You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2316 lines
84KB

  1. /*
  2. * Matroska file demuxer
  3. * Copyright (c) 2003-2008 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Matroska file demuxer
  24. * @author Ronald Bultje <rbultje@ronald.bitfreak.net>
  25. * @author with a little help from Moritz Bunkus <moritz@bunkus.org>
  26. * @author totally reworked by Aurelien Jacobs <aurel@gnuage.org>
  27. * @see specs available on the Matroska project page: http://www.matroska.org/
  28. */
  29. #include <stdio.h>
  30. #include "avformat.h"
  31. #include "internal.h"
  32. #include "avio_internal.h"
  33. /* For ff_codec_get_id(). */
  34. #include "riff.h"
  35. #include "isom.h"
  36. #include "rm.h"
  37. #include "matroska.h"
  38. #include "libavcodec/mpeg4audio.h"
  39. #include "libavutil/intfloat.h"
  40. #include "libavutil/intreadwrite.h"
  41. #include "libavutil/avstring.h"
  42. #include "libavutil/lzo.h"
  43. #include "libavutil/dict.h"
  44. #if CONFIG_ZLIB
  45. #include <zlib.h>
  46. #endif
  47. #if CONFIG_BZLIB
  48. #include <bzlib.h>
  49. #endif
  50. typedef enum {
  51. EBML_NONE,
  52. EBML_UINT,
  53. EBML_FLOAT,
  54. EBML_STR,
  55. EBML_UTF8,
  56. EBML_BIN,
  57. EBML_NEST,
  58. EBML_PASS,
  59. EBML_STOP,
  60. EBML_TYPE_COUNT
  61. } EbmlType;
  62. typedef const struct EbmlSyntax {
  63. uint32_t id;
  64. EbmlType type;
  65. int list_elem_size;
  66. int data_offset;
  67. union {
  68. uint64_t u;
  69. double f;
  70. const char *s;
  71. const struct EbmlSyntax *n;
  72. } def;
  73. } EbmlSyntax;
  74. typedef struct {
  75. int nb_elem;
  76. void *elem;
  77. } EbmlList;
  78. typedef struct {
  79. int size;
  80. uint8_t *data;
  81. int64_t pos;
  82. } EbmlBin;
  83. typedef struct {
  84. uint64_t version;
  85. uint64_t max_size;
  86. uint64_t id_length;
  87. char *doctype;
  88. uint64_t doctype_version;
  89. } Ebml;
  90. typedef struct {
  91. uint64_t algo;
  92. EbmlBin settings;
  93. } MatroskaTrackCompression;
  94. typedef struct {
  95. uint64_t scope;
  96. uint64_t type;
  97. MatroskaTrackCompression compression;
  98. } MatroskaTrackEncoding;
  99. typedef struct {
  100. double frame_rate;
  101. uint64_t display_width;
  102. uint64_t display_height;
  103. uint64_t pixel_width;
  104. uint64_t pixel_height;
  105. EbmlBin color_space;
  106. uint64_t stereo_mode;
  107. } MatroskaTrackVideo;
  108. typedef struct {
  109. double samplerate;
  110. double out_samplerate;
  111. uint64_t bitdepth;
  112. uint64_t channels;
  113. /* real audio header (extracted from extradata) */
  114. int coded_framesize;
  115. int sub_packet_h;
  116. int frame_size;
  117. int sub_packet_size;
  118. int sub_packet_cnt;
  119. int pkt_cnt;
  120. uint64_t buf_timecode;
  121. uint8_t *buf;
  122. } MatroskaTrackAudio;
  123. typedef struct {
  124. uint64_t uid;
  125. uint64_t type;
  126. } MatroskaTrackPlane;
  127. typedef struct {
  128. EbmlList combine_planes;
  129. } MatroskaTrackOperation;
  130. typedef struct {
  131. uint64_t num;
  132. uint64_t uid;
  133. uint64_t type;
  134. char *name;
  135. char *codec_id;
  136. EbmlBin codec_priv;
  137. char *language;
  138. double time_scale;
  139. uint64_t default_duration;
  140. uint64_t flag_default;
  141. uint64_t flag_forced;
  142. MatroskaTrackVideo video;
  143. MatroskaTrackAudio audio;
  144. MatroskaTrackOperation operation;
  145. EbmlList encodings;
  146. AVStream *stream;
  147. int64_t end_timecode;
  148. int ms_compat;
  149. } MatroskaTrack;
  150. typedef struct {
  151. uint64_t uid;
  152. char *filename;
  153. char *mime;
  154. EbmlBin bin;
  155. AVStream *stream;
  156. } MatroskaAttachement;
  157. typedef struct {
  158. uint64_t start;
  159. uint64_t end;
  160. uint64_t uid;
  161. char *title;
  162. AVChapter *chapter;
  163. } MatroskaChapter;
  164. typedef struct {
  165. uint64_t track;
  166. uint64_t pos;
  167. } MatroskaIndexPos;
  168. typedef struct {
  169. uint64_t time;
  170. EbmlList pos;
  171. } MatroskaIndex;
  172. typedef struct {
  173. char *name;
  174. char *string;
  175. char *lang;
  176. uint64_t def;
  177. EbmlList sub;
  178. } MatroskaTag;
  179. typedef struct {
  180. char *type;
  181. uint64_t typevalue;
  182. uint64_t trackuid;
  183. uint64_t chapteruid;
  184. uint64_t attachuid;
  185. } MatroskaTagTarget;
  186. typedef struct {
  187. MatroskaTagTarget target;
  188. EbmlList tag;
  189. } MatroskaTags;
  190. typedef struct {
  191. uint64_t id;
  192. uint64_t pos;
  193. } MatroskaSeekhead;
  194. typedef struct {
  195. uint64_t start;
  196. uint64_t length;
  197. } MatroskaLevel;
  198. typedef struct {
  199. uint64_t timecode;
  200. EbmlList blocks;
  201. } MatroskaCluster;
  202. typedef struct {
  203. AVFormatContext *ctx;
  204. /* EBML stuff */
  205. int num_levels;
  206. MatroskaLevel levels[EBML_MAX_DEPTH];
  207. int level_up;
  208. uint32_t current_id;
  209. uint64_t time_scale;
  210. double duration;
  211. char *title;
  212. EbmlBin date_utc;
  213. EbmlList tracks;
  214. EbmlList attachments;
  215. EbmlList chapters;
  216. EbmlList index;
  217. EbmlList tags;
  218. EbmlList seekhead;
  219. /* byte position of the segment inside the stream */
  220. int64_t segment_start;
  221. /* the packet queue */
  222. AVPacket **packets;
  223. int num_packets;
  224. AVPacket *prev_pkt;
  225. int done;
  226. /* What to skip before effectively reading a packet. */
  227. int skip_to_keyframe;
  228. uint64_t skip_to_timecode;
  229. /* File has a CUES element, but we defer parsing until it is needed. */
  230. int cues_parsing_deferred;
  231. int current_cluster_num_blocks;
  232. int64_t current_cluster_pos;
  233. MatroskaCluster current_cluster;
  234. /* File has SSA subtitles which prevent incremental cluster parsing. */
  235. int contains_ssa;
  236. } MatroskaDemuxContext;
  237. typedef struct {
  238. uint64_t duration;
  239. int64_t reference;
  240. uint64_t non_simple;
  241. EbmlBin bin;
  242. } MatroskaBlock;
  243. static EbmlSyntax ebml_header[] = {
  244. { EBML_ID_EBMLREADVERSION, EBML_UINT, 0, offsetof(Ebml,version), {.u=EBML_VERSION} },
  245. { EBML_ID_EBMLMAXSIZELENGTH, EBML_UINT, 0, offsetof(Ebml,max_size), {.u=8} },
  246. { EBML_ID_EBMLMAXIDLENGTH, EBML_UINT, 0, offsetof(Ebml,id_length), {.u=4} },
  247. { EBML_ID_DOCTYPE, EBML_STR, 0, offsetof(Ebml,doctype), {.s="(none)"} },
  248. { EBML_ID_DOCTYPEREADVERSION, EBML_UINT, 0, offsetof(Ebml,doctype_version), {.u=1} },
  249. { EBML_ID_EBMLVERSION, EBML_NONE },
  250. { EBML_ID_DOCTYPEVERSION, EBML_NONE },
  251. { 0 }
  252. };
  253. static EbmlSyntax ebml_syntax[] = {
  254. { EBML_ID_HEADER, EBML_NEST, 0, 0, {.n=ebml_header} },
  255. { 0 }
  256. };
  257. static EbmlSyntax matroska_info[] = {
  258. { MATROSKA_ID_TIMECODESCALE, EBML_UINT, 0, offsetof(MatroskaDemuxContext,time_scale), {.u=1000000} },
  259. { MATROSKA_ID_DURATION, EBML_FLOAT, 0, offsetof(MatroskaDemuxContext,duration) },
  260. { MATROSKA_ID_TITLE, EBML_UTF8, 0, offsetof(MatroskaDemuxContext,title) },
  261. { MATROSKA_ID_WRITINGAPP, EBML_NONE },
  262. { MATROSKA_ID_MUXINGAPP, EBML_NONE },
  263. { MATROSKA_ID_DATEUTC, EBML_BIN, 0, offsetof(MatroskaDemuxContext,date_utc) },
  264. { MATROSKA_ID_SEGMENTUID, EBML_NONE },
  265. { 0 }
  266. };
  267. static EbmlSyntax matroska_track_video[] = {
  268. { MATROSKA_ID_VIDEOFRAMERATE, EBML_FLOAT,0, offsetof(MatroskaTrackVideo,frame_rate) },
  269. { MATROSKA_ID_VIDEODISPLAYWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo,display_width) },
  270. { MATROSKA_ID_VIDEODISPLAYHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo,display_height) },
  271. { MATROSKA_ID_VIDEOPIXELWIDTH, EBML_UINT, 0, offsetof(MatroskaTrackVideo,pixel_width) },
  272. { MATROSKA_ID_VIDEOPIXELHEIGHT, EBML_UINT, 0, offsetof(MatroskaTrackVideo,pixel_height) },
  273. { MATROSKA_ID_VIDEOCOLORSPACE, EBML_BIN, 0, offsetof(MatroskaTrackVideo,color_space) },
  274. { MATROSKA_ID_VIDEOSTEREOMODE, EBML_UINT, 0, offsetof(MatroskaTrackVideo,stereo_mode) },
  275. { MATROSKA_ID_VIDEOPIXELCROPB, EBML_NONE },
  276. { MATROSKA_ID_VIDEOPIXELCROPT, EBML_NONE },
  277. { MATROSKA_ID_VIDEOPIXELCROPL, EBML_NONE },
  278. { MATROSKA_ID_VIDEOPIXELCROPR, EBML_NONE },
  279. { MATROSKA_ID_VIDEODISPLAYUNIT, EBML_NONE },
  280. { MATROSKA_ID_VIDEOFLAGINTERLACED,EBML_NONE },
  281. { MATROSKA_ID_VIDEOASPECTRATIO, EBML_NONE },
  282. { 0 }
  283. };
  284. static EbmlSyntax matroska_track_audio[] = {
  285. { MATROSKA_ID_AUDIOSAMPLINGFREQ, EBML_FLOAT,0, offsetof(MatroskaTrackAudio,samplerate), {.f=8000.0} },
  286. { MATROSKA_ID_AUDIOOUTSAMPLINGFREQ,EBML_FLOAT,0,offsetof(MatroskaTrackAudio,out_samplerate) },
  287. { MATROSKA_ID_AUDIOBITDEPTH, EBML_UINT, 0, offsetof(MatroskaTrackAudio,bitdepth) },
  288. { MATROSKA_ID_AUDIOCHANNELS, EBML_UINT, 0, offsetof(MatroskaTrackAudio,channels), {.u=1} },
  289. { 0 }
  290. };
  291. static EbmlSyntax matroska_track_encoding_compression[] = {
  292. { MATROSKA_ID_ENCODINGCOMPALGO, EBML_UINT, 0, offsetof(MatroskaTrackCompression,algo), {.u=0} },
  293. { MATROSKA_ID_ENCODINGCOMPSETTINGS,EBML_BIN, 0, offsetof(MatroskaTrackCompression,settings) },
  294. { 0 }
  295. };
  296. static EbmlSyntax matroska_track_encoding[] = {
