You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

859 lines
28KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. *
  5. * VC-3 encoder funded by the British Broadcasting Corporation
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. //#define DEBUG
  24. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. #include "dnxhddata.h"
  29. typedef struct {
  30. uint16_t mb;
  31. int value;
  32. } RCCMPEntry;
  33. typedef struct {
  34. int ssd;
  35. int bits;
  36. } RCEntry;
  37. int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow);
  38. typedef struct DNXHDEncContext {
  39. MpegEncContext m; ///< Used for quantization dsp functions
  40. AVFrame frame;
  41. int cid;
  42. const CIDEntry *cid_table;
  43. uint8_t *msip; ///< Macroblock Scan Indices Payload
  44. uint32_t *slice_size;
  45. struct DNXHDEncContext *thread[MAX_THREADS];
  46. unsigned dct_y_offset;
  47. unsigned dct_uv_offset;
  48. int interlaced;
  49. int cur_field;
  50. DECLARE_ALIGNED_16(DCTELEM, blocks[8][64]);
  51. int (*qmatrix_c) [64];
  52. int (*qmatrix_l) [64];
  53. uint16_t (*qmatrix_l16)[2][64];
  54. uint16_t (*qmatrix_c16)[2][64];
  55. unsigned frame_bits;
  56. uint8_t *src[3];
  57. uint16_t *table_vlc_codes;
  58. uint8_t *table_vlc_bits;
  59. uint16_t *table_run_codes;
  60. uint8_t *table_run_bits;
  61. /** Rate control */
  62. unsigned slice_bits;
  63. unsigned qscale;
  64. unsigned lambda;
  65. unsigned thread_size;
  66. uint16_t *mb_bits;
  67. uint8_t *mb_qscale;
  68. RCCMPEntry *mb_cmp;
  69. RCEntry (*mb_rc)[8160];
  70. } DNXHDEncContext;
  71. #define LAMBDA_FRAC_BITS 10
  72. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  73. {
  74. int i;
  75. CHECKED_ALLOCZ(ctx->table_vlc_codes, 449*2);
  76. CHECKED_ALLOCZ(ctx->table_vlc_bits, 449);
  77. CHECKED_ALLOCZ(ctx->table_run_codes, 63*2);
  78. CHECKED_ALLOCZ(ctx->table_run_bits, 63);
  79. for (i = 0; i < 257; i++) {
  80. int level = ctx->cid_table->ac_level[i] +
  81. (ctx->cid_table->ac_run_flag[i] << 7) + (ctx->cid_table->ac_index_flag[i] << 8);
  82. assert(level < 449);
  83. if (ctx->cid_table->ac_level[i] == 64 && ctx->cid_table->ac_index_flag[i])
  84. level -= 64; // use 0+(1<<8) level
  85. ctx->table_vlc_codes[level] = ctx->cid_table->ac_codes[i];
  86. ctx->table_vlc_bits [level] = ctx->cid_table->ac_bits[i];
  87. }
  88. for (i = 0; i < 62; i++) {
  89. int run = ctx->cid_table->run[i];
  90. assert(run < 63);
  91. ctx->table_run_codes[run] = ctx->cid_table->run_codes[i];
  92. ctx->table_run_bits [run] = ctx->cid_table->run_bits[i];
  93. }
  94. return 0;
  95. fail:
  96. return -1;
  97. }
  98. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  99. {
  100. // init first elem to 1 to avoid div by 0 in convert_matrix
  101. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  102. int qscale, i;
  103. CHECKED_ALLOCZ(ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int));
  104. CHECKED_ALLOCZ(ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int));
  105. CHECKED_ALLOCZ(ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t));
  106. CHECKED_ALLOCZ(ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t));
  107. for (i = 1; i < 64; i++) {
  108. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  109. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  110. }
  111. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  112. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  113. for (i = 1; i < 64; i++) {
  114. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  115. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  116. }
  117. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  118. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  119. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  120. for (i = 0; i < 64; i++) {
