You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

910 lines
28KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file wmadec.c
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf("%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf("%4d: ", i);
  51. tprintf(" %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf("\n");
  54. }
  55. }
  56. static void dump_floats(const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf("%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf("%4d: ", i);
  63. tprintf(" %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf("\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf("\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMADecodeContext *s = avctx->priv_data;
  74. int i, flags1, flags2;
  75. uint8_t *extradata;
  76. /* extract flag infos */
  77. flags1 = 0;
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags1 = extradata[0] | (extradata[1] << 8);
  82. flags2 = extradata[2] | (extradata[3] << 8);
  83. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  84. flags1 = extradata[0] | (extradata[1] << 8) |
  85. (extradata[2] << 16) | (extradata[3] << 24);
  86. flags2 = extradata[4] | (extradata[5] << 8);
  87. }
  88. // for(i=0; i<avctx->extradata_size; i++)
  89. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  90. s->use_exp_vlc = flags2 & 0x0001;
  91. s->use_bit_reservoir = flags2 & 0x0002;
  92. s->use_variable_block_len = flags2 & 0x0004;
  93. ff_wma_init(avctx, flags2);
  94. /* init MDCT */
  95. for(i = 0; i < s->nb_block_sizes; i++)
  96. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
  97. if (s->use_noise_coding) {
  98. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  99. ff_wma_hgain_huffbits, 1, 1,
  100. ff_wma_hgain_huffcodes, 2, 2, 0);
  101. }
  102. if (s->use_exp_vlc) {
  103. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_wma_scale_huffbits), //FIXME move out of context
  104. ff_wma_scale_huffbits, 1, 1,
  105. ff_wma_scale_huffcodes, 4, 4, 0);
  106. } else {
  107. wma_lsp_to_curve_init(s, s->frame_len);
  108. }
  109. return 0;
  110. }
  111. /**
  112. * interpolate values for a bigger or smaller block. The block must
  113. * have multiple sizes
  114. */
  115. static void interpolate_array(float *scale, int old_size, int new_size)
  116. {
  117. int i, j, jincr, k;
  118. float v;
  119. if (new_size > old_size) {
  120. jincr = new_size / old_size;
  121. j = new_size;
  122. for(i = old_size - 1; i >=0; i--) {
  123. v = scale[i];
  124. k = jincr;
  125. do {
  126. scale[--j] = v;
  127. } while (--k);
  128. }
  129. } else if (new_size < old_size) {
  130. j = 0;
  131. jincr = old_size / new_size;
  132. for(i = 0; i < new_size; i++) {
  133. scale[i] = scale[j];
  134. j += jincr;
  135. }
  136. }
  137. }
  138. /**
  139. * compute x^-0.25 with an exponent and mantissa table. We use linear
  140. * interpolation to reduce the mantissa table size at a small speed
  141. * expense (linear interpolation approximately doubles the number of
  142. * bits of precision).