  297. { MATROSKA_ID_ENCODINGSCOPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding,scope), {.u=1} },
  298. { MATROSKA_ID_ENCODINGTYPE, EBML_UINT, 0, offsetof(MatroskaTrackEncoding,type), {.u=0} },
  299. { MATROSKA_ID_ENCODINGCOMPRESSION,EBML_NEST, 0, offsetof(MatroskaTrackEncoding,compression), {.n=matroska_track_encoding_compression} },
  300. { MATROSKA_ID_ENCODINGORDER, EBML_NONE },
  301. { 0 }
  302. };
  303. static EbmlSyntax matroska_track_encodings[] = {
  304. { MATROSKA_ID_TRACKCONTENTENCODING, EBML_NEST, sizeof(MatroskaTrackEncoding), offsetof(MatroskaTrack,encodings), {.n=matroska_track_encoding} },
  305. { 0 }
  306. };
  307. static EbmlSyntax matroska_track_plane[] = {
  308. { MATROSKA_ID_TRACKPLANEUID, EBML_UINT, 0, offsetof(MatroskaTrackPlane,uid) },
  309. { MATROSKA_ID_TRACKPLANETYPE, EBML_UINT, 0, offsetof(MatroskaTrackPlane,type) },
  310. { 0 }
  311. };
  312. static EbmlSyntax matroska_track_combine_planes[] = {
  313. { MATROSKA_ID_TRACKPLANE, EBML_NEST, sizeof(MatroskaTrackPlane), offsetof(MatroskaTrackOperation,combine_planes), {.n=matroska_track_plane} },
  314. { 0 }
  315. };
  316. static EbmlSyntax matroska_track_operation[] = {
  317. { MATROSKA_ID_TRACKCOMBINEPLANES, EBML_NEST, 0, 0, {.n=matroska_track_combine_planes} },
  318. { 0 }
  319. };
  320. static EbmlSyntax matroska_track[] = {
  321. { MATROSKA_ID_TRACKNUMBER, EBML_UINT, 0, offsetof(MatroskaTrack,num) },
  322. { MATROSKA_ID_TRACKNAME, EBML_UTF8, 0, offsetof(MatroskaTrack,name) },
  323. { MATROSKA_ID_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTrack,uid) },
  324. { MATROSKA_ID_TRACKTYPE, EBML_UINT, 0, offsetof(MatroskaTrack,type) },
  325. { MATROSKA_ID_CODECID, EBML_STR, 0, offsetof(MatroskaTrack,codec_id) },
  326. { MATROSKA_ID_CODECPRIVATE, EBML_BIN, 0, offsetof(MatroskaTrack,codec_priv) },
  327. { MATROSKA_ID_TRACKLANGUAGE, EBML_UTF8, 0, offsetof(MatroskaTrack,language), {.s="eng"} },
  328. { MATROSKA_ID_TRACKDEFAULTDURATION, EBML_UINT, 0, offsetof(MatroskaTrack,default_duration) },
  329. { MATROSKA_ID_TRACKTIMECODESCALE, EBML_FLOAT,0, offsetof(MatroskaTrack,time_scale), {.f=1.0} },
  330. { MATROSKA_ID_TRACKFLAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTrack,flag_default), {.u=1} },
  331. { MATROSKA_ID_TRACKFLAGFORCED, EBML_UINT, 0, offsetof(MatroskaTrack,flag_forced), {.u=0} },
  332. { MATROSKA_ID_TRACKVIDEO, EBML_NEST, 0, offsetof(MatroskaTrack,video), {.n=matroska_track_video} },
  333. { MATROSKA_ID_TRACKAUDIO, EBML_NEST, 0, offsetof(MatroskaTrack,audio), {.n=matroska_track_audio} },
  334. { MATROSKA_ID_TRACKOPERATION, EBML_NEST, 0, offsetof(MatroskaTrack,operation), {.n=matroska_track_operation} },
  335. { MATROSKA_ID_TRACKCONTENTENCODINGS,EBML_NEST, 0, 0, {.n=matroska_track_encodings} },
  336. { MATROSKA_ID_TRACKFLAGENABLED, EBML_NONE },
  337. { MATROSKA_ID_TRACKFLAGLACING, EBML_NONE },
  338. { MATROSKA_ID_CODECNAME, EBML_NONE },
  339. { MATROSKA_ID_CODECDECODEALL, EBML_NONE },
  340. { MATROSKA_ID_CODECINFOURL, EBML_NONE },
  341. { MATROSKA_ID_CODECDOWNLOADURL, EBML_NONE },
  342. { MATROSKA_ID_TRACKMINCACHE, EBML_NONE },
  343. { MATROSKA_ID_TRACKMAXCACHE, EBML_NONE },
  344. { MATROSKA_ID_TRACKMAXBLKADDID, EBML_NONE },
  345. { 0 }
  346. };
  347. static EbmlSyntax matroska_tracks[] = {
  348. { MATROSKA_ID_TRACKENTRY, EBML_NEST, sizeof(MatroskaTrack), offsetof(MatroskaDemuxContext,tracks), {.n=matroska_track} },
  349. { 0 }
  350. };
  351. static EbmlSyntax matroska_attachment[] = {
  352. { MATROSKA_ID_FILEUID, EBML_UINT, 0, offsetof(MatroskaAttachement,uid) },
  353. { MATROSKA_ID_FILENAME, EBML_UTF8, 0, offsetof(MatroskaAttachement,filename) },
  354. { MATROSKA_ID_FILEMIMETYPE, EBML_STR, 0, offsetof(MatroskaAttachement,mime) },
  355. { MATROSKA_ID_FILEDATA, EBML_BIN, 0, offsetof(MatroskaAttachement,bin) },
  356. { MATROSKA_ID_FILEDESC, EBML_NONE },
  357. { 0 }
  358. };
  359. static EbmlSyntax matroska_attachments[] = {
  360. { MATROSKA_ID_ATTACHEDFILE, EBML_NEST, sizeof(MatroskaAttachement), offsetof(MatroskaDemuxContext,attachments), {.n=matroska_attachment} },
  361. { 0 }
  362. };
  363. static EbmlSyntax matroska_chapter_display[] = {
  364. { MATROSKA_ID_CHAPSTRING, EBML_UTF8, 0, offsetof(MatroskaChapter,title) },
  365. { MATROSKA_ID_CHAPLANG, EBML_NONE },
  366. { 0 }
  367. };
  368. static EbmlSyntax matroska_chapter_entry[] = {
  369. { MATROSKA_ID_CHAPTERTIMESTART, EBML_UINT, 0, offsetof(MatroskaChapter,start), {.u=AV_NOPTS_VALUE} },
  370. { MATROSKA_ID_CHAPTERTIMEEND, EBML_UINT, 0, offsetof(MatroskaChapter,end), {.u=AV_NOPTS_VALUE} },
  371. { MATROSKA_ID_CHAPTERUID, EBML_UINT, 0, offsetof(MatroskaChapter,uid) },
  372. { MATROSKA_ID_CHAPTERDISPLAY, EBML_NEST, 0, 0, {.n=matroska_chapter_display} },
  373. { MATROSKA_ID_CHAPTERFLAGHIDDEN, EBML_NONE },
  374. { MATROSKA_ID_CHAPTERFLAGENABLED, EBML_NONE },
  375. { MATROSKA_ID_CHAPTERPHYSEQUIV, EBML_NONE },
  376. { MATROSKA_ID_CHAPTERATOM, EBML_NONE },
  377. { 0 }
  378. };
  379. static EbmlSyntax matroska_chapter[] = {
  380. { MATROSKA_ID_CHAPTERATOM, EBML_NEST, sizeof(MatroskaChapter), offsetof(MatroskaDemuxContext,chapters), {.n=matroska_chapter_entry} },
  381. { MATROSKA_ID_EDITIONUID, EBML_NONE },
  382. { MATROSKA_ID_EDITIONFLAGHIDDEN, EBML_NONE },
  383. { MATROSKA_ID_EDITIONFLAGDEFAULT, EBML_NONE },
  384. { MATROSKA_ID_EDITIONFLAGORDERED, EBML_NONE },
  385. { 0 }
  386. };
  387. static EbmlSyntax matroska_chapters[] = {
  388. { MATROSKA_ID_EDITIONENTRY, EBML_NEST, 0, 0, {.n=matroska_chapter} },
  389. { 0 }
  390. };
  391. static EbmlSyntax matroska_index_pos[] = {
  392. { MATROSKA_ID_CUETRACK, EBML_UINT, 0, offsetof(MatroskaIndexPos,track) },
  393. { MATROSKA_ID_CUECLUSTERPOSITION, EBML_UINT, 0, offsetof(MatroskaIndexPos,pos) },
  394. { MATROSKA_ID_CUEBLOCKNUMBER, EBML_NONE },
  395. { 0 }
  396. };
  397. static EbmlSyntax matroska_index_entry[] = {
  398. { MATROSKA_ID_CUETIME, EBML_UINT, 0, offsetof(MatroskaIndex,time) },
  399. { MATROSKA_ID_CUETRACKPOSITION, EBML_NEST, sizeof(MatroskaIndexPos), offsetof(MatroskaIndex,pos), {.n=matroska_index_pos} },
  400. { 0 }
  401. };
  402. static EbmlSyntax matroska_index[] = {
  403. { MATROSKA_ID_POINTENTRY, EBML_NEST, sizeof(MatroskaIndex), offsetof(MatroskaDemuxContext,index), {.n=matroska_index_entry} },
  404. { 0 }
  405. };
  406. static EbmlSyntax matroska_simpletag[] = {
  407. { MATROSKA_ID_TAGNAME, EBML_UTF8, 0, offsetof(MatroskaTag,name) },
  408. { MATROSKA_ID_TAGSTRING, EBML_UTF8, 0, offsetof(MatroskaTag,string) },
  409. { MATROSKA_ID_TAGLANG, EBML_STR, 0, offsetof(MatroskaTag,lang), {.s="und"} },
  410. { MATROSKA_ID_TAGDEFAULT, EBML_UINT, 0, offsetof(MatroskaTag,def) },
  411. { MATROSKA_ID_TAGDEFAULT_BUG, EBML_UINT, 0, offsetof(MatroskaTag,def) },
  412. { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTag,sub), {.n=matroska_simpletag} },
  413. { 0 }
  414. };
  415. static EbmlSyntax matroska_tagtargets[] = {
  416. { MATROSKA_ID_TAGTARGETS_TYPE, EBML_STR, 0, offsetof(MatroskaTagTarget,type) },
  417. { MATROSKA_ID_TAGTARGETS_TYPEVALUE, EBML_UINT, 0, offsetof(MatroskaTagTarget,typevalue), {.u=50} },
  418. { MATROSKA_ID_TAGTARGETS_TRACKUID, EBML_UINT, 0, offsetof(MatroskaTagTarget,trackuid) },
  419. { MATROSKA_ID_TAGTARGETS_CHAPTERUID,EBML_UINT, 0, offsetof(MatroskaTagTarget,chapteruid) },
  420. { MATROSKA_ID_TAGTARGETS_ATTACHUID, EBML_UINT, 0, offsetof(MatroskaTagTarget,attachuid) },
  421. { 0 }
  422. };
  423. static EbmlSyntax matroska_tag[] = {
  424. { MATROSKA_ID_SIMPLETAG, EBML_NEST, sizeof(MatroskaTag), offsetof(MatroskaTags,tag), {.n=matroska_simpletag} },
  425. { MATROSKA_ID_TAGTARGETS, EBML_NEST, 0, offsetof(MatroskaTags,target), {.n=matroska_tagtargets} },
  426. { 0 }
  427. };
  428. static EbmlSyntax matroska_tags[] = {
  429. { MATROSKA_ID_TAG, EBML_NEST, sizeof(MatroskaTags), offsetof(MatroskaDemuxContext,tags), {.n=matroska_tag} },
  430. { 0 }
  431. };
  432. static EbmlSyntax matroska_seekhead_entry[] = {
  433. { MATROSKA_ID_SEEKID, EBML_UINT, 0, offsetof(MatroskaSeekhead,id) },
  434. { MATROSKA_ID_SEEKPOSITION, EBML_UINT, 0, offsetof(MatroskaSeekhead,pos), {.u=-1} },
  435. { 0 }
  436. };
  437. static EbmlSyntax matroska_seekhead[] = {
  438. { MATROSKA_ID_SEEKENTRY, EBML_NEST, sizeof(MatroskaSeekhead), offsetof(MatroskaDemuxContext,seekhead), {.n=matroska_seekhead_entry} },
  439. { 0 }
  440. };
  441. static EbmlSyntax matroska_segment[] = {
  442. { MATROSKA_ID_INFO, EBML_NEST, 0, 0, {.n=matroska_info } },
  443. { MATROSKA_ID_TRACKS, EBML_NEST, 0, 0, {.n=matroska_tracks } },
  444. { MATROSKA_ID_ATTACHMENTS, EBML_NEST, 0, 0, {.n=matroska_attachments} },
  445. { MATROSKA_ID_CHAPTERS, EBML_NEST, 0, 0, {.n=matroska_chapters } },
  446. { MATROSKA_ID_CUES, EBML_NEST, 0, 0, {.n=matroska_index } },
  447. { MATROSKA_ID_TAGS, EBML_NEST, 0, 0, {.n=matroska_tags } },
  448. { MATROSKA_ID_SEEKHEAD, EBML_NEST, 0, 0, {.n=matroska_seekhead } },
  449. { MATROSKA_ID_CLUSTER, EBML_STOP },
  450. { 0 }
  451. };
  452. static EbmlSyntax matroska_segments[] = {
  453. { MATROSKA_ID_SEGMENT, EBML_NEST, 0, 0, {.n=matroska_segment } },
  454. { 0 }
  455. };
  456. static EbmlSyntax matroska_blockgroup[] = {
  457. { MATROSKA_ID_BLOCK, EBML_BIN, 0, offsetof(MatroskaBlock,bin) },
  458. { MATROSKA_ID_SIMPLEBLOCK, EBML_BIN, 0, offsetof(MatroskaBlock,bin) },
