
  468. src2[i] = lutuv[f][src2[i]];
  469. }
  470. src += s->uvlinesize;
  471. src2 += s->uvlinesize;
  472. }
  473. }
  474. srcY += s->mspel * (1 + s->linesize);
  475. }
  476. if (s->mspel) {
  477. dxy = ((my & 3) << 2) | (mx & 3);
  478. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  479. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  480. srcY += s->linesize * 8;
  481. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  482. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  483. } else { // hpel mc - always used for luma
  484. dxy = (my & 2) | ((mx & 2) >> 1);
  485. if (!v->rnd)
  486. s->hdsp.put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  487. else
  488. s->hdsp.put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  489. }
  490. if (s->flags & CODEC_FLAG_GRAY) return;
  491. /* Chroma MC always uses qpel bilinear */
  492. uvmx = (uvmx & 3) << 1;
  493. uvmy = (uvmy & 3) << 1;
  494. if (!v->rnd) {
  495. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  496. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  497. } else {
  498. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  499. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  500. }
  501. }
  502. static inline int median4(int a, int b, int c, int d)
  503. {
  504. if (a < b) {
  505. if (c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  506. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  507. } else {
  508. if (c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  509. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  510. }
  511. }
  512. /** Do motion compensation for 4-MV macroblock - luminance block
  513. */
  514. static void vc1_mc_4mv_luma(VC1Context *v, int n, int dir, int avg)
  515. {
  516. MpegEncContext *s = &v->s;
  517. uint8_t *srcY;
  518. int dxy, mx, my, src_x, src_y;
  519. int off;
  520. int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0;
  521. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  522. uint8_t (*luty)[256];
  523. int use_ic;
  524. if ((!v->field_mode ||
  525. (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
  526. !v->s.last_picture.f->data[0])
  527. return;
  528. mx = s->mv[dir][n][0];
  529. my = s->mv[dir][n][1];
  530. if (!dir) {
  531. if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
  532. srcY = s->current_picture.f->data[0];
  533. luty = v->curr_luty;
  534. use_ic = v->curr_use_ic;
  535. } else {
  536. srcY = s->last_picture.f->data[0];
  537. luty = v->last_luty;
  538. use_ic = v->last_use_ic;
  539. }
  540. } else {
  541. srcY = s->next_picture.f->data[0];
  542. luty = v->next_luty;
  543. use_ic = v->next_use_ic;
  544. }
  545. if (!srcY) {
  546. av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n");
  547. return;
  548. }
  549. if (v->field_mode) {
  550. if (v->cur_field_type != v->ref_field_type[dir])
  551. my = my - 2 + 4 * v->cur_field_type;
  552. }
  553. if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) {
  554. int same_count = 0, opp_count = 0, k;
  555. int chosen_mv[2][4][2], f;
  556. int tx, ty;
  557. for (k = 0; k < 4; k++) {
  558. f = v->mv_f[0][s->block_index[k] + v->blocks_off];
  559. chosen_mv[f][f ? opp_count : same_count][0] = s->mv[0][k][0];
  560. chosen_mv[f][f ? opp_count : same_count][1] = s->mv[0][k][1];
  561. opp_count += f;
  562. same_count += 1 - f;
  563. }
  564. f = opp_count > same_count;
  565. switch (f ? opp_count : same_count) {
  566. case 4:
  567. tx = median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
  568. chosen_mv[f][2][0], chosen_mv[f][3][0]);
  569. ty = median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
  570. chosen_mv[f][2][1], chosen_mv[f][3][1]);
  571. break;
  572. case 3:
  573. tx = mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
  574. ty = mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
  575. break;
  576. case 2:
  577. tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
  578. ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
  579. break;
  580. }
  581. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  582. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  583. for (k = 0; k < 4; k++)
  584. v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
  585. }
  586. if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture
  587. int qx, qy;
  588. int width = s->avctx->coded_width;
  589. int height = s->avctx->coded_height >> 1;
  590. if (s->pict_type == AV_PICTURE_TYPE_P) {
  591. s->current_picture.motion_val[1][s->block_index[n] + v->blocks_off][0] = mx;
  592. s->current_picture.motion_val[1][s->block_index[n] + v->blocks_off][1] = my;
  593. }
  594. qx = (s->mb_x * 16) + (mx >> 2);
  595. qy = (s->mb_y * 8) + (my >> 3);
  596. if (qx < -17)
  597. mx -= 4 * (qx + 17);
  598. else if (qx > width)
  599. mx -= 4 * (qx - width);
  600. if (qy < -18)
  601. my -= 8 * (qy + 18);
  602. else if (qy > height + 1)
  603. my -= 8 * (qy - height - 1);
  604. }
  605. if ((v->fcm == ILACE_FRAME) && fieldmv)
  606. off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8;
  607. else
  608. off = s->linesize * 4 * (n & 2) + (n & 1) * 8;
  609. src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2);
  610. if (!fieldmv)
  611. src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2);
  612. else
  613. src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
  614. if (v->profile != PROFILE_ADVANCED) {
  615. src_x = av_clip(src_x, -16, s->mb_width * 16);
  616. src_y = av_clip(src_y, -16, s->mb_height * 16);
  617. } else {
  618. src_x = av_clip(src_x, -17, s->avctx->coded_width);
  619. if (v->fcm == ILACE_FRAME) {
  620. if (src_y & 1)
  621. src_y = av_clip(src_y, -17, s->avctx->coded_height + 1);
  622. else
  623. src_y = av_clip(src_y, -18, s->avctx->coded_height);
  624. } else {
  625. src_y = av_clip(src_y, -18, s->avctx->coded_height + 1);
  626. }
  627. }
  628. srcY += src_y * s->linesize + src_x;
  629. if (v->field_mode && v->ref_field_type[dir])
  630. srcY += s->current_picture_ptr->f->linesize[0];
  631. if (fieldmv && !(src_y & 1))
  632. v_edge_pos--;
  633. if (fieldmv && (src_y & 1) && src_y < 4)
  634. src_y--;
  635. if (v->rangeredfrm || use_ic
  636. || s->h_edge_pos < 13 || v_edge_pos < 23
  637. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2
  638. || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) {
  639. srcY -= s->mspel * (1 + (s->linesize << fieldmv));
  640. /* check emulate edge stride and offset */
  641. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY,
  642. s->linesize, s->linesize,
  643. 9 + s->mspel * 2, (9 + s->mspel * 2) << fieldmv,
  644. src_x - s->mspel, src_y - (s->mspel << fieldmv),
  645. s->h_edge_pos, v_edge_pos);
  646. srcY = s->edge_emu_buffer;
  647. /* if we deal with range reduction we need to scale source blocks */
  648. if (v->rangeredfrm) {
  649. int i, j;
  650. uint8_t *src;
  651. src = srcY;
  652. for (j = 0; j < 9 + s->mspel * 2; j++) {
  653. for (i = 0; i < 9 + s->mspel * 2; i++)
  654. src[i] = ((src[i] - 128) >> 1) + 128;
  655. src += s->linesize << fieldmv;
  656. }
  657. }
  658. /* if we deal with intensity compensation we need to scale source blocks */
  659. if (use_ic) {
  660. int i, j;
  661. uint8_t *src;
  662. src = srcY;
  663. for (j = 0; j < 9 + s->mspel * 2; j++) {
  664. int f = v->field_mode ? v->ref_field_type[dir] : (((j<<fieldmv)+src_y - (s->mspel << fieldmv)) & 1);
  665. for (i = 0; i < 9 + s->mspel * 2; i++)
  666. src[i] = luty[f][src[i]];
  667. src += s->linesize << fieldmv;
  668. }
  669. }
  670. srcY += s->mspel * (1 + (s->linesize << fieldmv));
  671. }
  672. if (s->mspel) {
  673. dxy = ((my & 3) << 2) | (mx & 3);
  674. if (avg)
  675. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
  676. else
  677. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
  678. } else { // hpel mc - always used for luma
  679. dxy = (my & 2) | ((mx & 2) >> 1);
  680. if (!v->rnd)
  681. s->hdsp.put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  682. else
  683. s->hdsp.put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  684. }
  685. }
  686. static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
  687. {
  688. int idx, i;
  689. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  690. idx = ((a[3] != flag) << 3)
  691. | ((a[2] != flag) << 2)
  692. | ((a[1] != flag) << 1)
  693. | (a[0] != flag);
  694. if (!idx) {
  695. *tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  696. *ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  697. return 4;
  698. } else if (count[idx] == 1) {
  699. switch (idx) {
  700. case 0x1:
  701. *tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  702. *ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  703. return 3;
  704. case 0x2:
  705. *tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  706. *ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  707. return 3;
  708. case 0x4:
  709. *tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  710. *ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  711. return 3;
  712. case 0x8:
  713. *tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  714. *ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  715. return 3;
  716. }
  717. } else if (count[idx] == 2) {
  718. int t1 = 0, t2 = 0;
  719. for (i = 0; i < 3; i++)
  720. if (!a[i]) {
  721. t1 = i;
  722. break;
  723. }
  724. for (i = t1 + 1; i < 4; i++)
  725. if (!a[i]) {
  726. t2 = i;
  727. break;
  728. }
  729. *tx = (mvx[t1] + mvx[t2]) / 2;
  730. *ty = (mvy[t1] + mvy[t2]) / 2;
  731. return 2;
  732. } else {
  733. return 0;
  734. }
  735. return -1;
  736. }
  737. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  738. */
  739. static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
  740. {
  741. MpegEncContext *s = &v->s;
  742. H264ChromaContext *h264chroma = &v->h264chroma;
  743. uint8_t *srcU, *srcV;
  744. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  745. int k, tx = 0, ty = 0;
  746. int mvx[4], mvy[4], intra[4], mv_f[4];
  747. int valid_count;
  748. int chroma_ref_type = v->cur_field_type;
  749. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  750. uint8_t (*lutuv)[256];
  751. int use_ic;
  752. if (!v->field_mode && !v->s.last_picture.f->data[0])
  753. return;
  754. if (s->flags & CODEC_FLAG_GRAY)
  755. return;
  756. for (k = 0; k < 4; k++) {
  757. mvx[k] = s->mv[dir][k][0];
  758. mvy[k] = s->mv[dir][k][1];
  759. intra[k] = v->mb_type[0][s->block_index[k]];
  760. if (v->field_mode)
  761. mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
  762. }
  763. /* calculate chroma MV vector from four luma MVs */
  764. if (!v->field_mode || (v->field_mode && !v->numref)) {
  765. valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
  766. chroma_ref_type = v->reffield;
  767. if (!valid_count) {
  768. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  769. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  770. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  771. return; //no need to do MC for intra blocks
  772. }
  773. } else {
  774. int dominant = 0;
  775. if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
  776. dominant = 1;
  777. valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
  778. if (dominant)
  779. chroma_ref_type = !v->cur_field_type;
  780. }
  781. if (v->field_mode && chroma_ref_type == 1 && v->cur_field_type == 1 && !v->s.last_picture.f->data[0])
  782. return;
  783. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  784. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  785. uvmx = (tx + ((tx & 3) == 3)) >> 1;
  786. uvmy = (ty + ((ty & 3) == 3)) >> 1;
  787. v->luma_mv[s->mb_x][0] = uvmx;
  788. v->luma_mv[s->mb_x][1] = uvmy;
  789. if (v->fastuvmc) {
  790. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  791. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  792. }
  793. // Field conversion bias
  794. if (v->cur_field_type != chroma_ref_type)
  795. uvmy += 2 - 4 * chroma_ref_type;
  796. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  797. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  798. if (v->profile != PROFILE_ADVANCED) {
  799. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  800. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  801. } else {
  802. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  803. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  804. }
  805. if (!dir) {
  806. if (v->field_mode && (v->cur_field_type != chroma_ref_type) && v->second_field) {
  807. srcU = s->current_picture.f->data[1];
  808. srcV = s->current_picture.f->data[2];
  809. lutuv = v->curr_lutuv;
  810. use_ic = v->curr_use_ic;
  811. } else {
  812. srcU = s->last_picture.f->data[1];
  813. srcV = s->last_picture.f->data[2];
  814. lutuv = v->last_lutuv;
  815. use_ic = v->last_use_ic;
  816. }
  817. } else {
  818. srcU = s->next_picture.f->data[1];
  819. srcV = s->next_picture.f->data[2];
  820. lutuv = v->next_lutuv;
  821. use_ic = v->next_use_ic;
  822. }
  823. if (!srcU) {
  824. av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n");
  825. return;
  826. }
  827. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  828. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  829. if (v->field_mode) {
  830. if (chroma_ref_type) {
  831. srcU += s->current_picture_ptr->f->linesize[1];
  832. srcV += s->current_picture_ptr->f->linesize[2];
  833. }
  834. }
  835. if (v->rangeredfrm || use_ic
  836. || s->h_edge_pos < 18 || v_edge_pos < 18
  837. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  838. || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
  839. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcU,
  840. s->uvlinesize, s->uvlinesize,
  841. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  842. s->h_edge_pos >> 1, v_edge_pos >> 1);
  843. s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV,
  844. s->uvlinesize, s->uvlinesize,
  845. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  846. s->h_edge_pos >> 1, v_edge_pos >> 1);
  847. srcU = s->edge_emu_buffer;
  848. srcV = s->edge_emu_buffer + 16;
  849. /* if we deal with range reduction we need to scale source blocks */
  850. if (v->rangeredfrm) {
  851. int i, j;
  852. uint8_t *src, *src2;
  853. src = srcU;
  854. src2 = srcV;
  855. for (j = 0; j < 9; j++) {
  856. for (i = 0; i < 9; i++) {
  857. src[i] = ((src[i] - 128) >> 1) + 128;
  858. src2[i] = ((src2[i] - 128) >> 1) + 128;
  859. }
  860. src += s->uvlinesize;
  861. src2 += s->uvlinesize;
  862. }
  863. }
  864. /* if we deal with intensity compensation we need to scale source blocks */
  865. if (use_ic) {
  866. int i, j;
  867. uint8_t *src, *src2;
  868. src = srcU;
  869. src2 = srcV;
  870. for (j = 0; j < 9; j++) {
  871. int f = v->field_mode ? chroma_ref_type : ((j + uvsrc_y) & 1);
  872. for (i = 0; i < 9; i++) {
  873. src[i] = lutuv[f][src[i]];
  874. src2[i] = lutuv[f][src2[i]];
  875. }
  876. src += s->uvlinesize;
  877. src2 += s->uvlinesize;
  878. }
  879. }
  880. }
  881. /* Chroma MC always uses qpel bilinear */
  882. uvmx = (uvmx & 3) << 1;
  883. uvmy = (uvmy & 3) << 1;
  884. if (!v->rnd) {
  885. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  886. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  887. } else {
  888. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  889. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  890. }
  891. }
  892. /** Do motion compensation for 4-MV interlaced frame chroma macroblock (both U and V)
  893. */
  894. static void vc1_mc_4mv_chroma4(VC1Context *v, int dir, int dir2, int avg)
  895. {
  896. MpegEncContext *s = &v->s;
  897. H264ChromaContext *h264chroma = &v->h264chroma;
  898. uint8_t *srcU, *srcV;
  899. int uvsrc_x, uvsrc_y;
  900. int uvmx_field[4], uvmy_field[4];
  901. int i, off, tx, ty;
  902. int fieldmv = v->blk_mv_type[s->block_index[0]];
  903. static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
  904. int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks
  905. int v_edge_pos = s->v_edge_pos >> 1;
  906. int use_ic;
  907. uint8_t (*lutuv)[256];
  908. if (s->flags & CODEC_FLAG_GRAY)
  909. return;
  910. for (i = 0; i < 4; i++) {
  911. int d = i < 2 ? dir: dir2;
  912. tx = s->mv[d][i][0];
  913. uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
  914. ty = s->mv[d][i][1];
  915. if (fieldmv)
  916. uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
  917. else
  918. uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
  919. }
  920. for (i = 0; i < 4; i++) {
  921. off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0);
  922. uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
  923. uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
  924. // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
  925. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  926. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  927. if (i < 2 ? dir : dir2) {
  928. srcU = s->next_picture.f->data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  929. srcV = s->next_picture.f->data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  930. lutuv = v->next_lutuv;
  931. use_ic = v->next_use_ic;
  932. } else {
  933. srcU = s->last_picture.f->data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  934. srcV = s->last_picture.f->data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  935. lutuv = v->last_lutuv;
  936. use_ic = v->last_use_ic;
  937. }
  938. uvmx_field[i] = (uvmx_field[i] & 3) << 1;
  939. uvmy_field[i] = (uvmy_field[i] & 3) << 1;
  940. if (fieldmv && !(uvsrc_y & 1))
  941. v_edge_pos--;
  942. if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
  943. uvsrc_y--;
  944. if (use_ic
  945. || s->h_edge_pos < 10 || v_edge_pos < (5 << fieldmv)
  946. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5
  947. || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
  948. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcU,
  949. s->uvlinesize, s->uvlinesize,
  950. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  951. s->h_edge_pos >> 1, v_edge_pos);
  952. s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV,
  953. s->uvlinesize, s->uvlinesize,
  954. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  955. s->h_edge_pos >> 1, v_edge_pos);
  956. srcU = s->edge_emu_buffer;
  957. srcV = s->edge_emu_buffer + 16;
  958. /* if we deal with intensity compensation we need to scale source blocks */
  959. if (use_ic) {
  960. int i, j;
  961. uint8_t *src, *src2;
  962. src = srcU;
  963. src2 = srcV;
  964. for (j = 0; j < 5; j++) {
  965. int f = (uvsrc_y + (j << fieldmv)) & 1;
  966. for (i = 0; i < 5; i++) {
  967. src[i] = lutuv[f][src[i]];
  968. src2[i] = lutuv[f][src2[i]];
  969. }
  970. src += s->uvlinesize << fieldmv;
  971. src2 += s->uvlinesize << fieldmv;
  972. }
  973. }
  974. }
  975. if (avg) {
  976. if (!v->rnd) {
  977. h264chroma->avg_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  978. h264chroma->avg_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  979. } else {
  980. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  981. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  982. }
  983. } else {
  984. if (!v->rnd) {
  985. h264chroma->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  986. h264chroma->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  987. } else {
  988. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  989. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  990. }
  991. }
  992. }
  993. }
  994. /***********************************************************************/
  995. /**
  996. * @name VC-1 Block-level functions
  997. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  998. * @{
  999. */
  1000. /**
  1001. * @def GET_MQUANT
  1002. * @brief Get macroblock-level quantizer scale
  1003. */
  1004. #define GET_MQUANT() \
  1005. if (v->dquantfrm) { \
  1006. int edges = 0; \
  1007. if (v->dqprofile == DQPROFILE_ALL_MBS) { \
  1008. if (v->dqbilevel) { \
  1009. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1010. } else { \
  1011. mqdiff = get_bits(gb, 3); \
  1012. if (mqdiff != 7) \
  1013. mquant = v->pq + mqdiff; \
  1014. else \
  1015. mquant = get_bits(gb, 5); \
  1016. } \
  1017. } \
  1018. if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1019. edges = 1 << v->dqsbedge; \
  1020. else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1021. edges = (3 << v->dqsbedge) % 15; \
  1022. else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1023. edges = 15; \
  1024. if ((edges&1) && !s->mb_x) \
  1025. mquant = v->altpq; \
  1026. if ((edges&2) && s->first_slice_line) \
  1027. mquant = v->altpq; \
  1028. if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1029. mquant = v->altpq; \
  1030. if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1031. mquant = v->altpq; \
  1032. if (!mquant || mquant > 31) { \
  1033. av_log(v->s.avctx, AV_LOG_ERROR, \
  1034. "Overriding invalid mquant %d\n", mquant); \
  1035. mquant = 1; \
  1036. } \
  1037. }
  1038. /**
  1039. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1040. * @brief Get MV differentials
  1041. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1042. * @param _dmv_x Horizontal differential for decoded MV
  1043. * @param _dmv_y Vertical differential for decoded MV
  1044. */
  1045. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1046. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
  1047. VC1_MV_DIFF_VLC_BITS, 2); \
  1048. if (index > 36) { \
  1049. mb_has_coeffs = 1; \
  1050. index -= 37; \
  1051. } else \
  1052. mb_has_coeffs = 0; \
  1053. s->mb_intra = 0; \
  1054. if (!index) { \
  1055. _dmv_x = _dmv_y = 0; \
  1056. } else if (index == 35) { \
  1057. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1058. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1059. } else if (index == 36) { \
  1060. _dmv_x = 0; \
  1061. _dmv_y = 0; \
  1062. s->mb_intra = 1; \
  1063. } else { \
  1064. index1 = index % 6; \
  1065. if (!s->quarter_sample && index1 == 5) val = 1; \
  1066. else val = 0; \
  1067. if (size_table[index1] - val > 0) \
  1068. val = get_bits(gb, size_table[index1] - val); \
  1069. else val = 0; \
  1070. sign = 0 - (val&1); \
  1071. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1072. \
  1073. index1 = index / 6; \
  1074. if (!s->quarter_sample && index1 == 5) val = 1; \
  1075. else val = 0; \
  1076. if (size_table[index1] - val > 0) \
  1077. val = get_bits(gb, size_table[index1] - val); \
  1078. else val = 0; \
  1079. sign = 0 - (val & 1); \
  1080. _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
  1081. }
  1082. static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
  1083. int *dmv_y, int *pred_flag)
  1084. {
  1085. int index, index1;
  1086. int extend_x = 0, extend_y = 0;
  1087. GetBitContext *gb = &v->s.gb;
  1088. int bits, esc;
  1089. int val, sign;
  1090. const int* offs_tab;
  1091. if (v->numref) {
  1092. bits = VC1_2REF_MVDATA_VLC_BITS;
  1093. esc = 125;
  1094. } else {
  1095. bits = VC1_1REF_MVDATA_VLC_BITS;
  1096. esc = 71;
  1097. }
  1098. switch (v->dmvrange) {
  1099. case 1:
  1100. extend_x = 1;
  1101. break;
  1102. case 2:
  1103. extend_y = 1;
  1104. break;
  1105. case 3:
  1106. extend_x = extend_y = 1;
  1107. break;
  1108. }
  1109. index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
  1110. if (index == esc) {
  1111. *dmv_x = get_bits(gb, v->k_x);
  1112. *dmv_y = get_bits(gb, v->k_y);
  1113. if (v->numref) {
  1114. if (pred_flag) {
  1115. *pred_flag = *dmv_y & 1;
  1116. *dmv_y = (*dmv_y + *pred_flag) >> 1;
  1117. } else {
  1118. *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
  1119. }
  1120. }
  1121. }
  1122. else {
  1123. if (extend_x)
  1124. offs_tab = offset_table2;
  1125. else
  1126. offs_tab = offset_table1;
  1127. index1 = (index + 1) % 9;
  1128. if (index1 != 0) {
  1129. val = get_bits(gb, index1 + extend_x);
  1130. sign = 0 -(val & 1);
  1131. *dmv_x = (sign ^ ((val >> 1) + offs_tab[index1])) - sign;
  1132. } else
  1133. *dmv_x = 0;
  1134. if (extend_y)