  143. */
  144. static inline float pow_m1_4(WMADecodeContext *s, float x)
  145. {
  146. union {
  147. float f;
  148. unsigned int v;
  149. } u, t;
  150. unsigned int e, m;
  151. float a, b;
  152. u.f = x;
  153. e = u.v >> 23;
  154. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  155. /* build interpolation scale: 1 <= t < 2. */
  156. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  157. a = s->lsp_pow_m_table1[m];
  158. b = s->lsp_pow_m_table2[m];
  159. return s->lsp_pow_e_table[e] * (a + b * t.f);
  160. }
  161. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
  162. {
  163. float wdel, a, b;
  164. int i, e, m;
  165. wdel = M_PI / frame_len;
  166. for(i=0;i<frame_len;i++)
  167. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  168. /* tables for x^-0.25 computation */
  169. for(i=0;i<256;i++) {
  170. e = i - 126;
  171. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  172. }
  173. /* NOTE: these two tables are needed to avoid two operations in
  174. pow_m1_4 */
  175. b = 1.0;
  176. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  177. m = (1 << LSP_POW_BITS) + i;
  178. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  179. a = pow(a, -0.25);
  180. s->lsp_pow_m_table1[i] = 2 * a - b;
  181. s->lsp_pow_m_table2[i] = b - a;
  182. b = a;
  183. }
  184. #if 0
  185. for(i=1;i<20;i++) {
  186. float v, r1, r2;
  187. v = 5.0 / i;
  188. r1 = pow_m1_4(s, v);
  189. r2 = pow(v,-0.25);
  190. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  191. }
  192. #endif
  193. }
  194. /**
  195. * NOTE: We use the same code as Vorbis here
  196. * @todo optimize it further with SSE/3Dnow
  197. */
  198. static void wma_lsp_to_curve(WMADecodeContext *s,
  199. float *out, float *val_max_ptr,
  200. int n, float *lsp)
  201. {
  202. int i, j;
  203. float p, q, w, v, val_max;
  204. val_max = 0;
  205. for(i=0;i<n;i++) {
  206. p = 0.5f;
  207. q = 0.5f;
  208. w = s->lsp_cos_table[i];
  209. for(j=1;j<NB_LSP_COEFS;j+=2){
  210. q *= w - lsp[j - 1];
  211. p *= w - lsp[j];
  212. }
  213. p *= p * (2.0f - w);
  214. q *= q * (2.0f + w);
  215. v = p + q;
  216. v = pow_m1_4(s, v);
  217. if (v > val_max)
  218. val_max = v;
  219. out[i] = v;
  220. }
  221. *val_max_ptr = val_max;
  222. }
  223. /**
  224. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  225. */
  226. static void decode_exp_lsp(WMADecodeContext *s, int ch)
  227. {
  228. float lsp_coefs[NB_LSP_COEFS];
  229. int val, i;
  230. for(i = 0; i < NB_LSP_COEFS; i++) {
  231. if (i == 0 || i >= 8)
  232. val = get_bits(&s->gb, 3);
  233. else
  234. val = get_bits(&s->gb, 4);
  235. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  236. }
  237. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  238. s->block_len, lsp_coefs);
  239. }
  240. /**
  241. * decode exponents coded with VLC codes
  242. */
  243. static int decode_exp_vlc(WMADecodeContext *s, int ch)
  244. {
  245. int last_exp, n, code;
  246. const uint16_t *ptr, *band_ptr;
  247. float v, *q, max_scale, *q_end;
  248. band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  249. ptr = band_ptr;
  250. q = s->exponents[ch];
  251. q_end = q + s->block_len;
  252. max_scale = 0;
  253. if (s->version == 1) {
  254. last_exp = get_bits(&s->gb, 5) + 10;
  255. /* XXX: use a table */
  256. v = pow(10, last_exp * (1.0 / 16.0));
  257. max_scale = v;
  258. n = *ptr++;
  259. do {
  260. *q++ = v;
  261. } while (--n);
  262. }else
  263. last_exp = 36;
  264. while (q < q_end) {
  265. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  266. if (code < 0)
  267. return -1;
  268. /* NOTE: this offset is the same as MPEG4 AAC ! */
  269. last_exp += code - 60;
  270. /* XXX: use a table */
  271. v = pow(10, last_exp * (1.0 / 16.0));
  272. if (v > max_scale)
  273. max_scale = v;
  274. n = *ptr++;
  275. do {
  276. *q++ = v;
  277. } while (--n);
  278. }
  279. s->max_exponent[ch] = max_scale;
  280. return 0;
  281. }
  282. /**
  283. * @return 0 if OK. 1 if last block of frame. return -1 if
  284. * unrecorrable error.