  459. { MATROSKA_ID_BLOCKDURATION, EBML_UINT, 0, offsetof(MatroskaBlock,duration) },
  460. { MATROSKA_ID_BLOCKREFERENCE, EBML_UINT, 0, offsetof(MatroskaBlock,reference) },
  461. { 1, EBML_UINT, 0, offsetof(MatroskaBlock,non_simple), {.u=1} },
  462. { 0 }
  463. };
  464. static EbmlSyntax matroska_cluster[] = {
  465. { MATROSKA_ID_CLUSTERTIMECODE,EBML_UINT,0, offsetof(MatroskaCluster,timecode) },
  466. { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster,blocks), {.n=matroska_blockgroup} },
  467. { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster,blocks), {.n=matroska_blockgroup} },
  468. { MATROSKA_ID_CLUSTERPOSITION,EBML_NONE },
  469. { MATROSKA_ID_CLUSTERPREVSIZE,EBML_NONE },
  470. { 0 }
  471. };
  472. static EbmlSyntax matroska_clusters[] = {
  473. { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, {.n=matroska_cluster} },
  474. { MATROSKA_ID_INFO, EBML_NONE },
  475. { MATROSKA_ID_CUES, EBML_NONE },
  476. { MATROSKA_ID_TAGS, EBML_NONE },
  477. { MATROSKA_ID_SEEKHEAD, EBML_NONE },
  478. { 0 }
  479. };
  480. static EbmlSyntax matroska_cluster_incremental_parsing[] = {
  481. { MATROSKA_ID_CLUSTERTIMECODE,EBML_UINT,0, offsetof(MatroskaCluster,timecode) },
  482. { MATROSKA_ID_BLOCKGROUP, EBML_NEST, sizeof(MatroskaBlock), offsetof(MatroskaCluster,blocks), {.n=matroska_blockgroup} },
  483. { MATROSKA_ID_SIMPLEBLOCK, EBML_PASS, sizeof(MatroskaBlock), offsetof(MatroskaCluster,blocks), {.n=matroska_blockgroup} },
  484. { MATROSKA_ID_CLUSTERPOSITION,EBML_NONE },
  485. { MATROSKA_ID_CLUSTERPREVSIZE,EBML_NONE },
  486. { MATROSKA_ID_INFO, EBML_NONE },
  487. { MATROSKA_ID_CUES, EBML_NONE },
  488. { MATROSKA_ID_TAGS, EBML_NONE },
  489. { MATROSKA_ID_SEEKHEAD, EBML_NONE },
  490. { MATROSKA_ID_CLUSTER, EBML_STOP },
  491. { 0 }
  492. };
  493. static EbmlSyntax matroska_cluster_incremental[] = {
  494. { MATROSKA_ID_CLUSTERTIMECODE,EBML_UINT,0, offsetof(MatroskaCluster,timecode) },
  495. { MATROSKA_ID_BLOCKGROUP, EBML_STOP },
  496. { MATROSKA_ID_SIMPLEBLOCK, EBML_STOP },
  497. { MATROSKA_ID_CLUSTERPOSITION,EBML_NONE },
  498. { MATROSKA_ID_CLUSTERPREVSIZE,EBML_NONE },
  499. { 0 }
  500. };
  501. static EbmlSyntax matroska_clusters_incremental[] = {
  502. { MATROSKA_ID_CLUSTER, EBML_NEST, 0, 0, {.n=matroska_cluster_incremental} },
  503. { MATROSKA_ID_INFO, EBML_NONE },
  504. { MATROSKA_ID_CUES, EBML_NONE },
  505. { MATROSKA_ID_TAGS, EBML_NONE },
  506. { MATROSKA_ID_SEEKHEAD, EBML_NONE },
  507. { 0 }
  508. };
  509. static const char *const matroska_doctypes[] = { "matroska", "webm" };
  510. static int matroska_resync(MatroskaDemuxContext *matroska, int64_t last_pos)
  511. {
  512. AVIOContext *pb = matroska->ctx->pb;
  513. uint32_t id;
  514. matroska->current_id = 0;
  515. matroska->num_levels = 0;
  516. // seek to next position to resync from
  517. if (avio_seek(pb, last_pos + 1, SEEK_SET) < 0 || avio_tell(pb) <= last_pos)
  518. goto eof;
  519. id = avio_rb32(pb);
  520. // try to find a toplevel element
  521. while (!url_feof(pb)) {
  522. if (id == MATROSKA_ID_INFO || id == MATROSKA_ID_TRACKS ||
  523. id == MATROSKA_ID_CUES || id == MATROSKA_ID_TAGS ||
  524. id == MATROSKA_ID_SEEKHEAD || id == MATROSKA_ID_ATTACHMENTS ||
  525. id == MATROSKA_ID_CLUSTER || id == MATROSKA_ID_CHAPTERS)
  526. {
  527. matroska->current_id = id;
  528. return 0;
  529. }
  530. id = (id << 8) | avio_r8(pb);
  531. }
  532. eof:
  533. matroska->done = 1;
  534. return AVERROR_EOF;
  535. }
  536. /*
  537. * Return: Whether we reached the end of a level in the hierarchy or not.
  538. */
  539. static int ebml_level_end(MatroskaDemuxContext *matroska)
  540. {
  541. AVIOContext *pb = matroska->ctx->pb;
  542. int64_t pos = avio_tell(pb);
  543. if (matroska->num_levels > 0) {
  544. MatroskaLevel *level = &matroska->levels[matroska->num_levels - 1];
  545. if (pos - level->start >= level->length || matroska->current_id) {
  546. matroska->num_levels--;
  547. return 1;
  548. }
  549. }
  550. return 0;
  551. }
  552. /*
  553. * Read: an "EBML number", which is defined as a variable-length
  554. * array of bytes. The first byte indicates the length by giving a
  555. * number of 0-bits followed by a one. The position of the first
  556. * "one" bit inside the first byte indicates the length of this
  557. * number.
  558. * Returns: number of bytes read, < 0 on error
  559. */
  560. static int ebml_read_num(MatroskaDemuxContext *matroska, AVIOContext *pb,
  561. int max_size, uint64_t *number)
  562. {
  563. int read = 1, n = 1;
  564. uint64_t total = 0;
  565. /* The first byte tells us the length in bytes - avio_r8() can normally
  566. * return 0, but since that's not a valid first ebmlID byte, we can
  567. * use it safely here to catch EOS. */
  568. if (!(total = avio_r8(pb))) {
  569. /* we might encounter EOS here */
  570. if (!url_feof(pb)) {
  571. int64_t pos = avio_tell(pb);
  572. av_log(matroska->ctx, AV_LOG_ERROR,
  573. "Read error at pos. %"PRIu64" (0x%"PRIx64")\n",
  574. pos, pos);
  575. return pb->error ? pb->error : AVERROR(EIO);
  576. }
  577. return AVERROR_EOF;
  578. }
  579. /* get the length of the EBML number */
  580. read = 8 - ff_log2_tab[total];
  581. if (read > max_size) {
  582. int64_t pos = avio_tell(pb) - 1;
  583. av_log(matroska->ctx, AV_LOG_ERROR,
  584. "Invalid EBML number size tag 0x%02x at pos %"PRIu64" (0x%"PRIx64")\n",
  585. (uint8_t) total, pos, pos);
  586. return AVERROR_INVALIDDATA;
  587. }
  588. /* read out length */
  589. total ^= 1 << ff_log2_tab[total];
  590. while (n++ < read)
  591. total = (total << 8) | avio_r8(pb);
  592. *number = total;
  593. return read;
  594. }
  595. /**
  596. * Read a EBML length value.
  597. * This needs special handling for the "unknown length" case which has multiple
  598. * encodings.
  599. */
  600. static int ebml_read_length(MatroskaDemuxContext *matroska, AVIOContext *pb,
  601. uint64_t *number)
  602. {
  603. int res = ebml_read_num(matroska, pb, 8, number);
  604. if (res > 0 && *number + 1 == 1ULL << (7 * res))
  605. *number = 0xffffffffffffffULL;
  606. return res;
  607. }
  608. /*
  609. * Read the next element as an unsigned int.
  610. * 0 is success, < 0 is failure.
  611. */
  612. static int ebml_read_uint(AVIOContext *pb, int size, uint64_t *num)
  613. {
  614. int n = 0;
  615. if (size > 8)
  616. return AVERROR_INVALIDDATA;
  617. /* big-endian ordering; build up number */
  618. *num = 0;
  619. while (n++ < size)
  620. *num = (*num << 8) | avio_r8(pb);
  621. return 0;
  622. }
  623. /*
  624. * Read the next element as a float.
  625. * 0 is success, < 0 is failure.
  626. */
  627. static int ebml_read_float(AVIOContext *pb, int size, double *num)
  628. {
  629. if (size == 0) {
  630. *num = 0;
  631. } else if (size == 4) {
  632. *num = av_int2float(avio_rb32(pb));
  633. } else if (size == 8){
  634. *num = av_int2double(avio_rb64(pb));
  635. } else
  636. return AVERROR_INVALIDDATA;
  637. return 0;
  638. }
  639. /*
  640. * Read the next element as an ASCII string.
  641. * 0 is success, < 0 is failure.
  642. */
  643. static int ebml_read_ascii(AVIOContext *pb, int size, char **str)
  644. {
  645. char *res;
  646. /* EBML strings are usually not 0-terminated, so we allocate one
  647. * byte more, read the string and NULL-terminate it ourselves. */
  648. if (!(res = av_malloc(size + 1)))
  649. return AVERROR(ENOMEM);
  650. if (avio_read(pb, (uint8_t *) res, size) != size) {
  651. av_free(res);
  652. return AVERROR(EIO);
  653. }
  654. (res)[size] = '\0';
  655. av_free(*str);
  656. *str = res;
  657. return 0;
  658. }
  659. /*
  660. * Read the next element as binary data.
  661. * 0 is success, < 0 is failure.
  662. */
  663. static int ebml_read_binary(AVIOContext *pb, int length, EbmlBin *bin)
  664. {
  665. av_free(bin->data);
  666. if (!(bin->data = av_malloc(length)))
  667. return AVERROR(ENOMEM);
  668. bin->size = length;
  669. bin->pos = avio_tell(pb);
  670. if (avio_read(pb, bin->data, length) != length) {
  671. av_freep(&bin->data);
  672. return AVERROR(EIO);
  673. }
  674. return 0;
  675. }
  676. /*
  677. * Read the next element, but only the header. The contents
  678. * are supposed to be sub-elements which can be read separately.
  679. * 0 is success, < 0 is failure.
  680. */
  681. static int ebml_read_master(MatroskaDemuxContext *matroska, uint64_t length)
  682. {
  683. AVIOContext *pb = matroska->ctx->pb;
  684. MatroskaLevel *level;
  685. if (matroska->num_levels >= EBML_MAX_DEPTH) {
  686. av_log(matroska->ctx, AV_LOG_ERROR,
  687. "File moves beyond max. allowed depth (%d)\n", EBML_MAX_DEPTH);
  688. return AVERROR(ENOSYS);
  689. }
  690. level = &matroska->levels[matroska->num_levels++];
  691. level->start = avio_tell(pb);
  692. level->length = length;
  693. return 0;
  694. }
  695. /*
  696. * Read signed/unsigned "EBML" numbers.
  697. * Return: number of bytes processed, < 0 on error
  698. */
  699. static int matroska_ebmlnum_uint(MatroskaDemuxContext *matroska,
  700. uint8_t *data, uint32_t size, uint64_t *num)
  701. {
  702. AVIOContext pb;
  703. ffio_init_context(&pb, data, size, 0, NULL, NULL, NULL, NULL);
  704. return ebml_read_num(matroska, &pb, FFMIN(size, 8), num);
  705. }
  706. /*
  707. * Same as above, but signed.