  1135. offs_tab = offset_table2;
  1136. else
  1137. offs_tab = offset_table1;
  1138. index1 = (index + 1) / 9;
  1139. if (index1 > v->numref) {
  1140. val = get_bits(gb, (index1 + (extend_y << v->numref)) >> v->numref);
  1141. sign = 0 - (val & 1);
  1142. *dmv_y = (sign ^ ((val >> 1) + offs_tab[index1 >> v->numref])) - sign;
  1143. } else
  1144. *dmv_y = 0;
  1145. if (v->numref && pred_flag)
  1146. *pred_flag = index1 & 1;
  1147. }
  1148. }
  1149. static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
  1150. {
  1151. int scaledvalue, refdist;
  1152. int scalesame1, scalesame2;
  1153. int scalezone1_x, zone1offset_x;
  1154. int table_index = dir ^ v->second_field;
  1155. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1156. refdist = v->refdist;
  1157. else
  1158. refdist = dir ? v->brfd : v->frfd;
  1159. if (refdist > 3)
  1160. refdist = 3;
  1161. scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
  1162. scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
  1163. scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
  1164. zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
  1165. if (FFABS(n) > 255)
  1166. scaledvalue = n;
  1167. else {
  1168. if (FFABS(n) < scalezone1_x)
  1169. scaledvalue = (n * scalesame1) >> 8;
  1170. else {
  1171. if (n < 0)
  1172. scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
  1173. else
  1174. scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
  1175. }
  1176. }
  1177. return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
  1178. }
  1179. static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
  1180. {
  1181. int scaledvalue, refdist;
  1182. int scalesame1, scalesame2;
  1183. int scalezone1_y, zone1offset_y;
  1184. int table_index = dir ^ v->second_field;
  1185. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1186. refdist = v->refdist;
  1187. else
  1188. refdist = dir ? v->brfd : v->frfd;
  1189. if (refdist > 3)
  1190. refdist = 3;
  1191. scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
  1192. scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
  1193. scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
  1194. zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
  1195. if (FFABS(n) > 63)
  1196. scaledvalue = n;
  1197. else {
  1198. if (FFABS(n) < scalezone1_y)
  1199. scaledvalue = (n * scalesame1) >> 8;
  1200. else {
  1201. if (n < 0)
  1202. scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
  1203. else
  1204. scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
  1205. }
  1206. }
  1207. if (v->cur_field_type && !v->ref_field_type[dir])
  1208. return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
  1209. else
  1210. return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
  1211. }
  1212. static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
  1213. {
  1214. int scalezone1_x, zone1offset_x;
  1215. int scaleopp1, scaleopp2, brfd;
  1216. int scaledvalue;
  1217. brfd = FFMIN(v->brfd, 3);
  1218. scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
  1219. zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
  1220. scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
  1221. scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
  1222. if (FFABS(n) > 255)
  1223. scaledvalue = n;
  1224. else {
  1225. if (FFABS(n) < scalezone1_x)
  1226. scaledvalue = (n * scaleopp1) >> 8;
  1227. else {
  1228. if (n < 0)
  1229. scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
  1230. else
  1231. scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
  1232. }
  1233. }
  1234. return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
  1235. }
  1236. static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
  1237. {
  1238. int scalezone1_y, zone1offset_y;
  1239. int scaleopp1, scaleopp2, brfd;
  1240. int scaledvalue;
  1241. brfd = FFMIN(v->brfd, 3);
  1242. scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
  1243. zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
  1244. scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
  1245. scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
  1246. if (FFABS(n) > 63)
  1247. scaledvalue = n;
  1248. else {
  1249. if (FFABS(n) < scalezone1_y)
  1250. scaledvalue = (n * scaleopp1) >> 8;
  1251. else {
  1252. if (n < 0)
  1253. scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
  1254. else
  1255. scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
  1256. }
  1257. }
  1258. if (v->cur_field_type && !v->ref_field_type[dir]) {
  1259. return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
  1260. } else {
  1261. return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
  1262. }
  1263. }
  1264. static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
  1265. int dim, int dir)
  1266. {
  1267. int brfd, scalesame;
  1268. int hpel = 1 - v->s.quarter_sample;
  1269. n >>= hpel;
  1270. if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
  1271. if (dim)
  1272. n = scaleforsame_y(v, i, n, dir) << hpel;
  1273. else
  1274. n = scaleforsame_x(v, n, dir) << hpel;
  1275. return n;
  1276. }
  1277. brfd = FFMIN(v->brfd, 3);
  1278. scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
  1279. n = (n * scalesame >> 8) << hpel;
  1280. return n;
  1281. }
  1282. static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
  1283. int dim, int dir)
  1284. {
  1285. int refdist, scaleopp;
  1286. int hpel = 1 - v->s.quarter_sample;
  1287. n >>= hpel;
  1288. if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
  1289. if (dim)
  1290. n = scaleforopp_y(v, n, dir) << hpel;
  1291. else
  1292. n = scaleforopp_x(v, n) << hpel;
  1293. return n;
  1294. }
  1295. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1296. refdist = FFMIN(v->refdist, 3);
  1297. else
  1298. refdist = dir ? v->brfd : v->frfd;
  1299. scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
  1300. n = (n * scaleopp >> 8) << hpel;
  1301. return n;
  1302. }
  1303. /** Predict and set motion vector
  1304. */
  1305. static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
  1306. int mv1, int r_x, int r_y, uint8_t* is_intra,
  1307. int pred_flag, int dir)
  1308. {
  1309. MpegEncContext *s = &v->s;
  1310. int xy, wrap, off = 0;
  1311. int16_t *A, *B, *C;
  1312. int px, py;
  1313. int sum;
  1314. int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
  1315. int opposite, a_f, b_f, c_f;
  1316. int16_t field_predA[2];
  1317. int16_t field_predB[2];
  1318. int16_t field_predC[2];
  1319. int a_valid, b_valid, c_valid;
  1320. int hybridmv_thresh, y_bias = 0;
  1321. if (v->mv_mode == MV_PMODE_MIXED_MV ||
  1322. ((v->mv_mode == MV_PMODE_INTENSITY_COMP) && (v->mv_mode2 == MV_PMODE_MIXED_MV)))
  1323. mixedmv_pic = 1;
  1324. else
  1325. mixedmv_pic = 0;
  1326. /* scale MV difference to be quad-pel */
  1327. dmv_x <<= 1 - s->quarter_sample;
  1328. dmv_y <<= 1 - s->quarter_sample;
  1329. wrap = s->b8_stride;
  1330. xy = s->block_index[n];
  1331. if (s->mb_intra) {
  1332. s->mv[0][n][0] = s->current_picture.motion_val[0][xy + v->blocks_off][0] = 0;
  1333. s->mv[0][n][1] = s->current_picture.motion_val[0][xy + v->blocks_off][1] = 0;
  1334. s->current_picture.motion_val[1][xy + v->blocks_off][0] = 0;
  1335. s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
  1336. if (mv1) { /* duplicate motion data for 1-MV block */
  1337. s->current_picture.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
  1338. s->current_picture.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
  1339. s->current_picture.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
  1340. s->current_picture.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
  1341. s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
  1342. s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
  1343. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  1344. s->current_picture.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
  1345. s->current_picture.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
  1346. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1347. s->current_picture.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
  1348. s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
  1349. s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
  1350. }
  1351. return;
  1352. }
  1353. C = s->current_picture.motion_val[dir][xy - 1 + v->blocks_off];
  1354. A = s->current_picture.motion_val[dir][xy - wrap + v->blocks_off];
  1355. if (mv1) {
  1356. if (v->field_mode && mixedmv_pic)
  1357. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1358. else
  1359. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1360. } else {
  1361. //in 4-MV mode different blocks have different B predictor position
  1362. switch (n) {
  1363. case 0:
  1364. off = (s->mb_x > 0) ? -1 : 1;
  1365. break;
  1366. case 1:
  1367. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1368. break;
  1369. case 2:
  1370. off = 1;
  1371. break;
  1372. case 3:
  1373. off = -1;
  1374. }
  1375. }
  1376. B = s->current_picture.motion_val[dir][xy - wrap + off + v->blocks_off];
  1377. a_valid = !s->first_slice_line || (n == 2 || n == 3);
  1378. b_valid = a_valid && (s->mb_width > 1);
  1379. c_valid = s->mb_x || (n == 1 || n == 3);
  1380. if (v->field_mode) {
  1381. a_valid = a_valid && !is_intra[xy - wrap];
  1382. b_valid = b_valid && !is_intra[xy - wrap + off];
  1383. c_valid = c_valid && !is_intra[xy - 1];
  1384. }
  1385. if (a_valid) {
  1386. a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
  1387. num_oppfield += a_f;
  1388. num_samefield += 1 - a_f;
  1389. field_predA[0] = A[0];
  1390. field_predA[1] = A[1];
  1391. } else {
  1392. field_predA[0] = field_predA[1] = 0;
  1393. a_f = 0;
  1394. }
  1395. if (b_valid) {
  1396. b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
  1397. num_oppfield += b_f;
  1398. num_samefield += 1 - b_f;
  1399. field_predB[0] = B[0];
  1400. field_predB[1] = B[1];
  1401. } else {
  1402. field_predB[0] = field_predB[1] = 0;
  1403. b_f = 0;
  1404. }
  1405. if (c_valid) {
  1406. c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
  1407. num_oppfield += c_f;
  1408. num_samefield += 1 - c_f;
  1409. field_predC[0] = C[0];
  1410. field_predC[1] = C[1];
  1411. } else {
  1412. field_predC[0] = field_predC[1] = 0;
  1413. c_f = 0;
  1414. }
  1415. if (v->field_mode) {
  1416. if (!v->numref)
  1417. // REFFIELD determines if the last field or the second-last field is
  1418. // to be used as reference
  1419. opposite = 1 - v->reffield;
  1420. else {
  1421. if (num_samefield <= num_oppfield)
  1422. opposite = 1 - pred_flag;
  1423. else
  1424. opposite = pred_flag;
  1425. }
  1426. } else
  1427. opposite = 0;
  1428. if (opposite) {
  1429. if (a_valid && !a_f) {
  1430. field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
  1431. field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
  1432. }
  1433. if (b_valid && !b_f) {
  1434. field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
  1435. field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
  1436. }
  1437. if (c_valid && !c_f) {
  1438. field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
  1439. field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
  1440. }
  1441. v->mv_f[dir][xy + v->blocks_off] = 1;
  1442. v->ref_field_type[dir] = !v->cur_field_type;
  1443. } else {
  1444. if (a_valid && a_f) {
  1445. field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
  1446. field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
  1447. }
  1448. if (b_valid && b_f) {
  1449. field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
  1450. field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
  1451. }
  1452. if (c_valid && c_f) {
  1453. field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
  1454. field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
  1455. }
  1456. v->mv_f[dir][xy + v->blocks_off] = 0;
  1457. v->ref_field_type[dir] = v->cur_field_type;
  1458. }
  1459. if (a_valid) {
  1460. px = field_predA[0];
  1461. py = field_predA[1];
  1462. } else if (c_valid) {
  1463. px = field_predC[0];
  1464. py = field_predC[1];
  1465. } else if (b_valid) {
  1466. px = field_predB[0];
  1467. py = field_predB[1];
  1468. } else {
  1469. px = 0;
  1470. py = 0;
  1471. }
  1472. if (num_samefield + num_oppfield > 1) {
  1473. px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
  1474. py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
  1475. }
  1476. /* Pullback MV as specified in 8.3.5.3.4 */
  1477. if (!v->field_mode) {
  1478. int qx, qy, X, Y;
  1479. qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
  1480. qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
  1481. X = (s->mb_width << 6) - 4;
  1482. Y = (s->mb_height << 6) - 4;
  1483. if (mv1) {
  1484. if (qx + px < -60) px = -60 - qx;
  1485. if (qy + py < -60) py = -60 - qy;
  1486. } else {
  1487. if (qx + px < -28) px = -28 - qx;
  1488. if (qy + py < -28) py = -28 - qy;
  1489. }
  1490. if (qx + px > X) px = X - qx;
  1491. if (qy + py > Y) py = Y - qy;
  1492. }
  1493. if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
  1494. /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
  1495. hybridmv_thresh = 32;
  1496. if (a_valid && c_valid) {
  1497. if (is_intra[xy - wrap])
  1498. sum = FFABS(px) + FFABS(py);
  1499. else
  1500. sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
  1501. if (sum > hybridmv_thresh) {
  1502. if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
  1503. px = field_predA[0];
  1504. py = field_predA[1];
  1505. } else {
  1506. px = field_predC[0];
  1507. py = field_predC[1];
  1508. }
  1509. } else {
  1510. if (is_intra[xy - 1])
  1511. sum = FFABS(px) + FFABS(py);
  1512. else
  1513. sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
  1514. if (sum > hybridmv_thresh) {
  1515. if (get_bits1(&s->gb)) {
  1516. px = field_predA[0];
  1517. py = field_predA[1];
  1518. } else {
  1519. px = field_predC[0];
  1520. py = field_predC[1];
  1521. }
  1522. }
  1523. }
  1524. }
  1525. }
  1526. if (v->field_mode && v->numref)
  1527. r_y >>= 1;
  1528. if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
  1529. y_bias = 1;
  1530. /* store MV using signed modulus of MV range defined in 4.11 */
  1531. s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1532. s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
  1533. if (mv1) { /* duplicate motion data for 1-MV block */
  1534. s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
  1535. s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
  1536. s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
  1537. s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
  1538. s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
  1539. s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
  1540. v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
  1541. v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
  1542. }
  1543. }
  1544. /** Predict and set motion vector for interlaced frame picture MBs
  1545. */
  1546. static inline void vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
  1547. int mvn, int r_x, int r_y, uint8_t* is_intra, int dir)
  1548. {
  1549. MpegEncContext *s = &v->s;
  1550. int xy, wrap, off = 0;
  1551. int A[2], B[2], C[2];
  1552. int px, py;
  1553. int a_valid = 0, b_valid = 0, c_valid = 0;
  1554. int field_a, field_b, field_c; // 0: same, 1: opposit
  1555. int total_valid, num_samefield, num_oppfield;
  1556. int pos_c, pos_b, n_adj;
  1557. wrap = s->b8_stride;
  1558. xy = s->block_index[n];
  1559. if (s->mb_intra) {
  1560. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1561. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1562. s->current_picture.motion_val[1][xy][0] = 0;
  1563. s->current_picture.motion_val[1][xy][1] = 0;
  1564. if (mvn == 1) { /* duplicate motion data for 1-MV block */
  1565. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1566. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1567. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1568. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1569. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1570. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1571. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  1572. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1573. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1574. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1575. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1576. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1577. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1578. }
  1579. return;
  1580. }
  1581. off = ((n == 0) || (n == 1)) ? 1 : -1;
  1582. /* predict A */
  1583. if (s->mb_x || (n == 1) || (n == 3)) {
  1584. if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
  1585. || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
  1586. A[0] = s->current_picture.motion_val[dir][xy - 1][0];
  1587. A[1] = s->current_picture.motion_val[dir][xy - 1][1];
  1588. a_valid = 1;
  1589. } else { // current block has frame mv and cand. has field MV (so average)
  1590. A[0] = (s->current_picture.motion_val[dir][xy - 1][0]
  1591. + s->current_picture.motion_val[dir][xy - 1 + off * wrap][0] + 1) >> 1;
  1592. A[1] = (s->current_picture.motion_val[dir][xy - 1][1]
  1593. + s->current_picture.motion_val[dir][xy - 1 + off * wrap][1] + 1) >> 1;
  1594. a_valid = 1;
  1595. }
  1596. if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
  1597. a_valid = 0;
  1598. A[0] = A[1] = 0;
  1599. }
  1600. } else
  1601. A[0] = A[1] = 0;
  1602. /* Predict B and C */
  1603. B[0] = B[1] = C[0] = C[1] = 0;
  1604. if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
  1605. if (!s->first_slice_line) {
  1606. if (!v->is_intra[s->mb_x - s->mb_stride]) {
  1607. b_valid = 1;
  1608. n_adj = n | 2;
  1609. pos_b = s->block_index[n_adj] - 2 * wrap;
  1610. if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
  1611. n_adj = (n & 2) | (n & 1);
  1612. }
  1613. B[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][0];
  1614. B[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][1];
  1615. if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
  1616. B[0] = (B[0] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
  1617. B[1] = (B[1] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
  1618. }
  1619. }
  1620. if (s->mb_width > 1) {
  1621. if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
  1622. c_valid = 1;
  1623. n_adj = 2;
  1624. pos_c = s->block_index[2] - 2 * wrap + 2;
  1625. if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
  1626. n_adj = n & 2;
  1627. }
  1628. C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][0];
  1629. C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][1];
  1630. if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
  1631. C[0] = (1 + C[0] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
  1632. C[1] = (1 + C[1] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
  1633. }
  1634. if (s->mb_x == s->mb_width - 1) {
  1635. if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
  1636. c_valid = 1;
  1637. n_adj = 3;
  1638. pos_c = s->block_index[3] - 2 * wrap - 2;
  1639. if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
  1640. n_adj = n | 1;
  1641. }
  1642. C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][0];
  1643. C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][1];
  1644. if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
  1645. C[0] = (1 + C[0] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
  1646. C[1] = (1 + C[1] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
  1647. }
  1648. } else
  1649. c_valid = 0;
  1650. }
  1651. }
  1652. }
  1653. }
  1654. } else {
  1655. pos_b = s->block_index[1];
  1656. b_valid = 1;
  1657. B[0] = s->current_picture.motion_val[dir][pos_b][0];
  1658. B[1] = s->current_picture.motion_val[dir][pos_b][1];
  1659. pos_c = s->block_index[0];
  1660. c_valid = 1;
  1661. C[0] = s->current_picture.motion_val[dir][pos_c][0];
  1662. C[1] = s->current_picture.motion_val[dir][pos_c][1];
  1663. }
  1664. total_valid = a_valid + b_valid + c_valid;
  1665. // check if predictor A is out of bounds
  1666. if (!s->mb_x && !(n == 1 || n == 3)) {
  1667. A[0] = A[1] = 0;
  1668. }
  1669. // check if predictor B is out of bounds
  1670. if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
  1671. B[0] = B[1] = C[0] = C[1] = 0;
  1672. }
  1673. if (!v->blk_mv_type[xy]) {
  1674. if (s->mb_width == 1) {
  1675. px = B[0];
  1676. py = B[1];
  1677. } else {
  1678. if (total_valid >= 2) {
  1679. px = mid_pred(A[0], B[0], C[0]);
  1680. py = mid_pred(A[1], B[1], C[1]);
  1681. } else if (total_valid) {
  1682. if (a_valid) { px = A[0]; py = A[1]; }
  1683. if (b_valid) { px = B[0]; py = B[1]; }
  1684. if (c_valid) { px = C[0]; py = C[1]; }
  1685. } else
  1686. px = py = 0;
  1687. }
  1688. } else {
  1689. if (a_valid)
  1690. field_a = (A[1] & 4) ? 1 : 0;
  1691. else
  1692. field_a = 0;
  1693. if (b_valid)
  1694. field_b = (B[1] & 4) ? 1 : 0;
  1695. else
  1696. field_b = 0;
  1697. if (c_valid)
  1698. field_c = (C[1] & 4) ? 1 : 0;
  1699. else
  1700. field_c = 0;
  1701. num_oppfield = field_a + field_b + field_c;
  1702. num_samefield = total_valid - num_oppfield;
  1703. if (total_valid == 3) {
  1704. if ((num_samefield == 3) || (num_oppfield == 3)) {
  1705. px = mid_pred(A[0], B[0], C[0]);
  1706. py = mid_pred(A[1], B[1], C[1]);
  1707. } else if (num_samefield >= num_oppfield) {
  1708. /* take one MV from same field set depending on priority
  1709. the check for B may not be necessary */
  1710. px = !field_a ? A[0] : B[0];
  1711. py = !field_a ? A[1] : B[1];
  1712. } else {
  1713. px = field_a ? A[0] : B[0];
  1714. py = field_a ? A[1] : B[1];
  1715. }
  1716. } else if (total_valid == 2) {
  1717. if (num_samefield >= num_oppfield) {
  1718. if (!field_a && a_valid) {
  1719. px = A[0];
  1720. py = A[1];
  1721. } else if (!field_b && b_valid) {
  1722. px = B[0];
  1723. py = B[1];
  1724. } else if (c_valid) {
  1725. px = C[0];
  1726. py = C[1];
  1727. } else px = py = 0;
  1728. } else {
  1729. if (field_a && a_valid) {
  1730. px = A[0];
  1731. py = A[1];
  1732. } else if (field_b && b_valid) {
  1733. px = B[0];
  1734. py = B[1];
  1735. } else if (c_valid) {
  1736. px = C[0];
  1737. py = C[1];
  1738. } else
  1739. px = py = 0;
  1740. }
  1741. } else if (total_valid == 1) {
  1742. px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
  1743. py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
  1744. } else
  1745. px = py = 0;
  1746. }
  1747. /* store MV using signed modulus of MV range defined in 4.11 */
  1748. s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1749. s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1750. if (mvn == 1) { /* duplicate motion data for 1-MV block */
  1751. s->current_picture.motion_val[dir][xy + 1 ][0] = s->current_picture.motion_val[dir][xy][0];
  1752. s->current_picture.motion_val[dir][xy + 1 ][1] = s->current_picture.motion_val[dir][xy][1];
  1753. s->current_picture.motion_val[dir][xy + wrap ][0] = s->current_picture.motion_val[dir][xy][0];
  1754. s->current_picture.motion_val[dir][xy + wrap ][1] = s->current_picture.motion_val[dir][xy][1];
  1755. s->current_picture.motion_val[dir][xy + wrap + 1][0] = s->current_picture.motion_val[dir][xy][0];
  1756. s->current_picture.motion_val[dir][xy + wrap + 1][1] = s->current_picture.motion_val[dir][xy][1];
  1757. } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
  1758. s->current_picture.motion_val[dir][xy + 1][0] = s->current_picture.motion_val[dir][xy][0];
  1759. s->current_picture.motion_val[dir][xy + 1][1] = s->current_picture.motion_val[dir][xy][1];
  1760. s->mv[dir][n + 1][0] = s->mv[dir][n][0];
  1761. s->mv[dir][n + 1][1] = s->mv[dir][n][1];
  1762. }
  1763. }
  1764. /** Motion compensation for direct or interpolated blocks in B-frames
  1765. */