  285. */
  286. static int wma_decode_block(WMADecodeContext *s)
  287. {
  288. int n, v, a, ch, code, bsize;
  289. int coef_nb_bits, total_gain, parse_exponents;
  290. int nb_coefs[MAX_CHANNELS];
  291. float mdct_norm;
  292. #ifdef TRACE
  293. tprintf("***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  294. #endif
  295. /* compute current block length */
  296. if (s->use_variable_block_len) {
  297. n = av_log2(s->nb_block_sizes - 1) + 1;
  298. if (s->reset_block_lengths) {
  299. s->reset_block_lengths = 0;
  300. v = get_bits(&s->gb, n);
  301. if (v >= s->nb_block_sizes)
  302. return -1;
  303. s->prev_block_len_bits = s->frame_len_bits - v;
  304. v = get_bits(&s->gb, n);
  305. if (v >= s->nb_block_sizes)
  306. return -1;
  307. s->block_len_bits = s->frame_len_bits - v;
  308. } else {
  309. /* update block lengths */
  310. s->prev_block_len_bits = s->block_len_bits;
  311. s->block_len_bits = s->next_block_len_bits;
  312. }
  313. v = get_bits(&s->gb, n);
  314. if (v >= s->nb_block_sizes)
  315. return -1;
  316. s->next_block_len_bits = s->frame_len_bits - v;
  317. } else {
  318. /* fixed block len */
  319. s->next_block_len_bits = s->frame_len_bits;
  320. s->prev_block_len_bits = s->frame_len_bits;
  321. s->block_len_bits = s->frame_len_bits;
  322. }
  323. /* now check if the block length is coherent with the frame length */
  324. s->block_len = 1 << s->block_len_bits;
  325. if ((s->block_pos + s->block_len) > s->frame_len)
  326. return -1;
  327. if (s->nb_channels == 2) {
  328. s->ms_stereo = get_bits(&s->gb, 1);
  329. }
  330. v = 0;
  331. for(ch = 0; ch < s->nb_channels; ch++) {
  332. a = get_bits(&s->gb, 1);
  333. s->channel_coded[ch] = a;
  334. v |= a;
  335. }
  336. /* if no channel coded, no need to go further */
  337. /* XXX: fix potential framing problems */
  338. if (!v)
  339. goto next;
  340. bsize = s->frame_len_bits - s->block_len_bits;
  341. /* read total gain and extract corresponding number of bits for
  342. coef escape coding */
  343. total_gain = 1;
  344. for(;;) {
  345. a = get_bits(&s->gb, 7);
  346. total_gain += a;
  347. if (a != 127)
  348. break;
  349. }
  350. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  351. /* compute number of coefficients */
  352. n = s->coefs_end[bsize] - s->coefs_start;
  353. for(ch = 0; ch < s->nb_channels; ch++)
  354. nb_coefs[ch] = n;
  355. /* complex coding */
  356. if (s->use_noise_coding) {
  357. for(ch = 0; ch < s->nb_channels; ch++) {
  358. if (s->channel_coded[ch]) {
  359. int i, n, a;
  360. n = s->exponent_high_sizes[bsize];
  361. for(i=0;i<n;i++) {
  362. a = get_bits(&s->gb, 1);
  363. s->high_band_coded[ch][i] = a;
  364. /* if noise coding, the coefficients are not transmitted */
  365. if (a)
  366. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  367. }
  368. }
  369. }
  370. for(ch = 0; ch < s->nb_channels; ch++) {
  371. if (s->channel_coded[ch]) {
  372. int i, n, val, code;
  373. n = s->exponent_high_sizes[bsize];
  374. val = (int)0x80000000;
  375. for(i=0;i<n;i++) {
  376. if (s->high_band_coded[ch][i]) {
  377. if (val == (int)0x80000000) {
  378. val = get_bits(&s->gb, 7) - 19;
  379. } else {
  380. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  381. if (code < 0)
  382. return -1;
  383. val += code - 18;
  384. }
  385. s->high_band_values[ch][i] = val;
  386. }
  387. }