  708. */
  709. static int matroska_ebmlnum_sint(MatroskaDemuxContext *matroska,
  710. uint8_t *data, uint32_t size, int64_t *num)
  711. {
  712. uint64_t unum;
  713. int res;
  714. /* read as unsigned number first */
  715. if ((res = matroska_ebmlnum_uint(matroska, data, size, &unum)) < 0)
  716. return res;
  717. /* make signed (weird way) */
  718. *num = unum - ((1LL << (7*res - 1)) - 1);
  719. return res;
  720. }
  721. static int ebml_parse_elem(MatroskaDemuxContext *matroska,
  722. EbmlSyntax *syntax, void *data);
  723. static int ebml_parse_id(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
  724. uint32_t id, void *data)
  725. {
  726. int i;
  727. for (i=0; syntax[i].id; i++)
  728. if (id == syntax[i].id)
  729. break;
  730. if (!syntax[i].id && id == MATROSKA_ID_CLUSTER &&
  731. matroska->num_levels > 0 &&
  732. matroska->levels[matroska->num_levels-1].length == 0xffffffffffffff)
  733. return 0; // we reached the end of an unknown size cluster
  734. if (!syntax[i].id && id != EBML_ID_VOID && id != EBML_ID_CRC32) {
  735. av_log(matroska->ctx, AV_LOG_INFO, "Unknown entry 0x%X\n", id);
  736. if (matroska->ctx->error_recognition & AV_EF_EXPLODE)
  737. return AVERROR_INVALIDDATA;
  738. }
  739. return ebml_parse_elem(matroska, &syntax[i], data);
  740. }
  741. static int ebml_parse(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
  742. void *data)
  743. {
  744. if (!matroska->current_id) {
  745. uint64_t id;
  746. int res = ebml_read_num(matroska, matroska->ctx->pb, 4, &id);
  747. if (res < 0)
  748. return res;
  749. matroska->current_id = id | 1 << 7*res;
  750. }
  751. return ebml_parse_id(matroska, syntax, matroska->current_id, data);
  752. }
  753. static int ebml_parse_nest(MatroskaDemuxContext *matroska, EbmlSyntax *syntax,
  754. void *data)
  755. {
  756. int i, res = 0;
  757. for (i=0; syntax[i].id; i++)
  758. switch (syntax[i].type) {
  759. case EBML_UINT:
  760. *(uint64_t *)((char *)data+syntax[i].data_offset) = syntax[i].def.u;
  761. break;
  762. case EBML_FLOAT:
  763. *(double *)((char *)data+syntax[i].data_offset) = syntax[i].def.f;
  764. break;
  765. case EBML_STR:
  766. case EBML_UTF8:
  767. *(char **)((char *)data+syntax[i].data_offset) = av_strdup(syntax[i].def.s);
  768. break;
  769. }
  770. while (!res && !ebml_level_end(matroska))
  771. res = ebml_parse(matroska, syntax, data);
  772. return res;
  773. }
  774. static int ebml_parse_elem(MatroskaDemuxContext *matroska,
  775. EbmlSyntax *syntax, void *data)
  776. {
  777. static const uint64_t max_lengths[EBML_TYPE_COUNT] = {
  778. [EBML_UINT] = 8,
  779. [EBML_FLOAT] = 8,
  780. // max. 16 MB for strings
  781. [EBML_STR] = 0x1000000,
  782. [EBML_UTF8] = 0x1000000,
  783. // max. 256 MB for binary data
  784. [EBML_BIN] = 0x10000000,
  785. // no limits for anything else
  786. };
  787. AVIOContext *pb = matroska->ctx->pb;
  788. uint32_t id = syntax->id;
  789. uint64_t length;
  790. int res;
  791. void *newelem;
  792. data = (char *)data + syntax->data_offset;
  793. if (syntax->list_elem_size) {
  794. EbmlList *list = data;
  795. newelem = av_realloc(list->elem, (list->nb_elem+1)*syntax->list_elem_size);
  796. if (!newelem)
  797. return AVERROR(ENOMEM);
  798. list->elem = newelem;
  799. data = (char*)list->elem + list->nb_elem*syntax->list_elem_size;
  800. memset(data, 0, syntax->list_elem_size);
  801. list->nb_elem++;
  802. }
  803. if (syntax->type != EBML_PASS && syntax->type != EBML_STOP) {
  804. matroska->current_id = 0;
  805. if ((res = ebml_read_length(matroska, pb, &length)) < 0)
  806. return res;
  807. if (max_lengths[syntax->type] && length > max_lengths[syntax->type]) {
  808. av_log(matroska->ctx, AV_LOG_ERROR,
  809. "Invalid length 0x%"PRIx64" > 0x%"PRIx64" for syntax element %i\n",
  810. length, max_lengths[syntax->type], syntax->type);
  811. return AVERROR_INVALIDDATA;
  812. }
  813. }
  814. switch (syntax->type) {
  815. case EBML_UINT: res = ebml_read_uint (pb, length, data); break;
  816. case EBML_FLOAT: res = ebml_read_float (pb, length, data); break;
  817. case EBML_STR:
  818. case EBML_UTF8: res = ebml_read_ascii (pb, length, data); break;
  819. case EBML_BIN: res = ebml_read_binary(pb, length, data); break;
  820. case EBML_NEST: if ((res=ebml_read_master(matroska, length)) < 0)
  821. return res;
  822. if (id == MATROSKA_ID_SEGMENT)
  823. matroska->segment_start = avio_tell(matroska->ctx->pb);
  824. return ebml_parse_nest(matroska, syntax->def.n, data);
  825. case EBML_PASS: return ebml_parse_id(matroska, syntax->def.n, id, data);
  826. case EBML_STOP: return 1;
  827. default: return avio_skip(pb,length)<0 ? AVERROR(EIO) : 0;
  828. }
  829. if (res == AVERROR_INVALIDDATA)
  830. av_log(matroska->ctx, AV_LOG_ERROR, "Invalid element\n");
  831. else if (res == AVERROR(EIO))
  832. av_log(matroska->ctx, AV_LOG_ERROR, "Read error\n");
  833. return res;
  834. }
  835. static void ebml_free(EbmlSyntax *syntax, void *data)
  836. {
  837. int i, j;
  838. for (i=0; syntax[i].id; i++) {
  839. void *data_off = (char *)data + syntax[i].data_offset;
  840. switch (syntax[i].type) {
  841. case EBML_STR:
  842. case EBML_UTF8: av_freep(data_off); break;
  843. case EBML_BIN: av_freep(&((EbmlBin *)data_off)->data); break;
  844. case EBML_NEST:
  845. if (syntax[i].list_elem_size) {
  846. EbmlList *list = data_off;
  847. char *ptr = list->elem;
  848. for (j=0; j<list->nb_elem; j++, ptr+=syntax[i].list_elem_size)
  849. ebml_free(syntax[i].def.n, ptr);
  850. av_free(list->elem);
  851. } else
  852. ebml_free(syntax[i].def.n, data_off);
  853. default: break;
  854. }
  855. }
  856. }
  857. /*
  858. * Autodetecting...
  859. */
  860. static int matroska_probe(AVProbeData *p)
  861. {
  862. uint64_t total = 0;
  863. int len_mask = 0x80, size = 1, n = 1, i;
  864. /* EBML header? */
  865. if (AV_RB32(p->buf) != EBML_ID_HEADER)
  866. return 0;
  867. /* length of header */
  868. total = p->buf[4];
  869. while (size <= 8 && !(total & len_mask)) {
  870. size++;
  871. len_mask >>= 1;
  872. }
  873. if (size > 8)
  874. return 0;
  875. total &= (len_mask - 1);
  876. while (n < size)
  877. total = (total << 8) | p->buf[4 + n++];
  878. /* Does the probe data contain the whole header? */
  879. if (p->buf_size < 4 + size + total)
  880. return 0;
  881. /* The header should contain a known document type. For now,
  882. * we don't parse the whole header but simply check for the
  883. * availability of that array of characters inside the header.
  884. * Not fully fool-proof, but good enough. */
  885. for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++) {
  886. int probelen = strlen(matroska_doctypes[i]);
  887. if (total < probelen)
  888. continue;
  889. for (n = 4+size; n <= 4+size+total-probelen; n++)
  890. if (!memcmp(p->buf+n, matroska_doctypes[i], probelen))
  891. return AVPROBE_SCORE_MAX;
  892. }
  893. // probably valid EBML header but no recognized doctype
  894. return AVPROBE_SCORE_MAX/2;
  895. }
  896. static MatroskaTrack *matroska_find_track_by_num(MatroskaDemuxContext *matroska,
  897. int num)
  898. {
  899. MatroskaTrack *tracks = matroska->tracks.elem;
  900. int i;
  901. for (i=0; i < matroska->tracks.nb_elem; i++)
  902. if (tracks[i].num == num)
  903. return &tracks[i];
  904. av_log(matroska->ctx, AV_LOG_ERROR, "Invalid track number %d\n", num);
  905. return NULL;
  906. }
  907. static int matroska_decode_buffer(uint8_t** buf, int* buf_size,
  908. MatroskaTrack *track)
  909. {
  910. MatroskaTrackEncoding *encodings = track->encodings.elem;
  911. uint8_t* data = *buf;
  912. int isize = *buf_size;
  913. uint8_t* pkt_data = NULL;
  914. uint8_t av_unused *newpktdata;
  915. int pkt_size = isize;
  916. int result = 0;
  917. int olen;
  918. if (pkt_size >= 10000000U)
  919. return -1;
  920. switch (encodings[0].compression.algo) {
  921. case MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP:
  922. if (encodings[0].compression.settings.size && !encodings[0].compression.settings.data) {
  923. av_log(0, AV_LOG_ERROR, "Compression size but no data in headerstrip\n");
  924. return -1;
  925. }
  926. return encodings[0].compression.settings.size;
  927. case MATROSKA_TRACK_ENCODING_COMP_LZO:
  928. do {
  929. olen = pkt_size *= 3;
  930. pkt_data = av_realloc(pkt_data, pkt_size+AV_LZO_OUTPUT_PADDING);
  931. result = av_lzo1x_decode(pkt_data, &olen, data, &isize);
  932. } while (result==AV_LZO_OUTPUT_FULL && pkt_size<10000000);
  933. if (result)
  934. goto failed;
  935. pkt_size -= olen;
  936. break;
  937. #if CONFIG_ZLIB
  938. case MATROSKA_TRACK_ENCODING_COMP_ZLIB: {
  939. z_stream zstream = {0};
  940. if (inflateInit(&zstream) != Z_OK)
  941. return -1;
  942. zstream.next_in = data;
  943. zstream.avail_in = isize;
  944. do {
  945. pkt_size *= 3;
  946. newpktdata = av_realloc(pkt_data, pkt_size);
  947. if (!newpktdata) {
  948. inflateEnd(&zstream);
  949. goto failed;
  950. }
  951. pkt_data = newpktdata;
  952. zstream.avail_out = pkt_size - zstream.total_out;
  953. zstream.next_out = pkt_data + zstream.total_out;
  954. if (pkt_data) {
  955. result = inflate(&zstream, Z_NO_FLUSH);
  956. } else
  957. result = Z_MEM_ERROR;
  958. } while (result==Z_OK && pkt_size<10000000);
  959. pkt_size = zstream.total_out;
  960. inflateEnd(&zstream);
  961. if (result != Z_STREAM_END)
  962. goto failed;
  963. break;
  964. }
  965. #endif
  966. #if CONFIG_BZLIB
  967. case MATROSKA_TRACK_ENCODING_COMP_BZLIB: {
  968. bz_stream bzstream = {0};
  969. if (BZ2_bzDecompressInit(&bzstream, 0, 0) != BZ_OK)
  970. return -1;
  971. bzstream.next_in = data;
  972. bzstream.avail_in = isize;
  973. do {
  974. pkt_size *= 3;
  975. newpktdata = av_realloc(pkt_data, pkt_size);
  976. if (!newpktdata) {
  977. BZ2_bzDecompressEnd(&bzstream);
  978. goto failed;
  979. }
  980. pkt_data = newpktdata;
  981. bzstream.avail_out = pkt_size - bzstream.total_out_lo32;
  982. bzstream.next_out = pkt_data + bzstream.total_out_lo32;
  983. if (pkt_data) {
  984. result = BZ2_bzDecompress(&bzstream);
  985. } else
  986. result = BZ_MEM_ERROR;
  987. } while (result==BZ_OK && pkt_size<10000000);
  988. pkt_size = bzstream.total_out_lo32;
  989. BZ2_bzDecompressEnd(&bzstream);
  990. if (result != BZ_STREAM_END)
  991. goto failed;
  992. break;
  993. }
  994. #endif
  995. default:
  996. return -1;
  997. }
  998. *buf = pkt_data;
  999. *buf_size = pkt_size;
  1000. return 0;
  1001. failed:
  1002. av_free(pkt_data);
  1003. return -1;
  1004. }
  1005. static void matroska_fix_ass_packet(MatroskaDemuxContext *matroska,
  1006. AVPacket *pkt, uint64_t display_duration)
  1007. {
  1008. char *line, *layer, *ptr = pkt->data, *end = ptr+pkt->size;
  1009. for (; *ptr!=',' && ptr<end-1; ptr++);
  1010. if (*ptr == ',')
  1011. ptr++;
  1012. layer = ptr;
  1013. for (; *ptr!=',' && ptr<end-1; ptr++);