  1766. static void vc1_interp_mc(VC1Context *v)
  1767. {
  1768. MpegEncContext *s = &v->s;
  1769. H264ChromaContext *h264chroma = &v->h264chroma;
  1770. uint8_t *srcY, *srcU, *srcV;
  1771. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1772. int off, off_uv;
  1773. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  1774. int use_ic = v->next_use_ic;
  1775. if (!v->field_mode && !v->s.next_picture.f->data[0])
  1776. return;
  1777. mx = s->mv[1][0][0];
  1778. my = s->mv[1][0][1];
  1779. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1780. uvmy = (my + ((my & 3) == 3)) >> 1;
  1781. if (v->field_mode) {
  1782. if (v->cur_field_type != v->ref_field_type[1])
  1783. my = my - 2 + 4 * v->cur_field_type;
  1784. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  1785. }
  1786. if (v->fastuvmc) {
  1787. uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
  1788. uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
  1789. }
  1790. srcY = s->next_picture.f->data[0];
  1791. srcU = s->next_picture.f->data[1];
  1792. srcV = s->next_picture.f->data[2];
  1793. src_x = s->mb_x * 16 + (mx >> 2);
  1794. src_y = s->mb_y * 16 + (my >> 2);
  1795. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1796. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1797. if (v->profile != PROFILE_ADVANCED) {
  1798. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1799. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1800. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1801. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1802. } else {
  1803. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1804. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1805. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1806. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1807. }
  1808. srcY += src_y * s->linesize + src_x;
  1809. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1810. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1811. if (v->field_mode && v->ref_field_type[1]) {
  1812. srcY += s->current_picture_ptr->f->linesize[0];
  1813. srcU += s->current_picture_ptr->f->linesize[1];
  1814. srcV += s->current_picture_ptr->f->linesize[2];
  1815. }
  1816. /* for grayscale we should not try to read from unknown area */
  1817. if (s->flags & CODEC_FLAG_GRAY) {
  1818. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1819. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1820. }
  1821. if (v->rangeredfrm || s->h_edge_pos < 22 || v_edge_pos < 22 || use_ic
  1822. || (unsigned)(src_x - 1) > s->h_edge_pos - (mx & 3) - 16 - 3
  1823. || (unsigned)(src_y - 1) > v_edge_pos - (my & 3) - 16 - 3) {
  1824. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  1825. srcY -= s->mspel * (1 + s->linesize);
  1826. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY,
  1827. s->linesize, s->linesize,
  1828. 17 + s->mspel * 2, 17 + s->mspel * 2,
  1829. src_x - s->mspel, src_y - s->mspel,
  1830. s->h_edge_pos, v_edge_pos);
  1831. srcY = s->edge_emu_buffer;
  1832. s->vdsp.emulated_edge_mc(uvbuf, srcU,
  1833. s->uvlinesize, s->uvlinesize,
  1834. 8 + 1, 8 + 1,
  1835. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  1836. s->vdsp.emulated_edge_mc(uvbuf + 16, srcV,
  1837. s->uvlinesize, s->uvlinesize,
  1838. 8 + 1, 8 + 1,
  1839. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  1840. srcU = uvbuf;
  1841. srcV = uvbuf + 16;
  1842. /* if we deal with range reduction we need to scale source blocks */
  1843. if (v->rangeredfrm) {
  1844. int i, j;
  1845. uint8_t *src, *src2;
  1846. src = srcY;
  1847. for (j = 0; j < 17 + s->mspel * 2; j++) {
  1848. for (i = 0; i < 17 + s->mspel * 2; i++)
  1849. src[i] = ((src[i] - 128) >> 1) + 128;
  1850. src += s->linesize;
  1851. }
  1852. src = srcU;
  1853. src2 = srcV;
  1854. for (j = 0; j < 9; j++) {
  1855. for (i = 0; i < 9; i++) {
  1856. src[i] = ((src[i] - 128) >> 1) + 128;
  1857. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1858. }
  1859. src += s->uvlinesize;
  1860. src2 += s->uvlinesize;
  1861. }
  1862. }
  1863. if (use_ic) {
  1864. uint8_t (*luty )[256] = v->next_luty;
  1865. uint8_t (*lutuv)[256] = v->next_lutuv;
  1866. int i, j;
  1867. uint8_t *src, *src2;
  1868. src = srcY;
  1869. for (j = 0; j < 17 + s->mspel * 2; j++) {
  1870. int f = v->field_mode ? v->ref_field_type[1] : ((j+src_y - s->mspel) & 1);
  1871. for (i = 0; i < 17 + s->mspel * 2; i++)
  1872. src[i] = luty[f][src[i]];
  1873. src += s->linesize;
  1874. }
  1875. src = srcU;
  1876. src2 = srcV;
  1877. for (j = 0; j < 9; j++) {
  1878. int f = v->field_mode ? v->ref_field_type[1] : ((j+uvsrc_y) & 1);
  1879. for (i = 0; i < 9; i++) {
  1880. src[i] = lutuv[f][src[i]];
  1881. src2[i] = lutuv[f][src2[i]];
  1882. }
  1883. src += s->uvlinesize;
  1884. src2 += s->uvlinesize;
  1885. }
  1886. }
  1887. srcY += s->mspel * (1 + s->linesize);
  1888. }
  1889. off = 0;
  1890. off_uv = 0;
  1891. if (s->mspel) {
  1892. dxy = ((my & 3) << 2) | (mx & 3);
  1893. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
  1894. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
  1895. srcY += s->linesize * 8;
  1896. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
  1897. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  1898. } else { // hpel mc
  1899. dxy = (my & 2) | ((mx & 2) >> 1);
  1900. if (!v->rnd)
  1901. s->hdsp.avg_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  1902. else
  1903. s->hdsp.avg_no_rnd_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, 16);
  1904. }
  1905. if (s->flags & CODEC_FLAG_GRAY) return;
  1906. /* Chroma MC always uses qpel blilinear */
  1907. uvmx = (uvmx & 3) << 1;
  1908. uvmy = (uvmy & 3) << 1;
  1909. if (!v->rnd) {
  1910. h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  1911. h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  1912. } else {
  1913. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  1914. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  1915. }
  1916. }
  1917. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1918. {
  1919. int n = bfrac;
  1920. #if B_FRACTION_DEN==256
  1921. if (inv)
  1922. n -= 256;
  1923. if (!qs)
  1924. return 2 * ((value * n + 255) >> 9);
  1925. return (value * n + 128) >> 8;
  1926. #else
  1927. if (inv)
  1928. n -= B_FRACTION_DEN;
  1929. if (!qs)
  1930. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1931. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1932. #endif
  1933. }
  1934. /** Reconstruct motion vector for B-frame and do motion compensation
  1935. */
  1936. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
  1937. int direct, int mode)
  1938. {
  1939. if (direct) {
  1940. vc1_mc_1mv(v, 0);
  1941. vc1_interp_mc(v);
  1942. return;
  1943. }
  1944. if (mode == BMV_TYPE_INTERPOLATED) {
  1945. vc1_mc_1mv(v, 0);
  1946. vc1_interp_mc(v);
  1947. return;
  1948. }
  1949. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1950. }
  1951. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
  1952. int direct, int mvtype)
  1953. {
  1954. MpegEncContext *s = &v->s;
  1955. int xy, wrap, off = 0;
  1956. int16_t *A, *B, *C;
  1957. int px, py;
  1958. int sum;
  1959. int r_x, r_y;
  1960. const uint8_t *is_intra = v->mb_type[0];
  1961. r_x = v->range_x;
  1962. r_y = v->range_y;
  1963. /* scale MV difference to be quad-pel */
  1964. dmv_x[0] <<= 1 - s->quarter_sample;
  1965. dmv_y[0] <<= 1 - s->quarter_sample;
  1966. dmv_x[1] <<= 1 - s->quarter_sample;
  1967. dmv_y[1] <<= 1 - s->quarter_sample;
  1968. wrap = s->b8_stride;
  1969. xy = s->block_index[0];
  1970. if (s->mb_intra) {
  1971. s->current_picture.motion_val[0][xy + v->blocks_off][0] =
  1972. s->current_picture.motion_val[0][xy + v->blocks_off][1] =
  1973. s->current_picture.motion_val[1][xy + v->blocks_off][0] =
  1974. s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
  1975. return;
  1976. }
  1977. if (!v->field_mode) {
  1978. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1979. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1980. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1981. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1982. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1983. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1984. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1985. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1986. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1987. }
  1988. if (direct) {
  1989. s->current_picture.motion_val[0][xy + v->blocks_off][0] = s->mv[0][0][0];
  1990. s->current_picture.motion_val[0][xy + v->blocks_off][1] = s->mv[0][0][1];
  1991. s->current_picture.motion_val[1][xy + v->blocks_off][0] = s->mv[1][0][0];
  1992. s->current_picture.motion_val[1][xy + v->blocks_off][1] = s->mv[1][0][1];
  1993. return;
  1994. }
  1995. if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1996. C = s->current_picture.motion_val[0][xy - 2];
  1997. A = s->current_picture.motion_val[0][xy - wrap * 2];
  1998. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1999. B = s->current_picture.motion_val[0][xy - wrap * 2 + off];
  2000. if (!s->mb_x) C[0] = C[1] = 0;
  2001. if (!s->first_slice_line) { // predictor A is not out of bounds
  2002. if (s->mb_width == 1) {
  2003. px = A[0];
  2004. py = A[1];
  2005. } else {
  2006. px = mid_pred(A[0], B[0], C[0]);
  2007. py = mid_pred(A[1], B[1], C[1]);
  2008. }
  2009. } else if (s->mb_x) { // predictor C is not out of bounds
  2010. px = C[0];
  2011. py = C[1];
  2012. } else {
  2013. px = py = 0;
  2014. }
  2015. /* Pullback MV as specified in 8.3.5.3.4 */
  2016. {
  2017. int qx, qy, X, Y;
  2018. if (v->profile < PROFILE_ADVANCED) {
  2019. qx = (s->mb_x << 5);
  2020. qy = (s->mb_y << 5);
  2021. X = (s->mb_width << 5) - 4;
  2022. Y = (s->mb_height << 5) - 4;
  2023. if (qx + px < -28) px = -28 - qx;
  2024. if (qy + py < -28) py = -28 - qy;
  2025. if (qx + px > X) px = X - qx;
  2026. if (qy + py > Y) py = Y - qy;
  2027. } else {
  2028. qx = (s->mb_x << 6);
  2029. qy = (s->mb_y << 6);
  2030. X = (s->mb_width << 6) - 4;
  2031. Y = (s->mb_height << 6) - 4;
  2032. if (qx + px < -60) px = -60 - qx;
  2033. if (qy + py < -60) py = -60 - qy;
  2034. if (qx + px > X) px = X - qx;
  2035. if (qy + py > Y) py = Y - qy;
  2036. }
  2037. }
  2038. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2039. if (0 && !s->first_slice_line && s->mb_x) {
  2040. if (is_intra[xy - wrap])
  2041. sum = FFABS(px) + FFABS(py);
  2042. else
  2043. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2044. if (sum > 32) {
  2045. if (get_bits1(&s->gb)) {
  2046. px = A[0];
  2047. py = A[1];
  2048. } else {
  2049. px = C[0];
  2050. py = C[1];
  2051. }
  2052. } else {
  2053. if (is_intra[xy - 2])
  2054. sum = FFABS(px) + FFABS(py);
  2055. else
  2056. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2057. if (sum > 32) {
  2058. if (get_bits1(&s->gb)) {
  2059. px = A[0];
  2060. py = A[1];
  2061. } else {
  2062. px = C[0];
  2063. py = C[1];
  2064. }
  2065. }
  2066. }
  2067. }
  2068. /* store MV using signed modulus of MV range defined in 4.11 */
  2069. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2070. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2071. }
  2072. if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2073. C = s->current_picture.motion_val[1][xy - 2];
  2074. A = s->current_picture.motion_val[1][xy - wrap * 2];
  2075. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2076. B = s->current_picture.motion_val[1][xy - wrap * 2 + off];
  2077. if (!s->mb_x)
  2078. C[0] = C[1] = 0;
  2079. if (!s->first_slice_line) { // predictor A is not out of bounds
  2080. if (s->mb_width == 1) {
  2081. px = A[0];
  2082. py = A[1];
  2083. } else {
  2084. px = mid_pred(A[0], B[0], C[0]);
  2085. py = mid_pred(A[1], B[1], C[1]);
  2086. }
  2087. } else if (s->mb_x) { // predictor C is not out of bounds
  2088. px = C[0];
  2089. py = C[1];
  2090. } else {
  2091. px = py = 0;
  2092. }
  2093. /* Pullback MV as specified in 8.3.5.3.4 */
  2094. {
  2095. int qx, qy, X, Y;
  2096. if (v->profile < PROFILE_ADVANCED) {
  2097. qx = (s->mb_x << 5);
  2098. qy = (s->mb_y << 5);
  2099. X = (s->mb_width << 5) - 4;
  2100. Y = (s->mb_height << 5) - 4;
  2101. if (qx + px < -28) px = -28 - qx;
  2102. if (qy + py < -28) py = -28 - qy;
  2103. if (qx + px > X) px = X - qx;
  2104. if (qy + py > Y) py = Y - qy;
  2105. } else {
  2106. qx = (s->mb_x << 6);
  2107. qy = (s->mb_y << 6);
  2108. X = (s->mb_width << 6) - 4;
  2109. Y = (s->mb_height << 6) - 4;
  2110. if (qx + px < -60) px = -60 - qx;
  2111. if (qy + py < -60) py = -60 - qy;
  2112. if (qx + px > X) px = X - qx;
  2113. if (qy + py > Y) py = Y - qy;
  2114. }
  2115. }
  2116. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2117. if (0 && !s->first_slice_line && s->mb_x) {
  2118. if (is_intra[xy - wrap])
  2119. sum = FFABS(px) + FFABS(py);
  2120. else
  2121. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2122. if (sum > 32) {
  2123. if (get_bits1(&s->gb)) {
  2124. px = A[0];
  2125. py = A[1];
  2126. } else {
  2127. px = C[0];
  2128. py = C[1];
  2129. }
  2130. } else {
  2131. if (is_intra[xy - 2])
  2132. sum = FFABS(px) + FFABS(py);
  2133. else
  2134. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2135. if (sum > 32) {
  2136. if (get_bits1(&s->gb)) {
  2137. px = A[0];
  2138. py = A[1];
  2139. } else {
  2140. px = C[0];
  2141. py = C[1];
  2142. }
  2143. }
  2144. }
  2145. }
  2146. /* store MV using signed modulus of MV range defined in 4.11 */
  2147. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2148. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2149. }
  2150. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2151. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2152. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2153. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2154. }
  2155. static inline void vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
  2156. {
  2157. int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
  2158. MpegEncContext *s = &v->s;
  2159. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2160. if (v->bmvtype == BMV_TYPE_DIRECT) {
  2161. int total_opp, k, f;
  2162. if (s->next_picture.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
  2163. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
  2164. v->bfraction, 0, s->quarter_sample);
  2165. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
  2166. v->bfraction, 0, s->quarter_sample);
  2167. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
  2168. v->bfraction, 1, s->quarter_sample);
  2169. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
  2170. v->bfraction, 1, s->quarter_sample);
  2171. total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
  2172. + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
  2173. + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
  2174. + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
  2175. f = (total_opp > 2) ? 1 : 0;
  2176. } else {
  2177. s->mv[0][0][0] = s->mv[0][0][1] = 0;
  2178. s->mv[1][0][0] = s->mv[1][0][1] = 0;
  2179. f = 0;
  2180. }
  2181. v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
  2182. for (k = 0; k < 4; k++) {
  2183. s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
  2184. s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
  2185. s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
  2186. s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
  2187. v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
  2188. v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
  2189. }
  2190. return;
  2191. }
  2192. if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
  2193. vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
  2194. vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
  2195. return;
  2196. }
  2197. if (dir) { // backward
  2198. vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
  2199. if (n == 3 || mv1) {
  2200. vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  2201. }
  2202. } else { // forward
  2203. vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
  2204. if (n == 3 || mv1) {
  2205. vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
  2206. }
  2207. }
  2208. }
  2209. /** Get predicted DC value for I-frames only
  2210. * prediction dir: left=0, top=1
  2211. * @param s MpegEncContext
  2212. * @param overlap flag indicating that overlap filtering is used
  2213. * @param pq integer part of picture quantizer
  2214. * @param[in] n block index in the current MB
  2215. * @param dc_val_ptr Pointer to DC predictor
  2216. * @param dir_ptr Prediction direction for use in AC prediction
  2217. */
  2218. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2219. int16_t **dc_val_ptr, int *dir_ptr)
  2220. {
  2221. int a, b, c, wrap, pred, scale;
  2222. int16_t *dc_val;
  2223. static const uint16_t dcpred[32] = {
  2224. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2225. 114, 102, 93, 85, 79, 73, 68, 64,
  2226. 60, 57, 54, 51, 49, 47, 45, 43,
  2227. 41, 39, 38, 37, 35, 34, 33
  2228. };
  2229. /* find prediction - wmv3_dc_scale always used here in fact */
  2230. if (n < 4) scale = s->y_dc_scale;
  2231. else scale = s->c_dc_scale;
  2232. wrap = s->block_wrap[n];
  2233. dc_val = s->dc_val[0] + s->block_index[n];
  2234. /* B A
  2235. * C X
  2236. */
  2237. c = dc_val[ - 1];
  2238. b = dc_val[ - 1 - wrap];
  2239. a = dc_val[ - wrap];
  2240. if (pq < 9 || !overlap) {
  2241. /* Set outer values */
  2242. if (s->first_slice_line && (n != 2 && n != 3))
  2243. b = a = dcpred[scale];
  2244. if (s->mb_x == 0 && (n != 1 && n != 3))
  2245. b = c = dcpred[scale];
  2246. } else {
  2247. /* Set outer values */
  2248. if (s->first_slice_line && (n != 2 && n != 3))
  2249. b = a = 0;
  2250. if (s->mb_x == 0 && (n != 1 && n != 3))
  2251. b = c = 0;
  2252. }
  2253. if (abs(a - b) <= abs(b - c)) {
  2254. pred = c;
  2255. *dir_ptr = 1; // left
  2256. } else {
  2257. pred = a;
  2258. *dir_ptr = 0; // top
  2259. }
  2260. /* update predictor */
  2261. *dc_val_ptr = &dc_val[0];
  2262. return pred;
  2263. }
  2264. /** Get predicted DC value
  2265. * prediction dir: left=0, top=1
  2266. * @param s MpegEncContext
  2267. * @param overlap flag indicating that overlap filtering is used
  2268. * @param pq integer part of picture quantizer
  2269. * @param[in] n block index in the current MB
  2270. * @param a_avail flag indicating top block availability
  2271. * @param c_avail flag indicating left block availability
  2272. * @param dc_val_ptr Pointer to DC predictor
  2273. * @param dir_ptr Prediction direction for use in AC prediction
  2274. */
  2275. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2276. int a_avail, int c_avail,
  2277. int16_t **dc_val_ptr, int *dir_ptr)
  2278. {
  2279. int a, b, c, wrap, pred;
  2280. int16_t *dc_val;
  2281. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2282. int q1, q2 = 0;
  2283. int dqscale_index;
  2284. wrap = s->block_wrap[n];
  2285. dc_val = s->dc_val[0] + s->block_index[n];
  2286. /* B A
  2287. * C X
  2288. */
  2289. c = dc_val[ - 1];
  2290. b = dc_val[ - 1 - wrap];
  2291. a = dc_val[ - wrap];
  2292. /* scale predictors if needed */
  2293. q1 = s->current_picture.qscale_table[mb_pos];
  2294. dqscale_index = s->y_dc_scale_table[q1] - 1;
  2295. if (dqscale_index < 0)
  2296. return 0;
  2297. if (c_avail && (n != 1 && n != 3)) {
  2298. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2299. if (q2 && q2 != q1)
  2300. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2301. }
  2302. if (a_avail && (n != 2 && n != 3)) {
  2303. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2304. if (q2 && q2 != q1)
  2305. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2306. }
  2307. if (a_avail && c_avail && (n != 3)) {
  2308. int off = mb_pos;
  2309. if (n != 1)
  2310. off--;
  2311. if (n != 2)
  2312. off -= s->mb_stride;
  2313. q2 = s->current_picture.qscale_table[off];
  2314. if (q2 && q2 != q1)
  2315. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2316. }
  2317. if (a_avail && c_avail) {
  2318. if (abs(a - b) <= abs(b - c)) {
  2319. pred = c;
  2320. *dir_ptr = 1; // left
  2321. } else {
  2322. pred = a;
  2323. *dir_ptr = 0; // top
  2324. }
  2325. } else if (a_avail) {
  2326. pred = a;
  2327. *dir_ptr = 0; // top
  2328. } else if (c_avail) {
  2329. pred = c;
  2330. *dir_ptr = 1; // left
  2331. } else {
  2332. pred = 0;
  2333. *dir_ptr = 1; // left
  2334. }
  2335. /* update predictor */
  2336. *dc_val_ptr = &dc_val[0];
  2337. return pred;
  2338. }
  2339. /** @} */ // Block group
  2340. /**
  2341. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  2342. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2343. * @{
  2344. */
  2345. static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
  2346. uint8_t **coded_block_ptr)
  2347. {
  2348. int xy, wrap, pred, a, b, c;
  2349. xy = s->block_index[n];
  2350. wrap = s->b8_stride;
  2351. /* B C
  2352. * A X
  2353. */
  2354. a = s->coded_block[xy - 1 ];
  2355. b = s->coded_block[xy - 1 - wrap];
  2356. c = s->coded_block[xy - wrap];
  2357. if (b == c) {
  2358. pred = a;
  2359. } else {
  2360. pred = c;
  2361. }
  2362. /* store value */
  2363. *coded_block_ptr = &s->coded_block[xy];
  2364. return pred;
  2365. }
  2366. /**
  2367. * Decode one AC coefficient
  2368. * @param v The VC1 context
  2369. * @param last Last coefficient
  2370. * @param skip How much zero coefficients to skip
  2371. * @param value Decoded AC coefficient value
  2372. * @param codingset set of VLC to decode data
  2373. * @see 8.1.3.4
  2374. */
  2375. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
  2376. int *value, int codingset)
  2377. {
  2378. GetBitContext *gb = &v->s.gb;
  2379. int index, escape, run = 0, level = 0, lst = 0;
  2380. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2381. if (index != ff_vc1_ac_sizes[codingset] - 1) {
  2382. run = vc1_index_decode_table[codingset][index][0];
  2383. level = vc1_index_decode_table[codingset][index][1];
  2384. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  2385. if (get_bits1(gb))
  2386. level = -level;
  2387. } else {
  2388. escape = decode210(gb);
  2389. if (escape != 2) {
  2390. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2391. run = vc1_index_decode_table[codingset][index][0];
  2392. level = vc1_index_decode_table[codingset][index][1];
  2393. lst = index >= vc1_last_decode_table[codingset];
  2394. if (escape == 0) {
  2395. if (lst)
  2396. level += vc1_last_delta_level_table[codingset][run];
  2397. else
  2398. level += vc1_delta_level_table[codingset][run];
  2399. } else {
  2400. if (lst)
  2401. run += vc1_last_delta_run_table[codingset][level] + 1;
  2402. else
  2403. run += vc1_delta_run_table[codingset][level] + 1;
  2404. }
  2405. if (get_bits1(gb))
  2406. level = -level;
  2407. } else {
  2408. int sign;
  2409. lst = get_bits1(gb);
  2410. if (v->s.esc3_level_length == 0) {
  2411. if (v->pq < 8 || v->dquantfrm) { // table 59
  2412. v->s.esc3_level_length = get_bits(gb, 3);
  2413. if (!v->s.esc3_level_length)
  2414. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2415. } else { // table 60
  2416. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2417. }
  2418. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2419. }
  2420. run = get_bits(gb, v->s.esc3_run_length);
  2421. sign = get_bits1(gb);
  2422. level = get_bits(gb, v->s.esc3_level_length);
  2423. if (sign)
  2424. level = -level;
  2425. }
  2426. }
  2427. *last = lst;
  2428. *skip = run;
  2429. *value = level;
  2430. }
  2431. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2432. * @param v VC1Context
  2433. * @param block block to decode
  2434. * @param[in] n subblock index
  2435. * @param coded are AC coeffs present or not
  2436. * @param codingset set of VLC to decode data
  2437. */
  2438. static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
  2439. int coded, int codingset)
  2440. {
  2441. GetBitContext *gb = &v->s.gb;