  388. }
  389. }
  390. }
  391. /* exposant can be interpolated in short blocks. */
  392. parse_exponents = 1;
  393. if (s->block_len_bits != s->frame_len_bits) {
  394. parse_exponents = get_bits(&s->gb, 1);
  395. }
  396. if (parse_exponents) {
  397. for(ch = 0; ch < s->nb_channels; ch++) {
  398. if (s->channel_coded[ch]) {
  399. if (s->use_exp_vlc) {
  400. if (decode_exp_vlc(s, ch) < 0)
  401. return -1;
  402. } else {
  403. decode_exp_lsp(s, ch);
  404. }
  405. }
  406. }
  407. } else {
  408. for(ch = 0; ch < s->nb_channels; ch++) {
  409. if (s->channel_coded[ch]) {
  410. interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits,
  411. s->block_len);
  412. }
  413. }
  414. }
  415. /* parse spectral coefficients : just RLE encoding */
  416. for(ch = 0; ch < s->nb_channels; ch++) {
  417. if (s->channel_coded[ch]) {
  418. VLC *coef_vlc;
  419. int level, run, sign, tindex;
  420. int16_t *ptr, *eptr;
  421. const uint16_t *level_table, *run_table;
  422. /* special VLC tables are used for ms stereo because
  423. there is potentially less energy there */
  424. tindex = (ch == 1 && s->ms_stereo);
  425. coef_vlc = &s->coef_vlc[tindex];
  426. run_table = s->run_table[tindex];
  427. level_table = s->level_table[tindex];
  428. /* XXX: optimize */
  429. ptr = &s->coefs1[ch][0];
  430. eptr = ptr + nb_coefs[ch];
  431. memset(ptr, 0, s->block_len * sizeof(int16_t));
  432. for(;;) {
  433. code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
  434. if (code < 0)
  435. return -1;
  436. if (code == 1) {
  437. /* EOB */
  438. break;
  439. } else if (code == 0) {
  440. /* escape */
  441. level = get_bits(&s->gb, coef_nb_bits);
  442. /* NOTE: this is rather suboptimal. reading
  443. block_len_bits would be better */
  444. run = get_bits(&s->gb, s->frame_len_bits);
  445. } else {
  446. /* normal code */
  447. run = run_table[code];
  448. level = level_table[code];
  449. }
  450. sign = get_bits(&s->gb, 1);
  451. if (!sign)
  452. level = -level;
  453. ptr += run;
  454. if (ptr >= eptr)
  455. {
  456. av_log(NULL, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  457. break;
  458. }
  459. *ptr++ = level;
  460. /* NOTE: EOB can be omitted */
  461. if (ptr >= eptr)
  462. break;
  463. }
  464. }
  465. if (s->version == 1 && s->nb_channels >= 2) {
  466. align_get_bits(&s->gb);
  467. }
  468. }
  469. /* normalize */
  470. {
  471. int n4 = s->block_len / 2;
  472. mdct_norm = 1.0 / (float)n4;
  473. if (s->version == 1) {
  474. mdct_norm *= sqrt(n4);
  475. }
  476. }
  477. /* finally compute the MDCT coefficients */
  478. for(ch = 0; ch < s->nb_channels; ch++) {
  479. if (s->channel_coded[ch]) {
  480. int16_t *coefs1;
  481. float *coefs, *exponents, mult, mult1, noise, *exp_ptr;
  482. int i, j, n, n1, last_high_band;
  483. float exp_power[HIGH_BAND_MAX_SIZE];
  484. coefs1 = s->coefs1[ch];
  485. exponents = s->exponents[ch];
  486. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  487. mult *= mdct_norm;
  488. coefs = s->coefs[ch];
  489. if (s->use_noise_coding) {
  490. mult1 = mult;
  491. /* very low freqs : noise */
  492. for(i = 0;i < s->coefs_start; i++) {
  493. *coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1;
  494. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  495. }
  496. n1 = s->exponent_high_sizes[bsize];
  497. /* compute power of high bands */