  1014. if (*ptr == ',') {
  1015. int64_t end_pts = pkt->pts + display_duration;
  1016. int sc = matroska->time_scale * pkt->pts / 10000000;
  1017. int ec = matroska->time_scale * end_pts / 10000000;
  1018. int sh, sm, ss, eh, em, es, len;
  1019. sh = sc/360000; sc -= 360000*sh;
  1020. sm = sc/ 6000; sc -= 6000*sm;
  1021. ss = sc/ 100; sc -= 100*ss;
  1022. eh = ec/360000; ec -= 360000*eh;
  1023. em = ec/ 6000; ec -= 6000*em;
  1024. es = ec/ 100; ec -= 100*es;
  1025. *ptr++ = '\0';
  1026. len = 50 + end-ptr + FF_INPUT_BUFFER_PADDING_SIZE;
  1027. if (!(line = av_malloc(len)))
  1028. return;
  1029. snprintf(line,len,"Dialogue: %s,%d:%02d:%02d.%02d,%d:%02d:%02d.%02d,%s\r\n",
  1030. layer, sh, sm, ss, sc, eh, em, es, ec, ptr);
  1031. av_free(pkt->data);
  1032. pkt->data = line;
  1033. pkt->size = strlen(line);
  1034. }
  1035. }
  1036. static int matroska_merge_packets(AVPacket *out, AVPacket *in)
  1037. {
  1038. int ret = av_grow_packet(out, in->size);
  1039. if (ret < 0)
  1040. return ret;
  1041. memcpy(out->data + out->size - in->size, in->data, in->size);
  1042. av_destruct_packet(in);
  1043. av_free(in);
  1044. return 0;
  1045. }
  1046. static void matroska_convert_tag(AVFormatContext *s, EbmlList *list,
  1047. AVDictionary **metadata, char *prefix)
  1048. {
  1049. MatroskaTag *tags = list->elem;
  1050. char key[1024];
  1051. int i;
  1052. for (i=0; i < list->nb_elem; i++) {
  1053. const char *lang= (tags[i].lang && strcmp(tags[i].lang, "und")) ? tags[i].lang : NULL;
  1054. if (!tags[i].name) {
  1055. av_log(s, AV_LOG_WARNING, "Skipping invalid tag with no TagName.\n");
  1056. continue;
  1057. }
  1058. if (prefix) snprintf(key, sizeof(key), "%s/%s", prefix, tags[i].name);
  1059. else av_strlcpy(key, tags[i].name, sizeof(key));
  1060. if (tags[i].def || !lang) {
  1061. av_dict_set(metadata, key, tags[i].string, 0);
  1062. if (tags[i].sub.nb_elem)
  1063. matroska_convert_tag(s, &tags[i].sub, metadata, key);
  1064. }
  1065. if (lang) {
  1066. av_strlcat(key, "-", sizeof(key));
  1067. av_strlcat(key, lang, sizeof(key));
  1068. av_dict_set(metadata, key, tags[i].string, 0);
  1069. if (tags[i].sub.nb_elem)
  1070. matroska_convert_tag(s, &tags[i].sub, metadata, key);
  1071. }
  1072. }
  1073. ff_metadata_conv(metadata, NULL, ff_mkv_metadata_conv);
  1074. }
  1075. static void matroska_convert_tags(AVFormatContext *s)
  1076. {
  1077. MatroskaDemuxContext *matroska = s->priv_data;
  1078. MatroskaTags *tags = matroska->tags.elem;
  1079. int i, j;
  1080. for (i=0; i < matroska->tags.nb_elem; i++) {
  1081. if (tags[i].target.attachuid) {
  1082. MatroskaAttachement *attachment = matroska->attachments.elem;
  1083. for (j=0; j<matroska->attachments.nb_elem; j++)
  1084. if (attachment[j].uid == tags[i].target.attachuid
  1085. && attachment[j].stream)
  1086. matroska_convert_tag(s, &tags[i].tag,
  1087. &attachment[j].stream->metadata, NULL);
  1088. } else if (tags[i].target.chapteruid) {
  1089. MatroskaChapter *chapter = matroska->chapters.elem;
  1090. for (j=0; j<matroska->chapters.nb_elem; j++)
  1091. if (chapter[j].uid == tags[i].target.chapteruid
  1092. && chapter[j].chapter)
  1093. matroska_convert_tag(s, &tags[i].tag,
  1094. &chapter[j].chapter->metadata, NULL);
  1095. } else if (tags[i].target.trackuid) {
  1096. MatroskaTrack *track = matroska->tracks.elem;
  1097. for (j=0; j<matroska->tracks.nb_elem; j++)
  1098. if (track[j].uid == tags[i].target.trackuid && track[j].stream)
  1099. matroska_convert_tag(s, &tags[i].tag,
  1100. &track[j].stream->metadata, NULL);
  1101. } else {
  1102. matroska_convert_tag(s, &tags[i].tag, &s->metadata,
  1103. tags[i].target.type);
  1104. }
  1105. }
  1106. }
  1107. static int matroska_parse_seekhead_entry(MatroskaDemuxContext *matroska, int idx)
  1108. {
  1109. EbmlList *seekhead_list = &matroska->seekhead;
  1110. MatroskaSeekhead *seekhead = seekhead_list->elem;
  1111. uint32_t level_up = matroska->level_up;
  1112. int64_t before_pos = avio_tell(matroska->ctx->pb);
  1113. uint32_t saved_id = matroska->current_id;
  1114. MatroskaLevel level;
  1115. int64_t offset;
  1116. int ret = 0;
  1117. if (idx >= seekhead_list->nb_elem
  1118. || seekhead[idx].id == MATROSKA_ID_SEEKHEAD
  1119. || seekhead[idx].id == MATROSKA_ID_CLUSTER)
  1120. return 0;
  1121. /* seek */
  1122. offset = seekhead[idx].pos + matroska->segment_start;
  1123. if (avio_seek(matroska->ctx->pb, offset, SEEK_SET) == offset) {
  1124. /* We don't want to lose our seekhead level, so we add
  1125. * a dummy. This is a crude hack. */
  1126. if (matroska->num_levels == EBML_MAX_DEPTH) {
  1127. av_log(matroska->ctx, AV_LOG_INFO,
  1128. "Max EBML element depth (%d) reached, "
  1129. "cannot parse further.\n", EBML_MAX_DEPTH);
  1130. ret = AVERROR_INVALIDDATA;
  1131. } else {
  1132. level.start = 0;
  1133. level.length = (uint64_t)-1;
  1134. matroska->levels[matroska->num_levels] = level;
  1135. matroska->num_levels++;
  1136. matroska->current_id = 0;
  1137. ret = ebml_parse(matroska, matroska_segment, matroska);
  1138. /* remove dummy level */
  1139. while (matroska->num_levels) {
  1140. uint64_t length = matroska->levels[--matroska->num_levels].length;
  1141. if (length == (uint64_t)-1)
  1142. break;
  1143. }
  1144. }
  1145. }
  1146. /* seek back */
  1147. avio_seek(matroska->ctx->pb, before_pos, SEEK_SET);
  1148. matroska->level_up = level_up;
  1149. matroska->current_id = saved_id;
  1150. return ret;
  1151. }
  1152. static void matroska_execute_seekhead(MatroskaDemuxContext *matroska)
  1153. {
  1154. EbmlList *seekhead_list = &matroska->seekhead;
  1155. int64_t before_pos = avio_tell(matroska->ctx->pb);
  1156. int i;
  1157. // we should not do any seeking in the streaming case
  1158. if (!matroska->ctx->pb->seekable ||
  1159. (matroska->ctx->flags & AVFMT_FLAG_IGNIDX))
  1160. return;
  1161. for (i = 0; i < seekhead_list->nb_elem; i++) {
  1162. MatroskaSeekhead *seekhead = seekhead_list->elem;
  1163. if (seekhead[i].pos <= before_pos)
  1164. continue;
  1165. // defer cues parsing until we actually need cue data.
  1166. if (seekhead[i].id == MATROSKA_ID_CUES) {
  1167. matroska->cues_parsing_deferred = 1;
  1168. continue;
  1169. }
  1170. if (matroska_parse_seekhead_entry(matroska, i) < 0) {
  1171. // mark index as broken
  1172. matroska->cues_parsing_deferred = -1;
  1173. break;
  1174. }
  1175. }
  1176. }
  1177. static void matroska_add_index_entries(MatroskaDemuxContext *matroska) {
  1178. EbmlList *index_list;
  1179. MatroskaIndex *index;
  1180. int index_scale = 1;
  1181. int i, j;
  1182. index_list = &matroska->index;
  1183. index = index_list->elem;
  1184. if (index_list->nb_elem
  1185. && index[0].time > 1E14/matroska->time_scale) {
  1186. av_log(matroska->ctx, AV_LOG_WARNING, "Working around broken index.\n");
  1187. index_scale = matroska->time_scale;
  1188. }
  1189. for (i = 0; i < index_list->nb_elem; i++) {
  1190. EbmlList *pos_list = &index[i].pos;
  1191. MatroskaIndexPos *pos = pos_list->elem;
  1192. for (j = 0; j < pos_list->nb_elem; j++) {
  1193. MatroskaTrack *track = matroska_find_track_by_num(matroska, pos[j].track);
  1194. if (track && track->stream)
  1195. av_add_index_entry(track->stream,
  1196. pos[j].pos + matroska->segment_start,
  1197. index[i].time/index_scale, 0, 0,
  1198. AVINDEX_KEYFRAME);
  1199. }
  1200. }
  1201. }
  1202. static void matroska_parse_cues(MatroskaDemuxContext *matroska) {
  1203. EbmlList *seekhead_list = &matroska->seekhead;
  1204. MatroskaSeekhead *seekhead = seekhead_list->elem;
  1205. int i;
  1206. for (i = 0; i < seekhead_list->nb_elem; i++)
  1207. if (seekhead[i].id == MATROSKA_ID_CUES)
  1208. break;
  1209. assert(i <= seekhead_list->nb_elem);
  1210. if (matroska_parse_seekhead_entry(matroska, i) < 0)
  1211. matroska->cues_parsing_deferred = -1;
  1212. matroska_add_index_entries(matroska);
  1213. }
  1214. static int matroska_aac_profile(char *codec_id)
  1215. {
  1216. static const char * const aac_profiles[] = { "MAIN", "LC", "SSR" };
  1217. int profile;
  1218. for (profile=0; profile<FF_ARRAY_ELEMS(aac_profiles); profile++)
  1219. if (strstr(codec_id, aac_profiles[profile]))
  1220. break;
  1221. return profile + 1;
  1222. }
  1223. static int matroska_aac_sri(int samplerate)
  1224. {
  1225. int sri;
  1226. for (sri=0; sri<FF_ARRAY_ELEMS(avpriv_mpeg4audio_sample_rates); sri++)
  1227. if (avpriv_mpeg4audio_sample_rates[sri] == samplerate)
  1228. break;
  1229. return sri;
  1230. }
  1231. static void matroska_metadata_creation_time(AVDictionary **metadata, int64_t date_utc)
  1232. {
  1233. char buffer[32];
  1234. /* Convert to seconds and adjust by number of seconds between 2001-01-01 and Epoch */
  1235. time_t creation_time = date_utc / 1000000000 + 978307200;
  1236. struct tm *ptm = gmtime(&creation_time);
  1237. if (!ptm) return;
  1238. strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", ptm);
  1239. av_dict_set(metadata, "creation_time", buffer, 0);
  1240. }
  1241. static int matroska_read_header(AVFormatContext *s)
  1242. {
  1243. MatroskaDemuxContext *matroska = s->priv_data;
  1244. EbmlList *attachements_list = &matroska->attachments;
  1245. MatroskaAttachement *attachements;
  1246. EbmlList *chapters_list = &matroska->chapters;
  1247. MatroskaChapter *chapters;
  1248. MatroskaTrack *tracks;
  1249. uint64_t max_start = 0;
  1250. int64_t pos;
  1251. Ebml ebml = { 0 };
  1252. AVStream *st;
  1253. int i, j, k, res;
  1254. matroska->ctx = s;
  1255. /* First read the EBML header. */
  1256. if (ebml_parse(matroska, ebml_syntax, &ebml)
  1257. || ebml.version > EBML_VERSION || ebml.max_size > sizeof(uint64_t)
  1258. || ebml.id_length > sizeof(uint32_t) || ebml.doctype_version > 3 || !ebml.doctype) {
  1259. av_log(matroska->ctx, AV_LOG_ERROR,
  1260. "EBML header using unsupported features\n"
  1261. "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
  1262. ebml.version, ebml.doctype, ebml.doctype_version);
  1263. ebml_free(ebml_syntax, &ebml);
  1264. return AVERROR_PATCHWELCOME;
  1265. } else if (ebml.doctype_version == 3) {
  1266. av_log(matroska->ctx, AV_LOG_WARNING,
  1267. "EBML header using unsupported features\n"
  1268. "(EBML version %"PRIu64", doctype %s, doc version %"PRIu64")\n",
  1269. ebml.version, ebml.doctype, ebml.doctype_version);
  1270. }
  1271. for (i = 0; i < FF_ARRAY_ELEMS(matroska_doctypes); i++)
  1272. if (!strcmp(ebml.doctype, matroska_doctypes[i]))
  1273. break;
  1274. if (i >= FF_ARRAY_ELEMS(matroska_doctypes)) {
  1275. av_log(s, AV_LOG_WARNING, "Unknown EBML doctype '%s'\n", ebml.doctype);
  1276. }
  1277. ebml_free(ebml_syntax, &ebml);
  1278. /* The next thing is a segment. */
  1279. pos = avio_tell(matroska->ctx->pb);
  1280. res = ebml_parse(matroska, matroska_segments, matroska);
  1281. // try resyncing until we find a EBML_STOP type element.