  121. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  122. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  123. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  124. }
  125. }
  126. return 0;
  127. fail:
  128. return -1;
  129. }
  130. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  131. {
  132. CHECKED_ALLOCZ(ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry));
  133. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  134. CHECKED_ALLOCZ(ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry));
  135. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4) * 8;
  136. ctx->qscale = 1;
  137. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  138. return 0;
  139. fail:
  140. return -1;
  141. }
  142. static int dnxhd_encode_init(AVCodecContext *avctx)
  143. {
  144. DNXHDEncContext *ctx = avctx->priv_data;
  145. int i, index;
  146. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  147. if (avctx->bit_rate == 120000000)
  148. ctx->cid = 1242;
  149. else if (avctx->bit_rate == 185000000)
  150. ctx->cid = 1243;
  151. } else {
  152. if (avctx->bit_rate == 120000000)
  153. ctx->cid = 1237;
  154. else if (avctx->bit_rate == 185000000)
  155. ctx->cid = 1238;
  156. else if (avctx->bit_rate == 36000000)
  157. ctx->cid = 1253;
  158. }
  159. if (!ctx->cid || avctx->width != 1920 || avctx->height != 1080 || avctx->pix_fmt != PIX_FMT_YUV422P) {
  160. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  161. return -1;
  162. }
  163. index = ff_dnxhd_get_cid_table(ctx->cid);
  164. ctx->cid_table = &ff_dnxhd_cid_table[index];
  165. ctx->m.avctx = avctx;
  166. ctx->m.mb_intra = 1;
  167. ctx->m.h263_aic = 1;
  168. dsputil_init(&ctx->m.dsp, avctx);
  169. ff_dct_common_init(&ctx->m);
  170. if (!ctx->m.dct_quantize)
  171. ctx->m.dct_quantize = dct_quantize_c;
  172. ctx->m.mb_height = (avctx->height + 15) / 16;
  173. ctx->m.mb_width = (avctx->width + 15) / 16;
  174. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  175. ctx->interlaced = 1;
  176. ctx->m.mb_height /= 2;
  177. }
  178. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  179. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  180. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  181. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  182. return -1;
  183. if (dnxhd_init_vlc(ctx) < 0)
  184. return -1;
  185. if (dnxhd_init_rc(ctx) < 0)
  186. return -1;
  187. CHECKED_ALLOCZ(ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t));
  188. CHECKED_ALLOCZ(ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t));
  189. CHECKED_ALLOCZ(ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t));
  190. ctx->frame.key_frame = 1;
  191. ctx->frame.pict_type = FF_I_TYPE;
  192. ctx->m.avctx->coded_frame = &ctx->frame;
  193. if (avctx->thread_count > MAX_THREADS || (avctx->thread_count > ctx->m.mb_height)) {
  194. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  195. return -1;
  196. }
  197. ctx->thread[0] = ctx;
  198. for (i = 1; i < avctx->thread_count; i++) {
  199. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  200. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  201. }
  202. for (i = 0; i < avctx->thread_count; i++) {
  203. ctx->thread[i]->m.start_mb_y = (ctx->m.mb_height*(i ) + avctx->thread_count/2) / avctx->thread_count;
  204. ctx->thread[i]->m.end_mb_y = (ctx->m.mb_height*(i+1) + avctx->thread_count/2) / avctx->thread_count;
  205. }
  206. return 0;
  207. fail: //for CHECKED_ALLOCZ
  208. return -1;
  209. }
  210. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  211. {
  212. DNXHDEncContext *ctx = avctx->priv_data;
  213. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  214. memcpy(buf, header_prefix, 5);
  215. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  216. buf[6] = 0x80; // crc flag off
  217. buf[7] = 0xa0; // reserved
  218. AV_WB16(buf + 0x18, avctx->height); // ALPF
  219. AV_WB16(buf + 0x1a, avctx->width); // SPL