  498. exp_ptr = exponents +
  499. s->high_band_start[bsize] -
  500. s->coefs_start;
  501. last_high_band = 0; /* avoid warning */
  502. for(j=0;j<n1;j++) {
  503. n = s->exponent_high_bands[s->frame_len_bits -
  504. s->block_len_bits][j];
  505. if (s->high_band_coded[ch][j]) {
  506. float e2, v;
  507. e2 = 0;
  508. for(i = 0;i < n; i++) {
  509. v = exp_ptr[i];
  510. e2 += v * v;
  511. }
  512. exp_power[j] = e2 / n;
  513. last_high_band = j;
  514. tprintf("%d: power=%f (%d)\n", j, exp_power[j], n);
  515. }
  516. exp_ptr += n;
  517. }
  518. /* main freqs and high freqs */
  519. for(j=-1;j<n1;j++) {
  520. if (j < 0) {
  521. n = s->high_band_start[bsize] -
  522. s->coefs_start;
  523. } else {
  524. n = s->exponent_high_bands[s->frame_len_bits -
  525. s->block_len_bits][j];
  526. }
  527. if (j >= 0 && s->high_band_coded[ch][j]) {
  528. /* use noise with specified power */
  529. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  530. /* XXX: use a table */
  531. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  532. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  533. mult1 *= mdct_norm;
  534. for(i = 0;i < n; i++) {
  535. noise = s->noise_table[s->noise_index];
  536. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  537. *coefs++ = (*exponents++) * noise * mult1;
  538. }
  539. } else {
  540. /* coded values + small noise */
  541. for(i = 0;i < n; i++) {
  542. noise = s->noise_table[s->noise_index];
  543. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  544. *coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult;
  545. }
  546. }
  547. }
  548. /* very high freqs : noise */
  549. n = s->block_len - s->coefs_end[bsize];
  550. mult1 = mult * exponents[-1];
  551. for(i = 0; i < n; i++) {
  552. *coefs++ = s->noise_table[s->noise_index] * mult1;
  553. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  554. }
  555. } else {
  556. /* XXX: optimize more */
  557. for(i = 0;i < s->coefs_start; i++)
  558. *coefs++ = 0.0;
  559. n = nb_coefs[ch];
  560. for(i = 0;i < n; i++) {
  561. *coefs++ = coefs1[i] * exponents[i] * mult;
  562. }
  563. n = s->block_len - s->coefs_end[bsize];
  564. for(i = 0;i < n; i++)
  565. *coefs++ = 0.0;
  566. }
  567. }
  568. }
  569. #ifdef TRACE
  570. for(ch = 0; ch < s->nb_channels; ch++) {
  571. if (s->channel_coded[ch]) {
  572. dump_floats("exponents", 3, s->exponents[ch], s->block_len);
  573. dump_floats("coefs", 1, s->coefs[ch], s->block_len);
  574. }
  575. }
  576. #endif
  577. if (s->ms_stereo && s->channel_coded[1]) {
  578. float a, b;
  579. int i;
  580. /* nominal case for ms stereo: we do it before mdct */
  581. /* no need to optimize this case because it should almost
  582. never happen */
  583. if (!s->channel_coded[0]) {
  584. tprintf("rare ms-stereo case happened\n");
  585. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  586. s->channel_coded[0] = 1;
  587. }
  588. for(i = 0; i < s->block_len; i++) {
  589. a = s->coefs[0][i];
  590. b = s->coefs[1][i];
  591. s->coefs[0][i] = a + b;
  592. s->coefs[1][i] = a - b;
  593. }
  594. }
  595. /* build the window : we ensure that when the windows overlap
  596. their squared sum is always 1 (MDCT reconstruction rule) */
  597. /* XXX: merge with output */
  598. {
  599. int i, next_block_len, block_len, prev_block_len, n;
  600. float *wptr;
  601. block_len = s->block_len;