  1282. while (res != 1) {
  1283. res = matroska_resync(matroska, pos);
  1284. if (res < 0)
  1285. return res;
  1286. pos = avio_tell(matroska->ctx->pb);
  1287. res = ebml_parse(matroska, matroska_segment, matroska);
  1288. }
  1289. matroska_execute_seekhead(matroska);
  1290. if (!matroska->time_scale)
  1291. matroska->time_scale = 1000000;
  1292. if (matroska->duration)
  1293. matroska->ctx->duration = matroska->duration * matroska->time_scale
  1294. * 1000 / AV_TIME_BASE;
  1295. av_dict_set(&s->metadata, "title", matroska->title, 0);
  1296. if (matroska->date_utc.size == 8)
  1297. matroska_metadata_creation_time(&s->metadata, AV_RB64(matroska->date_utc.data));
  1298. tracks = matroska->tracks.elem;
  1299. for (i=0; i < matroska->tracks.nb_elem; i++) {
  1300. MatroskaTrack *track = &tracks[i];
  1301. enum CodecID codec_id = CODEC_ID_NONE;
  1302. EbmlList *encodings_list = &track->encodings;
  1303. MatroskaTrackEncoding *encodings = encodings_list->elem;
  1304. uint8_t *extradata = NULL;
  1305. int extradata_size = 0;
  1306. int extradata_offset = 0;
  1307. uint32_t fourcc = 0;
  1308. AVIOContext b;
  1309. /* Apply some sanity checks. */
  1310. if (track->type != MATROSKA_TRACK_TYPE_VIDEO &&
  1311. track->type != MATROSKA_TRACK_TYPE_AUDIO &&
  1312. track->type != MATROSKA_TRACK_TYPE_SUBTITLE) {
  1313. av_log(matroska->ctx, AV_LOG_INFO,
  1314. "Unknown or unsupported track type %"PRIu64"\n",
  1315. track->type);
  1316. continue;
  1317. }
  1318. if (track->codec_id == NULL)
  1319. continue;
  1320. if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
  1321. if (!track->default_duration && track->video.frame_rate > 0)
  1322. track->default_duration = 1000000000/track->video.frame_rate;
  1323. if (!track->video.display_width)
  1324. track->video.display_width = track->video.pixel_width;
  1325. if (!track->video.display_height)
  1326. track->video.display_height = track->video.pixel_height;
  1327. if (track->video.color_space.size == 4)
  1328. fourcc = AV_RL32(track->video.color_space.data);
  1329. } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
  1330. if (!track->audio.out_samplerate)
  1331. track->audio.out_samplerate = track->audio.samplerate;
  1332. }
  1333. if (encodings_list->nb_elem > 1) {
  1334. av_log(matroska->ctx, AV_LOG_ERROR,
  1335. "Multiple combined encodings not supported");
  1336. } else if (encodings_list->nb_elem == 1) {
  1337. if (encodings[0].type ||
  1338. (encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_HEADERSTRIP &&
  1339. #if CONFIG_ZLIB
  1340. encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_ZLIB &&
  1341. #endif
  1342. #if CONFIG_BZLIB
  1343. encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_BZLIB &&
  1344. #endif
  1345. encodings[0].compression.algo != MATROSKA_TRACK_ENCODING_COMP_LZO)) {
  1346. encodings[0].scope = 0;
  1347. av_log(matroska->ctx, AV_LOG_ERROR,
  1348. "Unsupported encoding type");
  1349. } else if (track->codec_priv.size && encodings[0].scope&2) {
  1350. uint8_t *codec_priv = track->codec_priv.data;
  1351. int offset = matroska_decode_buffer(&track->codec_priv.data,
  1352. &track->codec_priv.size,
  1353. track);
  1354. if (offset < 0) {
  1355. track->codec_priv.data = NULL;
  1356. track->codec_priv.size = 0;
  1357. av_log(matroska->ctx, AV_LOG_ERROR,
  1358. "Failed to decode codec private data\n");
  1359. } else if (offset > 0) {
  1360. track->codec_priv.data = av_malloc(track->codec_priv.size + offset);
  1361. memcpy(track->codec_priv.data,
  1362. encodings[0].compression.settings.data, offset);
  1363. memcpy(track->codec_priv.data+offset, codec_priv,
  1364. track->codec_priv.size);
  1365. track->codec_priv.size += offset;
  1366. }
  1367. if (codec_priv != track->codec_priv.data)
  1368. av_free(codec_priv);
  1369. }
  1370. }
  1371. for(j=0; ff_mkv_codec_tags[j].id != CODEC_ID_NONE; j++){
  1372. if(!strncmp(ff_mkv_codec_tags[j].str, track->codec_id,
  1373. strlen(ff_mkv_codec_tags[j].str))){
  1374. codec_id= ff_mkv_codec_tags[j].id;
  1375. break;
  1376. }
  1377. }
  1378. st = track->stream = avformat_new_stream(s, NULL);
  1379. if (st == NULL)
  1380. return AVERROR(ENOMEM);
  1381. if (!strcmp(track->codec_id, "V_MS/VFW/FOURCC")
  1382. && track->codec_priv.size >= 40
  1383. && track->codec_priv.data != NULL) {
  1384. track->ms_compat = 1;
  1385. fourcc = AV_RL32(track->codec_priv.data + 16);
  1386. codec_id = ff_codec_get_id(ff_codec_bmp_tags, fourcc);
  1387. extradata_offset = 40;
  1388. } else if (!strcmp(track->codec_id, "A_MS/ACM")
  1389. && track->codec_priv.size >= 14
  1390. && track->codec_priv.data != NULL) {
  1391. int ret;
  1392. ffio_init_context(&b, track->codec_priv.data, track->codec_priv.size,
  1393. AVIO_FLAG_READ, NULL, NULL, NULL, NULL);
  1394. ret = ff_get_wav_header(&b, st->codec, track->codec_priv.size);
  1395. if (ret < 0)
  1396. return ret;
  1397. codec_id = st->codec->codec_id;
  1398. extradata_offset = FFMIN(track->codec_priv.size, 18);
  1399. } else if (!strcmp(track->codec_id, "V_QUICKTIME")
  1400. && (track->codec_priv.size >= 86)
  1401. && (track->codec_priv.data != NULL)) {
  1402. fourcc = AV_RL32(track->codec_priv.data);
  1403. codec_id = ff_codec_get_id(ff_codec_movvideo_tags, fourcc);
  1404. } else if (codec_id == CODEC_ID_PCM_S16BE) {
  1405. switch (track->audio.bitdepth) {
  1406. case 8: codec_id = CODEC_ID_PCM_U8; break;
  1407. case 24: codec_id = CODEC_ID_PCM_S24BE; break;
  1408. case 32: codec_id = CODEC_ID_PCM_S32BE; break;
  1409. }
  1410. } else if (codec_id == CODEC_ID_PCM_S16LE) {
  1411. switch (track->audio.bitdepth) {
  1412. case 8: codec_id = CODEC_ID_PCM_U8; break;
  1413. case 24: codec_id = CODEC_ID_PCM_S24LE; break;
  1414. case 32: codec_id = CODEC_ID_PCM_S32LE; break;
  1415. }
  1416. } else if (codec_id==CODEC_ID_PCM_F32LE && track->audio.bitdepth==64) {
  1417. codec_id = CODEC_ID_PCM_F64LE;
  1418. } else if (codec_id == CODEC_ID_AAC && !track->codec_priv.size) {
  1419. int profile = matroska_aac_profile(track->codec_id);
  1420. int sri = matroska_aac_sri(track->audio.samplerate);
  1421. extradata = av_mallocz(5 + FF_INPUT_BUFFER_PADDING_SIZE);
  1422. if (extradata == NULL)
  1423. return AVERROR(ENOMEM);
  1424. extradata[0] = (profile << 3) | ((sri&0x0E) >> 1);
  1425. extradata[1] = ((sri&0x01) << 7) | (track->audio.channels<<3);
  1426. if (strstr(track->codec_id, "SBR")) {
  1427. sri = matroska_aac_sri(track->audio.out_samplerate);
  1428. extradata[2] = 0x56;
  1429. extradata[3] = 0xE5;
  1430. extradata[4] = 0x80 | (sri<<3);
  1431. extradata_size = 5;
  1432. } else
  1433. extradata_size = 2;
  1434. } else if (codec_id == CODEC_ID_TTA) {
  1435. extradata_size = 30;
  1436. extradata = av_mallocz(extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  1437. if (extradata == NULL)
  1438. return AVERROR(ENOMEM);
  1439. ffio_init_context(&b, extradata, extradata_size, 1,
  1440. NULL, NULL, NULL, NULL);
  1441. avio_write(&b, "TTA1", 4);
  1442. avio_wl16(&b, 1);
  1443. avio_wl16(&b, track->audio.channels);
  1444. avio_wl16(&b, track->audio.bitdepth);
  1445. avio_wl32(&b, track->audio.out_samplerate);
  1446. avio_wl32(&b, matroska->ctx->duration * track->audio.out_samplerate);
  1447. } else if (codec_id == CODEC_ID_RV10 || codec_id == CODEC_ID_RV20 ||
  1448. codec_id == CODEC_ID_RV30 || codec_id == CODEC_ID_RV40) {
  1449. extradata_offset = 26;
  1450. } else if (codec_id == CODEC_ID_RA_144) {
  1451. track->audio.out_samplerate = 8000;
  1452. track->audio.channels = 1;
  1453. } else if ((codec_id == CODEC_ID_RA_288 || codec_id == CODEC_ID_COOK ||
  1454. codec_id == CODEC_ID_ATRAC3 || codec_id == CODEC_ID_SIPR)
  1455. && track->codec_priv.data) {
  1456. int flavor;
  1457. ffio_init_context(&b, track->codec_priv.data,track->codec_priv.size,
  1458. 0, NULL, NULL, NULL, NULL);
  1459. avio_skip(&b, 22);
  1460. flavor = avio_rb16(&b);
  1461. track->audio.coded_framesize = avio_rb32(&b);
  1462. avio_skip(&b, 12);
  1463. track->audio.sub_packet_h = avio_rb16(&b);
  1464. track->audio.frame_size = avio_rb16(&b);
  1465. track->audio.sub_packet_size = avio_rb16(&b);
  1466. track->audio.buf = av_malloc(track->audio.frame_size * track->audio.sub_packet_h);
  1467. if (codec_id == CODEC_ID_RA_288) {
  1468. st->codec->block_align = track->audio.coded_framesize;
  1469. track->codec_priv.size = 0;
  1470. } else {
  1471. if (codec_id == CODEC_ID_SIPR && flavor < 4) {
  1472. const int sipr_bit_rate[4] = { 6504, 8496, 5000, 16000 };
  1473. track->audio.sub_packet_size = ff_sipr_subpk_size[flavor];
  1474. st->codec->bit_rate = sipr_bit_rate[flavor];
  1475. }
  1476. st->codec->block_align = track->audio.sub_packet_size;
  1477. extradata_offset = 78;
  1478. }
  1479. }
  1480. track->codec_priv.size -= extradata_offset;
  1481. if (codec_id == CODEC_ID_NONE)
  1482. av_log(matroska->ctx, AV_LOG_INFO,
  1483. "Unknown/unsupported CodecID %s.\n", track->codec_id);
  1484. if (track->time_scale < 0.01)
  1485. track->time_scale = 1.0;
  1486. avpriv_set_pts_info(st, 64, matroska->time_scale*track->time_scale, 1000*1000*1000); /* 64 bit pts in ns */
  1487. st->codec->codec_id = codec_id;
  1488. st->start_time = 0;
  1489. if (strcmp(track->language, "und"))
  1490. av_dict_set(&st->metadata, "language", track->language, 0);
  1491. av_dict_set(&st->metadata, "title", track->name, 0);
  1492. if (track->flag_default)
  1493. st->disposition |= AV_DISPOSITION_DEFAULT;
  1494. if (track->flag_forced)
  1495. st->disposition |= AV_DISPOSITION_FORCED;
  1496. if (!st->codec->extradata) {
  1497. if(extradata){
  1498. st->codec->extradata = extradata;
  1499. st->codec->extradata_size = extradata_size;
  1500. } else if(track->codec_priv.data && track->codec_priv.size > 0){
  1501. st->codec->extradata = av_mallocz(track->codec_priv.size +
  1502. FF_INPUT_BUFFER_PADDING_SIZE);
  1503. if(st->codec->extradata == NULL)
  1504. return AVERROR(ENOMEM);
  1505. st->codec->extradata_size = track->codec_priv.size;
  1506. memcpy(st->codec->extradata,
  1507. track->codec_priv.data + extradata_offset,
  1508. track->codec_priv.size);
  1509. }
  1510. }
  1511. if (track->type == MATROSKA_TRACK_TYPE_VIDEO) {
  1512. MatroskaTrackPlane *planes = track->operation.combine_planes.elem;
  1513. st->codec->codec_type = AVMEDIA_TYPE_VIDEO;
  1514. st->codec->codec_tag = fourcc;
  1515. st->codec->width = track->video.pixel_width;
  1516. st->codec->height = track->video.pixel_height;
  1517. av_reduce(&st->sample_aspect_ratio.num,
  1518. &st->sample_aspect_ratio.den,