  2442. MpegEncContext *s = &v->s;
  2443. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2444. int i;
  2445. int16_t *dc_val;
  2446. int16_t *ac_val, *ac_val2;
  2447. int dcdiff;
  2448. /* Get DC differential */
  2449. if (n < 4) {
  2450. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2451. } else {
  2452. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2453. }
  2454. if (dcdiff < 0) {
  2455. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2456. return -1;
  2457. }
  2458. if (dcdiff) {
  2459. if (dcdiff == 119 /* ESC index value */) {
  2460. /* TODO: Optimize */
  2461. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2462. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2463. else dcdiff = get_bits(gb, 8);
  2464. } else {
  2465. if (v->pq == 1)
  2466. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2467. else if (v->pq == 2)
  2468. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2469. }
  2470. if (get_bits1(gb))
  2471. dcdiff = -dcdiff;
  2472. }
  2473. /* Prediction */
  2474. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2475. *dc_val = dcdiff;
  2476. /* Store the quantized DC coeff, used for prediction */
  2477. if (n < 4) {
  2478. block[0] = dcdiff * s->y_dc_scale;
  2479. } else {
  2480. block[0] = dcdiff * s->c_dc_scale;
  2481. }
  2482. /* Skip ? */
  2483. if (!coded) {
  2484. goto not_coded;
  2485. }
  2486. // AC Decoding
  2487. i = 1;
  2488. {
  2489. int last = 0, skip, value;
  2490. const uint8_t *zz_table;
  2491. int scale;
  2492. int k;
  2493. scale = v->pq * 2 + v->halfpq;
  2494. if (v->s.ac_pred) {
  2495. if (!dc_pred_dir)
  2496. zz_table = v->zz_8x8[2];
  2497. else
  2498. zz_table = v->zz_8x8[3];
  2499. } else
  2500. zz_table = v->zz_8x8[1];
  2501. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2502. ac_val2 = ac_val;
  2503. if (dc_pred_dir) // left
  2504. ac_val -= 16;
  2505. else // top
  2506. ac_val -= 16 * s->block_wrap[n];
  2507. while (!last) {
  2508. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2509. i += skip;
  2510. if (i > 63)
  2511. break;
  2512. block[zz_table[i++]] = value;
  2513. }
  2514. /* apply AC prediction if needed */
  2515. if (s->ac_pred) {
  2516. if (dc_pred_dir) { // left
  2517. for (k = 1; k < 8; k++)
  2518. block[k << v->left_blk_sh] += ac_val[k];
  2519. } else { // top
  2520. for (k = 1; k < 8; k++)
  2521. block[k << v->top_blk_sh] += ac_val[k + 8];
  2522. }
  2523. }
  2524. /* save AC coeffs for further prediction */
  2525. for (k = 1; k < 8; k++) {
  2526. ac_val2[k] = block[k << v->left_blk_sh];
  2527. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2528. }
  2529. /* scale AC coeffs */
  2530. for (k = 1; k < 64; k++)
  2531. if (block[k]) {
  2532. block[k] *= scale;
  2533. if (!v->pquantizer)
  2534. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2535. }
  2536. if (s->ac_pred) i = 63;
  2537. }
  2538. not_coded:
  2539. if (!coded) {
  2540. int k, scale;
  2541. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2542. ac_val2 = ac_val;
  2543. i = 0;
  2544. scale = v->pq * 2 + v->halfpq;
  2545. memset(ac_val2, 0, 16 * 2);
  2546. if (dc_pred_dir) { // left
  2547. ac_val -= 16;
  2548. if (s->ac_pred)
  2549. memcpy(ac_val2, ac_val, 8 * 2);
  2550. } else { // top
  2551. ac_val -= 16 * s->block_wrap[n];
  2552. if (s->ac_pred)
  2553. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2554. }
  2555. /* apply AC prediction if needed */
  2556. if (s->ac_pred) {
  2557. if (dc_pred_dir) { //left
  2558. for (k = 1; k < 8; k++) {
  2559. block[k << v->left_blk_sh] = ac_val[k] * scale;
  2560. if (!v->pquantizer && block[k << v->left_blk_sh])
  2561. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
  2562. }
  2563. } else { // top
  2564. for (k = 1; k < 8; k++) {
  2565. block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
  2566. if (!v->pquantizer && block[k << v->top_blk_sh])
  2567. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
  2568. }
  2569. }
  2570. i = 63;
  2571. }
  2572. }
  2573. s->block_last_index[n] = i;
  2574. return 0;
  2575. }
  2576. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2577. * @param v VC1Context
  2578. * @param block block to decode
  2579. * @param[in] n subblock number
  2580. * @param coded are AC coeffs present or not
  2581. * @param codingset set of VLC to decode data
  2582. * @param mquant quantizer value for this macroblock
  2583. */
  2584. static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
  2585. int coded, int codingset, int mquant)
  2586. {
  2587. GetBitContext *gb = &v->s.gb;
  2588. MpegEncContext *s = &v->s;
  2589. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2590. int i;
  2591. int16_t *dc_val;
  2592. int16_t *ac_val, *ac_val2;
  2593. int dcdiff;
  2594. int a_avail = v->a_avail, c_avail = v->c_avail;
  2595. int use_pred = s->ac_pred;
  2596. int scale;
  2597. int q1, q2 = 0;
  2598. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2599. /* Get DC differential */
  2600. if (n < 4) {
  2601. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2602. } else {
  2603. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2604. }
  2605. if (dcdiff < 0) {
  2606. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2607. return -1;
  2608. }
  2609. if (dcdiff) {
  2610. if (dcdiff == 119 /* ESC index value */) {
  2611. /* TODO: Optimize */
  2612. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2613. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2614. else dcdiff = get_bits(gb, 8);
  2615. } else {
  2616. if (mquant == 1)
  2617. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2618. else if (mquant == 2)
  2619. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2620. }
  2621. if (get_bits1(gb))
  2622. dcdiff = -dcdiff;
  2623. }
  2624. /* Prediction */
  2625. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2626. *dc_val = dcdiff;
  2627. /* Store the quantized DC coeff, used for prediction */
  2628. if (n < 4) {
  2629. block[0] = dcdiff * s->y_dc_scale;
  2630. } else {
  2631. block[0] = dcdiff * s->c_dc_scale;
  2632. }
  2633. //AC Decoding
  2634. i = 1;
  2635. /* check if AC is needed at all */
  2636. if (!a_avail && !c_avail)
  2637. use_pred = 0;
  2638. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2639. ac_val2 = ac_val;
  2640. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2641. if (dc_pred_dir) // left
  2642. ac_val -= 16;
  2643. else // top
  2644. ac_val -= 16 * s->block_wrap[n];
  2645. q1 = s->current_picture.qscale_table[mb_pos];
  2646. if ( dc_pred_dir && c_avail && mb_pos)
  2647. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2648. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  2649. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2650. if ( dc_pred_dir && n == 1)
  2651. q2 = q1;
  2652. if (!dc_pred_dir && n == 2)
  2653. q2 = q1;
  2654. if (n == 3)
  2655. q2 = q1;
  2656. if (coded) {
  2657. int last = 0, skip, value;
  2658. const uint8_t *zz_table;
  2659. int k;
  2660. if (v->s.ac_pred) {
  2661. if (!use_pred && v->fcm == ILACE_FRAME) {
  2662. zz_table = v->zzi_8x8;
  2663. } else {
  2664. if (!dc_pred_dir) // top
  2665. zz_table = v->zz_8x8[2];
  2666. else // left
  2667. zz_table = v->zz_8x8[3];
  2668. }
  2669. } else {
  2670. if (v->fcm != ILACE_FRAME)
  2671. zz_table = v->zz_8x8[1];
  2672. else
  2673. zz_table = v->zzi_8x8;
  2674. }
  2675. while (!last) {
  2676. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2677. i += skip;
  2678. if (i > 63)
  2679. break;
  2680. block[zz_table[i++]] = value;
  2681. }
  2682. /* apply AC prediction if needed */
  2683. if (use_pred) {
  2684. /* scale predictors if needed*/
  2685. if (q2 && q1 != q2) {
  2686. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2687. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2688. if (q1 < 1)
  2689. return AVERROR_INVALIDDATA;
  2690. if (dc_pred_dir) { // left
  2691. for (k = 1; k < 8; k++)
  2692. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2693. } else { // top
  2694. for (k = 1; k < 8; k++)
  2695. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2696. }
  2697. } else {
  2698. if (dc_pred_dir) { //left
  2699. for (k = 1; k < 8; k++)
  2700. block[k << v->left_blk_sh] += ac_val[k];
  2701. } else { //top
  2702. for (k = 1; k < 8; k++)
  2703. block[k << v->top_blk_sh] += ac_val[k + 8];
  2704. }
  2705. }
  2706. }
  2707. /* save AC coeffs for further prediction */
  2708. for (k = 1; k < 8; k++) {
  2709. ac_val2[k ] = block[k << v->left_blk_sh];
  2710. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2711. }
  2712. /* scale AC coeffs */
  2713. for (k = 1; k < 64; k++)
  2714. if (block[k]) {
  2715. block[k] *= scale;
  2716. if (!v->pquantizer)
  2717. block[k] += (block[k] < 0) ? -mquant : mquant;
  2718. }
  2719. if (use_pred) i = 63;
  2720. } else { // no AC coeffs
  2721. int k;
  2722. memset(ac_val2, 0, 16 * 2);
  2723. if (dc_pred_dir) { // left
  2724. if (use_pred) {
  2725. memcpy(ac_val2, ac_val, 8 * 2);
  2726. if (q2 && q1 != q2) {
  2727. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2728. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2729. if (q1 < 1)
  2730. return AVERROR_INVALIDDATA;
  2731. for (k = 1; k < 8; k++)
  2732. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2733. }
  2734. }
  2735. } else { // top
  2736. if (use_pred) {
  2737. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2738. if (q2 && q1 != q2) {
  2739. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2740. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2741. if (q1 < 1)
  2742. return AVERROR_INVALIDDATA;
  2743. for (k = 1; k < 8; k++)
  2744. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2745. }
  2746. }
  2747. }
  2748. /* apply AC prediction if needed */
  2749. if (use_pred) {
  2750. if (dc_pred_dir) { // left
  2751. for (k = 1; k < 8; k++) {
  2752. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  2753. if (!v->pquantizer && block[k << v->left_blk_sh])
  2754. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  2755. }
  2756. } else { // top
  2757. for (k = 1; k < 8; k++) {
  2758. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  2759. if (!v->pquantizer && block[k << v->top_blk_sh])
  2760. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  2761. }
  2762. }
  2763. i = 63;
  2764. }
  2765. }
  2766. s->block_last_index[n] = i;
  2767. return 0;
  2768. }
  2769. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2770. * @param v VC1Context
  2771. * @param block block to decode
  2772. * @param[in] n subblock index
  2773. * @param coded are AC coeffs present or not
  2774. * @param mquant block quantizer
  2775. * @param codingset set of VLC to decode data
  2776. */
  2777. static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
  2778. int coded, int mquant, int codingset)
  2779. {
  2780. GetBitContext *gb = &v->s.gb;
  2781. MpegEncContext *s = &v->s;
  2782. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2783. int i;
  2784. int16_t *dc_val;
  2785. int16_t *ac_val, *ac_val2;
  2786. int dcdiff;
  2787. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2788. int a_avail = v->a_avail, c_avail = v->c_avail;
  2789. int use_pred = s->ac_pred;
  2790. int scale;
  2791. int q1, q2 = 0;
  2792. s->dsp.clear_block(block);
  2793. /* XXX: Guard against dumb values of mquant */
  2794. mquant = (mquant < 1) ? 0 : ((mquant > 31) ? 31 : mquant);
  2795. /* Set DC scale - y and c use the same */
  2796. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2797. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2798. /* Get DC differential */
  2799. if (n < 4) {
  2800. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2801. } else {
  2802. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2803. }
  2804. if (dcdiff < 0) {
  2805. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2806. return -1;
  2807. }
  2808. if (dcdiff) {
  2809. if (dcdiff == 119 /* ESC index value */) {
  2810. /* TODO: Optimize */
  2811. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2812. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2813. else dcdiff = get_bits(gb, 8);
  2814. } else {
  2815. if (mquant == 1)
  2816. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2817. else if (mquant == 2)
  2818. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2819. }
  2820. if (get_bits1(gb))
  2821. dcdiff = -dcdiff;
  2822. }
  2823. /* Prediction */
  2824. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2825. *dc_val = dcdiff;
  2826. /* Store the quantized DC coeff, used for prediction */
  2827. if (n < 4) {
  2828. block[0] = dcdiff * s->y_dc_scale;
  2829. } else {
  2830. block[0] = dcdiff * s->c_dc_scale;
  2831. }
  2832. //AC Decoding
  2833. i = 1;
  2834. /* check if AC is needed at all and adjust direction if needed */
  2835. if (!a_avail) dc_pred_dir = 1;
  2836. if (!c_avail) dc_pred_dir = 0;
  2837. if (!a_avail && !c_avail) use_pred = 0;
  2838. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2839. ac_val2 = ac_val;
  2840. scale = mquant * 2 + v->halfpq;
  2841. if (dc_pred_dir) //left
  2842. ac_val -= 16;
  2843. else //top
  2844. ac_val -= 16 * s->block_wrap[n];
  2845. q1 = s->current_picture.qscale_table[mb_pos];
  2846. if (dc_pred_dir && c_avail && mb_pos)
  2847. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2848. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  2849. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2850. if ( dc_pred_dir && n == 1)
  2851. q2 = q1;
  2852. if (!dc_pred_dir && n == 2)
  2853. q2 = q1;
  2854. if (n == 3) q2 = q1;
  2855. if (coded) {
  2856. int last = 0, skip, value;
  2857. int k;
  2858. while (!last) {
  2859. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2860. i += skip;
  2861. if (i > 63)
  2862. break;
  2863. if (v->fcm == PROGRESSIVE)
  2864. block[v->zz_8x8[0][i++]] = value;
  2865. else {
  2866. if (use_pred && (v->fcm == ILACE_FRAME)) {
  2867. if (!dc_pred_dir) // top
  2868. block[v->zz_8x8[2][i++]] = value;
  2869. else // left
  2870. block[v->zz_8x8[3][i++]] = value;
  2871. } else {
  2872. block[v->zzi_8x8[i++]] = value;
  2873. }
  2874. }
  2875. }
  2876. /* apply AC prediction if needed */
  2877. if (use_pred) {
  2878. /* scale predictors if needed*/
  2879. if (q2 && q1 != q2) {
  2880. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2881. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2882. if (q1 < 1)
  2883. return AVERROR_INVALIDDATA;
  2884. if (dc_pred_dir) { // left
  2885. for (k = 1; k < 8; k++)
  2886. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2887. } else { //top
  2888. for (k = 1; k < 8; k++)
  2889. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2890. }
  2891. } else {
  2892. if (dc_pred_dir) { // left
  2893. for (k = 1; k < 8; k++)
  2894. block[k << v->left_blk_sh] += ac_val[k];
  2895. } else { // top
  2896. for (k = 1; k < 8; k++)
  2897. block[k << v->top_blk_sh] += ac_val[k + 8];
  2898. }
  2899. }
  2900. }
  2901. /* save AC coeffs for further prediction */
  2902. for (k = 1; k < 8; k++) {
  2903. ac_val2[k ] = block[k << v->left_blk_sh];
  2904. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2905. }
  2906. /* scale AC coeffs */
  2907. for (k = 1; k < 64; k++)
  2908. if (block[k]) {
  2909. block[k] *= scale;
  2910. if (!v->pquantizer)
  2911. block[k] += (block[k] < 0) ? -mquant : mquant;
  2912. }
  2913. if (use_pred) i = 63;
  2914. } else { // no AC coeffs
  2915. int k;
  2916. memset(ac_val2, 0, 16 * 2);
  2917. if (dc_pred_dir) { // left
  2918. if (use_pred) {
  2919. memcpy(ac_val2, ac_val, 8 * 2);
  2920. if (q2 && q1 != q2) {
  2921. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2922. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2923. if (q1 < 1)
  2924. return AVERROR_INVALIDDATA;
  2925. for (k = 1; k < 8; k++)
  2926. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2927. }
  2928. }
  2929. } else { // top
  2930. if (use_pred) {
  2931. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2932. if (q2 && q1 != q2) {
  2933. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2934. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2935. if (q1 < 1)
  2936. return AVERROR_INVALIDDATA;
  2937. for (k = 1; k < 8; k++)
  2938. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2939. }
  2940. }
  2941. }
  2942. /* apply AC prediction if needed */
  2943. if (use_pred) {
  2944. if (dc_pred_dir) { // left
  2945. for (k = 1; k < 8; k++) {
  2946. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  2947. if (!v->pquantizer && block[k << v->left_blk_sh])
  2948. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  2949. }
  2950. } else { // top
  2951. for (k = 1; k < 8; k++) {
  2952. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  2953. if (!v->pquantizer && block[k << v->top_blk_sh])
  2954. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  2955. }
  2956. }
  2957. i = 63;
  2958. }
  2959. }
  2960. s->block_last_index[n] = i;
  2961. return 0;
  2962. }
  2963. /** Decode P block
  2964. */
  2965. static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
  2966. int mquant, int ttmb, int first_block,
  2967. uint8_t *dst, int linesize, int skip_block,
  2968. int *ttmb_out)
  2969. {
  2970. MpegEncContext *s = &v->s;
  2971. GetBitContext *gb = &s->gb;
  2972. int i, j;
  2973. int subblkpat = 0;
  2974. int scale, off, idx, last, skip, value;
  2975. int ttblk = ttmb & 7;
  2976. int pat = 0;
  2977. s->dsp.clear_block(block);
  2978. if (ttmb == -1) {
  2979. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2980. }
  2981. if (ttblk == TT_4X4) {
  2982. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2983. }
  2984. if ((ttblk != TT_8X8 && ttblk != TT_4X4)
  2985. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  2986. || (!v->res_rtm_flag && !first_block))) {
  2987. subblkpat = decode012(gb);
  2988. if (subblkpat)
  2989. subblkpat ^= 3; // swap decoded pattern bits
  2990. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
  2991. ttblk = TT_8X4;
  2992. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
  2993. ttblk = TT_4X8;
  2994. }
  2995. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2996. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2997. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2998. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2999. ttblk = TT_8X4;
  3000. }
  3001. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  3002. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  3003. ttblk = TT_4X8;
  3004. }
  3005. switch (ttblk) {
  3006. case TT_8X8:
  3007. pat = 0xF;
  3008. i = 0;
  3009. last = 0;
  3010. while (!last) {
  3011. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3012. i += skip;
  3013. if (i > 63)
  3014. break;
  3015. if (!v->fcm)
  3016. idx = v->zz_8x8[0][i++];
  3017. else
  3018. idx = v->zzi_8x8[i++];
  3019. block[idx] = value * scale;
  3020. if (!v->pquantizer)
  3021. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3022. }
  3023. if (!skip_block) {
  3024. if (i == 1)
  3025. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  3026. else {
  3027. v->vc1dsp.vc1_inv_trans_8x8(block);
  3028. s->dsp.add_pixels_clamped(block, dst, linesize);
  3029. }
  3030. }
  3031. break;
  3032. case TT_4X4:
  3033. pat = ~subblkpat & 0xF;
  3034. for (j = 0; j < 4; j++) {
  3035. last = subblkpat & (1 << (3 - j));
  3036. i = 0;
  3037. off = (j & 1) * 4 + (j & 2) * 16;
  3038. while (!last) {
  3039. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3040. i += skip;
  3041. if (i > 15)
  3042. break;
  3043. if (!v->fcm)
  3044. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  3045. else
  3046. idx = ff_vc1_adv_interlaced_4x4_zz[i++];
  3047. block[idx + off] = value * scale;
  3048. if (!v->pquantizer)
  3049. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3050. }
  3051. if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
  3052. if (i == 1)
  3053. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  3054. else
  3055. v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  3056. }
  3057. }
  3058. break;
  3059. case TT_8X4:
  3060. pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
  3061. for (j = 0; j < 2; j++) {
  3062. last = subblkpat & (1 << (1 - j));
  3063. i = 0;
  3064. off = j * 32;
  3065. while (!last) {
  3066. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3067. i += skip;
  3068. if (i > 31)
  3069. break;
  3070. if (!v->fcm)
  3071. idx = v->zz_8x4[i++] + off;
  3072. else
  3073. idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
  3074. block[idx] = value * scale;
  3075. if (!v->pquantizer)
  3076. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3077. }
  3078. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  3079. if (i == 1)
  3080. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
  3081. else
  3082. v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
  3083. }
  3084. }
  3085. break;
  3086. case TT_4X8:
  3087. pat = ~(subblkpat * 5) & 0xF;
  3088. for (j = 0; j < 2; j++) {
  3089. last = subblkpat & (1 << (1 - j));
  3090. i = 0;
  3091. off = j * 4;
  3092. while (!last) {
  3093. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3094. i += skip;
  3095. if (i > 31)
  3096. break;
  3097. if (!v->fcm)
  3098. idx = v->zz_4x8[i++] + off;
  3099. else
  3100. idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
  3101. block[idx] = value * scale;
  3102. if (!v->pquantizer)
  3103. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3104. }
  3105. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  3106. if (i == 1)
  3107. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
  3108. else
  3109. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  3110. }
  3111. }
  3112. break;
  3113. }
  3114. if (ttmb_out)
  3115. *ttmb_out |= ttblk << (n * 4);
  3116. return pat;
  3117. }
  3118. /** @} */ // Macroblock group
  3119. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  3120. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3121. static av_always_inline void vc1_apply_p_v_loop_filter(VC1Context *v, int block_num)
  3122. {
  3123. MpegEncContext *s = &v->s;
  3124. int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
  3125. block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
  3126. mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
  3127. block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
  3128. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  3129. uint8_t *dst;
  3130. if (block_num > 3) {
  3131. dst = s->dest[block_num - 3];
  3132. } else {
  3133. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
  3134. }
  3135. if (s->mb_y != s->end_mb_y || block_num < 2) {
  3136. int16_t (*mv)[2];
  3137. int mv_stride;
  3138. if (block_num > 3) {
  3139. bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
  3140. bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
  3141. mv = &v->luma_mv[s->mb_x - s->mb_stride];
  3142. mv_stride = s->mb_stride;
  3143. } else {
  3144. bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4))
  3145. : (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
  3146. bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4))
  3147. : (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
  3148. mv_stride = s->b8_stride;
  3149. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
  3150. }
  3151. if (bottom_is_intra & 1 || block_is_intra & 1 ||
  3152. mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
  3153. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3154. } else {
  3155. idx = ((bottom_cbp >> 2) | block_cbp) & 3;
  3156. if (idx == 3) {
  3157. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3158. } else if (idx) {
  3159. if (idx == 1)
  3160. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  3161. else
  3162. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  3163. }
  3164. }
  3165. }
  3166. dst -= 4 * linesize;
  3167. ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xF;
  3168. if (ttblk == TT_4X4 || ttblk == TT_8X4) {