  602. prev_block_len = 1 << s->prev_block_len_bits;
  603. next_block_len = 1 << s->next_block_len_bits;
  604. /* right part */
  605. wptr = s->window + block_len;
  606. if (block_len <= next_block_len) {
  607. for(i=0;i<block_len;i++)
  608. *wptr++ = s->windows[bsize][i];
  609. } else {
  610. /* overlap */
  611. n = (block_len / 2) - (next_block_len / 2);
  612. for(i=0;i<n;i++)
  613. *wptr++ = 1.0;
  614. for(i=0;i<next_block_len;i++)
  615. *wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
  616. for(i=0;i<n;i++)
  617. *wptr++ = 0.0;
  618. }
  619. /* left part */
  620. wptr = s->window + block_len;
  621. if (block_len <= prev_block_len) {
  622. for(i=0;i<block_len;i++)
  623. *--wptr = s->windows[bsize][i];
  624. } else {
  625. /* overlap */
  626. n = (block_len / 2) - (prev_block_len / 2);
  627. for(i=0;i<n;i++)
  628. *--wptr = 1.0;
  629. for(i=0;i<prev_block_len;i++)
  630. *--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
  631. for(i=0;i<n;i++)
  632. *--wptr = 0.0;
  633. }
  634. }
  635. for(ch = 0; ch < s->nb_channels; ch++) {
  636. if (s->channel_coded[ch]) {
  637. float *ptr;
  638. int n4, index, n;
  639. n = s->block_len;
  640. n4 = s->block_len / 2;
  641. s->mdct_ctx[bsize].fft.imdct_calc(&s->mdct_ctx[bsize],
  642. s->output, s->coefs[ch], s->mdct_tmp);
  643. /* XXX: optimize all that by build the window and
  644. multipying/adding at the same time */
  645. /* multiply by the window and add in the frame */
  646. index = (s->frame_len / 2) + s->block_pos - n4;
  647. ptr = &s->frame_out[ch][index];
  648. s->dsp.vector_fmul_add_add(ptr,s->window,s->output,ptr,0,2*n,1);
  649. /* specific fast case for ms-stereo : add to second
  650. channel if it is not coded */
  651. if (s->ms_stereo && !s->channel_coded[1]) {
  652. ptr = &s->frame_out[1][index];
  653. s->dsp.vector_fmul_add_add(ptr,s->window,s->output,ptr,0,2*n,1);
  654. }
  655. }
  656. }
  657. next:
  658. /* update block number */
  659. s->block_num++;
  660. s->block_pos += s->block_len;
  661. if (s->block_pos >= s->frame_len)
  662. return 1;
  663. else
  664. return 0;
  665. }
  666. /* decode a frame of frame_len samples */
  667. static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
  668. {
  669. int ret, i, n, a, ch, incr;
  670. int16_t *ptr;
  671. float *iptr;
  672. #ifdef TRACE
  673. tprintf("***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  674. #endif
  675. /* read each block */
  676. s->block_num = 0;
  677. s->block_pos = 0;
  678. for(;;) {
  679. ret = wma_decode_block(s);
  680. if (ret < 0)
  681. return -1;
  682. if (ret)
  683. break;
  684. }
  685. /* convert frame to integer */
  686. n = s->frame_len;
  687. incr = s->nb_channels;
  688. for(ch = 0; ch < s->nb_channels; ch++) {
  689. ptr = samples + ch;
  690. iptr = s->frame_out[ch];
  691. for(i=0;i<n;i++) {
  692. a = lrintf(*iptr++);
  693. if (a > 32767)
  694. a = 32767;
  695. else if (a < -32768)
  696. a = -32768;
  697. *ptr = a;
  698. ptr += incr;
  699. }
  700. /* prepare for next block */
  701. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  702. s->frame_len * sizeof(float));
  703. /* XXX: suppress this */
  704. memset(&s->frame_out[ch][s->frame_len], 0,
  705. s->frame_len * sizeof(float));
  706. }
  707. #ifdef TRACE
  708. dump_shorts("samples", samples, n * s->nb_channels);
