You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

275 lines
9.3KB

  1. /*
  2. * audio resampling
  3. * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. *
  21. */
  22. /**
  23. * @file resample2.c
  24. * audio resampling
  25. * @author Michael Niedermayer <michaelni@gmx.at>
  26. */
  27. #include "avcodec.h"
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #if 1
  31. #define FILTER_SHIFT 15
  32. #define FELEM int16_t
  33. #define FELEM2 int32_t
  34. #define FELEM_MAX INT16_MAX
  35. #define FELEM_MIN INT16_MIN
  36. #else
  37. #define FILTER_SHIFT 22
  38. #define FELEM int32_t
  39. #define FELEM2 int64_t
  40. #define FELEM_MAX INT32_MAX
  41. #define FELEM_MIN INT32_MIN
  42. #endif
  43. typedef struct AVResampleContext{
  44. FELEM *filter_bank;
  45. int filter_length;
  46. int ideal_dst_incr;
  47. int dst_incr;
  48. int index;
  49. int frac;
  50. int src_incr;
  51. int compensation_distance;
  52. int phase_shift;
  53. int phase_mask;
  54. int linear;
  55. }AVResampleContext;
  56. /**
  57. * 0th order modified bessel function of the first kind.
  58. */
  59. static double bessel(double x){
  60. double v=1;
  61. double t=1;
  62. int i;
  63. for(i=1; i<50; i++){
  64. t *= i;
  65. v += pow(x*x/4, i)/(t*t);
  66. }
  67. return v;
  68. }
  69. /**
  70. * builds a polyphase filterbank.
  71. * @param factor resampling factor
  72. * @param scale wanted sum of coefficients for each filter
  73. * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16
  74. */
  75. void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
  76. int ph, i, v;
  77. double x, y, w, tab[tap_count];
  78. const int center= (tap_count-1)/2;
  79. /* if upsampling, only need to interpolate, no filter */
  80. if (factor > 1.0)
  81. factor = 1.0;
  82. for(ph=0;ph<phase_count;ph++) {
  83. double norm = 0;
  84. double e= 0;
  85. for(i=0;i<tap_count;i++) {
  86. x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
  87. if (x == 0) y = 1.0;
  88. else y = sin(x) / x;
  89. switch(type){
  90. case 0:{
  91. const float d= -0.5; //first order derivative = -0.5
  92. x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
  93. if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
  94. else y= d*(-4 + 8*x - 5*x*x + x*x*x);
  95. break;}
  96. case 1:
  97. w = 2.0*x / (factor*tap_count) + M_PI;
  98. y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
  99. break;
  100. case 2:
  101. w = 2.0*x / (factor*tap_count*M_PI);
  102. y *= bessel(16*sqrt(FFMAX(1-w*w, 0)));
  103. break;
  104. }
  105. tab[i] = y;
  106. norm += y;
  107. }
  108. /* normalize so that an uniform color remains the same */
  109. for(i=0;i<tap_count;i++) {
  110. v = clip(lrintf(tab[i] * scale / norm + e), FELEM_MIN, FELEM_MAX);
  111. filter[ph * tap_count + i] = v;
  112. e += tab[i] * scale / norm - v;
  113. }
  114. }
  115. }
  116. /**
  117. * initalizes a audio resampler.