  3169. idx = (block_cbp | (block_cbp >> 2)) & 3;
  3170. if (idx == 3) {
  3171. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3172. } else if (idx) {
  3173. if (idx == 1)
  3174. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  3175. else
  3176. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  3177. }
  3178. }
  3179. }
  3180. static av_always_inline void vc1_apply_p_h_loop_filter(VC1Context *v, int block_num)
  3181. {
  3182. MpegEncContext *s = &v->s;
  3183. int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
  3184. block_cbp = mb_cbp >> (block_num * 4), right_cbp,
  3185. mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
  3186. block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
  3187. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  3188. uint8_t *dst;
  3189. if (block_num > 3) {
  3190. dst = s->dest[block_num - 3] - 8 * linesize;
  3191. } else {
  3192. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
  3193. }
  3194. if (s->mb_x != s->mb_width || !(block_num & 5)) {
  3195. int16_t (*mv)[2];
  3196. if (block_num > 3) {
  3197. right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
  3198. right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
  3199. mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
  3200. } else {
  3201. right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
  3202. : (mb_cbp >> ((block_num + 1) * 4));
  3203. right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
  3204. : (mb_is_intra >> ((block_num + 1) * 4));
  3205. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
  3206. }
  3207. if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
  3208. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3209. } else {
  3210. idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
  3211. if (idx == 5) {
  3212. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3213. } else if (idx) {
  3214. if (idx == 1)
  3215. v->vc1dsp.vc1_h_loop_filter4(dst + 4 * linesize, linesize, v->pq);
  3216. else
  3217. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  3218. }
  3219. }
  3220. }
  3221. dst -= 4;
  3222. ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
  3223. if (ttblk == TT_4X4 || ttblk == TT_4X8) {
  3224. idx = (block_cbp | (block_cbp >> 1)) & 5;
  3225. if (idx == 5) {
  3226. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3227. } else if (idx) {
  3228. if (idx == 1)
  3229. v->vc1dsp.vc1_h_loop_filter4(dst + linesize * 4, linesize, v->pq);
  3230. else
  3231. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  3232. }
  3233. }
  3234. }
  3235. static void vc1_apply_p_loop_filter(VC1Context *v)
  3236. {
  3237. MpegEncContext *s = &v->s;
  3238. int i;
  3239. for (i = 0; i < 6; i++) {
  3240. vc1_apply_p_v_loop_filter(v, i);
  3241. }
  3242. /* V always precedes H, therefore we run H one MB before V;
  3243. * at the end of a row, we catch up to complete the row */
  3244. if (s->mb_x) {
  3245. for (i = 0; i < 6; i++) {
  3246. vc1_apply_p_h_loop_filter(v, i);
  3247. }
  3248. if (s->mb_x == s->mb_width - 1) {
  3249. s->mb_x++;
  3250. ff_update_block_index(s);
  3251. for (i = 0; i < 6; i++) {
  3252. vc1_apply_p_h_loop_filter(v, i);
  3253. }
  3254. }
  3255. }
  3256. }
  3257. /** Decode one P-frame MB
  3258. */
  3259. static int vc1_decode_p_mb(VC1Context *v)
  3260. {
  3261. MpegEncContext *s = &v->s;
  3262. GetBitContext *gb = &s->gb;
  3263. int i, j;
  3264. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3265. int cbp; /* cbp decoding stuff */
  3266. int mqdiff, mquant; /* MB quantization */
  3267. int ttmb = v->ttfrm; /* MB Transform type */
  3268. int mb_has_coeffs = 1; /* last_flag */
  3269. int dmv_x, dmv_y; /* Differential MV components */
  3270. int index, index1; /* LUT indexes */
  3271. int val, sign; /* temp values */
  3272. int first_block = 1;
  3273. int dst_idx, off;
  3274. int skipped, fourmv;
  3275. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  3276. mquant = v->pq; /* lossy initialization */
  3277. if (v->mv_type_is_raw)
  3278. fourmv = get_bits1(gb);
  3279. else
  3280. fourmv = v->mv_type_mb_plane[mb_pos];
  3281. if (v->skip_is_raw)
  3282. skipped = get_bits1(gb);
  3283. else
  3284. skipped = v->s.mbskip_table[mb_pos];
  3285. if (!fourmv) { /* 1MV mode */
  3286. if (!skipped) {
  3287. GET_MVDATA(dmv_x, dmv_y);
  3288. if (s->mb_intra) {
  3289. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3290. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3291. }
  3292. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3293. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3294. /* FIXME Set DC val for inter block ? */
  3295. if (s->mb_intra && !mb_has_coeffs) {
  3296. GET_MQUANT();
  3297. s->ac_pred = get_bits1(gb);
  3298. cbp = 0;
  3299. } else if (mb_has_coeffs) {
  3300. if (s->mb_intra)
  3301. s->ac_pred = get_bits1(gb);
  3302. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3303. GET_MQUANT();
  3304. } else {
  3305. mquant = v->pq;
  3306. cbp = 0;
  3307. }
  3308. s->current_picture.qscale_table[mb_pos] = mquant;
  3309. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3310. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  3311. VC1_TTMB_VLC_BITS, 2);
  3312. if (!s->mb_intra) vc1_mc_1mv(v, 0);
  3313. dst_idx = 0;
  3314. for (i = 0; i < 6; i++) {
  3315. s->dc_val[0][s->block_index[i]] = 0;
  3316. dst_idx += i >> 2;
  3317. val = ((cbp >> (5 - i)) & 1);
  3318. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3319. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3320. if (s->mb_intra) {
  3321. /* check if prediction blocks A and C are available */
  3322. v->a_avail = v->c_avail = 0;
  3323. if (i == 2 || i == 3 || !s->first_slice_line)
  3324. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3325. if (i == 1 || i == 3 || s->mb_x)
  3326. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3327. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3328. (i & 4) ? v->codingset2 : v->codingset);
  3329. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3330. continue;
  3331. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3332. if (v->rangeredfrm)
  3333. for (j = 0; j < 64; j++)
  3334. s->block[i][j] <<= 1;
  3335. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3336. if (v->pq >= 9 && v->overlap) {
  3337. if (v->c_avail)
  3338. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3339. if (v->a_avail)
  3340. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3341. }
  3342. block_cbp |= 0xF << (i << 2);
  3343. block_intra |= 1 << i;
  3344. } else if (val) {
  3345. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
  3346. s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
  3347. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  3348. block_cbp |= pat << (i << 2);
  3349. if (!v->ttmbf && ttmb < 8)
  3350. ttmb = -1;
  3351. first_block = 0;
  3352. }
  3353. }
  3354. } else { // skipped
  3355. s->mb_intra = 0;
  3356. for (i = 0; i < 6; i++) {
  3357. v->mb_type[0][s->block_index[i]] = 0;
  3358. s->dc_val[0][s->block_index[i]] = 0;
  3359. }
  3360. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3361. s->current_picture.qscale_table[mb_pos] = 0;
  3362. vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3363. vc1_mc_1mv(v, 0);
  3364. }
  3365. } else { // 4MV mode
  3366. if (!skipped /* unskipped MB */) {
  3367. int intra_count = 0, coded_inter = 0;
  3368. int is_intra[6], is_coded[6];
  3369. /* Get CBPCY */
  3370. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3371. for (i = 0; i < 6; i++) {
  3372. val = ((cbp >> (5 - i)) & 1);
  3373. s->dc_val[0][s->block_index[i]] = 0;
  3374. s->mb_intra = 0;
  3375. if (i < 4) {
  3376. dmv_x = dmv_y = 0;
  3377. s->mb_intra = 0;
  3378. mb_has_coeffs = 0;
  3379. if (val) {
  3380. GET_MVDATA(dmv_x, dmv_y);
  3381. }
  3382. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3383. if (!s->mb_intra)
  3384. vc1_mc_4mv_luma(v, i, 0, 0);
  3385. intra_count += s->mb_intra;
  3386. is_intra[i] = s->mb_intra;
  3387. is_coded[i] = mb_has_coeffs;
  3388. }
  3389. if (i & 4) {
  3390. is_intra[i] = (intra_count >= 3);
  3391. is_coded[i] = val;
  3392. }
  3393. if (i == 4)
  3394. vc1_mc_4mv_chroma(v, 0);
  3395. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3396. if (!coded_inter)
  3397. coded_inter = !is_intra[i] & is_coded[i];
  3398. }
  3399. // if there are no coded blocks then don't do anything more
  3400. dst_idx = 0;
  3401. if (!intra_count && !coded_inter)
  3402. goto end;
  3403. GET_MQUANT();
  3404. s->current_picture.qscale_table[mb_pos] = mquant;
  3405. /* test if block is intra and has pred */
  3406. {
  3407. int intrapred = 0;
  3408. for (i = 0; i < 6; i++)
  3409. if (is_intra[i]) {
  3410. if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3411. || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3412. intrapred = 1;
  3413. break;
  3414. }
  3415. }
  3416. if (intrapred)
  3417. s->ac_pred = get_bits1(gb);
  3418. else
  3419. s->ac_pred = 0;
  3420. }
  3421. if (!v->ttmbf && coded_inter)
  3422. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3423. for (i = 0; i < 6; i++) {
  3424. dst_idx += i >> 2;
  3425. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3426. s->mb_intra = is_intra[i];
  3427. if (is_intra[i]) {
  3428. /* check if prediction blocks A and C are available */
  3429. v->a_avail = v->c_avail = 0;
  3430. if (i == 2 || i == 3 || !s->first_slice_line)
  3431. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3432. if (i == 1 || i == 3 || s->mb_x)
  3433. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3434. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
  3435. (i & 4) ? v->codingset2 : v->codingset);
  3436. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3437. continue;
  3438. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3439. if (v->rangeredfrm)
  3440. for (j = 0; j < 64; j++)
  3441. s->block[i][j] <<= 1;
  3442. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off,
  3443. (i & 4) ? s->uvlinesize : s->linesize);
  3444. if (v->pq >= 9 && v->overlap) {
  3445. if (v->c_avail)
  3446. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3447. if (v->a_avail)
  3448. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3449. }
  3450. block_cbp |= 0xF << (i << 2);
  3451. block_intra |= 1 << i;
  3452. } else if (is_coded[i]) {
  3453. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3454. first_block, s->dest[dst_idx] + off,
  3455. (i & 4) ? s->uvlinesize : s->linesize,
  3456. (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  3457. &block_tt);
  3458. block_cbp |= pat << (i << 2);
  3459. if (!v->ttmbf && ttmb < 8)
  3460. ttmb = -1;
  3461. first_block = 0;
  3462. }
  3463. }
  3464. } else { // skipped MB
  3465. s->mb_intra = 0;
  3466. s->current_picture.qscale_table[mb_pos] = 0;
  3467. for (i = 0; i < 6; i++) {
  3468. v->mb_type[0][s->block_index[i]] = 0;
  3469. s->dc_val[0][s->block_index[i]] = 0;
  3470. }
  3471. for (i = 0; i < 4; i++) {
  3472. vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3473. vc1_mc_4mv_luma(v, i, 0, 0);
  3474. }
  3475. vc1_mc_4mv_chroma(v, 0);
  3476. s->current_picture.qscale_table[mb_pos] = 0;
  3477. }
  3478. }
  3479. end:
  3480. v->cbp[s->mb_x] = block_cbp;
  3481. v->ttblk[s->mb_x] = block_tt;
  3482. v->is_intra[s->mb_x] = block_intra;
  3483. return 0;
  3484. }
  3485. /* Decode one macroblock in an interlaced frame p picture */
  3486. static int vc1_decode_p_mb_intfr(VC1Context *v)
  3487. {
  3488. MpegEncContext *s = &v->s;
  3489. GetBitContext *gb = &s->gb;
  3490. int i;
  3491. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3492. int cbp = 0; /* cbp decoding stuff */
  3493. int mqdiff, mquant; /* MB quantization */
  3494. int ttmb = v->ttfrm; /* MB Transform type */
  3495. int mb_has_coeffs = 1; /* last_flag */
  3496. int dmv_x, dmv_y; /* Differential MV components */
  3497. int val; /* temp value */
  3498. int first_block = 1;
  3499. int dst_idx, off;
  3500. int skipped, fourmv = 0, twomv = 0;
  3501. int block_cbp = 0, pat, block_tt = 0;
  3502. int idx_mbmode = 0, mvbp;
  3503. int stride_y, fieldtx;
  3504. mquant = v->pq; /* Loosy initialization */
  3505. if (v->skip_is_raw)
  3506. skipped = get_bits1(gb);
  3507. else
  3508. skipped = v->s.mbskip_table[mb_pos];
  3509. if (!skipped) {
  3510. if (v->fourmvswitch)
  3511. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
  3512. else
  3513. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
  3514. switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
  3515. /* store the motion vector type in a flag (useful later) */
  3516. case MV_PMODE_INTFR_4MV:
  3517. fourmv = 1;
  3518. v->blk_mv_type[s->block_index[0]] = 0;
  3519. v->blk_mv_type[s->block_index[1]] = 0;
  3520. v->blk_mv_type[s->block_index[2]] = 0;
  3521. v->blk_mv_type[s->block_index[3]] = 0;
  3522. break;
  3523. case MV_PMODE_INTFR_4MV_FIELD:
  3524. fourmv = 1;
  3525. v->blk_mv_type[s->block_index[0]] = 1;
  3526. v->blk_mv_type[s->block_index[1]] = 1;
  3527. v->blk_mv_type[s->block_index[2]] = 1;
  3528. v->blk_mv_type[s->block_index[3]] = 1;
  3529. break;
  3530. case MV_PMODE_INTFR_2MV_FIELD:
  3531. twomv = 1;
  3532. v->blk_mv_type[s->block_index[0]] = 1;
  3533. v->blk_mv_type[s->block_index[1]] = 1;
  3534. v->blk_mv_type[s->block_index[2]] = 1;
  3535. v->blk_mv_type[s->block_index[3]] = 1;
  3536. break;
  3537. case MV_PMODE_INTFR_1MV:
  3538. v->blk_mv_type[s->block_index[0]] = 0;
  3539. v->blk_mv_type[s->block_index[1]] = 0;
  3540. v->blk_mv_type[s->block_index[2]] = 0;
  3541. v->blk_mv_type[s->block_index[3]] = 0;
  3542. break;
  3543. }
  3544. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  3545. for (i = 0; i < 4; i++) {
  3546. s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  3547. s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  3548. }
  3549. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3550. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3551. for (i = 0; i < 6; i++)
  3552. v->mb_type[0][s->block_index[i]] = 1;
  3553. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  3554. mb_has_coeffs = get_bits1(gb);
  3555. if (mb_has_coeffs)
  3556. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3557. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3558. GET_MQUANT();
  3559. s->current_picture.qscale_table[mb_pos] = mquant;
  3560. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3561. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3562. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3563. dst_idx = 0;
  3564. for (i = 0; i < 6; i++) {
  3565. s->dc_val[0][s->block_index[i]] = 0;
  3566. dst_idx += i >> 2;
  3567. val = ((cbp >> (5 - i)) & 1);
  3568. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3569. v->a_avail = v->c_avail = 0;
  3570. if (i == 2 || i == 3 || !s->first_slice_line)
  3571. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3572. if (i == 1 || i == 3 || s->mb_x)
  3573. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3574. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3575. (i & 4) ? v->codingset2 : v->codingset);
  3576. if ((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3577. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3578. if (i < 4) {
  3579. stride_y = s->linesize << fieldtx;
  3580. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  3581. } else {
  3582. stride_y = s->uvlinesize;
  3583. off = 0;
  3584. }
  3585. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y);
  3586. //TODO: loop filter
  3587. }
  3588. } else { // inter MB
  3589. mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
  3590. if (mb_has_coeffs)
  3591. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3592. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  3593. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  3594. } else {
  3595. if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
  3596. || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
  3597. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3598. }
  3599. }
  3600. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3601. for (i = 0; i < 6; i++)
  3602. v->mb_type[0][s->block_index[i]] = 0;
  3603. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
  3604. /* for all motion vector read MVDATA and motion compensate each block */
  3605. dst_idx = 0;
  3606. if (fourmv) {
  3607. mvbp = v->fourmvbp;
  3608. for (i = 0; i < 6; i++) {
  3609. if (i < 4) {
  3610. dmv_x = dmv_y = 0;
  3611. val = ((mvbp >> (3 - i)) & 1);
  3612. if (val) {
  3613. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3614. }
  3615. vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0);
  3616. vc1_mc_4mv_luma(v, i, 0, 0);
  3617. } else if (i == 4) {
  3618. vc1_mc_4mv_chroma4(v, 0, 0, 0);
  3619. }
  3620. }
  3621. } else if (twomv) {
  3622. mvbp = v->twomvbp;
  3623. dmv_x = dmv_y = 0;
  3624. if (mvbp & 2) {
  3625. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3626. }
  3627. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  3628. vc1_mc_4mv_luma(v, 0, 0, 0);
  3629. vc1_mc_4mv_luma(v, 1, 0, 0);
  3630. dmv_x = dmv_y = 0;
  3631. if (mvbp & 1) {
  3632. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3633. }
  3634. vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  3635. vc1_mc_4mv_luma(v, 2, 0, 0);
  3636. vc1_mc_4mv_luma(v, 3, 0, 0);
  3637. vc1_mc_4mv_chroma4(v, 0, 0, 0);
  3638. } else {
  3639. mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
  3640. dmv_x = dmv_y = 0;
  3641. if (mvbp) {
  3642. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3643. }
  3644. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  3645. vc1_mc_1mv(v, 0);
  3646. }
  3647. if (cbp)
  3648. GET_MQUANT(); // p. 227
  3649. s->current_picture.qscale_table[mb_pos] = mquant;
  3650. if (!v->ttmbf && cbp)
  3651. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3652. for (i = 0; i < 6; i++) {
  3653. s->dc_val[0][s->block_index[i]] = 0;
  3654. dst_idx += i >> 2;
  3655. val = ((cbp >> (5 - i)) & 1);
  3656. if (!fieldtx)
  3657. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3658. else
  3659. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  3660. if (val) {
  3661. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3662. first_block, s->dest[dst_idx] + off,
  3663. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  3664. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  3665. block_cbp |= pat << (i << 2);
  3666. if (!v->ttmbf && ttmb < 8)
  3667. ttmb = -1;
  3668. first_block = 0;
  3669. }
  3670. }
  3671. }
  3672. } else { // skipped
  3673. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3674. for (i = 0; i < 6; i++) {
  3675. v->mb_type[0][s->block_index[i]] = 0;
  3676. s->dc_val[0][s->block_index[i]] = 0;
  3677. }
  3678. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3679. s->current_picture.qscale_table[mb_pos] = 0;
  3680. v->blk_mv_type[s->block_index[0]] = 0;
  3681. v->blk_mv_type[s->block_index[1]] = 0;
  3682. v->blk_mv_type[s->block_index[2]] = 0;
  3683. v->blk_mv_type[s->block_index[3]] = 0;
  3684. vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  3685. vc1_mc_1mv(v, 0);
  3686. }
  3687. if (s->mb_x == s->mb_width - 1)
  3688. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
  3689. return 0;
  3690. }
  3691. static int vc1_decode_p_mb_intfi(VC1Context *v)
  3692. {
  3693. MpegEncContext *s = &v->s;
  3694. GetBitContext *gb = &s->gb;
  3695. int i;
  3696. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3697. int cbp = 0; /* cbp decoding stuff */
  3698. int mqdiff, mquant; /* MB quantization */
  3699. int ttmb = v->ttfrm; /* MB Transform type */
  3700. int mb_has_coeffs = 1; /* last_flag */
  3701. int dmv_x, dmv_y; /* Differential MV components */
  3702. int val; /* temp values */
  3703. int first_block = 1;
  3704. int dst_idx, off;
  3705. int pred_flag;
  3706. int block_cbp = 0, pat, block_tt = 0;
  3707. int idx_mbmode = 0;
  3708. mquant = v->pq; /* Loosy initialization */
  3709. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  3710. if (idx_mbmode <= 1) { // intra MB
  3711. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3712. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  3713. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  3714. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  3715. GET_MQUANT();
  3716. s->current_picture.qscale_table[mb_pos] = mquant;
  3717. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3718. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3719. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3720. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3721. mb_has_coeffs = idx_mbmode & 1;
  3722. if (mb_has_coeffs)
  3723. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  3724. dst_idx = 0;
  3725. for (i = 0; i < 6; i++) {
  3726. s->dc_val[0][s->block_index[i]] = 0;
  3727. v->mb_type[0][s->block_index[i]] = 1;
  3728. dst_idx += i >> 2;
  3729. val = ((cbp >> (5 - i)) & 1);
  3730. v->a_avail = v->c_avail = 0;
  3731. if (i == 2 || i == 3 || !s->first_slice_line)
  3732. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3733. if (i == 1 || i == 3 || s->mb_x)
  3734. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3735. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3736. (i & 4) ? v->codingset2 : v->codingset);
  3737. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3738. continue;
  3739. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3740. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3741. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
  3742. // TODO: loop filter
  3743. }
  3744. } else {
  3745. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3746. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  3747. for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  3748. if (idx_mbmode <= 5) { // 1-MV
  3749. dmv_x = dmv_y = pred_flag = 0;
  3750. if (idx_mbmode & 1) {
  3751. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  3752. }
  3753. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  3754. vc1_mc_1mv(v, 0);
  3755. mb_has_coeffs = !(idx_mbmode & 2);
  3756. } else { // 4-MV
  3757. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3758. for (i = 0; i < 6; i++) {
  3759. if (i < 4) {
  3760. dmv_x = dmv_y = pred_flag = 0;
  3761. val = ((v->fourmvbp >> (3 - i)) & 1);
  3762. if (val) {
  3763. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  3764. }
  3765. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  3766. vc1_mc_4mv_luma(v, i, 0, 0);
  3767. } else if (i == 4)
  3768. vc1_mc_4mv_chroma(v, 0);
  3769. }
  3770. mb_has_coeffs = idx_mbmode & 1;
  3771. }
  3772. if (mb_has_coeffs)
  3773. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3774. if (cbp) {
  3775. GET_MQUANT();
  3776. }
  3777. s->current_picture.qscale_table[mb_pos] = mquant;
  3778. if (!v->ttmbf && cbp) {
  3779. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3780. }
  3781. dst_idx = 0;
  3782. for (i = 0; i < 6; i++) {
  3783. s->dc_val[0][s->block_index[i]] = 0;
  3784. dst_idx += i >> 2;
  3785. val = ((cbp >> (5 - i)) & 1);
  3786. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  3787. if (val) {
  3788. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3789. first_block, s->dest[dst_idx] + off,
  3790. (i & 4) ? s->uvlinesize : s->linesize,
  3791. (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  3792. &block_tt);
  3793. block_cbp |= pat << (i << 2);
  3794. if (!v->ttmbf && ttmb < 8) ttmb = -1;
  3795. first_block = 0;
  3796. }
  3797. }
  3798. }
  3799. if (s->mb_x == s->mb_width - 1)
  3800. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  3801. return 0;
  3802. }
  3803. /** Decode one B-frame MB (in Main profile)
  3804. */
  3805. static void vc1_decode_b_mb(VC1Context *v)
  3806. {
  3807. MpegEncContext *s = &v->s;
  3808. GetBitContext *gb = &s->gb;
  3809. int i, j;
  3810. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3811. int cbp = 0; /* cbp decoding stuff */
  3812. int mqdiff, mquant; /* MB quantization */
  3813. int ttmb = v->ttfrm; /* MB Transform type */