  220. AV_WB16(buf + 0x1d, avctx->height); // NAL
  221. buf[0x21] = 0x38; // FIXME 8 bit per comp
  222. buf[0x22] = 0x88 + (ctx->frame.interlaced_frame<<2);
  223. AV_WB32(buf + 0x28, ctx->cid); // CID
  224. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  225. buf[0x5f] = 0x01; // UDL
  226. buf[0x167] = 0x02; // reserved
  227. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  228. buf[0x16d] = ctx->m.mb_height; // Ns
  229. buf[0x16f] = 0x10; // reserved
  230. ctx->msip = buf + 0x170;
  231. return 0;
  232. }
  233. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  234. {
  235. int nbits;
  236. if (diff < 0) {
  237. nbits = av_log2_16bit(-2*diff);
  238. diff--;
  239. } else {
  240. nbits = av_log2_16bit(2*diff);
  241. }
  242. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  243. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  244. }
  245. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  246. {
  247. int last_non_zero = 0;
  248. int offset = 0;
  249. int slevel, i, j;
  250. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  251. ctx->m.last_dc[n] = block[0];
  252. for (i = 1; i <= last_index; i++) {
  253. j = ctx->m.intra_scantable.permutated[i];
  254. slevel = block[j];
  255. if (slevel) {
  256. int run_level = i - last_non_zero - 1;
  257. int sign;
  258. MASK_ABS(sign, slevel);
  259. if (slevel > 64) {
  260. offset = (slevel-1) >> 6;
  261. slevel = 256 | (slevel & 63); // level 64 is treated as 0
  262. }
  263. if (run_level)
  264. slevel |= 128;
  265. put_bits(&ctx->m.pb, ctx->table_vlc_bits[slevel]+1, (ctx->table_vlc_codes[slevel]<<1)|(sign&1));
  266. if (offset) {
  267. put_bits(&ctx->m.pb, 4, offset);
  268. offset = 0;
  269. }
  270. if (run_level)
  271. put_bits(&ctx->m.pb, ctx->table_run_bits[run_level], ctx->table_run_codes[run_level]);
  272. last_non_zero = i;
  273. }
  274. }
  275. put_bits(&ctx->m.pb, ctx->table_vlc_bits[0], ctx->table_vlc_codes[0]); // EOB
  276. }
  277. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  278. {
  279. const uint8_t *weight_matrix;
  280. int level;
  281. int i;
  282. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  283. for (i = 1; i <= last_index; i++) {
  284. int j = ctx->m.intra_scantable.permutated[i];
  285. level = block[j];
  286. if (level) {
  287. if (level < 0) {
  288. level = (1-2*level) * qscale * weight_matrix[i];
  289. if (weight_matrix[i] != 32)
  290. level += 32;
  291. level >>= 6;
  292. level = -level;
  293. } else {
  294. level = (2*level+1) * qscale * weight_matrix[i];
  295. if (weight_matrix[i] != 32)
  296. level += 32;
  297. level >>= 6;
  298. }
  299. block[j] = level;
  300. }
  301. }
  302. }
  303. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  304. {
  305. int score = 0;
  306. int i;
  307. for (i = 0; i < 64; i++)
  308. score += (block[i]-qblock[i])*(block[i]-qblock[i]);
  309. return score;
  310. }
  311. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  312. {
  313. int last_non_zero = 0;
  314. int bits = 0;
  315. int i, j, level;
  316. for (i = 1; i <= last_index; i++) {
  317. j = ctx->m.intra_scantable.permutated[i];
  318. level = block[j];
  319. if (level) {
  320. int run_level = i - last_non_zero - 1;
  321. level = FFABS(level);
  322. if (level > 64) {
  323. level = 256 | (level & 63); // level 64 is treated as 0
  324. bits += 4;
  325. }
  326. level |= (!!run_level)<<7;
  327. bits += ctx->table_vlc_bits[level]+1 + ctx->table_run_bits[run_level];
  328. last_non_zero = i;
  329. }
  330. }
  331. return bits;
  332. }
  333. static av_always_inline void dnxhd_get_pixels_4x8(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  334. {
  335. int i;
  336. for (i = 0; i < 4; i++) {
  337. block[0] = pixels[0];
  338. block[1] = pixels[1];
  339. block[2] = pixels[2];
  340. block[3] = pixels[3];
  341. block[4] = pixels[4];