  118. * note, if either rate is not a integer then simply scale both rates up so they are
  119. */
  120. AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
  121. AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
  122. double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
  123. int phase_count= 1<<phase_shift;
  124. c->phase_shift= phase_shift;
  125. c->phase_mask= phase_count-1;
  126. c->linear= linear;
  127. c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
  128. c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
  129. av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, 1);
  130. memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
  131. c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
  132. c->src_incr= out_rate;
  133. c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
  134. c->index= -phase_count*((c->filter_length-1)/2);
  135. return c;
  136. }
  137. void av_resample_close(AVResampleContext *c){
  138. av_freep(&c->filter_bank);
  139. av_freep(&c);
  140. }
  141. /**
  142. * Compensates samplerate/timestamp drift. The compensation is done by changing
  143. * the resampler parameters, so no audible clicks or similar distortions ocur
  144. * @param compensation_distance distance in output samples over which the compensation should be performed
  145. * @param sample_delta number of output samples which should be output less
  146. *
  147. * example: av_resample_compensate(c, 10, 500)
  148. * here instead of 510 samples only 500 samples would be output
  149. *
  150. * note, due to rounding the actual compensation might be slightly different,
  151. * especially if the compensation_distance is large and the in_rate used during init is small
  152. */
  153. void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
  154. // sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
  155. c->compensation_distance= compensation_distance;
  156. c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
  157. }
  158. /**
  159. * resamples.
  160. * @param src an array of unconsumed samples
  161. * @param consumed the number of samples of src which have been consumed are returned here
  162. * @param src_size the number of unconsumed samples available
  163. * @param dst_size the amount of space in samples available in dst
  164. * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
  165. * @return the number of samples written in dst or -1 if an error occured
  166. */
  167. int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
  168. int dst_index, i;
  169. int index= c->index;
  170. int frac= c->frac;
  171. int dst_incr_frac= c->dst_incr % c->src_incr;
  172. int dst_incr= c->dst_incr / c->src_incr;
  173. int compensation_distance= c->compensation_distance;
  174. if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
  175. int64_t index2= ((int64_t)index)<<32;
  176. int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
  177. dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
  178. for(dst_index=0; dst_index < dst_size; dst_index++){
  179. dst[dst_index] = src[index2>>32];
  180. index2 += incr;
  181. }
  182. frac += dst_index * dst_incr_frac;
  183. index += dst_index * dst_incr;
  184. index += frac / c->src_incr;
  185. frac %= c->src_incr;
  186. }else{
  187. for(dst_index=0; dst_index < dst_size; dst_index++){
  188. FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
  189. int sample_index= index >> c->phase_shift;
  190. FELEM2 val=0;
  191. if(sample_index < 0){
  192. for(i=0; i<c->filter_length; i++)
  193. val += src[FFABS(sample_index + i) % src_size] * filter[i];
  194. }else if(sample_index + c->filter_length > src_size){
  195. break;
  196. }else if(c->linear){
  197. int64_t v=0;
  198. int sub_phase= (frac<<8) / c->src_incr;
  199. for(i=0; i<c->filter_length; i++){
  200. int64_t coeff= filter[i]*(256 - sub_phase) + filter[i + c->filter_length]*sub_phase;
  201. v += src[sample_index + i] * coeff;
  202. }
  203. val= v>>8;
  204. }else{
  205. for(i=0; i<c->filter_length; i++){
  206. val += src[sample_index + i] * (FELEM2)filter[i];
  207. }
  208. }
  209. val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
  210. dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
  211. frac += dst_incr_frac;
  212. index += dst_incr;
  213. if(frac >= c->src_incr){
  214. frac -= c->src_incr;
  215. index++;
  216. }
  217. if(dst_index + 1 == compensation_distance){
  218. compensation_distance= 0;
  219. dst_incr_frac= c->ideal_dst_incr % c->src_incr;
  220. dst_incr= c->ideal_dst_incr / c->src_incr;
  221. }
  222. }
  223. }
  224. *consumed= FFMAX(index, 0) >> c->phase_shift;
  225. if(index>=0) index &= c->phase_mask;
  226. if(compensation_distance){
  227. compensation_distance -= dst_index;
  228. assert(compensation_distance > 0);
  229. }
  230. if(update_ctx){
  231. c->frac= frac;
  232. c->index= index;
  233. c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
  234. c->compensation_distance= compensation_distance;
  235. }
  236. #if 0
  237. if(update_ctx && !c->compensation_distance){
  238. #undef rand
  239. av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
  240. av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
  241. }
  242. #endif
  243. return dst_index;
  244. }