  3814. int mb_has_coeffs = 0; /* last_flag */
  3815. int index, index1; /* LUT indexes */
  3816. int val, sign; /* temp values */
  3817. int first_block = 1;
  3818. int dst_idx, off;
  3819. int skipped, direct;
  3820. int dmv_x[2], dmv_y[2];
  3821. int bmvtype = BMV_TYPE_BACKWARD;
  3822. mquant = v->pq; /* lossy initialization */
  3823. s->mb_intra = 0;
  3824. if (v->dmb_is_raw)
  3825. direct = get_bits1(gb);
  3826. else
  3827. direct = v->direct_mb_plane[mb_pos];
  3828. if (v->skip_is_raw)
  3829. skipped = get_bits1(gb);
  3830. else
  3831. skipped = v->s.mbskip_table[mb_pos];
  3832. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3833. for (i = 0; i < 6; i++) {
  3834. v->mb_type[0][s->block_index[i]] = 0;
  3835. s->dc_val[0][s->block_index[i]] = 0;
  3836. }
  3837. s->current_picture.qscale_table[mb_pos] = 0;
  3838. if (!direct) {
  3839. if (!skipped) {
  3840. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3841. dmv_x[1] = dmv_x[0];
  3842. dmv_y[1] = dmv_y[0];
  3843. }
  3844. if (skipped || !s->mb_intra) {
  3845. bmvtype = decode012(gb);
  3846. switch (bmvtype) {
  3847. case 0:
  3848. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3849. break;
  3850. case 1:
  3851. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3852. break;
  3853. case 2:
  3854. bmvtype = BMV_TYPE_INTERPOLATED;
  3855. dmv_x[0] = dmv_y[0] = 0;
  3856. }
  3857. }
  3858. }
  3859. for (i = 0; i < 6; i++)
  3860. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3861. if (skipped) {
  3862. if (direct)
  3863. bmvtype = BMV_TYPE_INTERPOLATED;
  3864. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3865. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3866. return;
  3867. }
  3868. if (direct) {
  3869. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3870. GET_MQUANT();
  3871. s->mb_intra = 0;
  3872. s->current_picture.qscale_table[mb_pos] = mquant;
  3873. if (!v->ttmbf)
  3874. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3875. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3876. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3877. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3878. } else {
  3879. if (!mb_has_coeffs && !s->mb_intra) {
  3880. /* no coded blocks - effectively skipped */
  3881. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3882. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3883. return;
  3884. }
  3885. if (s->mb_intra && !mb_has_coeffs) {
  3886. GET_MQUANT();
  3887. s->current_picture.qscale_table[mb_pos] = mquant;
  3888. s->ac_pred = get_bits1(gb);
  3889. cbp = 0;
  3890. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3891. } else {
  3892. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  3893. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3894. if (!mb_has_coeffs) {
  3895. /* interpolated skipped block */
  3896. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3897. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3898. return;
  3899. }
  3900. }
  3901. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3902. if (!s->mb_intra) {
  3903. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3904. }
  3905. if (s->mb_intra)
  3906. s->ac_pred = get_bits1(gb);
  3907. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3908. GET_MQUANT();
  3909. s->current_picture.qscale_table[mb_pos] = mquant;
  3910. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3911. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3912. }
  3913. }
  3914. dst_idx = 0;
  3915. for (i = 0; i < 6; i++) {
  3916. s->dc_val[0][s->block_index[i]] = 0;
  3917. dst_idx += i >> 2;
  3918. val = ((cbp >> (5 - i)) & 1);
  3919. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3920. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3921. if (s->mb_intra) {
  3922. /* check if prediction blocks A and C are available */
  3923. v->a_avail = v->c_avail = 0;
  3924. if (i == 2 || i == 3 || !s->first_slice_line)
  3925. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3926. if (i == 1 || i == 3 || s->mb_x)
  3927. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3928. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3929. (i & 4) ? v->codingset2 : v->codingset);
  3930. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3931. continue;
  3932. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3933. if (v->rangeredfrm)
  3934. for (j = 0; j < 64; j++)
  3935. s->block[i][j] <<= 1;
  3936. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3937. } else if (val) {
  3938. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3939. first_block, s->dest[dst_idx] + off,
  3940. (i & 4) ? s->uvlinesize : s->linesize,
  3941. (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  3942. if (!v->ttmbf && ttmb < 8)
  3943. ttmb = -1;
  3944. first_block = 0;
  3945. }
  3946. }
  3947. }
  3948. /** Decode one B-frame MB (in interlaced field B picture)
  3949. */
  3950. static void vc1_decode_b_mb_intfi(VC1Context *v)
  3951. {
  3952. MpegEncContext *s = &v->s;
  3953. GetBitContext *gb = &s->gb;
  3954. int i, j;
  3955. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3956. int cbp = 0; /* cbp decoding stuff */
  3957. int mqdiff, mquant; /* MB quantization */
  3958. int ttmb = v->ttfrm; /* MB Transform type */
  3959. int mb_has_coeffs = 0; /* last_flag */
  3960. int val; /* temp value */
  3961. int first_block = 1;
  3962. int dst_idx, off;
  3963. int fwd;
  3964. int dmv_x[2], dmv_y[2], pred_flag[2];
  3965. int bmvtype = BMV_TYPE_BACKWARD;
  3966. int idx_mbmode, interpmvp;
  3967. mquant = v->pq; /* Loosy initialization */
  3968. s->mb_intra = 0;
  3969. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  3970. if (idx_mbmode <= 1) { // intra MB
  3971. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3972. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3973. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3974. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  3975. GET_MQUANT();
  3976. s->current_picture.qscale_table[mb_pos] = mquant;
  3977. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3978. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3979. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3980. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3981. mb_has_coeffs = idx_mbmode & 1;
  3982. if (mb_has_coeffs)
  3983. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  3984. dst_idx = 0;
  3985. for (i = 0; i < 6; i++) {
  3986. s->dc_val[0][s->block_index[i]] = 0;
  3987. dst_idx += i >> 2;
  3988. val = ((cbp >> (5 - i)) & 1);
  3989. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3990. v->a_avail = v->c_avail = 0;
  3991. if (i == 2 || i == 3 || !s->first_slice_line)
  3992. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3993. if (i == 1 || i == 3 || s->mb_x)
  3994. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3995. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3996. (i & 4) ? v->codingset2 : v->codingset);
  3997. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3998. continue;
  3999. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  4000. if (v->rangeredfrm)
  4001. for (j = 0; j < 64; j++)
  4002. s->block[i][j] <<= 1;
  4003. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  4004. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
  4005. // TODO: yet to perform loop filter
  4006. }
  4007. } else {
  4008. s->mb_intra = v->is_intra[s->mb_x] = 0;
  4009. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  4010. for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  4011. if (v->fmb_is_raw)
  4012. fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
  4013. else
  4014. fwd = v->forward_mb_plane[mb_pos];
  4015. if (idx_mbmode <= 5) { // 1-MV
  4016. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  4017. pred_flag[0] = pred_flag[1] = 0;
  4018. if (fwd)
  4019. bmvtype = BMV_TYPE_FORWARD;
  4020. else {
  4021. bmvtype = decode012(gb);
  4022. switch (bmvtype) {
  4023. case 0:
  4024. bmvtype = BMV_TYPE_BACKWARD;
  4025. break;
  4026. case 1:
  4027. bmvtype = BMV_TYPE_DIRECT;
  4028. break;
  4029. case 2:
  4030. bmvtype = BMV_TYPE_INTERPOLATED;
  4031. interpmvp = get_bits1(gb);
  4032. }
  4033. }
  4034. v->bmvtype = bmvtype;
  4035. if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
  4036. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  4037. }
  4038. if (bmvtype == BMV_TYPE_INTERPOLATED && interpmvp) {
  4039. get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
  4040. }
  4041. if (bmvtype == BMV_TYPE_DIRECT) {
  4042. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  4043. dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
  4044. }
  4045. vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
  4046. vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
  4047. mb_has_coeffs = !(idx_mbmode & 2);
  4048. } else { // 4-MV
  4049. if (fwd)
  4050. bmvtype = BMV_TYPE_FORWARD;
  4051. v->bmvtype = bmvtype;
  4052. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  4053. for (i = 0; i < 6; i++) {
  4054. if (i < 4) {
  4055. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  4056. dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
  4057. val = ((v->fourmvbp >> (3 - i)) & 1);
  4058. if (val) {
  4059. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
  4060. &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
  4061. &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  4062. }
  4063. vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
  4064. vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0);
  4065. } else if (i == 4)
  4066. vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
  4067. }
  4068. mb_has_coeffs = idx_mbmode & 1;
  4069. }
  4070. if (mb_has_coeffs)
  4071. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  4072. if (cbp) {
  4073. GET_MQUANT();
  4074. }
  4075. s->current_picture.qscale_table[mb_pos] = mquant;
  4076. if (!v->ttmbf && cbp) {
  4077. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  4078. }
  4079. dst_idx = 0;
  4080. for (i = 0; i < 6; i++) {
  4081. s->dc_val[0][s->block_index[i]] = 0;
  4082. dst_idx += i >> 2;
  4083. val = ((cbp >> (5 - i)) & 1);
  4084. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  4085. if (val) {
  4086. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  4087. first_block, s->dest[dst_idx] + off,
  4088. (i & 4) ? s->uvlinesize : s->linesize,
  4089. (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  4090. if (!v->ttmbf && ttmb < 8)
  4091. ttmb = -1;
  4092. first_block = 0;
  4093. }
  4094. }
  4095. }
  4096. }
  4097. /** Decode one B-frame MB (in interlaced frame B picture)
  4098. */
  4099. static int vc1_decode_b_mb_intfr(VC1Context *v)
  4100. {
  4101. MpegEncContext *s = &v->s;
  4102. GetBitContext *gb = &s->gb;
  4103. int i, j;
  4104. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  4105. int cbp = 0; /* cbp decoding stuff */
  4106. int mqdiff, mquant; /* MB quantization */
  4107. int ttmb = v->ttfrm; /* MB Transform type */
  4108. int mvsw = 0; /* motion vector switch */
  4109. int mb_has_coeffs = 1; /* last_flag */
  4110. int dmv_x, dmv_y; /* Differential MV components */
  4111. int val; /* temp value */
  4112. int first_block = 1;
  4113. int dst_idx, off;
  4114. int skipped, direct, twomv = 0;
  4115. int block_cbp = 0, pat, block_tt = 0;
  4116. int idx_mbmode = 0, mvbp;
  4117. int stride_y, fieldtx;
  4118. int bmvtype = BMV_TYPE_BACKWARD;
  4119. int dir, dir2;
  4120. mquant = v->pq; /* Lossy initialization */
  4121. s->mb_intra = 0;
  4122. if (v->skip_is_raw)
  4123. skipped = get_bits1(gb);
  4124. else
  4125. skipped = v->s.mbskip_table[mb_pos];
  4126. if (!skipped) {
  4127. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2);
  4128. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  4129. twomv = 1;
  4130. v->blk_mv_type[s->block_index[0]] = 1;
  4131. v->blk_mv_type[s->block_index[1]] = 1;
  4132. v->blk_mv_type[s->block_index[2]] = 1;
  4133. v->blk_mv_type[s->block_index[3]] = 1;
  4134. } else {
  4135. v->blk_mv_type[s->block_index[0]] = 0;
  4136. v->blk_mv_type[s->block_index[1]] = 0;
  4137. v->blk_mv_type[s->block_index[2]] = 0;
  4138. v->blk_mv_type[s->block_index[3]] = 0;
  4139. }
  4140. }
  4141. if (v->dmb_is_raw)
  4142. direct = get_bits1(gb);
  4143. else
  4144. direct = v->direct_mb_plane[mb_pos];
  4145. if (direct) {
  4146. s->mv[0][0][0] = s->current_picture.motion_val[0][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 0, s->quarter_sample);
  4147. s->mv[0][0][1] = s->current_picture.motion_val[0][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 0, s->quarter_sample);
  4148. s->mv[1][0][0] = s->current_picture.motion_val[1][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 1, s->quarter_sample);
  4149. s->mv[1][0][1] = s->current_picture.motion_val[1][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 1, s->quarter_sample);
  4150. if (twomv) {
  4151. s->mv[0][2][0] = s->current_picture.motion_val[0][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 0, s->quarter_sample);
  4152. s->mv[0][2][1] = s->current_picture.motion_val[0][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 0, s->quarter_sample);
  4153. s->mv[1][2][0] = s->current_picture.motion_val[1][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 1, s->quarter_sample);
  4154. s->mv[1][2][1] = s->current_picture.motion_val[1][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 1, s->quarter_sample);
  4155. for (i = 1; i < 4; i += 2) {
  4156. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][i-1][0];
  4157. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][i-1][1];
  4158. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][i-1][0];
  4159. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][i-1][1];
  4160. }
  4161. } else {
  4162. for (i = 1; i < 4; i++) {
  4163. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][0][0];
  4164. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][0][1];
  4165. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][0][0];
  4166. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][0][1];
  4167. }
  4168. }
  4169. }
  4170. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  4171. for (i = 0; i < 4; i++) {
  4172. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = 0;
  4173. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = 0;
  4174. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  4175. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  4176. }
  4177. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  4178. s->mb_intra = v->is_intra[s->mb_x] = 1;
  4179. for (i = 0; i < 6; i++)
  4180. v->mb_type[0][s->block_index[i]] = 1;
  4181. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  4182. mb_has_coeffs = get_bits1(gb);
  4183. if (mb_has_coeffs)
  4184. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  4185. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  4186. GET_MQUANT();
  4187. s->current_picture.qscale_table[mb_pos] = mquant;
  4188. /* Set DC scale - y and c use the same (not sure if necessary here) */
  4189. s->y_dc_scale = s->y_dc_scale_table[mquant];
  4190. s->c_dc_scale = s->c_dc_scale_table[mquant];
  4191. dst_idx = 0;
  4192. for (i = 0; i < 6; i++) {
  4193. s->dc_val[0][s->block_index[i]] = 0;
  4194. dst_idx += i >> 2;
  4195. val = ((cbp >> (5 - i)) & 1);
  4196. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  4197. v->a_avail = v->c_avail = 0;
  4198. if (i == 2 || i == 3 || !s->first_slice_line)
  4199. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  4200. if (i == 1 || i == 3 || s->mb_x)
  4201. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  4202. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  4203. (i & 4) ? v->codingset2 : v->codingset);
  4204. if (i > 3 && (s->flags & CODEC_FLAG_GRAY))
  4205. continue;
  4206. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  4207. if (i < 4) {
  4208. stride_y = s->linesize << fieldtx;
  4209. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  4210. } else {
  4211. stride_y = s->uvlinesize;
  4212. off = 0;
  4213. }
  4214. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y);
  4215. }
  4216. } else {
  4217. s->mb_intra = v->is_intra[s->mb_x] = 0;
  4218. if (!direct) {
  4219. if (skipped || !s->mb_intra) {
  4220. bmvtype = decode012(gb);
  4221. switch (bmvtype) {
  4222. case 0:
  4223. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  4224. break;
  4225. case 1:
  4226. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  4227. break;
  4228. case 2:
  4229. bmvtype = BMV_TYPE_INTERPOLATED;
  4230. }
  4231. }
  4232. if (twomv && bmvtype != BMV_TYPE_INTERPOLATED)
  4233. mvsw = get_bits1(gb);
  4234. }
  4235. if (!skipped) { // inter MB
  4236. mb_has_coeffs = ff_vc1_mbmode_intfrp[0][idx_mbmode][3];
  4237. if (mb_has_coeffs)
  4238. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  4239. if (!direct) {
  4240. if (bmvtype == BMV_TYPE_INTERPOLATED & twomv) {
  4241. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  4242. } else if (bmvtype == BMV_TYPE_INTERPOLATED | twomv) {
  4243. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  4244. }
  4245. }
  4246. for (i = 0; i < 6; i++)
  4247. v->mb_type[0][s->block_index[i]] = 0;
  4248. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[0][idx_mbmode][1];
  4249. /* for all motion vector read MVDATA and motion compensate each block */
  4250. dst_idx = 0;
  4251. if (direct) {
  4252. if (twomv) {
  4253. for (i = 0; i < 4; i++) {
  4254. vc1_mc_4mv_luma(v, i, 0, 0);
  4255. vc1_mc_4mv_luma(v, i, 1, 1);
  4256. }
  4257. vc1_mc_4mv_chroma4(v, 0, 0, 0);
  4258. vc1_mc_4mv_chroma4(v, 1, 1, 1);
  4259. } else {
  4260. vc1_mc_1mv(v, 0);
  4261. vc1_interp_mc(v);
  4262. }
  4263. } else if (twomv && bmvtype == BMV_TYPE_INTERPOLATED) {
  4264. mvbp = v->fourmvbp;
  4265. for (i = 0; i < 4; i++) {
  4266. dir = i==1 || i==3;
  4267. dmv_x = dmv_y = 0;
  4268. val = ((mvbp >> (3 - i)) & 1);
  4269. if (val)
  4270. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4271. j = i > 1 ? 2 : 0;
  4272. vc1_pred_mv_intfr(v, j, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  4273. vc1_mc_4mv_luma(v, j, dir, dir);
  4274. vc1_mc_4mv_luma(v, j+1, dir, dir);
  4275. }
  4276. vc1_mc_4mv_chroma4(v, 0, 0, 0);
  4277. vc1_mc_4mv_chroma4(v, 1, 1, 1);
  4278. } else if (bmvtype == BMV_TYPE_INTERPOLATED) {
  4279. mvbp = v->twomvbp;
  4280. dmv_x = dmv_y = 0;
  4281. if (mvbp & 2)
  4282. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4283. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  4284. vc1_mc_1mv(v, 0);
  4285. dmv_x = dmv_y = 0;
  4286. if (mvbp & 1)
  4287. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4288. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  4289. vc1_interp_mc(v);
  4290. } else if (twomv) {
  4291. dir = bmvtype == BMV_TYPE_BACKWARD;
  4292. dir2 = dir;
  4293. if (mvsw)
  4294. dir2 = !dir;
  4295. mvbp = v->twomvbp;
  4296. dmv_x = dmv_y = 0;
  4297. if (mvbp & 2)
  4298. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4299. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  4300. dmv_x = dmv_y = 0;
  4301. if (mvbp & 1)
  4302. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4303. vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir2);
  4304. if (mvsw) {
  4305. for (i = 0; i < 2; i++) {
  4306. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  4307. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  4308. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  4309. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  4310. }
  4311. } else {
  4312. vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  4313. vc1_pred_mv_intfr(v, 2, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  4314. }
  4315. vc1_mc_4mv_luma(v, 0, dir, 0);
  4316. vc1_mc_4mv_luma(v, 1, dir, 0);
  4317. vc1_mc_4mv_luma(v, 2, dir2, 0);
  4318. vc1_mc_4mv_luma(v, 3, dir2, 0);
  4319. vc1_mc_4mv_chroma4(v, dir, dir2, 0);
  4320. } else {
  4321. dir = bmvtype == BMV_TYPE_BACKWARD;
  4322. mvbp = ff_vc1_mbmode_intfrp[0][idx_mbmode][2];
  4323. dmv_x = dmv_y = 0;
  4324. if (mvbp)
  4325. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4326. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  4327. v->blk_mv_type[s->block_index[0]] = 1;
  4328. v->blk_mv_type[s->block_index[1]] = 1;
  4329. v->blk_mv_type[s->block_index[2]] = 1;
  4330. v->blk_mv_type[s->block_index[3]] = 1;
  4331. vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  4332. for (i = 0; i < 2; i++) {
  4333. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  4334. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  4335. }
  4336. vc1_mc_1mv(v, dir);
  4337. }
  4338. if (cbp)
  4339. GET_MQUANT(); // p. 227
  4340. s->current_picture.qscale_table[mb_pos] = mquant;
  4341. if (!v->ttmbf && cbp)
  4342. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  4343. for (i = 0; i < 6; i++) {
  4344. s->dc_val[0][s->block_index[i]] = 0;
  4345. dst_idx += i >> 2;
  4346. val = ((cbp >> (5 - i)) & 1);
  4347. if (!fieldtx)
  4348. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  4349. else
  4350. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  4351. if (val) {
  4352. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  4353. first_block, s->dest[dst_idx] + off,
  4354. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  4355. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  4356. block_cbp |= pat << (i << 2);
  4357. if (!v->ttmbf && ttmb < 8)
  4358. ttmb = -1;
  4359. first_block = 0;
  4360. }
  4361. }
  4362. } else { // skipped
  4363. dir = 0;
  4364. for (i = 0; i < 6; i++) {
  4365. v->mb_type[0][s->block_index[i]] = 0;
  4366. s->dc_val[0][s->block_index[i]] = 0;
  4367. }
  4368. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  4369. s->current_picture.qscale_table[mb_pos] = 0;
  4370. v->blk_mv_type[s->block_index[0]] = 0;
  4371. v->blk_mv_type[s->block_index[1]] = 0;
  4372. v->blk_mv_type[s->block_index[2]] = 0;
  4373. v->blk_mv_type[s->block_index[3]] = 0;
  4374. if (!direct) {
  4375. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  4376. vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  4377. vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  4378. } else {
  4379. dir = bmvtype == BMV_TYPE_BACKWARD;
  4380. vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  4381. if (mvsw) {
  4382. int dir2 = dir;
  4383. if (mvsw)
  4384. dir2 = !dir;
  4385. for (i = 0; i < 2; i++) {
  4386. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  4387. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  4388. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  4389. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  4390. }
  4391. } else {
  4392. v->blk_mv_type[s->block_index[0]] = 1;
  4393. v->blk_mv_type[s->block_index[1]] = 1;
  4394. v->blk_mv_type[s->block_index[2]] = 1;
  4395. v->blk_mv_type[s->block_index[3]] = 1;
  4396. vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  4397. for (i = 0; i < 2; i++) {
  4398. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  4399. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  4400. }
  4401. }
  4402. }
  4403. }
  4404. vc1_mc_1mv(v, dir);
  4405. if (direct || bmvtype == BMV_TYPE_INTERPOLATED) {
  4406. vc1_interp_mc(v);
  4407. }
  4408. }
  4409. }
  4410. if (s->mb_x == s->mb_width - 1)
  4411. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  4412. v->cbp[s->mb_x] = block_cbp;
  4413. v->ttblk[s->mb_x] = block_tt;
  4414. return 0;
  4415. }
  4416. /** Decode blocks of I-frame
  4417. */
  4418. static void vc1_decode_i_blocks(VC1Context *v)
  4419. {
  4420. int k, j;
  4421. MpegEncContext *s = &v->s;
  4422. int cbp, val;
  4423. uint8_t *coded_val;
  4424. int mb_pos;
  4425. /* select codingmode used for VLC tables selection */
  4426. switch (v->y_ac_table_index) {
  4427. case 0:
  4428. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4429. break;
  4430. case 1:
  4431. v->codingset = CS_HIGH_MOT_INTRA;
  4432. break;
  4433. case 2:
  4434. v->codingset = CS_MID_RATE_INTRA;