  342. block[5] = pixels[5];
  343. block[6] = pixels[6];
  344. block[7] = pixels[7];
  345. pixels += line_size;
  346. block += 8;
  347. }
  348. memcpy(block , block- 8, sizeof(*block)*8);
  349. memcpy(block+ 8, block-16, sizeof(*block)*8);
  350. memcpy(block+16, block-24, sizeof(*block)*8);
  351. memcpy(block+24, block-32, sizeof(*block)*8);
  352. }
  353. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  354. {
  355. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << 4);
  356. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  357. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  358. DSPContext *dsp = &ctx->m.dsp;
  359. dsp->get_pixels(ctx->blocks[0], ptr_y , ctx->m.linesize);
  360. dsp->get_pixels(ctx->blocks[1], ptr_y + 8, ctx->m.linesize);
  361. dsp->get_pixels(ctx->blocks[2], ptr_u , ctx->m.uvlinesize);
  362. dsp->get_pixels(ctx->blocks[3], ptr_v , ctx->m.uvlinesize);
  363. if (mb_y+1 == ctx->m.mb_height) {
  364. if (ctx->interlaced) {
  365. dnxhd_get_pixels_4x8(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
  366. dnxhd_get_pixels_4x8(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  367. dnxhd_get_pixels_4x8(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
  368. dnxhd_get_pixels_4x8(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
  369. } else
  370. memset(ctx->blocks[4], 0, 4*64*sizeof(DCTELEM));
  371. } else {
  372. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
  373. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  374. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
  375. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
  376. }
  377. }
  378. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  379. {
  380. if (i&2) {
  381. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  382. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  383. return 1 + (i&1);
  384. } else {
  385. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  386. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  387. return 0;
  388. }
  389. }
  390. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg)
  391. {
  392. DNXHDEncContext *ctx = arg;
  393. int mb_y, mb_x;
  394. int qscale = ctx->thread[0]->qscale;
  395. for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
  396. ctx->m.last_dc[0] =
  397. ctx->m.last_dc[1] =
  398. ctx->m.last_dc[2] = 1024;
  399. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  400. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  401. int ssd = 0;
  402. int ac_bits = 0;
  403. int dc_bits = 0;
  404. int i;
  405. dnxhd_get_blocks(ctx, mb_x, mb_y);
  406. for (i = 0; i < 8; i++) {
  407. DECLARE_ALIGNED_16(DCTELEM, block[64]);
  408. DCTELEM *src_block = ctx->blocks[i];
  409. int overflow, nbits, diff, last_index;
  410. int n = dnxhd_switch_matrix(ctx, i);
  411. memcpy(block, src_block, sizeof(block));
  412. last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
  413. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  414. diff = block[0] - ctx->m.last_dc[n];
  415. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  416. else nbits = av_log2_16bit( 2*diff);
  417. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  418. ctx->m.last_dc[n] = block[0];
  419. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  420. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  421. ctx->m.dsp.idct(block);
  422. ssd += dnxhd_ssd_block(block, src_block);
  423. }
  424. }
  425. ctx->mb_rc[qscale][mb].ssd = ssd;
  426. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->table_vlc_bits[0];
  427. }
  428. }
  429. return 0;
  430. }
  431. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg)
  432. {
  433. DNXHDEncContext *ctx = arg;
  434. int mb_y, mb_x;
  435. for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
  436. ctx->m.last_dc[0] =
  437. ctx->m.last_dc[1] =
  438. ctx->m.last_dc[2] = 1024;