  709. #endif
  710. return 0;
  711. }
  712. static int wma_decode_superframe(AVCodecContext *avctx,
  713. void *data, int *data_size,
  714. uint8_t *buf, int buf_size)
  715. {
  716. WMADecodeContext *s = avctx->priv_data;
  717. int nb_frames, bit_offset, i, pos, len;
  718. uint8_t *q;
  719. int16_t *samples;
  720. tprintf("***decode_superframe:\n");
  721. if(buf_size==0){
  722. s->last_superframe_len = 0;
  723. return 0;
  724. }
  725. samples = data;
  726. init_get_bits(&s->gb, buf, buf_size*8);
  727. if (s->use_bit_reservoir) {
  728. /* read super frame header */
  729. get_bits(&s->gb, 4); /* super frame index */
  730. nb_frames = get_bits(&s->gb, 4) - 1;
  731. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  732. if (s->last_superframe_len > 0) {
  733. // printf("skip=%d\n", s->last_bitoffset);
  734. /* add bit_offset bits to last frame */
  735. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  736. MAX_CODED_SUPERFRAME_SIZE)
  737. goto fail;
  738. q = s->last_superframe + s->last_superframe_len;
  739. len = bit_offset;
  740. while (len > 7) {
  741. *q++ = (get_bits)(&s->gb, 8);
  742. len -= 8;
  743. }
  744. if (len > 0) {
  745. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  746. }
  747. /* XXX: bit_offset bits into last frame */
  748. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  749. /* skip unused bits */
  750. if (s->last_bitoffset > 0)
  751. skip_bits(&s->gb, s->last_bitoffset);
  752. /* this frame is stored in the last superframe and in the
  753. current one */
  754. if (wma_decode_frame(s, samples) < 0)
  755. goto fail;
  756. samples += s->nb_channels * s->frame_len;
  757. }
  758. /* read each frame starting from bit_offset */
  759. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  760. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  761. len = pos & 7;
  762. if (len > 0)
  763. skip_bits(&s->gb, len);
  764. s->reset_block_lengths = 1;
  765. for(i=0;i<nb_frames;i++) {
  766. if (wma_decode_frame(s, samples) < 0)
  767. goto fail;
  768. samples += s->nb_channels * s->frame_len;
  769. }
  770. /* we copy the end of the frame in the last frame buffer */
  771. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  772. s->last_bitoffset = pos & 7;
  773. pos >>= 3;
  774. len = buf_size - pos;
  775. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  776. goto fail;
  777. }
  778. s->last_superframe_len = len;
  779. memcpy(s->last_superframe, buf + pos, len);
  780. } else {
  781. /* single frame decode */
  782. if (wma_decode_frame(s, samples) < 0)
  783. goto fail;
  784. samples += s->nb_channels * s->frame_len;
  785. }
  786. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  787. *data_size = (int8_t *)samples - (int8_t *)data;
  788. return s->block_align;
  789. fail:
  790. /* when error, we reset the bit reservoir */
  791. s->last_superframe_len = 0;
  792. return -1;
  793. }
  794. AVCodec wmav1_decoder =
  795. {
  796. "wmav1",
  797. CODEC_TYPE_AUDIO,
  798. CODEC_ID_WMAV1,
  799. sizeof(WMADecodeContext),
  800. wma_decode_init,
  801. NULL,
  802. ff_wma_end,
  803. wma_decode_superframe,
  804. };
  805. AVCodec wmav2_decoder =
  806. {
  807. "wmav2",
  808. CODEC_TYPE_AUDIO,
  809. CODEC_ID_WMAV2,
  810. sizeof(WMADecodeContext),
  811. wma_decode_init,
  812. NULL,
  813. ff_wma_end,
  814. wma_decode_superframe,
  815. };