  1519. st->codec->height * track->video.display_width,
  1520. st->codec-> width * track->video.display_height,
  1521. 255);
  1522. st->need_parsing = AVSTREAM_PARSE_HEADERS;
  1523. if (track->default_duration) {
  1524. av_reduce(&st->avg_frame_rate.num, &st->avg_frame_rate.den,
  1525. 1000000000, track->default_duration, 30000);
  1526. #if FF_API_R_FRAME_RATE
  1527. st->r_frame_rate = st->avg_frame_rate;
  1528. #endif
  1529. }
  1530. /* export stereo mode flag as metadata tag */
  1531. if (track->video.stereo_mode && track->video.stereo_mode < MATROSKA_VIDEO_STEREO_MODE_COUNT)
  1532. av_dict_set(&st->metadata, "stereo_mode", matroska_video_stereo_mode[track->video.stereo_mode], 0);
  1533. /* if we have virtual track, mark the real tracks */
  1534. for (j=0; j < track->operation.combine_planes.nb_elem; j++) {
  1535. char buf[32];
  1536. if (planes[j].type >= MATROSKA_VIDEO_STEREO_PLANE_COUNT)
  1537. continue;
  1538. snprintf(buf, sizeof(buf), "%s_%d",
  1539. matroska_video_stereo_plane[planes[j].type], i);
  1540. for (k=0; k < matroska->tracks.nb_elem; k++)
  1541. if (planes[j].uid == tracks[k].uid) {
  1542. av_dict_set(&s->streams[k]->metadata,
  1543. "stereo_mode", buf, 0);
  1544. break;
  1545. }
  1546. }
  1547. } else if (track->type == MATROSKA_TRACK_TYPE_AUDIO) {
  1548. st->codec->codec_type = AVMEDIA_TYPE_AUDIO;
  1549. st->codec->sample_rate = track->audio.out_samplerate;
  1550. st->codec->channels = track->audio.channels;
  1551. if (st->codec->codec_id != CODEC_ID_AAC)
  1552. st->need_parsing = AVSTREAM_PARSE_HEADERS;
  1553. } else if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE) {
  1554. st->codec->codec_type = AVMEDIA_TYPE_SUBTITLE;
  1555. if (st->codec->codec_id == CODEC_ID_SSA)
  1556. matroska->contains_ssa = 1;
  1557. }
  1558. }
  1559. attachements = attachements_list->elem;
  1560. for (j=0; j<attachements_list->nb_elem; j++) {
  1561. if (!(attachements[j].filename && attachements[j].mime &&
  1562. attachements[j].bin.data && attachements[j].bin.size > 0)) {
  1563. av_log(matroska->ctx, AV_LOG_ERROR, "incomplete attachment\n");
  1564. } else {
  1565. AVStream *st = avformat_new_stream(s, NULL);
  1566. if (st == NULL)
  1567. break;
  1568. av_dict_set(&st->metadata, "filename",attachements[j].filename, 0);
  1569. av_dict_set(&st->metadata, "mimetype", attachements[j].mime, 0);
  1570. st->codec->codec_id = CODEC_ID_NONE;
  1571. st->codec->codec_type = AVMEDIA_TYPE_ATTACHMENT;
  1572. st->codec->extradata = av_malloc(attachements[j].bin.size + FF_INPUT_BUFFER_PADDING_SIZE);
  1573. if(st->codec->extradata == NULL)
  1574. break;
  1575. st->codec->extradata_size = attachements[j].bin.size;
  1576. memcpy(st->codec->extradata, attachements[j].bin.data, attachements[j].bin.size);
  1577. for (i=0; ff_mkv_mime_tags[i].id != CODEC_ID_NONE; i++) {
  1578. if (!strncmp(ff_mkv_mime_tags[i].str, attachements[j].mime,
  1579. strlen(ff_mkv_mime_tags[i].str))) {
  1580. st->codec->codec_id = ff_mkv_mime_tags[i].id;
  1581. break;
  1582. }
  1583. }
  1584. attachements[j].stream = st;
  1585. }
  1586. }
  1587. chapters = chapters_list->elem;
  1588. for (i=0; i<chapters_list->nb_elem; i++)
  1589. if (chapters[i].start != AV_NOPTS_VALUE && chapters[i].uid
  1590. && (max_start==0 || chapters[i].start > max_start)) {
  1591. chapters[i].chapter =
  1592. avpriv_new_chapter(s, chapters[i].uid, (AVRational){1, 1000000000},
  1593. chapters[i].start, chapters[i].end,
  1594. chapters[i].title);
  1595. av_dict_set(&chapters[i].chapter->metadata,
  1596. "title", chapters[i].title, 0);
  1597. max_start = chapters[i].start;
  1598. }
  1599. matroska_add_index_entries(matroska);
  1600. matroska_convert_tags(s);
  1601. return 0;
  1602. }
  1603. /*
  1604. * Put one packet in an application-supplied AVPacket struct.
  1605. * Returns 0 on success or -1 on failure.
  1606. */
  1607. static int matroska_deliver_packet(MatroskaDemuxContext *matroska,
  1608. AVPacket *pkt)
  1609. {
  1610. if (matroska->num_packets > 0) {
  1611. memcpy(pkt, matroska->packets[0], sizeof(AVPacket));
  1612. av_free(matroska->packets[0]);
  1613. if (matroska->num_packets > 1) {
  1614. void *newpackets;
  1615. memmove(&matroska->packets[0], &matroska->packets[1],
  1616. (matroska->num_packets - 1) * sizeof(AVPacket *));
  1617. newpackets = av_realloc(matroska->packets,
  1618. (matroska->num_packets - 1) * sizeof(AVPacket *));
  1619. if (newpackets)
  1620. matroska->packets = newpackets;
  1621. } else {
  1622. av_freep(&matroska->packets);
  1623. matroska->prev_pkt = NULL;
  1624. }
  1625. matroska->num_packets--;
  1626. return 0;
  1627. }
  1628. return -1;
  1629. }
  1630. /*
  1631. * Free all packets in our internal queue.
  1632. */
  1633. static void matroska_clear_queue(MatroskaDemuxContext *matroska)
  1634. {
  1635. if (matroska->packets) {
  1636. int n;
  1637. for (n = 0; n < matroska->num_packets; n++) {
  1638. av_free_packet(matroska->packets[n]);
  1639. av_free(matroska->packets[n]);
  1640. }
  1641. av_freep(&matroska->packets);
  1642. matroska->num_packets = 0;
  1643. }
  1644. }
  1645. static int matroska_parse_block(MatroskaDemuxContext *matroska, uint8_t *data,
  1646. int size, int64_t pos, uint64_t cluster_time,
  1647. uint64_t duration, int is_keyframe,
  1648. int64_t cluster_pos)
  1649. {
  1650. uint64_t timecode = AV_NOPTS_VALUE;
  1651. MatroskaTrack *track;
  1652. int res = 0;
  1653. AVStream *st;
  1654. AVPacket *pkt;
  1655. int16_t block_time;
  1656. uint32_t *lace_size = NULL;
  1657. int n, flags, laces = 0;
  1658. uint64_t num;
  1659. if ((n = matroska_ebmlnum_uint(matroska, data, size, &num)) < 0) {
  1660. av_log(matroska->ctx, AV_LOG_ERROR, "EBML block data error\n");
  1661. return n;
  1662. }
  1663. data += n;
  1664. size -= n;
  1665. track = matroska_find_track_by_num(matroska, num);
  1666. if (!track || !track->stream) {
  1667. av_log(matroska->ctx, AV_LOG_INFO,
  1668. "Invalid stream %"PRIu64" or size %u\n", num, size);
  1669. return AVERROR_INVALIDDATA;
  1670. } else if (size <= 3)
  1671. return 0;
  1672. st = track->stream;
  1673. if (st->discard >= AVDISCARD_ALL)
  1674. return res;
  1675. av_assert1(duration != AV_NOPTS_VALUE);
  1676. if (!duration)
  1677. duration = track->default_duration / matroska->time_scale;
  1678. block_time = AV_RB16(data);
  1679. data += 2;
  1680. flags = *data++;
  1681. size -= 3;
  1682. if (is_keyframe == -1)
  1683. is_keyframe = flags & 0x80 ? AV_PKT_FLAG_KEY : 0;
  1684. if (cluster_time != (uint64_t)-1
  1685. && (block_time >= 0 || cluster_time >= -block_time)) {
  1686. timecode = cluster_time + block_time;
  1687. if (track->type == MATROSKA_TRACK_TYPE_SUBTITLE
  1688. && timecode < track->end_timecode)
  1689. is_keyframe = 0; /* overlapping subtitles are not key frame */
  1690. if (is_keyframe)
  1691. av_add_index_entry(st, cluster_pos, timecode, 0,0,AVINDEX_KEYFRAME);
  1692. track->end_timecode = FFMAX(track->end_timecode, timecode+duration);
  1693. }
  1694. if (matroska->skip_to_keyframe && track->type != MATROSKA_TRACK_TYPE_SUBTITLE) {
  1695. if (timecode < matroska->skip_to_timecode)
  1696. return res;
  1697. if (!st->skip_to_keyframe) {
  1698. av_log(matroska->ctx, AV_LOG_ERROR, "File is broken, keyframes not correctly marked!\n");
  1699. matroska->skip_to_keyframe = 0;
  1700. }
  1701. if (is_keyframe)
  1702. matroska->skip_to_keyframe = 0;
  1703. }
  1704. switch ((flags & 0x06) >> 1) {
  1705. case 0x0: /* no lacing */
  1706. laces = 1;
  1707. lace_size = av_mallocz(sizeof(int));
  1708. lace_size[0] = size;
  1709. break;
  1710. case 0x1: /* Xiph lacing */
  1711. case 0x2: /* fixed-size lacing */
  1712. case 0x3: /* EBML lacing */
  1713. av_assert0(size>0); // size <=3 is checked before size-=3 above
  1714. laces = (*data) + 1;
  1715. data += 1;
  1716. size -= 1;
  1717. lace_size = av_mallocz(laces * sizeof(int));
  1718. switch ((flags & 0x06) >> 1) {
  1719. case 0x1: /* Xiph lacing */ {
  1720. uint8_t temp;
  1721. uint32_t total = 0;
  1722. for (n = 0; res == 0 && n < laces - 1; n++) {
  1723. while (1) {
  1724. if (size == 0) {
  1725. res = -1;
  1726. break;
  1727. }
  1728. temp = *data;
  1729. lace_size[n] += temp;
  1730. data += 1;
  1731. size -= 1;
  1732. if (temp != 0xff)
  1733. break;
  1734. }
  1735. total += lace_size[n];
  1736. }
  1737. lace_size[n] = size - total;
  1738. break;
  1739. }
  1740. case 0x2: /* fixed-size lacing */
  1741. for (n = 0; n < laces; n++)
  1742. lace_size[n] = size / laces;
  1743. break;
  1744. case 0x3: /* EBML lacing */ {
  1745. uint32_t total;
  1746. n = matroska_ebmlnum_uint(matroska, data, size, &num);
  1747. if (n < 0) {
  1748. av_log(matroska->ctx, AV_LOG_INFO,
  1749. "EBML block data error\n");
  1750. break;
  1751. }
  1752. data += n;
  1753. size -= n;
  1754. total = lace_size[0] = num;
  1755. for (n = 1; res == 0 && n < laces - 1; n++) {
  1756. int64_t snum;
  1757. int r;
  1758. r = matroska_ebmlnum_sint(matroska, data, size, &snum);
  1759. if (r < 0) {
  1760. av_log(matroska->ctx, AV_LOG_INFO,
  1761. "EBML block data error\n");
  1762. break;
  1763. }
  1764. data += r;
  1765. size -= r;
  1766. lace_size[n] = lace_size[n - 1] + snum;
  1767. total += lace_size[n];
  1768. }
  1769. lace_size[laces - 1] = size - total;
  1770. break;
  1771. }
  1772. }
  1773. break;
  1774. }
  1775. if (res == 0) {
  1776. for (n = 0; n < laces; n++) {
  1777. if (lace_size[n] > size) {
  1778. av_log(matroska->ctx, AV_LOG_ERROR, "Invalid packet size\n");
  1779. break;
  1780. }
  1781. if ((st->codec->codec_id == CODEC_ID_RA_288 ||
  1782. st->codec->codec_id == CODEC_ID_COOK ||
  1783. st->codec->codec_id == CODEC_ID_SIPR ||
  1784. st->codec->codec_id == CODEC_ID_ATRAC3) &&
  1785. st->codec->block_align && track->audio.sub_packet_size) {
  1786. int a = st->codec->block_align;
  1787. int sps = track->audio.sub_packet_size;
  1788. int cfs = track->audio.coded_framesize;
  1789. int h = track->audio.sub_packet_h;
  1790. int y = track->audio.sub_packet_cnt;
  1791. int w = track->audio.frame_size;
  1792. int x;
  1793. if (!track->audio.pkt_cnt) {
  1794. if (track->audio.sub_packet_cnt == 0)
  1795. track->audio.buf_timecode = timecode;
  1796. if (st->codec->codec_id == CODEC_ID_RA_288) {
  1797. if (size < cfs * h / 2) {
  1798. av_log(matroska->ctx, AV_LOG_ERROR,
  1799. "Corrupt int4 RM-style audio packet size\n");
  1800. res = AVERROR_INVALIDDATA;
  1801. goto end;
  1802. }
  1803. for (x=0; x<h/2; x++)
  1804. memcpy(track->audio.buf+x*2*w+y*cfs,
  1805. data+x*cfs, cfs);