  439. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  440. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  441. int qscale = ctx->mb_qscale[mb];
  442. int i;
  443. put_bits(&ctx->m.pb, 12, qscale<<1);
  444. dnxhd_get_blocks(ctx, mb_x, mb_y);
  445. for (i = 0; i < 8; i++) {
  446. DCTELEM *block = ctx->blocks[i];
  447. int last_index, overflow;
  448. int n = dnxhd_switch_matrix(ctx, i);
  449. last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
  450. dnxhd_encode_block(ctx, block, last_index, n);
  451. }
  452. }
  453. if (put_bits_count(&ctx->m.pb)&31)
  454. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  455. }
  456. flush_put_bits(&ctx->m.pb);
  457. return 0;
  458. }
  459. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx, uint8_t *buf)
  460. {
  461. int mb_y, mb_x;
  462. int i, offset = 0;
  463. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  464. int thread_size = 0;
  465. for (mb_y = ctx->thread[i]->m.start_mb_y; mb_y < ctx->thread[i]->m.end_mb_y; mb_y++) {
  466. ctx->slice_size[mb_y] = 0;
  467. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  468. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  469. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  470. }
  471. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  472. ctx->slice_size[mb_y] >>= 3;
  473. thread_size += ctx->slice_size[mb_y];
  474. }
  475. init_put_bits(&ctx->thread[i]->m.pb, buf + 640 + offset, thread_size);
  476. offset += thread_size;
  477. }
  478. }
  479. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg)
  480. {
  481. DNXHDEncContext *ctx = arg;
  482. int mb_y, mb_x;
  483. for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
  484. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  485. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  486. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize) + (mb_x<<4);
  487. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  488. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)(sum*sum))>>8)+128)>>8;
  489. ctx->mb_cmp[mb].value = varc;
  490. ctx->mb_cmp[mb].mb = mb;
  491. }
  492. }
  493. return 0;
  494. }
  495. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  496. {
  497. int lambda, up_step, down_step;
  498. int last_lower = INT_MAX, last_higher = 0;
  499. int x, y, q;
  500. for (q = 1; q < avctx->qmax; q++) {
  501. ctx->qscale = q;
  502. avctx->execute(avctx, dnxhd_calc_bits_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count);
  503. }
  504. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  505. lambda = ctx->lambda;
  506. for (;;) {
  507. int bits = 0;
  508. int end = 0;
  509. if (lambda == last_higher) {
  510. lambda++;
  511. end = 1; // need to set final qscales/bits
  512. }
  513. for (y = 0; y < ctx->m.mb_height; y++) {
  514. for (x = 0; x < ctx->m.mb_width; x++) {
  515. unsigned min = UINT_MAX;
  516. int qscale = 1;
  517. int mb = y*ctx->m.mb_width+x;
  518. for (q = 1; q < avctx->qmax; q++) {
  519. unsigned score = ctx->mb_rc[q][mb].bits*lambda+(ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  520. if (score < min) {
  521. min = score;
  522. qscale = q;
  523. }
  524. }
  525. bits += ctx->mb_rc[qscale][mb].bits;
  526. ctx->mb_qscale[mb] = qscale;
  527. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  528. }
  529. bits = (bits+31)&~31; // padding
  530. if (bits > ctx->frame_bits)
  531. break;
  532. }
  533. //dprintf(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  534. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  535. if (end) {
  536. if (bits > ctx->frame_bits)
  537. return -1;
  538. break;
  539. }
  540. if (bits < ctx->frame_bits) {
  541. last_lower = FFMIN(lambda, last_lower);
  542. if (last_higher != 0)
  543. lambda = (lambda+last_higher)>>1;
  544. else
  545. lambda -= down_step;
  546. down_step *= 5; // XXX tune ?