  4435. break;
  4436. }
  4437. switch (v->c_ac_table_index) {
  4438. case 0:
  4439. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4440. break;
  4441. case 1:
  4442. v->codingset2 = CS_HIGH_MOT_INTER;
  4443. break;
  4444. case 2:
  4445. v->codingset2 = CS_MID_RATE_INTER;
  4446. break;
  4447. }
  4448. /* Set DC scale - y and c use the same */
  4449. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  4450. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  4451. //do frame decode
  4452. s->mb_x = s->mb_y = 0;
  4453. s->mb_intra = 1;
  4454. s->first_slice_line = 1;
  4455. for (s->mb_y = 0; s->mb_y < s->end_mb_y; s->mb_y++) {
  4456. s->mb_x = 0;
  4457. init_block_index(v);
  4458. for (; s->mb_x < v->end_mb_x; s->mb_x++) {
  4459. uint8_t *dst[6];
  4460. ff_update_block_index(s);
  4461. dst[0] = s->dest[0];
  4462. dst[1] = dst[0] + 8;
  4463. dst[2] = s->dest[0] + s->linesize * 8;
  4464. dst[3] = dst[2] + 8;
  4465. dst[4] = s->dest[1];
  4466. dst[5] = s->dest[2];
  4467. s->dsp.clear_blocks(s->block[0]);
  4468. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  4469. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  4470. s->current_picture.qscale_table[mb_pos] = v->pq;
  4471. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  4472. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  4473. // do actual MB decoding and displaying
  4474. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  4475. v->s.ac_pred = get_bits1(&v->s.gb);
  4476. for (k = 0; k < 6; k++) {
  4477. val = ((cbp >> (5 - k)) & 1);
  4478. if (k < 4) {
  4479. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  4480. val = val ^ pred;
  4481. *coded_val = val;
  4482. }
  4483. cbp |= val << (5 - k);
  4484. vc1_decode_i_block(v, s->block[k], k, val, (k < 4) ? v->codingset : v->codingset2);
  4485. if (k > 3 && (s->flags & CODEC_FLAG_GRAY))
  4486. continue;
  4487. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  4488. if (v->pq >= 9 && v->overlap) {
  4489. if (v->rangeredfrm)
  4490. for (j = 0; j < 64; j++)
  4491. s->block[k][j] <<= 1;
  4492. s->dsp.put_signed_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  4493. } else {
  4494. if (v->rangeredfrm)
  4495. for (j = 0; j < 64; j++)
  4496. s->block[k][j] = (s->block[k][j] - 64) << 1;
  4497. s->dsp.put_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  4498. }
  4499. }
  4500. if (v->pq >= 9 && v->overlap) {
  4501. if (s->mb_x) {
  4502. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  4503. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  4504. if (!(s->flags & CODEC_FLAG_GRAY)) {
  4505. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  4506. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  4507. }
  4508. }
  4509. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  4510. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  4511. if (!s->first_slice_line) {
  4512. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  4513. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  4514. if (!(s->flags & CODEC_FLAG_GRAY)) {
  4515. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  4516. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  4517. }
  4518. }
  4519. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  4520. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  4521. }
  4522. if (v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  4523. if (get_bits_count(&s->gb) > v->bits) {
  4524. ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
  4525. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  4526. get_bits_count(&s->gb), v->bits);
  4527. return;
  4528. }
  4529. }
  4530. if (!v->s.loop_filter)
  4531. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4532. else if (s->mb_y)
  4533. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4534. s->first_slice_line = 0;
  4535. }
  4536. if (v->s.loop_filter)
  4537. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4538. /* This is intentionally mb_height and not end_mb_y - unlike in advanced
  4539. * profile, these only differ are when decoding MSS2 rectangles. */
  4540. ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
  4541. }
  4542. /** Decode blocks of I-frame for advanced profile
  4543. */
  4544. static void vc1_decode_i_blocks_adv(VC1Context *v)
  4545. {
  4546. int k;
  4547. MpegEncContext *s = &v->s;
  4548. int cbp, val;
  4549. uint8_t *coded_val;
  4550. int mb_pos;
  4551. int mquant = v->pq;
  4552. int mqdiff;
  4553. GetBitContext *gb = &s->gb;
  4554. /* select codingmode used for VLC tables selection */
  4555. switch (v->y_ac_table_index) {
  4556. case 0:
  4557. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4558. break;
  4559. case 1:
  4560. v->codingset = CS_HIGH_MOT_INTRA;
  4561. break;
  4562. case 2:
  4563. v->codingset = CS_MID_RATE_INTRA;
  4564. break;
  4565. }
  4566. switch (v->c_ac_table_index) {
  4567. case 0:
  4568. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4569. break;
  4570. case 1:
  4571. v->codingset2 = CS_HIGH_MOT_INTER;
  4572. break;
  4573. case 2:
  4574. v->codingset2 = CS_MID_RATE_INTER;
  4575. break;
  4576. }
  4577. // do frame decode
  4578. s->mb_x = s->mb_y = 0;
  4579. s->mb_intra = 1;
  4580. s->first_slice_line = 1;
  4581. s->mb_y = s->start_mb_y;
  4582. if (s->start_mb_y) {
  4583. s->mb_x = 0;
  4584. init_block_index(v);
  4585. memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
  4586. (1 + s->b8_stride) * sizeof(*s->coded_block));
  4587. }
  4588. for (; s->mb_y < s->end_mb_y; s->mb_y++) {
  4589. s->mb_x = 0;
  4590. init_block_index(v);
  4591. for (;s->mb_x < s->mb_width; s->mb_x++) {
  4592. int16_t (*block)[64] = v->block[v->cur_blk_idx];
  4593. ff_update_block_index(s);
  4594. s->dsp.clear_blocks(block[0]);
  4595. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  4596. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  4597. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  4598. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  4599. // do actual MB decoding and displaying
  4600. if (v->fieldtx_is_raw)
  4601. v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
  4602. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  4603. if ( v->acpred_is_raw)
  4604. v->s.ac_pred = get_bits1(&v->s.gb);
  4605. else
  4606. v->s.ac_pred = v->acpred_plane[mb_pos];
  4607. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  4608. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  4609. GET_MQUANT();
  4610. s->current_picture.qscale_table[mb_pos] = mquant;
  4611. /* Set DC scale - y and c use the same */
  4612. s->y_dc_scale = s->y_dc_scale_table[mquant];
  4613. s->c_dc_scale = s->c_dc_scale_table[mquant];
  4614. for (k = 0; k < 6; k++) {
  4615. val = ((cbp >> (5 - k)) & 1);
  4616. if (k < 4) {
  4617. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  4618. val = val ^ pred;
  4619. *coded_val = val;
  4620. }
  4621. cbp |= val << (5 - k);
  4622. v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
  4623. v->c_avail = !!s->mb_x || (k == 1 || k == 3);
  4624. vc1_decode_i_block_adv(v, block[k], k, val,
  4625. (k < 4) ? v->codingset : v->codingset2, mquant);
  4626. if (k > 3 && (s->flags & CODEC_FLAG_GRAY))
  4627. continue;
  4628. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  4629. }
  4630. vc1_smooth_overlap_filter_iblk(v);
  4631. vc1_put_signed_blocks_clamped(v);
  4632. if (v->s.loop_filter) vc1_loop_filter_iblk_delayed(v, v->pq);
  4633. if (get_bits_count(&s->gb) > v->bits) {
  4634. // TODO: may need modification to handle slice coding
  4635. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4636. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  4637. get_bits_count(&s->gb), v->bits);
  4638. return;
  4639. }
  4640. }
  4641. if (!v->s.loop_filter)
  4642. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4643. else if (s->mb_y)
  4644. ff_mpeg_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  4645. s->first_slice_line = 0;
  4646. }
  4647. /* raw bottom MB row */
  4648. s->mb_x = 0;
  4649. init_block_index(v);
  4650. for (;s->mb_x < s->mb_width; s->mb_x++) {
  4651. ff_update_block_index(s);
  4652. vc1_put_signed_blocks_clamped(v);
  4653. if (v->s.loop_filter)
  4654. vc1_loop_filter_iblk_delayed(v, v->pq);
  4655. }
  4656. if (v->s.loop_filter)
  4657. ff_mpeg_draw_horiz_band(s, (s->end_mb_y-1)*16, 16);
  4658. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4659. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4660. }
  4661. static void vc1_decode_p_blocks(VC1Context *v)
  4662. {
  4663. MpegEncContext *s = &v->s;
  4664. int apply_loop_filter;
  4665. /* select codingmode used for VLC tables selection */
  4666. switch (v->c_ac_table_index) {
  4667. case 0:
  4668. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4669. break;
  4670. case 1:
  4671. v->codingset = CS_HIGH_MOT_INTRA;
  4672. break;
  4673. case 2:
  4674. v->codingset = CS_MID_RATE_INTRA;
  4675. break;
  4676. }
  4677. switch (v->c_ac_table_index) {
  4678. case 0:
  4679. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4680. break;
  4681. case 1:
  4682. v->codingset2 = CS_HIGH_MOT_INTER;
  4683. break;
  4684. case 2:
  4685. v->codingset2 = CS_MID_RATE_INTER;
  4686. break;
  4687. }
  4688. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY) &&
  4689. v->fcm == PROGRESSIVE;
  4690. s->first_slice_line = 1;
  4691. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  4692. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4693. s->mb_x = 0;
  4694. init_block_index(v);
  4695. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4696. ff_update_block_index(s);
  4697. if (v->fcm == ILACE_FIELD)
  4698. vc1_decode_p_mb_intfi(v);
  4699. else if (v->fcm == ILACE_FRAME)
  4700. vc1_decode_p_mb_intfr(v);
  4701. else vc1_decode_p_mb(v);
  4702. if (s->mb_y != s->start_mb_y && apply_loop_filter)
  4703. vc1_apply_p_loop_filter(v);
  4704. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  4705. // TODO: may need modification to handle slice coding
  4706. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4707. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  4708. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  4709. return;
  4710. }
  4711. }
  4712. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0]) * s->mb_stride);
  4713. memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0]) * s->mb_stride);
  4714. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  4715. memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0]) * s->mb_stride);
  4716. if (s->mb_y != s->start_mb_y) ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4717. s->first_slice_line = 0;
  4718. }
  4719. if (apply_loop_filter) {
  4720. s->mb_x = 0;
  4721. init_block_index(v);
  4722. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4723. ff_update_block_index(s);
  4724. vc1_apply_p_loop_filter(v);
  4725. }
  4726. }
  4727. if (s->end_mb_y >= s->start_mb_y)
  4728. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4729. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4730. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4731. }
  4732. static void vc1_decode_b_blocks(VC1Context *v)
  4733. {
  4734. MpegEncContext *s = &v->s;
  4735. /* select codingmode used for VLC tables selection */
  4736. switch (v->c_ac_table_index) {
  4737. case 0:
  4738. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4739. break;
  4740. case 1:
  4741. v->codingset = CS_HIGH_MOT_INTRA;
  4742. break;
  4743. case 2:
  4744. v->codingset = CS_MID_RATE_INTRA;
  4745. break;
  4746. }
  4747. switch (v->c_ac_table_index) {
  4748. case 0:
  4749. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4750. break;
  4751. case 1:
  4752. v->codingset2 = CS_HIGH_MOT_INTER;
  4753. break;
  4754. case 2:
  4755. v->codingset2 = CS_MID_RATE_INTER;
  4756. break;
  4757. }
  4758. s->first_slice_line = 1;
  4759. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4760. s->mb_x = 0;
  4761. init_block_index(v);
  4762. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4763. ff_update_block_index(s);
  4764. if (v->fcm == ILACE_FIELD)
  4765. vc1_decode_b_mb_intfi(v);
  4766. else if (v->fcm == ILACE_FRAME)
  4767. vc1_decode_b_mb_intfr(v);
  4768. else
  4769. vc1_decode_b_mb(v);
  4770. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  4771. // TODO: may need modification to handle slice coding
  4772. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4773. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  4774. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  4775. return;
  4776. }
  4777. if (v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  4778. }
  4779. if (!v->s.loop_filter)
  4780. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4781. else if (s->mb_y)
  4782. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4783. s->first_slice_line = 0;
  4784. }
  4785. if (v->s.loop_filter)
  4786. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4787. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4788. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4789. }
  4790. static void vc1_decode_skip_blocks(VC1Context *v)
  4791. {
  4792. MpegEncContext *s = &v->s;
  4793. if (!v->s.last_picture.f->data[0])
  4794. return;
  4795. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
  4796. s->first_slice_line = 1;
  4797. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4798. s->mb_x = 0;
  4799. init_block_index(v);
  4800. ff_update_block_index(s);
  4801. memcpy(s->dest[0], s->last_picture.f->data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  4802. memcpy(s->dest[1], s->last_picture.f->data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  4803. memcpy(s->dest[2], s->last_picture.f->data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  4804. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4805. s->first_slice_line = 0;
  4806. }
  4807. s->pict_type = AV_PICTURE_TYPE_P;
  4808. }
  4809. void ff_vc1_decode_blocks(VC1Context *v)
  4810. {
  4811. v->s.esc3_level_length = 0;
  4812. if (v->x8_type) {
  4813. ff_intrax8_decode_picture(&v->x8, 2*v->pq + v->halfpq, v->pq * !v->pquantizer);
  4814. } else {
  4815. v->cur_blk_idx = 0;
  4816. v->left_blk_idx = -1;
  4817. v->topleft_blk_idx = 1;
  4818. v->top_blk_idx = 2;
  4819. switch (v->s.pict_type) {
  4820. case AV_PICTURE_TYPE_I:
  4821. if (v->profile == PROFILE_ADVANCED)
  4822. vc1_decode_i_blocks_adv(v);
  4823. else
  4824. vc1_decode_i_blocks(v);
  4825. break;
  4826. case AV_PICTURE_TYPE_P:
  4827. if (v->p_frame_skipped)
  4828. vc1_decode_skip_blocks(v);
  4829. else
  4830. vc1_decode_p_blocks(v);
  4831. break;
  4832. case AV_PICTURE_TYPE_B:
  4833. if (v->bi_type) {
  4834. if (v->profile == PROFILE_ADVANCED)
  4835. vc1_decode_i_blocks_adv(v);
  4836. else
  4837. vc1_decode_i_blocks(v);
  4838. } else
  4839. vc1_decode_b_blocks(v);
  4840. break;
  4841. }
  4842. }
  4843. }
  4844. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  4845. typedef struct {
  4846. /**
  4847. * Transform coefficients for both sprites in 16.16 fixed point format,
  4848. * in the order they appear in the bitstream:
  4849. * x scale
  4850. * rotation 1 (unused)
  4851. * x offset
  4852. * rotation 2 (unused)
  4853. * y scale
  4854. * y offset
  4855. * alpha
  4856. */
  4857. int coefs[2][7];
  4858. int effect_type, effect_flag;
  4859. int effect_pcount1, effect_pcount2; ///< amount of effect parameters stored in effect_params
  4860. int effect_params1[15], effect_params2[10]; ///< effect parameters in 16.16 fixed point format
  4861. } SpriteData;
  4862. static inline int get_fp_val(GetBitContext* gb)
  4863. {
  4864. return (get_bits_long(gb, 30) - (1 << 29)) << 1;
  4865. }
  4866. static void vc1_sprite_parse_transform(GetBitContext* gb, int c[7])
  4867. {
  4868. c[1] = c[3] = 0;
  4869. switch (get_bits(gb, 2)) {
  4870. case 0:
  4871. c[0] = 1 << 16;
  4872. c[2] = get_fp_val(gb);
  4873. c[4] = 1 << 16;
  4874. break;
  4875. case 1:
  4876. c[0] = c[4] = get_fp_val(gb);
  4877. c[2] = get_fp_val(gb);
  4878. break;
  4879. case 2:
  4880. c[0] = get_fp_val(gb);
  4881. c[2] = get_fp_val(gb);
  4882. c[4] = get_fp_val(gb);
  4883. break;
  4884. case 3:
  4885. c[0] = get_fp_val(gb);
  4886. c[1] = get_fp_val(gb);
  4887. c[2] = get_fp_val(gb);
  4888. c[3] = get_fp_val(gb);
  4889. c[4] = get_fp_val(gb);
  4890. break;
  4891. }
  4892. c[5] = get_fp_val(gb);
  4893. if (get_bits1(gb))
  4894. c[6] = get_fp_val(gb);
  4895. else
  4896. c[6] = 1 << 16;
  4897. }
  4898. static void vc1_parse_sprites(VC1Context *v, GetBitContext* gb, SpriteData* sd)
  4899. {
  4900. AVCodecContext *avctx = v->s.avctx;
  4901. int sprite, i;
  4902. for (sprite = 0; sprite <= v->two_sprites; sprite++) {
  4903. vc1_sprite_parse_transform(gb, sd->coefs[sprite]);
  4904. if (sd->coefs[sprite][1] || sd->coefs[sprite][3])
  4905. avpriv_request_sample(avctx, "Non-zero rotation coefficients");
  4906. av_log(avctx, AV_LOG_DEBUG, sprite ? "S2:" : "S1:");
  4907. for (i = 0; i < 7; i++)
  4908. av_log(avctx, AV_LOG_DEBUG, " %d.%.3d",
  4909. sd->coefs[sprite][i] / (1<<16),
  4910. (abs(sd->coefs[sprite][i]) & 0xFFFF) * 1000 / (1 << 16));
  4911. av_log(avctx, AV_LOG_DEBUG, "\n");
  4912. }
  4913. skip_bits(gb, 2);
  4914. if (sd->effect_type = get_bits_long(gb, 30)) {
  4915. switch (sd->effect_pcount1 = get_bits(gb, 4)) {
  4916. case 7:
  4917. vc1_sprite_parse_transform(gb, sd->effect_params1);
  4918. break;
  4919. case 14:
  4920. vc1_sprite_parse_transform(gb, sd->effect_params1);
  4921. vc1_sprite_parse_transform(gb, sd->effect_params1 + 7);
  4922. break;
  4923. default:
  4924. for (i = 0; i < sd->effect_pcount1; i++)
  4925. sd->effect_params1[i] = get_fp_val(gb);
  4926. }
  4927. if (sd->effect_type != 13 || sd->effect_params1[0] != sd->coefs[0][6]) {
  4928. // effect 13 is simple alpha blending and matches the opacity above
  4929. av_log(avctx, AV_LOG_DEBUG, "Effect: %d; params: ", sd->effect_type);
  4930. for (i = 0; i < sd->effect_pcount1; i++)
  4931. av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
  4932. sd->effect_params1[i] / (1 << 16),
  4933. (abs(sd->effect_params1[i]) & 0xFFFF) * 1000 / (1 << 16));
  4934. av_log(avctx, AV_LOG_DEBUG, "\n");
  4935. }
  4936. sd->effect_pcount2 = get_bits(gb, 16);
  4937. if (sd->effect_pcount2 > 10) {
  4938. av_log(avctx, AV_LOG_ERROR, "Too many effect parameters\n");
  4939. return;
  4940. } else if (sd->effect_pcount2) {
  4941. i = -1;
  4942. av_log(avctx, AV_LOG_DEBUG, "Effect params 2: ");
  4943. while (++i < sd->effect_pcount2) {
  4944. sd->effect_params2[i] = get_fp_val(gb);
  4945. av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
  4946. sd->effect_params2[i] / (1 << 16),
  4947. (abs(sd->effect_params2[i]) & 0xFFFF) * 1000 / (1 << 16));
  4948. }
  4949. av_log(avctx, AV_LOG_DEBUG, "\n");
  4950. }
  4951. }
  4952. if (sd->effect_flag = get_bits1(gb))
  4953. av_log(avctx, AV_LOG_DEBUG, "Effect flag set\n");
  4954. if (get_bits_count(gb) >= gb->size_in_bits +
  4955. (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE ? 64 : 0))
  4956. av_log(avctx, AV_LOG_ERROR, "Buffer overrun\n");
  4957. if (get_bits_count(gb) < gb->size_in_bits - 8)
  4958. av_log(avctx, AV_LOG_WARNING, "Buffer not fully read\n");
  4959. }
  4960. static void vc1_draw_sprites(VC1Context *v, SpriteData* sd)
  4961. {
  4962. int i, plane, row, sprite;
  4963. int sr_cache[2][2] = { { -1, -1 }, { -1, -1 } };
  4964. uint8_t* src_h[2][2];
  4965. int xoff[2], xadv[2], yoff[2], yadv[2], alpha;
  4966. int ysub[2];
  4967. MpegEncContext *s = &v->s;
  4968. for (i = 0; i < 2; i++) {
  4969. xoff[i] = av_clip(sd->coefs[i][2], 0, v->sprite_width-1 << 16);
  4970. xadv[i] = sd->coefs[i][0];
  4971. if (xadv[i] != 1<<16 || (v->sprite_width << 16) - (v->output_width << 16) - xoff[i])
  4972. xadv[i] = av_clip(xadv[i], 0, ((v->sprite_width<<16) - xoff[i] - 1) / v->output_width);
  4973. yoff[i] = av_clip(sd->coefs[i][5], 0, v->sprite_height-1 << 16);
  4974. yadv[i] = av_clip(sd->coefs[i][4], 0, ((v->sprite_height << 16) - yoff[i]) / v->output_height);
  4975. }
  4976. alpha = av_clip(sd->coefs[1][6], 0, (1<<16) - 1);
  4977. for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++) {
  4978. int width = v->output_width>>!!plane;
  4979. for (row = 0; row < v->output_height>>!!plane; row++) {
  4980. uint8_t *dst = v->sprite_output_frame->data[plane] +
  4981. v->sprite_output_frame->linesize[plane] * row;
  4982. for (sprite = 0; sprite <= v->two_sprites; sprite++) {
  4983. uint8_t *iplane = s->current_picture.f->data[plane];
  4984. int iline = s->current_picture.f->linesize[plane];
  4985. int ycoord = yoff[sprite] + yadv[sprite] * row;
  4986. int yline = ycoord >> 16;
  4987. int next_line;
  4988. ysub[sprite] = ycoord & 0xFFFF;
  4989. if (sprite) {
  4990. iplane = s->last_picture.f->data[plane];
  4991. iline = s->last_picture.f->linesize[plane];
  4992. }
  4993. next_line = FFMIN(yline + 1, (v->sprite_height >> !!plane) - 1) * iline;
  4994. if (!(xoff[sprite] & 0xFFFF) && xadv[sprite] == 1 << 16) {
  4995. src_h[sprite][0] = iplane + (xoff[sprite] >> 16) + yline * iline;
  4996. if (ysub[sprite])
  4997. src_h[sprite][1] = iplane + (xoff[sprite] >> 16) + next_line;
  4998. } else {
  4999. if (sr_cache[sprite][0] != yline) {
  5000. if (sr_cache[sprite][1] == yline) {
  5001. FFSWAP(uint8_t*, v->sr_rows[sprite][0], v->sr_rows[sprite][1]);
  5002. FFSWAP(int, sr_cache[sprite][0], sr_cache[sprite][1]);
  5003. } else {
  5004. v->vc1dsp.sprite_h(v->sr_rows[sprite][0], iplane + yline * iline, xoff[sprite], xadv[sprite], width);
  5005. sr_cache[sprite][0] = yline;
  5006. }
  5007. }
  5008. if (ysub[sprite] && sr_cache[sprite][1] != yline + 1) {
  5009. v->vc1dsp.sprite_h(v->sr_rows[sprite][1],
  5010. iplane + next_line, xoff[sprite],
  5011. xadv[sprite], width);
  5012. sr_cache[sprite][1] = yline + 1;
  5013. }
  5014. src_h[sprite][0] = v->sr_rows[sprite][0];
  5015. src_h[sprite][1] = v->sr_rows[sprite][1];
  5016. }
  5017. }
  5018. if (!v->two_sprites) {
  5019. if (ysub[0]) {
  5020. v->vc1dsp.sprite_v_single(dst, src_h[0][0], src_h[0][1], ysub[0], width);
  5021. } else {
  5022. memcpy(dst, src_h[0][0], width);
  5023. }
  5024. } else {
  5025. if (ysub[0] && ysub[1]) {
  5026. v->vc1dsp.sprite_v_double_twoscale(dst, src_h[0][0], src_h[0][1], ysub[0],
  5027. src_h[1][0], src_h[1][1], ysub[1], alpha, width);
  5028. } else if (ysub[0]) {
  5029. v->vc1dsp.sprite_v_double_onescale(dst, src_h[0][0], src_h[0][1], ysub[0],
  5030. src_h[1][0], alpha, width);
  5031. } else if (ysub[1]) {
  5032. v->vc1dsp.sprite_v_double_onescale(dst, src_h[1][0], src_h[1][1], ysub[1],
  5033. src_h[0][0], (1<<16)-1-alpha, width);
  5034. } else {
  5035. v->vc1dsp.sprite_v_double_noscale(dst, src_h[0][0], src_h[1][0], alpha, width);
  5036. }
  5037. }
  5038. }
  5039. if (!plane) {
  5040. for (i = 0; i < 2; i++) {
  5041. xoff[i] >>= 1;
  5042. yoff[i] >>= 1;
  5043. }
  5044. }
  5045. }
  5046. }
  5047. static int vc1_decode_sprites(VC1Context *v, GetBitContext* gb)
  5048. {
  5049. MpegEncContext *s = &v->s;
  5050. AVCodecContext *avctx = s->avctx;
  5051. SpriteData sd;
  5052. vc1_parse_sprites(v, gb, &sd);
  5053. if (!s->current_picture.f->data[0]) {
  5054. av_log(avctx, AV_LOG_ERROR, "Got no sprites\n");
  5055. return -1;
  5056. }
  5057. if (v->two_sprites && (!s->last_picture_ptr || !s->last_picture.f->data[0])) {
  5058. av_log(avctx, AV_LOG_WARNING, "Need two sprites, only got one\n");
  5059. v->two_sprites = 0;
  5060. }
  5061. av_frame_unref(v->sprite_output_frame);
  5062. if (ff_get_buffer(avctx, v->sprite_output_frame, 0) < 0) {
  5063. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  5064. return -1;
  5065. }
  5066. vc1_draw_sprites(v, &sd);
  5067. return 0;
  5068. }
  5069. static void vc1_sprite_flush(AVCodecContext *avctx)
  5070. {
  5071. VC1Context *v = avctx->priv_data;
  5072. MpegEncContext *s = &v->s;
  5073. AVFrame *f = s->current_picture.f;
  5074. int plane, i;
  5075. /* Windows Media Image codecs have a convergence interval of two keyframes.