  1806. } else if (st->codec->codec_id == CODEC_ID_SIPR) {
  1807. if (size < w) {
  1808. av_log(matroska->ctx, AV_LOG_ERROR,
  1809. "Corrupt sipr RM-style audio packet size\n");
  1810. res = AVERROR_INVALIDDATA;
  1811. goto end;
  1812. }
  1813. memcpy(track->audio.buf + y*w, data, w);
  1814. } else {
  1815. if (size < sps * w / sps) {
  1816. av_log(matroska->ctx, AV_LOG_ERROR,
  1817. "Corrupt generic RM-style audio packet size\n");
  1818. res = AVERROR_INVALIDDATA;
  1819. goto end;
  1820. }
  1821. for (x=0; x<w/sps; x++)
  1822. memcpy(track->audio.buf+sps*(h*x+((h+1)/2)*(y&1)+(y>>1)), data+x*sps, sps);
  1823. }
  1824. if (++track->audio.sub_packet_cnt >= h) {
  1825. if (st->codec->codec_id == CODEC_ID_SIPR)
  1826. ff_rm_reorder_sipr_data(track->audio.buf, h, w);
  1827. track->audio.sub_packet_cnt = 0;
  1828. track->audio.pkt_cnt = h*w / a;
  1829. }
  1830. }
  1831. while (track->audio.pkt_cnt) {
  1832. pkt = av_mallocz(sizeof(AVPacket));
  1833. av_new_packet(pkt, a);
  1834. memcpy(pkt->data, track->audio.buf
  1835. + a * (h*w / a - track->audio.pkt_cnt--), a);
  1836. pkt->pts = track->audio.buf_timecode;
  1837. track->audio.buf_timecode = AV_NOPTS_VALUE;
  1838. pkt->pos = pos;
  1839. pkt->stream_index = st->index;
  1840. dynarray_add(&matroska->packets,&matroska->num_packets,pkt);
  1841. }
  1842. } else {
  1843. MatroskaTrackEncoding *encodings = track->encodings.elem;
  1844. int offset = 0;
  1845. uint32_t pkt_size = lace_size[n];
  1846. uint8_t *pkt_data = data;
  1847. if (encodings && encodings->scope & 1) {
  1848. offset = matroska_decode_buffer(&pkt_data,&pkt_size, track);
  1849. if (offset < 0)
  1850. continue;
  1851. av_assert0(offset + pkt_size >= pkt_size);
  1852. }
  1853. pkt = av_mallocz(sizeof(AVPacket));
  1854. /* XXX: prevent data copy... */
  1855. if (av_new_packet(pkt, pkt_size+offset) < 0) {
  1856. av_free(pkt);
  1857. res = AVERROR(ENOMEM);
  1858. break;
  1859. }
  1860. if (offset)
  1861. memcpy (pkt->data, encodings->compression.settings.data, offset);
  1862. memcpy (pkt->data+offset, pkt_data, pkt_size);
  1863. if (pkt_data != data)
  1864. av_free(pkt_data);
  1865. if (n == 0)
  1866. pkt->flags = is_keyframe;
  1867. pkt->stream_index = st->index;
  1868. if (track->ms_compat)
  1869. pkt->dts = timecode;
  1870. else
  1871. pkt->pts = timecode;
  1872. pkt->pos = pos;
  1873. if (st->codec->codec_id == CODEC_ID_TEXT)
  1874. pkt->convergence_duration = duration;
  1875. else if (track->type != MATROSKA_TRACK_TYPE_SUBTITLE)
  1876. pkt->duration = duration;
  1877. if (st->codec->codec_id == CODEC_ID_SSA)
  1878. matroska_fix_ass_packet(matroska, pkt, duration);
  1879. if (matroska->prev_pkt &&
  1880. timecode != AV_NOPTS_VALUE &&
  1881. matroska->prev_pkt->pts == timecode &&
  1882. matroska->prev_pkt->stream_index == st->index &&
  1883. st->codec->codec_id == CODEC_ID_SSA)
  1884. matroska_merge_packets(matroska->prev_pkt, pkt);
  1885. else {
  1886. dynarray_add(&matroska->packets,&matroska->num_packets,pkt);
  1887. matroska->prev_pkt = pkt;
  1888. }
  1889. }
  1890. if (timecode != AV_NOPTS_VALUE)
  1891. timecode = duration ? timecode + duration : AV_NOPTS_VALUE;
  1892. data += lace_size[n];
  1893. size -= lace_size[n];
  1894. }
  1895. }
  1896. end:
  1897. av_free(lace_size);
  1898. return res;
  1899. }
  1900. static int matroska_parse_cluster_incremental(MatroskaDemuxContext *matroska)
  1901. {
  1902. EbmlList *blocks_list;
  1903. MatroskaBlock *blocks;
  1904. int i, res;
  1905. res = ebml_parse(matroska,
  1906. matroska_cluster_incremental_parsing,
  1907. &matroska->current_cluster);
  1908. if (res == 1) {
  1909. /* New Cluster */
  1910. if (matroska->current_cluster_pos)
  1911. ebml_level_end(matroska);
  1912. ebml_free(matroska_cluster, &matroska->current_cluster);
  1913. memset(&matroska->current_cluster, 0, sizeof(MatroskaCluster));
  1914. matroska->current_cluster_num_blocks = 0;
  1915. matroska->current_cluster_pos = avio_tell(matroska->ctx->pb);
  1916. matroska->prev_pkt = NULL;
  1917. /* sizeof the ID which was already read */
  1918. if (matroska->current_id)
  1919. matroska->current_cluster_pos -= 4;
  1920. res = ebml_parse(matroska,
  1921. matroska_clusters_incremental,
  1922. &matroska->current_cluster);
  1923. /* Try parsing the block again. */
  1924. if (res == 1)
  1925. res = ebml_parse(matroska,
  1926. matroska_cluster_incremental_parsing,
  1927. &matroska->current_cluster);
  1928. }
  1929. if (!res &&
  1930. matroska->current_cluster_num_blocks <
  1931. matroska->current_cluster.blocks.nb_elem) {
  1932. blocks_list = &matroska->current_cluster.blocks;
  1933. blocks = blocks_list->elem;
  1934. matroska->current_cluster_num_blocks = blocks_list->nb_elem;
  1935. i = blocks_list->nb_elem - 1;
  1936. if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
  1937. int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
  1938. if (!blocks[i].non_simple)
  1939. blocks[i].duration = 0;
  1940. res = matroska_parse_block(matroska,
  1941. blocks[i].bin.data, blocks[i].bin.size,
  1942. blocks[i].bin.pos,
  1943. matroska->current_cluster.timecode,
  1944. blocks[i].duration, is_keyframe,
  1945. matroska->current_cluster_pos);
  1946. }
  1947. }
  1948. if (res < 0) matroska->done = 1;
  1949. return res;
  1950. }
  1951. static int matroska_parse_cluster(MatroskaDemuxContext *matroska)
  1952. {
  1953. MatroskaCluster cluster = { 0 };
  1954. EbmlList *blocks_list;
  1955. MatroskaBlock *blocks;
  1956. int i, res;
  1957. int64_t pos;
  1958. if (!matroska->contains_ssa)
  1959. return matroska_parse_cluster_incremental(matroska);
  1960. pos = avio_tell(matroska->ctx->pb);
  1961. matroska->prev_pkt = NULL;
  1962. if (matroska->current_id)
  1963. pos -= 4; /* sizeof the ID which was already read */
  1964. res = ebml_parse(matroska, matroska_clusters, &cluster);
  1965. blocks_list = &cluster.blocks;
  1966. blocks = blocks_list->elem;
  1967. for (i=0; i<blocks_list->nb_elem; i++)
  1968. if (blocks[i].bin.size > 0 && blocks[i].bin.data) {
  1969. int is_keyframe = blocks[i].non_simple ? !blocks[i].reference : -1;
  1970. res=matroska_parse_block(matroska,
  1971. blocks[i].bin.data, blocks[i].bin.size,
  1972. blocks[i].bin.pos, cluster.timecode,
  1973. blocks[i].duration, is_keyframe,
  1974. pos);
  1975. }
  1976. ebml_free(matroska_cluster, &cluster);
  1977. return res;
  1978. }
  1979. static int matroska_read_packet(AVFormatContext *s, AVPacket *pkt)
  1980. {
  1981. MatroskaDemuxContext *matroska = s->priv_data;
  1982. while (matroska_deliver_packet(matroska, pkt)) {
  1983. int64_t pos = avio_tell(matroska->ctx->pb);
  1984. if (matroska->done)
  1985. return AVERROR_EOF;
  1986. if (matroska_parse_cluster(matroska) < 0)
  1987. matroska_resync(matroska, pos);
  1988. }
  1989. return 0;
  1990. }
  1991. static int matroska_read_seek(AVFormatContext *s, int stream_index,
  1992. int64_t timestamp, int flags)
  1993. {
  1994. MatroskaDemuxContext *matroska = s->priv_data;
  1995. MatroskaTrack *tracks = matroska->tracks.elem;
  1996. AVStream *st = s->streams[stream_index];
  1997. int i, index, index_sub, index_min;
  1998. /* Parse the CUES now since we need the index data to seek. */
  1999. if (matroska->cues_parsing_deferred > 0) {
  2000. matroska->cues_parsing_deferred = 0;
  2001. matroska_parse_cues(matroska);
  2002. }
  2003. if (!st->nb_index_entries)
  2004. goto err;
  2005. timestamp = FFMAX(timestamp, st->index_entries[0].timestamp);
  2006. if ((index = av_index_search_timestamp(st, timestamp, flags)) < 0) {
  2007. avio_seek(s->pb, st->index_entries[st->nb_index_entries-1].pos, SEEK_SET);
  2008. matroska->current_id = 0;
  2009. while ((index = av_index_search_timestamp(st, timestamp, flags)) < 0) {
  2010. matroska->prev_pkt = NULL;
  2011. matroska_clear_queue(matroska);
  2012. if (matroska_parse_cluster(matroska) < 0)
  2013. break;
  2014. }
  2015. }
  2016. matroska_clear_queue(matroska);
  2017. if (index < 0 || (matroska->cues_parsing_deferred < 0 && index == st->nb_index_entries - 1))
  2018. goto err;
  2019. index_min = index;
  2020. for (i=0; i < matroska->tracks.nb_elem; i++) {
  2021. tracks[i].audio.pkt_cnt = 0;
  2022. tracks[i].audio.sub_packet_cnt = 0;
  2023. tracks[i].audio.buf_timecode = AV_NOPTS_VALUE;
  2024. tracks[i].end_timecode = 0;
  2025. if (tracks[i].type == MATROSKA_TRACK_TYPE_SUBTITLE
  2026. && !tracks[i].stream->discard != AVDISCARD_ALL) {
  2027. index_sub = av_index_search_timestamp(tracks[i].stream, st->index_entries[index].timestamp, AVSEEK_FLAG_BACKWARD);
  2028. if (index_sub >= 0
  2029. && st->index_entries[index_sub].pos < st->index_entries[index_min].pos
  2030. && st->index_entries[index].timestamp - st->index_entries[index_sub].timestamp < 30000000000/matroska->time_scale)
  2031. index_min = index_sub;
  2032. }
  2033. }
  2034. avio_seek(s->pb, st->index_entries[index_min].pos, SEEK_SET);
  2035. matroska->current_id = 0;
  2036. st->skip_to_keyframe =
  2037. matroska->skip_to_keyframe = !(flags & AVSEEK_FLAG_ANY);
  2038. matroska->skip_to_timecode = st->index_entries[index].timestamp;
  2039. matroska->done = 0;
  2040. matroska->num_levels = 0;
  2041. ff_update_cur_dts(s, st, st->index_entries[index].timestamp);
  2042. return 0;
  2043. err:
  2044. // slightly hackish but allows proper fallback to
  2045. // the generic seeking code.
  2046. matroska_clear_queue(matroska);
  2047. matroska->current_id = 0;
  2048. st->skip_to_keyframe =
  2049. matroska->skip_to_keyframe = 0;
  2050. matroska->done = 0;
  2051. matroska->num_levels = 0;
  2052. return -1;
  2053. }
  2054. static int matroska_read_close(AVFormatContext *s)
  2055. {
  2056. MatroskaDemuxContext *matroska = s->priv_data;
  2057. MatroskaTrack *tracks = matroska->tracks.elem;
  2058. int n;
  2059. matroska_clear_queue(matroska);
  2060. for (n=0; n < matroska->tracks.nb_elem; n++)
  2061. if (tracks[n].type == MATROSKA_TRACK_TYPE_AUDIO)
  2062. av_free(tracks[n].audio.buf);
  2063. ebml_free(matroska_cluster, &matroska->current_cluster);
  2064. ebml_free(matroska_segment, matroska);
  2065. return 0;
  2066. }
  2067. AVInputFormat ff_matroska_demuxer = {
  2068. .name = "matroska,webm",
  2069. .long_name = NULL_IF_CONFIG_SMALL("Matroska/WebM file format"),
  2070. .priv_data_size = sizeof(MatroskaDemuxContext),
  2071. .read_probe = matroska_probe,
  2072. .read_header = matroska_read_header,
  2073. .read_packet = matroska_read_packet,
  2074. .read_close = matroska_read_close,
  2075. .read_seek = matroska_read_seek,
  2076. };