  547. up_step = 1<<LAMBDA_FRAC_BITS;
  548. lambda = FFMAX(1, lambda);
  549. if (lambda == last_lower)
  550. break;
  551. } else {
  552. last_higher = FFMAX(lambda, last_higher);
  553. if (last_lower != INT_MAX)
  554. lambda = (lambda+last_lower)>>1;
  555. else
  556. lambda += up_step;
  557. up_step *= 5;
  558. down_step = 1<<LAMBDA_FRAC_BITS;
  559. }
  560. }
  561. //dprintf(ctx->m.avctx, "out lambda %d\n", lambda);
  562. ctx->lambda = lambda;
  563. return 0;
  564. }
  565. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  566. {
  567. int bits = 0;
  568. int up_step = 1;
  569. int down_step = 1;
  570. int last_higher = 0;
  571. int last_lower = INT_MAX;
  572. int qscale;
  573. int x, y;
  574. qscale = ctx->qscale;
  575. for (;;) {
  576. bits = 0;
  577. ctx->qscale = qscale;
  578. // XXX avoid recalculating bits
  579. ctx->m.avctx->execute(ctx->m.avctx, dnxhd_calc_bits_thread, (void**)&ctx->thread[0], NULL, ctx->m.avctx->thread_count);
  580. for (y = 0; y < ctx->m.mb_height; y++) {
  581. for (x = 0; x < ctx->m.mb_width; x++)
  582. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  583. bits = (bits+31)&~31; // padding
  584. if (bits > ctx->frame_bits)
  585. break;
  586. }
  587. //dprintf(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  588. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  589. if (bits < ctx->frame_bits) {
  590. if (qscale == 1)
  591. break;
  592. if (last_higher == qscale - 1) {
  593. qscale = last_higher;
  594. break;
  595. }
  596. last_lower = FFMIN(qscale, last_lower);
  597. if (last_higher != 0)
  598. qscale = (qscale+last_higher)>>1;
  599. else
  600. qscale -= down_step++;
  601. if (qscale < 1)
  602. qscale = 1;
  603. up_step = 1;
  604. } else {
  605. if (last_lower == qscale + 1)
  606. break;
  607. last_higher = FFMAX(qscale, last_higher);
  608. if (last_lower != INT_MAX)
  609. qscale = (qscale+last_lower)>>1;
  610. else
  611. qscale += up_step++;
  612. down_step = 1;
  613. if (qscale >= ctx->m.avctx->qmax)
  614. return -1;
  615. }
  616. }
  617. //dprintf(ctx->m.avctx, "out qscale %d\n", qscale);
  618. ctx->qscale = qscale;
  619. return 0;
  620. }
  621. static int dnxhd_rc_cmp(const void *a, const void *b)
  622. {
  623. return ((RCCMPEntry *)b)->value - ((RCCMPEntry *)a)->value;
  624. }
  625. static int dnxhd_encode_variance(AVCodecContext *avctx, DNXHDEncContext *ctx)
  626. {
  627. int max_bits = 0;
  628. int x, y;
  629. if (dnxhd_find_qscale(ctx) < 0)
  630. return -1;
  631. for (y = 0; y < ctx->m.mb_height; y++) {
  632. for (x = 0; x < ctx->m.mb_width; x++) {
  633. int mb = y*ctx->m.mb_width+x;
  634. int delta_bits;
  635. ctx->mb_qscale[mb] = ctx->qscale;
  636. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  637. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  638. if (!RC_VARIANCE) {
  639. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  640. ctx->mb_cmp[mb].mb = mb;
  641. ctx->mb_cmp[mb].value = delta_bits ?