  5076. Since we can't enforce it, clear to black the missing sprite. This is
  5077. wrong but it looks better than doing nothing. */
  5078. if (f->data[0])
  5079. for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++)
  5080. for (i = 0; i < v->sprite_height>>!!plane; i++)
  5081. memset(f->data[plane] + i * f->linesize[plane],
  5082. plane ? 128 : 0, f->linesize[plane]);
  5083. }
  5084. #endif
  5085. av_cold int ff_vc1_decode_init_alloc_tables(VC1Context *v)
  5086. {
  5087. MpegEncContext *s = &v->s;
  5088. int i;
  5089. int mb_height = FFALIGN(s->mb_height, 2);
  5090. /* Allocate mb bitplanes */
  5091. v->mv_type_mb_plane = av_malloc (s->mb_stride * mb_height);
  5092. v->direct_mb_plane = av_malloc (s->mb_stride * mb_height);
  5093. v->forward_mb_plane = av_malloc (s->mb_stride * mb_height);
  5094. v->fieldtx_plane = av_mallocz(s->mb_stride * mb_height);
  5095. v->acpred_plane = av_malloc (s->mb_stride * mb_height);
  5096. v->over_flags_plane = av_malloc (s->mb_stride * mb_height);
  5097. v->n_allocated_blks = s->mb_width + 2;
  5098. v->block = av_malloc(sizeof(*v->block) * v->n_allocated_blks);
  5099. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  5100. v->cbp = v->cbp_base + s->mb_stride;
  5101. v->ttblk_base = av_malloc(sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  5102. v->ttblk = v->ttblk_base + s->mb_stride;
  5103. v->is_intra_base = av_mallocz(sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  5104. v->is_intra = v->is_intra_base + s->mb_stride;
  5105. v->luma_mv_base = av_malloc(sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
  5106. v->luma_mv = v->luma_mv_base + s->mb_stride;
  5107. /* allocate block type info in that way so it could be used with s->block_index[] */
  5108. v->mb_type_base = av_malloc(s->b8_stride * (mb_height * 2 + 1) + s->mb_stride * (mb_height + 1) * 2);
  5109. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  5110. v->mb_type[1] = v->mb_type_base + s->b8_stride * (mb_height * 2 + 1) + s->mb_stride + 1;
  5111. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (mb_height + 1);
  5112. /* allocate memory to store block level MV info */
  5113. v->blk_mv_type_base = av_mallocz( s->b8_stride * (mb_height * 2 + 1) + s->mb_stride * (mb_height + 1) * 2);
  5114. v->blk_mv_type = v->blk_mv_type_base + s->b8_stride + 1;
  5115. v->mv_f_base = av_mallocz(2 * (s->b8_stride * (mb_height * 2 + 1) + s->mb_stride * (mb_height + 1) * 2));
  5116. v->mv_f[0] = v->mv_f_base + s->b8_stride + 1;
  5117. v->mv_f[1] = v->mv_f[0] + (s->b8_stride * (mb_height * 2 + 1) + s->mb_stride * (mb_height + 1) * 2);
  5118. v->mv_f_next_base = av_mallocz(2 * (s->b8_stride * (mb_height * 2 + 1) + s->mb_stride * (mb_height + 1) * 2));
  5119. v->mv_f_next[0] = v->mv_f_next_base + s->b8_stride + 1;
  5120. v->mv_f_next[1] = v->mv_f_next[0] + (s->b8_stride * (mb_height * 2 + 1) + s->mb_stride * (mb_height + 1) * 2);
  5121. /* Init coded blocks info */
  5122. if (v->profile == PROFILE_ADVANCED) {
  5123. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  5124. // return -1;
  5125. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  5126. // return -1;
  5127. }
  5128. ff_intrax8_common_init(&v->x8,s);
  5129. if (s->avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || s->avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5130. for (i = 0; i < 4; i++)
  5131. if (!(v->sr_rows[i >> 1][i & 1] = av_malloc(v->output_width))) return -1;
  5132. }
  5133. if (!v->mv_type_mb_plane || !v->direct_mb_plane || !v->acpred_plane || !v->over_flags_plane ||
  5134. !v->block || !v->cbp_base || !v->ttblk_base || !v->is_intra_base || !v->luma_mv_base ||
  5135. !v->mb_type_base) {
  5136. av_freep(&v->mv_type_mb_plane);
  5137. av_freep(&v->direct_mb_plane);
  5138. av_freep(&v->acpred_plane);
  5139. av_freep(&v->over_flags_plane);
  5140. av_freep(&v->block);
  5141. av_freep(&v->cbp_base);
  5142. av_freep(&v->ttblk_base);
  5143. av_freep(&v->is_intra_base);
  5144. av_freep(&v->luma_mv_base);
  5145. av_freep(&v->mb_type_base);
  5146. return AVERROR(ENOMEM);
  5147. }
  5148. return 0;
  5149. }
  5150. av_cold void ff_vc1_init_transposed_scantables(VC1Context *v)
  5151. {
  5152. int i;
  5153. for (i = 0; i < 64; i++) {
  5154. #define transpose(x) ((x >> 3) | ((x & 7) << 3))
  5155. v->zz_8x8[0][i] = transpose(ff_wmv1_scantable[0][i]);
  5156. v->zz_8x8[1][i] = transpose(ff_wmv1_scantable[1][i]);
  5157. v->zz_8x8[2][i] = transpose(ff_wmv1_scantable[2][i]);
  5158. v->zz_8x8[3][i] = transpose(ff_wmv1_scantable[3][i]);
  5159. v->zzi_8x8[i] = transpose(ff_vc1_adv_interlaced_8x8_zz[i]);
  5160. }
  5161. v->left_blk_sh = 0;
  5162. v->top_blk_sh = 3;
  5163. }
  5164. /** Initialize a VC1/WMV3 decoder
  5165. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  5166. * @todo TODO: Decypher remaining bits in extra_data
  5167. */
  5168. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  5169. {
  5170. VC1Context *v = avctx->priv_data;
  5171. MpegEncContext *s = &v->s;
  5172. GetBitContext gb;
  5173. /* save the container output size for WMImage */
  5174. v->output_width = avctx->width;
  5175. v->output_height = avctx->height;
  5176. if (!avctx->extradata_size || !avctx->extradata)
  5177. return -1;
  5178. if (!(avctx->flags & CODEC_FLAG_GRAY))
  5179. avctx->pix_fmt = ff_get_format(avctx, avctx->codec->pix_fmts);
  5180. else
  5181. avctx->pix_fmt = AV_PIX_FMT_GRAY8;
  5182. v->s.avctx = avctx;
  5183. if (ff_vc1_init_common(v) < 0)
  5184. return -1;
  5185. ff_h264chroma_init(&v->h264chroma, 8);
  5186. ff_qpeldsp_init(&s->qdsp);
  5187. ff_vc1dsp_init(&v->vc1dsp);
  5188. if (avctx->codec_id == AV_CODEC_ID_WMV3 || avctx->codec_id == AV_CODEC_ID_WMV3IMAGE) {
  5189. int count = 0;
  5190. // looks like WMV3 has a sequence header stored in the extradata
  5191. // advanced sequence header may be before the first frame
  5192. // the last byte of the extradata is a version number, 1 for the
  5193. // samples we can decode
  5194. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  5195. if (ff_vc1_decode_sequence_header(avctx, v, &gb) < 0)
  5196. return -1;
  5197. count = avctx->extradata_size*8 - get_bits_count(&gb);
  5198. if (count > 0) {
  5199. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  5200. count, get_bits(&gb, count));
  5201. } else if (count < 0) {
  5202. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  5203. }
  5204. } else { // VC1/WVC1/WVP2
  5205. const uint8_t *start = avctx->extradata;
  5206. uint8_t *end = avctx->extradata + avctx->extradata_size;
  5207. const uint8_t *next;
  5208. int size, buf2_size;
  5209. uint8_t *buf2 = NULL;
  5210. int seq_initialized = 0, ep_initialized = 0;
  5211. if (avctx->extradata_size < 16) {
  5212. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  5213. return -1;
  5214. }
  5215. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5216. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  5217. next = start;
  5218. for (; next < end; start = next) {
  5219. next = find_next_marker(start + 4, end);
  5220. size = next - start - 4;
  5221. if (size <= 0)
  5222. continue;
  5223. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  5224. init_get_bits(&gb, buf2, buf2_size * 8);
  5225. switch (AV_RB32(start)) {
  5226. case VC1_CODE_SEQHDR:
  5227. if (ff_vc1_decode_sequence_header(avctx, v, &gb) < 0) {
  5228. av_free(buf2);
  5229. return -1;
  5230. }
  5231. seq_initialized = 1;
  5232. break;
  5233. case VC1_CODE_ENTRYPOINT:
  5234. if (ff_vc1_decode_entry_point(avctx, v, &gb) < 0) {
  5235. av_free(buf2);
  5236. return -1;
  5237. }
  5238. ep_initialized = 1;
  5239. break;
  5240. }
  5241. }
  5242. av_free(buf2);
  5243. if (!seq_initialized || !ep_initialized) {
  5244. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  5245. return -1;
  5246. }
  5247. v->res_sprite = (avctx->codec_id == AV_CODEC_ID_VC1IMAGE);
  5248. }
  5249. v->sprite_output_frame = av_frame_alloc();
  5250. if (!v->sprite_output_frame)
  5251. return AVERROR(ENOMEM);
  5252. avctx->profile = v->profile;
  5253. if (v->profile == PROFILE_ADVANCED)
  5254. avctx->level = v->level;
  5255. avctx->has_b_frames = !!avctx->max_b_frames;
  5256. s->mb_width = (avctx->coded_width + 15) >> 4;
  5257. s->mb_height = (avctx->coded_height + 15) >> 4;
  5258. if (v->profile == PROFILE_ADVANCED || v->res_fasttx) {
  5259. ff_vc1_init_transposed_scantables(v);
  5260. } else {
  5261. memcpy(v->zz_8x8, ff_wmv1_scantable, 4*64);
  5262. v->left_blk_sh = 3;
  5263. v->top_blk_sh = 0;
  5264. }
  5265. if (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5266. v->sprite_width = avctx->coded_width;
  5267. v->sprite_height = avctx->coded_height;
  5268. avctx->coded_width = avctx->width = v->output_width;
  5269. avctx->coded_height = avctx->height = v->output_height;
  5270. // prevent 16.16 overflows
  5271. if (v->sprite_width > 1 << 14 ||
  5272. v->sprite_height > 1 << 14 ||
  5273. v->output_width > 1 << 14 ||
  5274. v->output_height > 1 << 14) return -1;
  5275. }
  5276. return 0;
  5277. }
  5278. /** Close a VC1/WMV3 decoder
  5279. * @warning Initial try at using MpegEncContext stuff
  5280. */
  5281. av_cold int ff_vc1_decode_end(AVCodecContext *avctx)
  5282. {
  5283. VC1Context *v = avctx->priv_data;
  5284. int i;
  5285. av_frame_free(&v->sprite_output_frame);
  5286. for (i = 0; i < 4; i++)
  5287. av_freep(&v->sr_rows[i >> 1][i & 1]);
  5288. av_freep(&v->hrd_rate);
  5289. av_freep(&v->hrd_buffer);
  5290. ff_MPV_common_end(&v->s);
  5291. av_freep(&v->mv_type_mb_plane);
  5292. av_freep(&v->direct_mb_plane);
  5293. av_freep(&v->forward_mb_plane);
  5294. av_freep(&v->fieldtx_plane);
  5295. av_freep(&v->acpred_plane);
  5296. av_freep(&v->over_flags_plane);
  5297. av_freep(&v->mb_type_base);
  5298. av_freep(&v->blk_mv_type_base);
  5299. av_freep(&v->mv_f_base);
  5300. av_freep(&v->mv_f_next_base);
  5301. av_freep(&v->block);
  5302. av_freep(&v->cbp_base);
  5303. av_freep(&v->ttblk_base);
  5304. av_freep(&v->is_intra_base); // FIXME use v->mb_type[]
  5305. av_freep(&v->luma_mv_base);
  5306. ff_intrax8_common_end(&v->x8);
  5307. return 0;
  5308. }
  5309. /** Decode a VC1/WMV3 frame
  5310. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  5311. */
  5312. static int vc1_decode_frame(AVCodecContext *avctx, void *data,
  5313. int *got_frame, AVPacket *avpkt)
  5314. {
  5315. const uint8_t *buf = avpkt->data;
  5316. int buf_size = avpkt->size, n_slices = 0, i, ret;
  5317. VC1Context *v = avctx->priv_data;
  5318. MpegEncContext *s = &v->s;
  5319. AVFrame *pict = data;
  5320. uint8_t *buf2 = NULL;
  5321. const uint8_t *buf_start = buf;
  5322. int mb_height, n_slices1;
  5323. struct {
  5324. uint8_t *buf;
  5325. GetBitContext gb;
  5326. int mby_start;
  5327. } *slices = NULL, *tmp;
  5328. /* no supplementary picture */
  5329. if (buf_size == 0 || (buf_size == 4 && AV_RB32(buf) == VC1_CODE_ENDOFSEQ)) {
  5330. /* special case for last picture */
  5331. if (s->low_delay == 0 && s->next_picture_ptr) {
  5332. if ((ret = av_frame_ref(pict, s->next_picture_ptr->f)) < 0)
  5333. return ret;
  5334. s->next_picture_ptr = NULL;
  5335. *got_frame = 1;
  5336. }
  5337. return 0;
  5338. }
  5339. //for advanced profile we may need to parse and unescape data
  5340. if (avctx->codec_id == AV_CODEC_ID_VC1 || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5341. int buf_size2 = 0;
  5342. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5343. if (IS_MARKER(AV_RB32(buf))) { /* frame starts with marker and needs to be parsed */
  5344. const uint8_t *start, *end, *next;
  5345. int size;
  5346. next = buf;
  5347. for (start = buf, end = buf + buf_size; next < end; start = next) {
  5348. next = find_next_marker(start + 4, end);
  5349. size = next - start - 4;
  5350. if (size <= 0) continue;
  5351. switch (AV_RB32(start)) {
  5352. case VC1_CODE_FRAME:
  5353. if (avctx->hwaccel)
  5354. buf_start = start;
  5355. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  5356. break;
  5357. case VC1_CODE_FIELD: {
  5358. int buf_size3;
  5359. tmp = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  5360. if (!tmp)
  5361. goto err;
  5362. slices = tmp;
  5363. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5364. if (!slices[n_slices].buf)
  5365. goto err;
  5366. buf_size3 = vc1_unescape_buffer(start + 4, size,
  5367. slices[n_slices].buf);
  5368. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  5369. buf_size3 << 3);
  5370. /* assuming that the field marker is at the exact middle,
  5371. hope it's correct */
  5372. slices[n_slices].mby_start = s->mb_height >> 1;
  5373. n_slices1 = n_slices - 1; // index of the last slice of the first field
  5374. n_slices++;
  5375. break;
  5376. }
  5377. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  5378. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  5379. init_get_bits(&s->gb, buf2, buf_size2 * 8);
  5380. ff_vc1_decode_entry_point(avctx, v, &s->gb);
  5381. break;
  5382. case VC1_CODE_SLICE: {
  5383. int buf_size3;
  5384. tmp = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  5385. if (!tmp)
  5386. goto err;
  5387. slices = tmp;
  5388. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5389. if (!slices[n_slices].buf)
  5390. goto err;
  5391. buf_size3 = vc1_unescape_buffer(start + 4, size,
  5392. slices[n_slices].buf);
  5393. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  5394. buf_size3 << 3);
  5395. slices[n_slices].mby_start = get_bits(&slices[n_slices].gb, 9);
  5396. n_slices++;
  5397. break;
  5398. }
  5399. }
  5400. }
  5401. } else if (v->interlace && ((buf[0] & 0xC0) == 0xC0)) { /* WVC1 interlaced stores both fields divided by marker */
  5402. const uint8_t *divider;
  5403. int buf_size3;
  5404. divider = find_next_marker(buf, buf + buf_size);
  5405. if ((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD) {
  5406. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  5407. goto err;
  5408. } else { // found field marker, unescape second field
  5409. tmp = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  5410. if (!tmp)
  5411. goto err;
  5412. slices = tmp;
  5413. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5414. if (!slices[n_slices].buf)
  5415. goto err;
  5416. buf_size3 = vc1_unescape_buffer(divider + 4, buf + buf_size - divider - 4, slices[n_slices].buf);
  5417. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  5418. buf_size3 << 3);
  5419. slices[n_slices].mby_start = s->mb_height >> 1;
  5420. n_slices1 = n_slices - 1;
  5421. n_slices++;
  5422. }
  5423. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  5424. } else {
  5425. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  5426. }
  5427. init_get_bits(&s->gb, buf2, buf_size2*8);
  5428. } else
  5429. init_get_bits(&s->gb, buf, buf_size*8);
  5430. if (v->res_sprite) {
  5431. v->new_sprite = !get_bits1(&s->gb);
  5432. v->two_sprites = get_bits1(&s->gb);
  5433. /* res_sprite means a Windows Media Image stream, AV_CODEC_ID_*IMAGE means
  5434. we're using the sprite compositor. These are intentionally kept separate
  5435. so you can get the raw sprites by using the wmv3 decoder for WMVP or
  5436. the vc1 one for WVP2 */
  5437. if (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5438. if (v->new_sprite) {
  5439. // switch AVCodecContext parameters to those of the sprites
  5440. avctx->width = avctx->coded_width = v->sprite_width;
  5441. avctx->height = avctx->coded_height = v->sprite_height;
  5442. } else {
  5443. goto image;
  5444. }
  5445. }
  5446. }
  5447. if (s->context_initialized &&
  5448. (s->width != avctx->coded_width ||
  5449. s->height != avctx->coded_height)) {
  5450. ff_vc1_decode_end(avctx);
  5451. }
  5452. if (!s->context_initialized) {
  5453. if (ff_msmpeg4_decode_init(avctx) < 0)
  5454. goto err;
  5455. if (ff_vc1_decode_init_alloc_tables(v) < 0) {
  5456. ff_MPV_common_end(s);
  5457. goto err;
  5458. }
  5459. s->low_delay = !avctx->has_b_frames || v->res_sprite;
  5460. if (v->profile == PROFILE_ADVANCED) {
  5461. s->h_edge_pos = avctx->coded_width;
  5462. s->v_edge_pos = avctx->coded_height;
  5463. }
  5464. }
  5465. // do parse frame header
  5466. v->pic_header_flag = 0;
  5467. v->first_pic_header_flag = 1;
  5468. if (v->profile < PROFILE_ADVANCED) {
  5469. if (ff_vc1_parse_frame_header(v, &s->gb) < 0) {
  5470. goto err;
  5471. }
  5472. } else {
  5473. if (ff_vc1_parse_frame_header_adv(v, &s->gb) < 0) {
  5474. goto err;
  5475. }
  5476. }
  5477. v->first_pic_header_flag = 0;
  5478. if ((avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE)
  5479. && s->pict_type != AV_PICTURE_TYPE_I) {
  5480. av_log(v->s.avctx, AV_LOG_ERROR, "Sprite decoder: expected I-frame\n");
  5481. goto err;
  5482. }
  5483. // for skipping the frame
  5484. s->current_picture.f->pict_type = s->pict_type;
  5485. s->current_picture.f->key_frame = s->pict_type == AV_PICTURE_TYPE_I;
  5486. /* skip B-frames if we don't have reference frames */
  5487. if (s->last_picture_ptr == NULL && (s->pict_type == AV_PICTURE_TYPE_B || s->droppable)) {
  5488. goto end;
  5489. }
  5490. if ((avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B) ||
  5491. (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I) ||
  5492. avctx->skip_frame >= AVDISCARD_ALL) {
  5493. goto end;
  5494. }
  5495. if (s->next_p_frame_damaged) {
  5496. if (s->pict_type == AV_PICTURE_TYPE_B)
  5497. goto end;
  5498. else
  5499. s->next_p_frame_damaged = 0;
  5500. }
  5501. if (ff_MPV_frame_start(s, avctx) < 0) {
  5502. goto err;
  5503. }
  5504. // process pulldown flags
  5505. s->current_picture_ptr->f->repeat_pict = 0;
  5506. // Pulldown flags are only valid when 'broadcast' has been set.
  5507. // So ticks_per_frame will be 2
  5508. if (v->rff) {
  5509. // repeat field
  5510. s->current_picture_ptr->f->repeat_pict = 1;
  5511. } else if (v->rptfrm) {
  5512. // repeat frames
  5513. s->current_picture_ptr->f->repeat_pict = v->rptfrm * 2;
  5514. }
  5515. s->me.qpel_put = s->qdsp.put_qpel_pixels_tab;
  5516. s->me.qpel_avg = s->qdsp.avg_qpel_pixels_tab;
  5517. if (avctx->hwaccel) {
  5518. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  5519. goto err;
  5520. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  5521. goto err;
  5522. if (avctx->hwaccel->end_frame(avctx) < 0)
  5523. goto err;
  5524. } else {
  5525. int header_ret = 0;
  5526. ff_mpeg_er_frame_start(s);
  5527. v->bits = buf_size * 8;
  5528. v->end_mb_x = s->mb_width;
  5529. if (v->field_mode) {
  5530. s->current_picture.f->linesize[0] <<= 1;
  5531. s->current_picture.f->linesize[1] <<= 1;
  5532. s->current_picture.f->linesize[2] <<= 1;
  5533. s->linesize <<= 1;
  5534. s->uvlinesize <<= 1;
  5535. }
  5536. mb_height = s->mb_height >> v->field_mode;
  5537. if (!mb_height) {
  5538. av_log(v->s.avctx, AV_LOG_ERROR, "Invalid mb_height.\n");
  5539. goto err;
  5540. }
  5541. for (i = 0; i <= n_slices; i++) {
  5542. if (i > 0 && slices[i - 1].mby_start >= mb_height) {
  5543. if (v->field_mode <= 0) {
  5544. av_log(v->s.avctx, AV_LOG_ERROR, "Slice %d starts beyond "
  5545. "picture boundary (%d >= %d)\n", i,
  5546. slices[i - 1].mby_start, mb_height);
  5547. continue;
  5548. }
  5549. v->second_field = 1;
  5550. v->blocks_off = s->mb_width * s->mb_height << 1;
  5551. v->mb_off = s->mb_stride * s->mb_height >> 1;
  5552. } else {
  5553. v->second_field = 0;
  5554. v->blocks_off = 0;
  5555. v->mb_off = 0;
  5556. }
  5557. if (i) {
  5558. v->pic_header_flag = 0;
  5559. if (v->field_mode && i == n_slices1 + 2) {
  5560. if ((header_ret = ff_vc1_parse_frame_header_adv(v, &s->gb)) < 0) {
  5561. av_log(v->s.avctx, AV_LOG_ERROR, "Field header damaged\n");
  5562. if (avctx->err_recognition & AV_EF_EXPLODE)
  5563. goto err;
  5564. continue;
  5565. }
  5566. } else if (get_bits1(&s->gb)) {
  5567. v->pic_header_flag = 1;
  5568. if ((header_ret = ff_vc1_parse_frame_header_adv(v, &s->gb)) < 0) {
  5569. av_log(v->s.avctx, AV_LOG_ERROR, "Slice header damaged\n");
  5570. if (avctx->err_recognition & AV_EF_EXPLODE)
  5571. goto err;
  5572. continue;
  5573. }
  5574. }
  5575. }
  5576. if (header_ret < 0)
  5577. continue;
  5578. s->start_mb_y = (i == 0) ? 0 : FFMAX(0, slices[i-1].mby_start % mb_height);
  5579. if (!v->field_mode || v->second_field)
  5580. s->end_mb_y = (i == n_slices ) ? mb_height : FFMIN(mb_height, slices[i].mby_start % mb_height);
  5581. else
  5582. s->end_mb_y = (i <= n_slices1 + 1) ? mb_height : FFMIN(mb_height, slices[i].mby_start % mb_height);
  5583. ff_vc1_decode_blocks(v);
  5584. if (i != n_slices)
  5585. s->gb = slices[i].gb;
  5586. }
  5587. if (v->field_mode) {
  5588. v->second_field = 0;
  5589. s->current_picture.f->linesize[0] >>= 1;
  5590. s->current_picture.f->linesize[1] >>= 1;
  5591. s->current_picture.f->linesize[2] >>= 1;
  5592. s->linesize >>= 1;
  5593. s->uvlinesize >>= 1;
  5594. if (v->s.pict_type != AV_PICTURE_TYPE_BI && v->s.pict_type != AV_PICTURE_TYPE_B) {
  5595. FFSWAP(uint8_t *, v->mv_f_next[0], v->mv_f[0]);
  5596. FFSWAP(uint8_t *, v->mv_f_next[1], v->mv_f[1]);
  5597. }
  5598. }
  5599. av_dlog(s->avctx, "Consumed %i/%i bits\n",
  5600. get_bits_count(&s->gb), s->gb.size_in_bits);
  5601. // if (get_bits_count(&s->gb) > buf_size * 8)
  5602. // return -1;
  5603. if (!v->field_mode)
  5604. ff_er_frame_end(&s->er);
  5605. }
  5606. ff_MPV_frame_end(s);
  5607. if (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5608. image:
  5609. avctx->width = avctx->coded_width = v->output_width;
  5610. avctx->height = avctx->coded_height = v->output_height;
  5611. if (avctx->skip_frame >= AVDISCARD_NONREF)
  5612. goto end;
  5613. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  5614. if (vc1_decode_sprites(v, &s->gb))
  5615. goto err;
  5616. #endif
  5617. if ((ret = av_frame_ref(pict, v->sprite_output_frame)) < 0)
  5618. goto err;
  5619. *got_frame = 1;
  5620. } else {
  5621. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  5622. if ((ret = av_frame_ref(pict, s->current_picture_ptr->f)) < 0)
  5623. goto err;
  5624. ff_print_debug_info(s, s->current_picture_ptr);
  5625. *got_frame = 1;
  5626. } else if (s->last_picture_ptr != NULL) {
  5627. if ((ret = av_frame_ref(pict, s->last_picture_ptr->f)) < 0)
  5628. goto err;
  5629. ff_print_debug_info(s, s->last_picture_ptr);
  5630. *got_frame = 1;
  5631. }
  5632. }
  5633. end:
  5634. av_free(buf2);
  5635. for (i = 0; i < n_slices; i++)
  5636. av_free(slices[i].buf);
  5637. av_free(slices);
  5638. return buf_size;
  5639. err:
  5640. av_free(buf2);
  5641. for (i = 0; i < n_slices; i++)
  5642. av_free(slices[i].buf);
  5643. av_free(slices);
  5644. return -1;
  5645. }
  5646. static const AVProfile profiles[] = {
  5647. { FF_PROFILE_VC1_SIMPLE, "Simple" },
  5648. { FF_PROFILE_VC1_MAIN, "Main" },
  5649. { FF_PROFILE_VC1_COMPLEX, "Complex" },
  5650. { FF_PROFILE_VC1_ADVANCED, "Advanced" },
  5651. { FF_PROFILE_UNKNOWN },
  5652. };
  5653. static const enum AVPixelFormat vc1_hwaccel_pixfmt_list_420[] = {
  5654. #if CONFIG_VC1_DXVA2_HWACCEL
  5655. AV_PIX_FMT_DXVA2_VLD,
  5656. #endif
  5657. #if CONFIG_VC1_VAAPI_HWACCEL
  5658. AV_PIX_FMT_VAAPI_VLD,
  5659. #endif
  5660. #if CONFIG_VC1_VDPAU_HWACCEL
  5661. AV_PIX_FMT_VDPAU,
  5662. #endif
  5663. AV_PIX_FMT_YUV420P,
  5664. AV_PIX_FMT_NONE
  5665. };
  5666. AVCodec ff_vc1_decoder = {
  5667. .name = "vc1",
  5668. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  5669. .type = AVMEDIA_TYPE_VIDEO,
  5670. .id = AV_CODEC_ID_VC1,
  5671. .priv_data_size = sizeof(VC1Context),
  5672. .init = vc1_decode_init,
  5673. .close = ff_vc1_decode_end,
  5674. .decode = vc1_decode_frame,
  5675. .flush = ff_mpeg_flush,
  5676. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  5677. .pix_fmts = vc1_hwaccel_pixfmt_list_420,
  5678. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5679. };
  5680. #if CONFIG_WMV3_DECODER
  5681. AVCodec ff_wmv3_decoder = {
  5682. .name = "wmv3",
  5683. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  5684. .type = AVMEDIA_TYPE_VIDEO,
  5685. .id = AV_CODEC_ID_WMV3,
  5686. .priv_data_size = sizeof(VC1Context),
  5687. .init = vc1_decode_init,
  5688. .close = ff_vc1_decode_end,
  5689. .decode = vc1_decode_frame,
  5690. .flush = ff_mpeg_flush,
  5691. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  5692. .pix_fmts = vc1_hwaccel_pixfmt_list_420,
  5693. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5694. };
  5695. #endif
  5696. #if CONFIG_WMV3IMAGE_DECODER
  5697. AVCodec ff_wmv3image_decoder = {
  5698. .name = "wmv3image",
  5699. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image"),
  5700. .type = AVMEDIA_TYPE_VIDEO,
  5701. .id = AV_CODEC_ID_WMV3IMAGE,
  5702. .priv_data_size = sizeof(VC1Context),
  5703. .init = vc1_decode_init,
  5704. .close = ff_vc1_decode_end,
  5705. .decode = vc1_decode_frame,
  5706. .capabilities = CODEC_CAP_DR1,
  5707. .flush = vc1_sprite_flush,
  5708. .pix_fmts = (const enum AVPixelFormat[]) {
  5709. AV_PIX_FMT_YUV420P,
  5710. AV_PIX_FMT_NONE
  5711. },
  5712. };
  5713. #endif
  5714. #if CONFIG_VC1IMAGE_DECODER
  5715. AVCodec ff_vc1image_decoder = {
  5716. .name = "vc1image",
  5717. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image v2"),
  5718. .type = AVMEDIA_TYPE_VIDEO,
  5719. .id = AV_CODEC_ID_VC1IMAGE,
  5720. .priv_data_size = sizeof(VC1Context),
  5721. .init = vc1_decode_init,
  5722. .close = ff_vc1_decode_end,
  5723. .decode = vc1_decode_frame,
  5724. .capabilities = CODEC_CAP_DR1,
  5725. .flush = vc1_sprite_flush,
  5726. .pix_fmts = (const enum AVPixelFormat[]) {
  5727. AV_PIX_FMT_YUV420P,
  5728. AV_PIX_FMT_NONE
  5729. },
  5730. };
  5731. #endif