  642. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  643. : INT_MIN; //avoid increasing qscale
  644. }
  645. }
  646. max_bits += 31; //worst padding
  647. }
  648. if (max_bits > ctx->frame_bits) {
  649. if (RC_VARIANCE)
  650. avctx->execute(avctx, dnxhd_mb_var_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count);
  651. qsort(ctx->mb_cmp, ctx->m.mb_num, sizeof(RCEntry), dnxhd_rc_cmp);
  652. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  653. int mb = ctx->mb_cmp[x].mb;
  654. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  655. ctx->mb_qscale[mb] = ctx->qscale+1;
  656. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  657. }
  658. }
  659. return 0;
  660. }
  661. static void dnxhd_load_picture(DNXHDEncContext *ctx, AVFrame *frame)
  662. {
  663. int i;
  664. for (i = 0; i < 3; i++) {
  665. ctx->frame.data[i] = frame->data[i];
  666. ctx->frame.linesize[i] = frame->linesize[i];
  667. }
  668. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  669. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  670. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  671. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  672. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  673. }
  674. ctx->frame.interlaced_frame = frame->interlaced_frame;
  675. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  676. }
  677. static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data)
  678. {
  679. DNXHDEncContext *ctx = avctx->priv_data;
  680. int first_field = 1;
  681. int offset, i, ret;
  682. if (buf_size < ctx->cid_table->frame_size) {
  683. av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
  684. return -1;
  685. }
  686. dnxhd_load_picture(ctx, data);
  687. encode_coding_unit:
  688. for (i = 0; i < 3; i++) {
  689. ctx->src[i] = ctx->frame.data[i];
  690. if (ctx->interlaced && ctx->cur_field)
  691. ctx->src[i] += ctx->frame.linesize[i];
  692. }
  693. dnxhd_write_header(avctx, buf);
  694. if (avctx->mb_decision == FF_MB_DECISION_RD)
  695. ret = dnxhd_encode_rdo(avctx, ctx);
  696. else
  697. ret = dnxhd_encode_variance(avctx, ctx);
  698. if (ret < 0) {
  699. av_log(avctx, AV_LOG_ERROR, "picture could not fit ratecontrol constraints\n");
  700. return -1;
  701. }
  702. dnxhd_setup_threads_slices(ctx, buf);
  703. offset = 0;
  704. for (i = 0; i < ctx->m.mb_height; i++) {
  705. AV_WB32(ctx->msip + i * 4, offset);
  706. offset += ctx->slice_size[i];
  707. assert(!(ctx->slice_size[i] & 3));
  708. }
  709. avctx->execute(avctx, dnxhd_encode_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count);
  710. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  711. if (ctx->interlaced && first_field) {
  712. first_field = 0;
  713. ctx->cur_field ^= 1;
  714. buf += ctx->cid_table->coding_unit_size;
  715. buf_size -= ctx->cid_table->coding_unit_size;
  716. goto encode_coding_unit;
  717. }
  718. return ctx->cid_table->frame_size;
  719. }
  720. static int dnxhd_encode_end(AVCodecContext *avctx)
  721. {
  722. DNXHDEncContext *ctx = avctx->priv_data;
  723. int i;
  724. av_freep(&ctx->table_vlc_codes);
  725. av_freep(&ctx->table_vlc_bits);
  726. av_freep(&ctx->table_run_codes);
  727. av_freep(&ctx->table_run_bits);
  728. av_freep(&ctx->mb_bits);
  729. av_freep(&ctx->mb_qscale);
  730. av_freep(&ctx->mb_rc);
  731. av_freep(&ctx->mb_cmp);
  732. av_freep(&ctx->slice_size);
  733. av_freep(&ctx->qmatrix_c);
  734. av_freep(&ctx->qmatrix_l);
  735. av_freep(&ctx->qmatrix_c16);
  736. av_freep(&ctx->qmatrix_l16);
  737. for (i = 1; i < avctx->thread_count; i++)
  738. av_freep(&ctx->thread[i]);
  739. return 0;
  740. }
  741. AVCodec dnxhd_encoder = {
  742. "dnxhd",
  743. CODEC_TYPE_VIDEO,
  744. CODEC_ID_DNXHD,
  745. sizeof(DNXHDEncContext),
  746. dnxhd_encode_init,
  747. dnxhd_encode_picture,
  748. dnxhd_encode_end,
  749. .pix_fmts = (enum PixelFormat[]){PIX_FMT_YUV422P, -1},
  750. };